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DUAL REDUCTION AND ELEMENTARY GAMES

by Roger B. Myerson

1. Introduction

Robert Aumann (1974) defined correlated equilibria to include all jointly
randomized strategies that are feasible for the players in a game when they can
communicate with each other and with a mediator, assuming that each player will
rationally choose his (or her) own strategy after all communication is
finished. The set of correlated equilibria thus contains the set of Nash
equilibria as a subset. However, the set of all correlated equilibria is
generally much easier to characterize mathematically than the smaller set of
Nash equilibria. That is, allowing the possibility of mediated communication
greatly simplifies equilibrium analysis of general games.

This paper develops some general mathematical methods for simplifying and
analyzing strategic-form games with communication, when correlated equilibrium

is taken as the basic solution concept. We denote a game in strategic form by

(U)o

r -, (Cy) i’ieN

ienN’
where N denotes the set of players, Ci dencotes the set of pure strategies of

player i, and U, :x,

1% en Cj » R denotes the utility function of player i.

Throughout this paper, we assume that the set of players N and the pure
strategy sets Ci are nonempty finite sets.

Given such a game I', the set of (pure) strategy profiles is denoted by

= XjEN Cj'
For each player i, the set of strategy profiles for the players other than i is
C-i = xjeN-i Cj.

A strategy profile in C may be denoted ¢ = (Ci)iE We may write (¢ i’di)

N



to denote the strategy profile that differs from ¢ only in that di is
i-component.

For any finite set S, we let A(S) denote the set of probability
distributions over the set S. So a correlated strategy for the players in N is
any probability distribution in A(C). That is, p is a correlated strategy Lff
b= (u(c))cec satisfies

pw(c)y = 0, Ve e C,
ZCEC pley = 1.

We may think of any such correlated strategy p as being implemented with
the help of a mediator. First the mediator selects a recommended strategy
profile according te the probability distribution u, selecting any strategy
profile ¢ with probability p{c). Then the mediator confidentially tells each
player 1 the component s of this strategy profile that is recommended for
him. But after the mediator communicates these recommendations, the actual
strategy choice in Ci is up to player i, who is free to obey or disobey the
mediator’s recommendations. The mediator’'s correlated strategy is a correlated
equilibrium iff it would be a Nash equilibrium for all players to obey the
mediator’s recommendations. That is, a correlated equilibrium is any
correlated strategy p such that
(1) = e u(c)(Ui(c_i,di) - Ui(c)) < 0, VieN, VciECi, Vdieci.

The inequalities in (1) are incentive constraints, and they stipulate that

each player 1 could not expect to increase his expected utility by using
strategy di when he is tecld by the mediator to use the strategy E assuming
that the mediator’s recommendations are generated according to the distribution

i, and assuming that all other players are expected to obey the mediator’s



recommendations.

The weak inequalities in the incentive constraints (1) allow that a player
might be indifferent between cbeying and disobeying the mediator’s
recommendation in a correlated equilibrium. If a player would be indifferent
between conforming to the correlated equilibrium and deviating from it, then we
need to worry whether the slightest perturbation of incentives and beliefs
might cause the equilibrium to unravel. For this reason, game theorists since

Selten (1975) have studied equilibrium refinements such as perfect eqguilibrium,

to identify when such players’ indifference to deviation should be considered
problematic in an equilibrium, and when it should not. (For a detailed review
of this literature, see van Damme, 1991, for example.)

There are only a few papers which have tried toc extend equilibrium
refinements such as perfectness to games where correlated equilibrium is the
basic solution concept. (See Myetrson, 1986, and Dhillen and Mertens, 1992.)
In this paper, we offer a new perspective on this question. We begin in
Section 2 by defining a class of elementary games where the problem of
indifference to deviatien does not arise in correlated equilibria. Then we
develop a new technique, called dual reduction, that will enable us to reduce
any game in strategic form to such an elementary game. The mathematical
foundations of dual reduction are taken from Nau and McCardle’s (1920} proof of
existence of correlated equilibria, which we review in Section 3. The
definition of dual reduction is developed in Section 4, and in Section 5 we
show that iterative dual reduction can always generate an elementary game.
Examples and refinements are discussed in Sections 6 and 7, and Section 8

contains the longer proofs.



2. Elementary games

Given a strategic-form game I' as above, we say that a correlated

equilibrium g has elementary incentives if u satisfies all the Incentive

constraints (1) as strict inequalities; that is,
- vi Yc.,eC,, ¥d,eC, .
= ) ' u(c)(Ui(C_i,di) Ui(c)) < 0, ieN, cle {0 ;€65
-1 -1
Notice that this definition implies that every pure strategy must have positive

probability in pu,
= pule) > 0, VieN, Vcieci.

That is, a correlated equilibrium has elementary incentives if every pure
strategy of every player has a positive probability of being recommended, and
any player would strictly decrease his expected payoff by unilaterally
deviating from any recommended strategy, when all other plavers are expected to
obey the recommendations of the correlated equilibrium.

If 4 is any correlated equilibrium and p is a correlated equilibrium with

~

elementary incentives then, for any number ¢ between 0 and 1, (1 - e)u + £p is
also a correlated equilibrium with elementary incentives. This fact is easy to
verify, using the linearity of the incentive constraints. Thus, if a game has

any correlated equilibrium with elementary incentives, then every correlated
equilibrium can be approximated arbitrarily closely by correlated equilibria

with elementary incentives. That is, we have the following fact.

Proposition 1. If the set of correlated equilibria with elementary

incentives is nonempty, then it is dense in the set of all correlated

equilibria.



So let us say that the game I' is elementary if ' has correlated equilibria
with elementary incentives. For such elementary games, any player can be
motivated to choose any pure strategy, with no indifference problems. Any
indifference that may arise in a correlated equilibrium can be eliminated by
arbitrarily small perturbations within the correlated equilibrium set. So
correlated-equilibrium refinements that generalize Selten’s perfectness concept
should be unnecessary for such elementary games,

This concept of elementary games is quite restrictive {and seo it may be
remarkable that we will be able to reduce all games to elementary games).

To illustrate this concept, let us consider three well-known examples.

Player 2
*9 Y9
Player 1 X 3,2 0,0
¥q 0,0 2,3

Figure 1. The Battle of the Sexes Game

The Battle of Sexes game (Figure 1) is an elementary game. The correlated
equilibrium g such that p(xl,xz) = .5 = #(yl,yz) has elementary incentives,
because either player i would expect to strictly decrease his paveff by
unilaterally deviating to Y when X, is recommended, or by deviating to X, when

yi is recommended.



Player 2

*2 72
Player 1 Xy 4.4 0,5
Yy 5,0 1,1

Figure 2. The Prisoners' Dilemma Game.

The Prisoner’s Dilemma (Figure 2) is not elementary, because there is no
way to make a planned deviation frem X, to Y costly for player i. In fact,
the strategy xi cannot be used with positive probability in any correlated
equilibrium, because it is strongly dominated for player i. To reduce the
Prisoners’ Dilemma to an elementary game, we must recognize that the strategies
Xy and X, are dominated and delete them from the game. After elimination of
these dominated strategies the resulting (1x1} game would be trivially

elementary, because no player would have any possible deviations.

Player 2
*2 Y2
Player 1 Xy 1,-1 -1,1
V1 1.1 1,-1

Figure 3. The Matching Pennies Game

The Matching Pennies game (Figure 3) is also not elementary. This game
has only one correlated equilibrium, which is such that
#(xl,xz) = u(xl.yz) = #(yl,xz) = u(yl,yz) = 1/4.
That is, the unique correlated equilibrium is the Nash equilibrium in which

each player independently randomizes among his two strategies, choosing each



with probability 1/2. 1In this unique equilibrium, each player is indifferent
between his two pure strategies, and so Matching Pennies is mot an elementary
game (even though this equilibrium actually is perfect).

To reduce Matching Pennies to an elementary game, we must acknowledge
an inextricable connection between each player’s two strategies and somehow
consolidate them. The key to this reducticon is in the interpretation that
gives rise to the game’'s title "Matching Penmies."” Suppose that strategies X,
and y; are interpreted respectively as "put 1's penny Heads-up" and "put i’'s
penny Tails-up." Player 2 pays a dellar to player 1 if their pennies match,
but player 1 pays a dellar to player 2 if their pennies do not match. Then we
could give either player the advice to forget about cheoosing Heads or Tails and
simply toss the penny, so that it is equally likely to fall Heads or Tails. 1In
effect, this advice tells player i to consolidate the strategies X and ¥y into
a single randomized strategy that gives probability 1/? tao Xy and probability
1/2 to yi- After such consolidation, when each player i considers only this
randomized strategy .S[xi]+.5[yi}, we are left with a 1x1 game (with expected
payoff 0 for each player) which trivially satisfies the conditions of being
elementary.

These examples illustrate the two general ways that nonelementary games
can be reduced: by eliminating strategies that "bad" in some sense, and by
consolidating strategies that are "inextricably comnected” in some sense.
Elimination of dominated strategies is a familiar idea; but the consolidation
of inextricably connected strategies may be less familiar. Our goal here is to
show how reductions of both kinds can be derived from a unified theory of dual

reduction.



3. Duality and the existence of correlated equilibria

The existence of correlated equilibria for finite games was known since
the concept was first defined by Aumann (19/4), because correlated equilibria
include all Nash equilibria, and Nash (1951} proved the general existence of
Nash equilibria for all finite strategic-form games. Nash's proof relies on
fixed-point theorems of algebraic topology, however. Hart and Schmeidler
(1989) and Nau and McCardle (1990) directly proved the existence of correlated
equilibria using the duality theorems of linear algebra.l In this section, we
review some key ideas from Nau and McCardle’s proof. Their techniques for
proving existence of correlated equilibria will also be useful for showing
how to reduce nonelementary games.

The first step in the proof is to set up a linear programming problem for
which the optimal solutions are the correlated equilibria. There are several
ways to do this, but the most useful formulation for our purposes is the

foilowing linear programming problem, which we may call the strategic incentive

problem:
h d t imi
choose p and v to maximize EiEN EC.GC. yi(ci)
i 71
subject to:

plec)y = 0 veeC,

ZCEC ufey = 1, and

= U. ,,d,.)-U, + v, (c,) =< i
&C, pwle)( 1(C-1’ l) Ul(c)) ul(cl) 0, VieN, Vcieci’ VdiECi.

1Nash (1951) remarked that a finite game with rational utility numbers
might have only equilibria with irrational probabilities. The linear algebraic
proof guarantees that such a finite game with rational utility numbers must
have a correlated equilibrium in which all probabilies are rational numbers.



The constraints of this strategic incentive problem differ from the
definition of correlated equilibrium only in that we have added the artificial
variables ui(ci), so that feasibility of the problem can be trivially
guaranteed by letting these unconstrained artificial variables become
negative. Notice, however, that the vector v must satisfy

ui(ci) < 0, VieN, VCiECi,
because di:Ci is allowed in the last row of the strategic incentive problemn.
Furthermore, these nonpositive ui(ci) numbers can all equal zero {their maximum
possible value) if and only if p is a correlated equilibrium. Thus, the
existence of correlated equilibria can be proven by showing that the optimal
value of this strategic incentive problem is zero.

Like any linear programming problem, this strategic incentive problem is
associated with a dual problem that has the same optimal value, by the duality
theorem of linear programming (see Chvatal, 1983, for example). Following Nau
and McCardle (1990), we can formulate this dual problem and show directly that
its optimal value is 0.

The dual problem has one decision wvariable for each constraint in the
primal. We let ai(dilci) denote the dual variable associated with the primal
constraint

B eq MOWile 180 U (@) + vilep) <0,
which is just a relaxed version of the incentive constraint that player 1
should not expect to gain by using di when ., is recommended. We may let o
denote the vector of these dual variables, and let a; denote the subvector of

components indexed on player i's strategies; that is:

x5 = (ai(dilci))c.ec.,d.ec.
1 1 1 1



@ = (2 )i = (ai(dilci))c_ec.,d.EC,,ieN
1 1 1 1

Let B denote the dual variable associated with the primal constraint

Ecec u{c) = 1. Then the dual problem may be written:

choose o and 8 to minimize f§

subject to:

a. (d,|e.) = 0, VieN, Ve _eC_, vd €C_,
i~7itri i i i1

Edieci ai(dilci) =1, Vcieci, VieN,

z o (d; e ) (U (e ,d) - U.(e)) + f20, VYeeC.

ielN Ed_ec.
i1
Nau and McCardle (1990) have discussed the possible interpretations of these

dual wvariables. Here we review one useful interpretation.

A strategic transition matrix for player i is any ay such that

@y = (ai(dilci))c.ec.,d.ec.'
1 1 1 1

a. (d |e.) > 0, ve,eC,, va eC,,
1 1 1 1 1 1 1

zdieci ai(dilci) -1, VYe,&C., VieN.

Any such strategic transition matrix for player i may be interpreted as a
random deviation strategy for player i in the game where a mediator is trying
to implement some correlated strategy p. In this interpretation of ags each
mumber ai(dilci) represents the probability that player i would deviate to the
strategy di when ¢ is recommended by the mediator.

Mathematically, any strategic transition matrix a, for player i can also
be viewed as the matrix of transition probabilities for a Markov chain on the
set of pure strategies for player i. By the basic theory of Markov chains,

there must exist a probability distribution on Ci that is stationary under this

10



Markov chain. So let us say that a distribution oy in A(Ci) is gi-stationarv
iff
(2) z ’ oi(ci)ai(di|ci) - 0. (d), Vvd;ec;.
i

As a probability distribution over Ci’ any such ai-stationary distributien can
also be interpreted as a randomized strategy for player 1. If a mediator’s
recommendations to player i were generated according to such an ai-stationary
randomized strategy, then applying the strategic transition matrix o, would not
change the distribution of player i's actions.

For any correlated strategy p, let Ui(p) denote the expected payoff to
player i under the correlated strategy p; that is,

Ui(u) = 2. u(C)Ui(C).

Given any correlated strategy p and strategic transition matrix as, let ai*p
denote the correlated strategy that results when a mediator tries to implement
the correlated strategy p, but player i follows the random deviation
strategy a, while everyone else follows the mediator’'s recommendations. That

is, ai*u is the correlated strategy such that

(a #p)(d) = zcieci @ (d |e)) u(d_ ,c), vdec.

Let Di(c,ai) denote the gains to player i from using the random deviation

strategy o, when the mediator recommends the pure-strategy profile c. That is,

let

D, (c,a;) = zdieci a (d |e (U e ;,d) - U(e)).

With this notation, we may write the following identity, when g is any

correlated strategy g in A(C), and o is any strategic transition matrix for

11



player 1i.

(3) e #le) Dile,a) = Ulaxp) - UL (p).
To verify (3), notice that both sides of the equation represent the expected
gains for player i from deviating by @ when all other players obey a mediator
who is trying to implement the correlated strategy u.

Thus, the dual problem requires us to specify a profile of random

deviation strategies a = (ai) and a number B such that

ieN
. .y = 0, VceG.

B+ EiEN Dl(c,al) c
For any (a,B) that satisfies these dual constraints, and for any correlated
strategy p in A(C), we must have

O =8+ 2 _ulc) 2, o Di(c,ai) =B+ Z g (UAw) - Ui(ai*p)).
But now consider a correlated strategy that is constructed by telling each
player i to independently randomize over Ci according to a strategy that is
ai-stationary. That is, consider p such that

ple) =1 ai(ci), YeeC,

ieN
where each randomized strategy o, satisfies the ni-stationarity condition (2).
Then ai*p = p for every player i, and so we get simply

6 = 8.
That is, a feasible solution for the dual problem cannot have a negative value
for the objective. So the optimal value of the objective 8 in the dual problem
must be zero. (Notice that § = 0 can be achieved trivially by letting
Qi(dilci) = 0 whenever di = ci.) So the optimal value of the strategic
incentive problem is also zero, by the duality theorem of linear programming.
This observation completes the linear-algebraic proof of the general existence

of correlated equilibria.

Given the existence of correlated equilibria, we know that any optimal

12



solution of the dual problem must have g = 0, and the vector a must satisfy
a,(d,]e,) = 0, vieN, Vvc,eC., Vvd.eC.
i1l i 71 i1

- ) 4
Edieci ai(dilci) 1, Ve,&C,, VieN, an

- 0, veeG.

So henceforth let us say that @ is a dual vector for the game T iff o satisfies

these conditions (which are the dual constraints with g8 = 0).

4. Dual reductions

We have seen that a dual vector can be interpreted as a profile of Markov
chains on the players’ pure strategy sets. The fact that stationary
distributions exist for the these Markov chains was the key step in proving
that the dual problem has optimal value 0, which in turn implied that
correlated equilibria must exist. That is, in a quest to find correlated
equilibria, we found dual-stationary strategies first, and then we found the
equilibria. This derivation suggests that these stationary strategies might
form some kind of pre-equilibrium solution concept for games with
communication. Following this intuition, let us see how a game is transformed
when the players restrict themselves to randomlized strategies that are
stationary with respect to some dual vector a = (ai)iEN'

First we must review some of the basic results from the theory of Markov
chains, as they apply when we congider each @, as a Markov chain on Ci' We may
say that a set Bi is an gi-absorbing iff Bi is a nonempty subset of Ci and

ai(cilbi) -0, Vvb.eEB., Ve €C\B..

That is, Bi is ai—absorbing ift a; assigns zero probability to moves outside

the set Bi from within Bi' A minimal ai—absorbing set is any ai-absorbing set

13



that contains no proper ai-absorbing subset. Because Ci is finite, at least
one such minimal ai-absorbing set must exist. From the basic theory of Markov
chains (see Karlin, 1969, for example), if Bi is any minimal ai—absorbing set
then there exists a unique ai-stationary distribution that has support on Bi'
That is, for any minimal ai—absorbing subset Bi’ there is a unique randomized

strategy g such that

ZCiEBi ai(ci) ai(bilci) = oi(bi)’ VbiEBi'

ZC.EB. Ui(ci) =1, and
i

Ui(di) =0 Vdi & Bi'

Let Ci/ai denote the set of these ai—stationary distributions that have
support within a minimal ai-absorbing subset of Ci' (Ci/ai may be read as
"Ci reduced by ai.") Notice that Ci/ai is a nonempty finite subset of A(Ci),
the set of randomized strategies for player i, In fact, the number of elements
in this set Ci/ai cannot be greater than the number of pure strategies in Ci’
because there is one element of Ci/o:i for every minimal ai-absorbing set, and
these minimal ai-absorbing sets are nonempty disjoint subsets of Ci'

Other ai-stationary strategies can be constructed by taking convex
combinations of these randomized strategies in Ci/ai’ but it can be shown that
these are all the ai—stationary strategies. That is, any ai-stationary
randemized strategy in A(Ci) must be equivalent to a random mixture of the
strategies 1n this finite set Ci/ai. Geometrically, the distributions in Ci/ai
are the extreme points of the set of all ai—stationary distributions on Ci.

So let us define the a-reduction of T', denoted by I'/a, to be the game in

which every player restricts himself to using ai-stationary strategies. In

this game ['/a, the set of players is N (as in T), but the set of pure

14



strategies for each player i is Ci/ai, instead of Ci' For any profile of

. _ . .o . . . fmol
strategies o (oi)ieN in xiEN Ci/ai, the utility functien in I'/a is simply

ui(a) = Z (It ai(ci)) Ui(c).

ccC JEN
This equation asserts that, once player 1 has chosen an ai-stationary strategy

g in Ci/ai’ any randomization demanded by o, is implemented independently of

the other players. Notice that this e-reduced game T/o is itself a finite

strategic-form game, with the structure

P/a = (N, (Cy/ag)ian (i) ien)

More generally, we may use the term dual reduction to refer to any such reduced

game that can be derived from I' using any dual vector of T.

Let /o = X,

ieN Ci/ai denote the set of strategy profiles in the a-reduced

game TI'/a. So the set of correlated strategies in the a-reduced game is
A(C/a). But any A in &A(C/a) can be mapped back to a I'-equivalent corretated
strategy A in A(C) in the obvious way:

A(e) = Z (IIi

N ai(ci)) A(o).

o=C/a =

Thus, when we assume that the players use strategies that are stationary
with respect to some dual vector @, we get a reduced game /e, and we can
analyze the equilibria of this reduced game like any other finite
strategic-form game. But now we must ask whether it would actually be rational
for the players to act according to an equilibrium of the a-reduced game, once
we admit that any player could also deviate to a nonstationatry strategy. That
is, when we find an equilibrium in the a-reduced game, is it also an
equilibrium in the original game? The answer to this question is Yes. This
result gives us our fundamental justification for studying dual reductions, and

it is the main result of this paper. Its proof is given in Section 8.

15



Theorem 1. Let a be a dual vector for the game I'. If X is any correlated
equilibrium of the a-reduced game I'/a, then the [-equivalent correlated

strategy X 1s also a correlated equilibrium of T.

5. Iterative dual reduction and elementary games

By Theorem 1, the equilibria of a dual reduction I'/a form a nonempty
subset of the equilibria of the original game I'. The game [ may have other
equilibria of T that do not correspond to any equilibria of T/a, however.
Thus, dual reduction may be viewed as a tool for refining the set of
equilibria.

But a dual reduction is itself another strategic-form game that may be
further reducible, which can give us a further refinement of the equilibrium

set.. So we may say that an iterative dual reducticn of T is any F/al/az/...

K-1
o] .

where each aK is a dual vector for F/al/az/.../ Repeated application of
Theorem 1 assures us that equilibrium ineclusion helds for iterative dual
reduction. That is, any equilibrium (correlated or Nash) of any pgame that can
be generated from I' by iterative dual reduction must be an equilibrium of the
original game TI'.

So we should now ask, what do we get from applying iterative dual
reduction until we reach a game that cannot be further reduced? We now show
that the result will be an elementary game, as defined in Section 2.

We may say that a dual vector a« is trivial iff

ai(cilci) =1 and ai(dilci) =0, Vdi¢ci, Vcieci, vYieN.
That is, the trivial dual vector specifies that every player always obeys the
mediator’s recommendations with probability one. This trivial dual vector

always satisfies the dual constraints (with g = 0), because it sets all

16



deviation gains Di(c’ai) equal to zero.

We have already observed that, for any dual vector a, mumber of "pure"
strategies for each player in the reduced game I'/a is not more than the number
of pure strategies that this player has in the original game I'. That is,
letting #(S) denote the number of elements in any set 5, we may write

#(C/a) = H'EN #(Ci/ai) = Hi

i N #(Ci) = #(C).

<
This inequality can be made strict if and only if « is nontriwvial.
If ai(dilci) > 0 and di *Cy then either c; must be grouped together with di
in the same minimal absorbing set or else ¢, must be a transient strategy that
is not included in any minimal ai-absorbing set. So if ¢ is any nontrivial
dual vector then a-reduction generates a strict decrease in the (finite) number
of pure-strategy profiles
#(C/ay < #(C).

Conversely, the trivial dual vector gives no reduction, because every strategy
in Ci is stationary under the trivial dual wvector,

Thus, dual reduction can be iteratively applied to generate strictly

smaller games until we reach a game that has no nontrivial dual vector.

Propositions 2 and 3 tell us when such nontrivial dual wvectors can be found.

Proposition 2. For player j, let bj and ej be any two pure strategies
in Cj, where bj = ej. Then there exists a dual vector o such that
a.{b.le.) >0
J Jl J
if and only if, for every correlated equilibrium pu,

z sC u(e)(Uj(e_j.bi) - U,(e)) = 0.

That is, the dual wvariable aj(bjlej} can be nonzerc if and only if the

incentive constraint that player j should not expect to gain by choosing bj

17



when ej is recommended is always binding. If this constraint is always binding
then we may say that the strategy bj jeopardizes ej for plaver j.

Proposition 2 is a straightforward application of the complementary
slackness properties of dual linear programs. Its proof is given Section 8.
By Propositicn 2, if T is an elementary game then there are no incentive
constraints that always bind, and so the only dual vector is the trivial one.
However, if T is not an elementary game, then there exists at least one
incentive constraint that is always binding, and so Proposition 2 guarantees
that a nontrivial dual vector must exist. So Preposition 2 has the following

corollary.

Proposition 3. A nontrivial dual vector a exists for the game T if and

only if ' is not elementary.

Thus, dual reduction can be applied iteratively until we get to an
elementary game, which must occur eventually beciuse each nontrivial dual
reduction strictly decreases the (finite) number of pure-strategy profiles.
This basic result should be listed as our second theorem, because it suggests

that game theorists may study elementary games without loss of generality.

Theorem 2. From any finite strategic-form game I', an elementary game can

be derived by iterative dual reduction.

6. Examples

Recall that any dual vector must satisfy the constraints

(4) 2, Di(c,ai) = Z

ien a; (4 je ) U (e ;,d) - U.(e)) = 0, VeeC.

ieN Ed.ec.
i771
(Here the first equality merely repeats the definition of Di(c,ai).)

18



Dual reduction includes, as a special case, the elimination of dominated
strategies. To verify this fact, suppose that a pure strategy ej is (weakly)

dominated by some randomized strategy Tj for plaver j. Then

U.(e) < = d) U.(e ..d.), Ve ., c¢
gl 73{d5) Uyle y.dy)

d.ecC,
3 ]

In this case, we can let a be such that

It

.(d. . .(d.,), vd, € C,,
a(d fes) = 7y (dy) i ]

a,(c_|c_) 1 and a.(d.ic.) 0 ¥d, = c,, Ve, = e.,
1] ] J 1 3 J J

J ]
0 vd, = c., Ye. € C., Vi = j.
1 1 1 1

|
l

a (e ]e;) =1 and ai(dilci)

With this vector a, the deviation gains Dj(e,aj) gains are nonnegative for

all e_j, and all other deviation gains Di(c,ai) are zero. Thus, a is a dual
vector satisfying the dual constraints (4). Under the Markov chains induced by
this dual vector a«, every pure strategy of every player is stationary, except

for ej, which is a transient strategy that must get probability zero in any

aj-stationary strategy. So I'/a is just the game that results from eliminating

the strategy e, .

Player 2
*2 ) %2
Player 1 Xy 3,2 0.0 0,1
Yy 0,0 2,3 3,1

Figure 4. The Battle of the Sexes with a dominated strategy.

For example, consider the game shown in Figure 4. For any number §

between 1/2 and 2/3, we can construct a dual vector by letting

ay(x,]2) = 6, e (y,lz,) =1 -6, aylz,]z,) =0,

19



and by letting all cther components of a be as in the trivial dual vector,
With this dual vector «, the deviation gains Di(c,ai) are positive for the case
of 1 =2 and c2 = 22, and they are zero in all ovher cases, so the dual

constraints (4) are satisfied. This dual vector eliminates the dominated

strategy z, from the a-reduced game. So the w-reduced game is just the Battle

2
of the Sexes game in Figure 1, which is elementary and so cannot be further
reduced.

More generally, a dual vector can be constructed by letting each a, be a
strategic transition matrix which maps each dominated pure strategy to a
randomized strategy that dominates it, and which leaves all undominated pure
strategies fixed. For the Prisoners’ Dilemma game in Figure 2, this approach
gives us the dual vector e such that
arGrylx) =1, e yily) =10 ay,ley) = 1 e, ,ly) - 1

which eliminates the two dominated strategies.

Player 2
*2 Y2
Player 1 Xl 7,0 2,5
¥q 4.3 6,1

Figure 5. A constant-sum game with a unique randomized equilibrium.

Now consider the game shown in Figure 5. Like the Matching Pennies game,

this game has a unique randomized equilibrium

Gleyl + 203,15 2,0 + 21y,1)

In which each player is indifferent between his two pure strategies. For this

game, the dual constraints {(4) become:

20



aplyp x0T + ey, ]x,0(5 - 0) =20 (at e = (x;,x,)),
e (yplxp 6 - ) + ay(x,ly,) (0 - 5) 20 (at ¢ = (x),y,)),
ap(xy |y (2 - 6) +ay(x,ly,) (3 - 1) 20 (at e = (y,,¥,)),
a (X [y DT - 8) +ay(y, |21 - 3) 20 (at e = (y],x,)),

Together these constraints imply
Sa, (v, |x,) 2 3eg (v %) = (15/8)a, (x,|y,) 2 (15/2)eq(x;|y)) = Sa, (v, %,
and so all these quantities are equal. Thus
al(yl|xl)/al(x1|y1) = 5/2 and az(y2|x2)/a2(ley2) = 3/4
But ai-stationary strategies o, must satisfy
oy () oy () = ey x|y oy G,
oy (¥y1%,) 0,000 = ey (x,ly,) 0,0y,
So a montrivial dual vector can only have the stationary strategies
al(xl) = 2/7) Ol(yl) = 5/7) 02(X2) = 4/77 az(yz) = 3/75
which is of course the unique equilibrium.

(Similarly, for the Matching Pennies game in Figure 3, it can be shown
that any dual vector a must satisfy al(yllxl) = al(xllyl) = a2(y2|x2) =
az(yzlxz). But then any nontrivial dual vector a can only have one stationary
distribution g for each player i, and that is the equilibrium strategy that
puts probability 1/2 on each pure strategy.)

Figures 6 and 7 show two games in which no pure strategies are dominated,
and yet dual reduction can simplify the game and eliminate some equilibria.
For Figure 6, let « be such that

o G lxp) = ey Gyly) =g nlz)) -1
ay(ylxg) = ey Gy lyy) = oy Geylzy) - 1
and all other ai(dilci) = 0. This dual vector a satisfies the dual constraints

(4), and it eliminates the strategies Yy Zqs Yoo and z, from the a-reduced
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game. Thus, the equilibrium (.B[yl} + .5[21], [xz]) can be eliminated by dual

reduction.

Player 2
*2 Y2 22
Player 1 Xy 2,2 4,2 4,2
Y1 2,4 6,0 0,6
zy 2,4 0,6 6,0

Fipure 6. A game with no dominated pure strategies.

Player 2
2 Y2 %2
Player 1 L 6,0 C,0 0,0
Xy 4.4 1,4 4,1
Yy 4,1 4.4 1,4
zy 1,4 4,1 4,4

Figure 7. Another game with no dominated pure strategies.

For Figure 7, let o be such that
o (vyleg) = ey zylyg) = ey Geylz) = 1 = ey Goylwp),
ay(yylxg) = ay(zylyy) = aylxylzy) = 1,
and all other ai(dilci) = 0. This dual vector a satisfies the dual

constraints (4). It leaves player 1 with two extreme stationary strategies

[wl], and oy = %[Xl] + %[yl] + %[zl},

and it leaves player 2 with only one stationary strategy

o) = 3x,)) + 3ly,] + 3lz,],
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Then the a-reduced game is as shown in Figure 8,

Piayer 2
“2
Player 1 Wy 2,0
oy 3,3

Figure 8. A dual reduction of Figure 7.

~

But this game can be in turn reduced by the dual vector a such that
al(allwl) = al(ollal) =1 = az(azloz),

which eliminates vy and leaves us with the (01,02) equilibrium. Thus,

iterative dual reduction can eliminate the (w x2) equilibrium in Figure 7.

]. ’

7. Full dual reduction

The set of dual vectors is convex, and all components are nonnegative in
all dual vectors. So when we take an average of dual vectors that are positive
in different components, we get a dual vector that is positive in all of these

components. So we can derive the following fact from Proposition 2.

Proposition 4. There exists a dual vector a that satisfies

>
ai(dilci) 0
for every player i and for every pair of strategies eh and di in Ci such that,

- T 'b i - =
for every correlated equilibrium u, Ec_iec-i p(c)(Ui(c_i,di) Ui(c)) 0.

That is, we can find a dual vector that has a positive dual variable for
every incentive constraint that is binding at all correlated equilibria. Such

a dual vector « may be said to have full support.
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We have seen that dual reduction is a powerful generalization of
elimination of weakly dominated strategies. However, like elimination of
weakly dominated strategles, there may be mecre than one way to apply dual
reduction to any given game, because there may be more than one nontrivial dual
vector. One possible way to aveid this ambiguity, at least in some examples,
would be to only consider reduction by dual vectors that have full support. If
a is a dual vector with full support then T'/a may be called a full dual
reduction of T,

In Figure 7, among player 2's pure strategies, Yo jeopardizes x, (in that

2

deviating from Yo to X is always costless for player 2, in any correlated

2

equilibrium), z, jeopardizes Yy and X, jeopardizes Z,- So a full dual

reduction of this game must consolidate these three pure strategies, replacing

them by a single randomized strategy (as we saw in Figure 8). Notice, however,

that X, does not jeopardize Yoo because deviating from y, to x would be costly

2
for player 2 in the (yl,yz) equilibrium of Figure 7.

8. Proofs

To prove Theorem 1, we first prove two lemmas.

Lemma 1. Let @ be a dual vector, let ps be in A(C i), and

let o be in A(Ci). Suppose that aj*p_i =P 5 for every plaver j such

that j = 1i. Th U, . . = 3 .
at j i en 1(p_l,al) Ui(p_.,aiwai)

1

Proof of TLemma 1. Recall equation (3) from Section 3.

= 2ceC p-i(c-i) ai(ci) ZhEN Dh(c’a)

[

Biegs Wylagte j100) - Uilp 10000 + (Ui(p jaao) - Ui(p ,00))

= U, (p ,,aiwai) - Ui(p_i,oi). Q.E.D.
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Lemma 2: Let a be a dual vector, let Py be in A(C_i), and suppose that

a,%*p . = p . for every player j such that j = i. Then there exists some
i f-i -1

a.-stationary strategy o in Ci/ai that is a best response to p i for player i,
i -
in the sense that

Ui(p .,ai) = maxC

S U (o ;e

.EC, 1°7-1
i1

Proof of Lemma 2: Lemma 1 implies that, if T is any best response to Py
for player i, then ai*ri is alsc a best response, and so is the randomized
strategy

Blry) = %Ti " %“i*fi
Now let cy be any best response in Ci for player i, when the others are
expected to use p_;- Then any strategy of the form f(f(...f([ci])...)) is also
a best response for i, by Lemma 1. As long as the support of this strategy is
not an absorbing set, the f(+¢) transformation must strictly increase its
support. So after x(Ci) iterations, such a process must generate best
responses that assign positive probability to every pure strategy in at least
one minimal ai-absorbing subset of Ci' So the ai-stationary strategy on this
minimal ai—absorbing set must also be a best response for player i
against Py (An similar argument, applied to a modified game where player i’s
options are limited to one minimal ai—absorbing set, can be used to show that
player i must be indifferent among all pure strategies in any minimal

ai-absorbing set when the other players use such stationary p i.)

Proof of Theorem 1. Suppose that a mediator is implementing the

correlated equilibrium A in the reduced game I'/o, and suppose that o, in Ci/ai

has been recommended to player i by this mediator. Let P_3 denote the
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conditional probability distribution over the other players’' strategies in

C ., given that a5 in Ci/ai has been recommended. The assumption that X is a

correlated equilibrium for I'/a implies that vy must be optimal for player i

among all ai-stationary strategies in Ci/ai. Furthermore, because the mediator

is recommending aj—stationary strategies to every other player j, we must have
aj*p DT P ¥j € N-1,

So by Lemma 2, optimality of o, in Ci/ai implies its coptimality for player i in

all of A(Ci). That is, player i cannot gain by deviating to any strategy that

is available to him in T, and so A is a correlated equilibrium of T,

Proof of Proposition 2. Let o be any dual vector and let g be any

correlated equilibrium. Then

0>z by b a (d. |c.) =
1 1 1 C

ieN “c.ec. “d.eC. ple)(Usde 5,dy) - Upde))
1 1 1 1

.€C
-1 -1

= ZCEC pl{c) EiEN Di(c,ai) = 0,

But in the above summation, each term

o, (d;]e) zc_iec_i p(e) (U, (c_.,d) - U (e))
must be nonpositive, and so
a (d. fe) B ple) (U (e . d) - U (e)) =0,

.€C .
-i -1

for every i, and for every cy and di' Thus,

if aj(bjlej) >0 then X _. p(e)(Uj(e_j,bj) - Uj(e)) =0

-3
Now suppose that the "no incentive to choose bj instead of e," constraint
]

is always binding, in every correlated equilibrium. Then the following linear

programming problem has an optimal value equal to zero:
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t ximi = U, - U.(e .,b.))
choose p to maximize I ' puie)( J(e) J( S5+ P;

.€C
s3]
subject to
plc) = 0 VceeC,
Zcec ul(c)y =1, and
EC iec_i u(c)(Ui(C_i,di) - Ui(c)) < 0, VieN, Vcieci, VdiECi.

So the dual of this problem also has optimal value equal to zero. But this

dual is

choose a and 8 to minimize §B

subject to

a,(d,]c,) = 0, VieN, Ve, &C,, vd.eC,,
il iT1 i77i

b a (d e )V (e ;.d) - U.(e)) + >0, VYeeC such that e ey,

ieN Ed,EC.
i i
c(d.je. . .,d,)-U. + = . -U, ., b, , VYe .eC
Zi ey zdieci al(dl]el)(Ul(e_l d.)-U.(e)) + B (UJ(e) UJ(e_J J)) e_Je ]
So there exists some vector o that satisfies these constraints with g8 = 0. But
now consider a vector o that is the same as this o in every component except

that aj(bjlej) = aj(bjlej) + 1. Then this vector satisfies the following
three properties:
a. (d,|e.) = 0, VieN, VYc.eC., ¥d.eC,,
ivTiti iTi i™i
a_(b.le.) > 0, and
J 11
. Edieci a,(dyle ) (U (e ,d) - U(e)) = 0, veeC.

~

Multiplying such a vector o by a small positive scalar if necessary, we can

also make it satisfy
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% (d. e,y = Vi
dieci al(dllcl) 1, ieN, Ve &G,

Then increasing ai(ci|ci) (which has a zero coefficient in the third of the

three properties listed above) as necessary, we can make a vector a that also

satisfies

zdieci ai(dilci) - 1, VieN, Ve.eC..

A A

Then this o is a dual vector such that aj(bj|ej) > 0, as required by

Proposition 2. Q.E.D.

28



REFERENCES

Aumann, R. J,, "Subjectivity and Correlation in Randomized Strategies," Journal

of Mathematical Economics 1:67-96 (1974).

Chvatal, V., Linear Propramming, New York: W. H. Freeman (1983).

Dhillen, A, and J.-F. Mertens, "Perfect Correlated Equilibria," CORE working
paper, Universite Catholique de Louvain (1992).

Damme, E. van., Stability and Perfection of Nash Equilibria, Znd ed.,

Berlin: Springer-Verlag (1991).

Karlin, S., A First Course in Stochastic Processes, New York: Academic Press

(1969).
Hart, S., and D. Schmeidler, "Existence of Correlated Equilibria," Mathematics

of Qperations Research 14:18-25 (1989).

Myerson, R. B., "Acceptable and Predominant Correlated Equilibria,"

International Journal of Game Theory 15:133-154 (1986).

Nash, J. F., "Noncooperative Games," Annals of Mithematics 54:289-295 (1951).

Nau, R. F., and K F. McCardle, "Coherent Behavior in Noncooperative Games,"

Journal of Economic Theory 50:424-444 (1990) .

Selten, R., "Reexamination of the Perfectness Concept for Equilibrium Points in

Extensive Games," International Journal of Came Theory 4:25-55 (1973).

29



