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Abstract

We show that when avoidable fixed costs are introduced into the capacity—and—entry model
of Dixit (1980) and Ware (1984), there arises a coordination problem in selecting among
postentry Nash equilibria. Elimination of weakly dominated strategies makes it possible for
the entrant to use a market—capturing strategy, consisting of a large capacity commitment
that selects the entrant’s preferred postentry equilibrium and drives the incumbent from the
market. Deterring the entrant’s market—capturing strategy typically requires the incumbent
to reduce its initial capacity choice. As avoidable fixed costs rise, the incumbent must
restrict its capacity by a greater amount, and the relative advantage of the entrant rises.

* Northwestern University and University of California, San Diego. For helpful comments
we thank Vince Crawford, Avinash Dixit, Drew Fudenberg, John Panzar, Rob Porter and
Joel Sobel, as well as seminar participants at University of California, San Diego,
Northwestern University, University of Western Ontario, the Econometric Society 1989
Winter Meetings and the 1990 Far—West Rotating Economic Theory Conference (FRET TI).
Errors are the authors’ responsibility. Bagwell and Ramey thank the National Science
Foundation for research support under grants SES—8909856 and SBR—9210405, respectively.



1. Introduction

In the past twenty vears, the merger of Industrial Organization and Game Theory
has produced a plethora of theories but few broad conclusions. One conclusion which has
been robust to a variety of models, however, is that there is a preemptive advantage to
moving first when costs are sunk. This conclusion is well illustrated by Dixit’s (1980)
model of entry deterrence, wherein the sunk nature of capital expenditures enables an
incumbent firm to commit to an aggressive postentry posture, allowing it to lock in a
superior market position or to deter entry entirely.

QOur fundamental point in this paper is that the first mover advantages associated
with incumbency may fail to hold — and indeed may be reversed — when there are multiple
equilibria in the postcommitment competition. We frame our analysis in terms of Dixit’s
sequential capacity choice model, but with two key modifications: first, we assume that
along with sunk costs there are significant avoidable fized costs, i.e. fixed costs that are not
incurred if the firm shuts down. The presence of avoidable fixed costs leads to a
coordination problem in choosing postentry outputs: alongside the equilibria in which the
firms share the market, there may exist "natural monopoly" equilibria in which one firm
produces output so large that the other responds optimally by shutting down.

Second, we modify the notion of rationality that governs the firms’ behavior. In
past studies of strategic rivalry, first mover advantages have been closely linked to the
principle of backward induction rationality. As formalized by Selten’s (1975) notion of
subgame perfect equilibrium, this principle requires that firms base their current decisions

on the hypothesis that future behavior will be profit—maximizing. We augment this notion



by requiring in addition that firms believe past behavior was profit—maximizing. Since
past decisions then give information as to what might be the rational current (or future)
decisions. a firm must take account of what its rival did in the past in order to predict the
rival's behavior. This basic idea is known as forward induction rationality.

These two modifications dramatically alter the strategic balance between the first
and second mover. To see why this is true, suppose that the incumbent has made a large
capacity commitment in an attempt to deter entry, and suppose further that the entrant
responds with a very large capacity investment of its own. The incumbent must then ask
itself, what does this mean about postentry competition? If the entrant could not recoup
its capacity investment with a postentry market—sharing quantity, the incumbent can only
infer that the entrant will respond with a larger cutput, near its natural monopoly level, as
otherwise such a large capacity level would have been an irrational choice by the entrant.
More specifically, the incumbent observes the entrant’s capacity choice, eliminates capacity
and quantity combinations that represent weakly dominated strategies for the entrant, and
thereby deduces the entrant’s possible postentry quantity.! Given this inference, the
incumbent responds optimally to the large entrant capacity by shutting down.

Thus, the combination of avoidable fixed costs and the incumbent’s forward
induction inference allows the entrant to play a market—capturing strategy involving a high
level of capacity investment. Credibility of the market—capturing strategy follows from the
fact that the incumbent uses forward induction to form strategic inferences, and thus it
cannot escape the logic that leads to the entrant’s natural—monopoly equilibrium. Forward
induction inferences by the entrant, however, do not mandate that a large incumbent
capacity commitment communicates that the incumbent will choose a large postentry
quantity, because the strategic position of the incumbent is much more ambiguous: the
entrant can suppose that the incumbent’s past behavior was based on a faulty forecast of

the entrant’s capacity response, and this allows the entrant to rationalize a much broader



range of possible postentry behavior by the incumbert. The second mover gains the
advantage in coordinating among postentry equilibria precisely because its strategic
situation is so clear.

The coordination advantage accruing to second movers makes it necessary to
rethink the nature of strategic rivalry in environments having multiple postcommitment
equilibria. In particular, the fact that the incumbent must move first, and thus must face
the prospect of the entrant’s market—capturing strategy, alters its incentives to choose
capacity. With significant avoidable fixed costs, not only do large capacity commitments
lose their preemptive power, they also make the market—capturing strategy easier to
employ and more profitable for the entrant. We show that for a large class of cases, the
incumbent counteracts the market—capturing strategy by reducing its initial capacity
investment, in order to lower its endogenous avoidable fixed costs as well as to make the
market—sharing equilibrium more attractive to the entrant. Interestingly, the incumbent’s
commitment to the market is maintained only by taking actions that resérict its market
share.2 As avoidable fixed costs rise, the incumbent must restrict its capacity by a greater
amount, and the incumbent must cede the market entirely if avoidable fixed costs are
higher still.

Our finding that capacity investment may be an ineffective, and in fact quite
dangerous, entry—deterring strategy may provide some explanation for why models that
predict incumbent excess capacity, such as that of Bulow, Geanakopolos and Klemperer
(1983), seem to perform poorly in empirical studies. Lieberman (1987), for example, finds
little evidence that incumbents choose excess capacity in order to deter entry. Similarly,
product managers responding to the survey conducted by Smiley (1988) indicated that
excess capacity was the least frequently chosen among a set of entry deterring strategies in
mature—product industries. Incumbents’ reluctance to choose large capacity may further

account for empirical results of Biggadike (1979) and Robinson (1988) indicating that



incumbents tend to react passively to entry.

Other empirical evidence seems to bear out our finding that large investments by
entrants may serve to discourage aggressive postentry behavior by incumbents. Biggadike
and especiallv Robinson find that incumbents typically react more aggresively toward
medium—scale than large—scale entrants, even though a large—scale entrant represents a
more serious threat to incumbent market share. Apparently, incumbents reason that "a
very powerful entrant cannot be stopped or even slowed down" (Robinson, p. 373).
Anecdotal evidence from the U K. potato chip industry (Bevan, 1974) and the U.K. tin can
industry (Business Week, 1973) suggests that a large—scale entrant can substantially
displace a well—entrenched incumbent by demonstrating its willingness to incur sizable
losses in the first few years fcllowing entry.

This paper builds on a large literature that studies strategic investment by
incumbent firms. Two strands of work relate most closely to our analysis. First, the role
of avoidable fixed costs in creating coordination problems has been recognized by Dixit
(1979) and Arvan (1986). Arvan argues that reputation plays a role in the equilibrium
selection process, and he shows that the incumbent may gain the advantage in equilibrium
selection by exploiting private information about its costs. Second, Schmalensee (1983)
and Fudenberg and Tirole (1984) discuss circumstances under which exercising strategic
power may lead an incumbent to choose a less aggressive strategy, in order to exploit
strategic complementarity (the "puppy dog ploy"). Our finding that the incumbent must
reduce its capacity investment bears a relation to this notion in that in both instances, a
reduction in the incumbent’s aggressiveness makes it more profitable for the entrant to
play a strategy that is beneficial to the incumbent.

Our work has been inspired by the game—theoretic papers of Ben—Porath and Dekel
(1992) and van Damme (1989), which resolve the problem of coordination among multiple

Nash equilibria by allowing players to engage in "public money burning." Both papers



employ stronger notions of forward induction than that used here: Ben—Porath and Dekel
apply multiple rounds of elimination of weakly dominated strategies, while van Damme
develops his own concept of forward induction. These authors give examples which show
that the last player to burn money is able to select his preferred equilibrium, i.e. strategic
communication conveys second mover advantages.® Our model adds the important new
feature that the first mover can use its precommitment ability to offset the communication
power of the second mover, in particular by reducing the aggressiveness of its commitment.
This effect arises from the fact that precommitment alters the set of postentry equilibria
and the second mover’s payoffs in these equilibria.

In the next section, we introduce our basic model and illustrate the coordination
problem that confronts firms in choosing their postentry outputs. The notion of forward
induction is defined and motivated in Section 3. Next, in Sections 4 and 5, we explore the
coordination advantage held by the second mover and the first mover’s countermeasures,
respectively. WWe also analyze in these sections the role of avoidable fixed costs in

determining the strategic balance between the first and second mover. Section 6 concludes.

2. The Model

In this section, we present our sequential capacity choice game. The model takes
the structure previously developed by Dixit (1980) and Ware (1984) and adds to it the
possibility of avoidable fixed costs. As a consequence, firms face a coordination problem in

the selection of outputs that follows the choice of capacities.

a. Basic Framework

There are two firms, called Firm 1 and Firm 2. The game consists of three stages:

Stage !. Firm 1 makes a capacity choice kl'



Stege 2. Firm 2 observes the value of k, chosen by Firm 1, and makes its own
capacity choice k.
Stage 3. Firm I observes the value of k,, chosen by Firm 2, and the firms simultanecusly

make quantity decisions 4 and Q-

Note that the capacities are chosen sequentially: Firm 1 is the first mover, and
Firm 2 is the second mover. Quantities are chosen in a Cournot fashion in the third stage,
so that strategic advantage derives solely from the capacity choices.

Strategies for this three—stage game consist of decision plans that indicate what
actions are to be chosen in every strategically relevant contingency. A strategy for Firm 1
is a pair {i(l’gll(kiz)}’ where };1 gives the capacity choice that begins the game, while (il is a
function that indicates the quantity to be chosen conditional on every possible capacity
choice by Firm 2. Firm 2's strategies are written {lAcQ(kl),élg(kl)}; note that 1;2 depends on
k., since Firm 2 is able to observe Firm 1’s capacity choice prior to making its own.* We

1

assume that kl’ k2, qq and q, are drawn from the nonnegative real numbers.

Let Pi(kl’ql’k2’q2) give the payoff for Firm i, 1 = 1,2, under the indicated strategy
profile. These payvoff functions are generated from underlying profit functions that depend

on the capacity and quantity choices: the strategy profile (kl’ql’k2’q2) determines the
outcome k; =k, ky = kg(k1)= q = ql(kQ(kl)) and g, = q,(k,); the profits associated
with this outcome determine the payoffs. Let S1 and 82 give the sets of strategies for
Firms 1 and 2. Elements of Si are written 5. = (ki’qi)' The payoff functions may be
written Pi(SI’SQ)'

Additional structure is placed on the payoff functions under the following
assumptions on costs and demand. Both firms possess a variable cost function, C(qi),

which satisfies C* > 0 = C(0) and C’* > 0. In addition, firms face the constraint that

production cannot exceed capacity, where capacity imposes a cost of r per unit. The choice



of ki prior to Stage 3 represents an initial purchase of capacity that can be expanded in
Stage 3 1f additional production 15 desired. Finallv, the inverse demand function 1s given
by D{qg). where D" <0< D, D"’ <Gand C’'{0) + r < D(0).

Avoidable fixed costs are introduced as follows. We assume that there is an added
fixed cost of F that firms incur when they operate at positive scale; F is not paid, however,
if a firm chooses to shut down by producing zero units in Stage 3. Further, we suppose that
a firm can recoup proportion a < 1 of the cost of its capacity precommitment by shutting
down; however, ki cannot be reduced should the firm decide to operate at positive scale.
Thus by shutting down, firms can avoid fixed costs in the amount of ark. + F. 'The payoff

function of Firm i is therefore given by:

D(qi(kj) + Elj(ki))qi(kj) - C(qi(k

Pi(si,sj) = -
—(1 - a)rki, qi(k

where the definition suppresses the dependence of k2 on kl.

b. Equilibrium Coordination in the Postentry Subgame
We turn next to a discussion of the firms’ output choices in Stage 3. These choices
are most easily characterized with the introduction of some additional notation. Define

M
q

ki) as Firm 1’s monopoly output level This is the best (i.e., profit—maximizing)
positive output level for Firm i, when Firm j produces zerc output and Firm i’s
predetermined capacity level is ki' Two monopoly output levels are of particular interest:
qM(I) is the monopoly output level when there is no capacity constraint {i.e., when
marginal costs are C’), and qM(O) is the monopoly output level when capacity must be

added in Stage 3 in order to produce any positive output (i.e., when marginal costs are C’

+ 1). We refer to qM(O) as the true or undistorted monopoly output level, since it is the



output level that an incumbent would choose if there were no threat of entry. More

generally. it is easy to see that qM(r) > q'“((]), and that q‘\I(ki) may be characterized as

follows:

We assume that F is not so large that monopoly is nonviable:
= M A M A
(1) F < F=D(q(0))g™(0) - Cq™(0)) —rq™(0)

where F denotes the undistorted monopoly profits (gross of F).
Now consider Firm 1’s output choices when Firm j produces positive output. As qJ
rises, Firm 1's profits become smaller, and strictly so if Firm i’s total revenue, D(ql + qJ)ql,

is positive. Thus, we may uniquely define the the shutdown point, qX(ki), as the level of qj
that makes Firm i indifferent between its best positive output level and zero output.® It is
straightforward to verify that qX(ki) is decreasing in « and F; i.e, higher avoidable fixed

costs make shutdown more attractive, and thereby reduce the shutdown point for given ki.

Finally, we define the reaction correspondence, qR(qJ.|ki), as the set of output levels

that maximize Firm i’s profits for given q and k;. Clearly qR(Olki) = qM(ki), and
qR(qJ | k,) corresponds to Dixit’s familiar kinked reaction function for q < qX(ki), while
Firm i best—responds with zero cutput for q > qx(ki). qR(qj|ki) is multi—valued only at

q; = q‘\(ki). where there are two best responses, q; = 0 and the limit of the Dixit best

TeSPONses as q; appreaches q"\(ki) from below. Figure 1 illustrates these definitions.

In Figure 1 there are three intersections of the reaction correspondences, indicating



the existence of three tvpes of Nash equilibria: (1) Market—Sharing Equilibrium (MSE), at
point A. in which both firms choose strictly—positive output levels; (2) Firm 1 Monopoly
Fquiibrium (F1ME). at point B, in which Firm 2 best—respords with zero output in order
to recover 118 avoidable fixed costs: and (3) Firm 2 Monopoly Equilibrium (F2ME), at point
C, in which Firm 1 best—responds with zero output. Under our assumptions, Firm 1’s
reaction correspondence must have strictly steeper slope than that of Firm 2 at any point
of intersection, and this ensures that there can exist at most one MSE for any kl and k2.
Further, there can exist at most one F1ME and at most one F2ME for any k1 and k2, Since
monopoly output levels are uniquely defined.

The possibility of multiple Nash equilibria, which arises here as a consequence of
avoidable fixed costs, confronts firms with a coordination problem in determining their
Stage 3 quantities. Further, the firms face a conflict of interest in selecting among
postentry equilibria: Firm 1 strictly prefers the FIME to the MSE, and it strictly prefers

the MSE to the F2ME, while the ranking is reversed for Firm 2.

3. Forward Induction

Given the coordination problem that firms confront in the postentry subgame, an
application of backward induction as represented in the concept of subgame perfect
equilibrium allows for a wide range of equilibrium behavior. We therefore augment the
requirement of backward—induction rationality with the requirement that firms "induct
forward" from observed capacity choices in forecasting their rivals’ quantity choices. Our
notion of forward induction is simple and natural: we require only that each firm
recognizes that its rival will not choose a dominated strategy. In this section, we define the

associated undominated game and describe its key features.
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a. The Undominated Game

[t is reasonable to suppose that Firm i will choose s, 10 maximize its payoff subject
to seme conjecture as to Firm j's strategy. This payoff—maximization hypothesis may be
excessively weak, however, in the following sense: Firm i may be indifferent between s, and
some other strategy 50, because both of these strategies perform equally well when Firm j
chooses its strategy from some particular subset of Sj' But s{ may be strictly superior to s
for every Firm j strategy that is not in this subset. Unless Firm i is extremely confident
that Firm j chooses a strategy in the subset, it seems unreasonable that Firm t would
choose s, rather than the safer strategy s

This intuition can be formalized as follows. A strategy 5, € Si 1s said to be weakly

dominated by 5! € Si f, for all sj € Sj:
P (
and there exists sj € Sj such that:

Pi(s{,s’-) > Pi(si,s’)

] ]
From the above argument it follows that 5, should not be chosen by Firm i, since s 1s at
least as good for any Sj’ and there are sj such that 81 is strictly better. We will henceforth
refer to weakly dominated strategies as dominated. A strategy s is called undominated if it
is not dominated by any st Let S? denote the set of undominated strategies for
Firm 1.
The above argument suggests that a rational firm should not choose a dominated

strategy. Further, a firm ought to recognize that its rival is as rational as itself, and thus

it should not conjecture that its rival chooses a dominated strategy. To implement this
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notion, we replace the strategy sets S, and 52 with the sets Slll and Sg of undominated
strategies: in this undominated game firms cannot choose dominated strategies, and neither
can they conjecture that their rivals choose dominated strategies. Our goal in the
remainder of the paper is to consider how strategic rivalry is affected by requiring that

decisions must give subgame perfect equilibria of the undominated game.6

b. Communication and Forward Induction

We now consider the manner in which a firm’s past capacity choice communicates
information about its current quantity selection. Communication of this sort is possible
when firms use forward—induction inference in forming conjectures about the behavior of
their rivals, since a firm knows that its rival would not select an output level that is
dominated in combination with the observed capacity choice. We describe here some of
the saliant features of the undominated game, paying particular attention to the differences
between the first and second movers. A detailed derivation of the undominated game is
given in the Appendix.

First of all, it is easy to see that strategies in the undominated game cannot specify
extremely large levels of capacity: in this case, capacity costs would be impossible to
recover even for a monopolist, so that such strategies would be dominated by simply
staying out of the market. More specifically, consider the following inequality:

(2) D(a™ (ko™ (k) - C(a™(

1 1

k.)) -k, —F <0

In (2), k. is 50 large that Firm i cannot make positive profits even as a monopolist. Thus,
no matter what quantity Firm j selects in response to ki’ Firm i would do better by
choosing ki =q = 0. This implies that no strategy in the undominated game can specify

such a ki'



From (2} we may derive an upper bound to the capacity levels that can appear in

nndominated strategies. We know that (2) can occur only if k. > qM

(0). as (1) implies
that profits must be strictly positive if ki < qM(D). Further, concavity of Firm i’s profit
function in q; may be used to show that the left—hand side of (2) is strictly decreasing in
k.. Thus, there exists a capacity level k> qn(ﬂ) such that (2) holds if and only if k, > k,
and it follows that capacity choices must lie below k in the undominated game.
Dominance rules cut large capacity levels for a simple reason: a strategy that
specifies entry, but which necessarily yields negative profit in the ensuing subgame, is
dominated by a strategy that replaces the entry response with a decision to stay out of the
market (ki =q; = 0). This reasoning in turn makes it possible for Firm 2 to use its
capacity choice to communicate an aggressive response in the output subgame. To see how
such strategic communication arises, consider Firm 2’s responses to some given kl' We
have seen that Firm 2 cannot choose l;z(kl) > k in the undominated game, but it is also
true that capacities slightly below k are allowable, so long as Firm 2's subsequent quantity
choice is sufficiently close to the corresponding monopoly output level In particular, a
response l;z(kl) slightly below k is allowable in the undominated game if Firm 2’s strategy
: AL

also specifies qo(k,) = q’ (ko(k,)), since Firm 2 earns strictly positive profits if q; = 0,

1
according to (2). On the other hand, a strategy with k2(k1) slightly below k, but qy(ky)

not close to qM(f(Q(kl)), cannot give positive profits even if q; = 0, since profits are
reduced due to Firm 2’s failure to cheose its monopoly output level; a strategy with such a
response is dominated, as Firm 2 would do better to stay out when the given k1 18
observed.

It follows that by choosing kg slightly below k, Firm 2 communicates that q,, must
be chosen close to q‘\I(kQ) in the ensuing subgame, This reasoning extends to any positive

capacity respense below k: any k2 > 0 communicates an intention by Firm 2 to choose Ty

large enough to potentially recover its fixed costs and earn strictly positive profits, else the
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associated strategy would be dominated by an alternative strategy that specified staying
out when the relevant kl is observed. In the Appendix. we define qL(kg) as the minimum
of the output levels such that Firm 2 could just earn zero profit when ap = 0; by choosing
ko, Firm 2 communicates g, > qL(RQ) in the ensuing subgame of the undominated game.
It is also shown that qL(kQ) is nondecreasing and strictly positive for ky > 0. Figure 2
illustrates qL(kQ); observe that for capacity levels above k/, Firm 2 communicates a
strictly more aggressive quantity choice by raising its capacity.

The general features of the function qL(k2) are easily understood. Observe first
that Firm 2 cannot select a strictly positive capacity level and then zero cutput in the
undominated game. This is because not all of the capacity expenditures are recoverable
when zero output is produced, ard so such a response would result in strictly negative
profits for Firm 2. 1t would have been better not to enter at all. Next, note that it is also
irrational for Firm 2 to select a strictly positive capacity level and a small output, since
then the fixed cost F could not possibly be recovered, and so again profits would be strictly
negative (even if qq = 0). A final observation is that qL(kz) is initially constant and then
strictly increasing in kQ. [ntuitively, when k2 is small, strictly positive profits can be
earned by Firm 2 only if capacity is eventually expanded; thus, the critical profit—making
output level is independent of the initial capacity level. Once the initial capacity level
becomes sufficiently large, however, the higher outlay of capacity expenditures necessitates
ever more profitable cutput choices, in crder for profits potentially to be strictly positive.
This implies that qL(kg) becomes strictly increasing. Indeed, and as discussed above, when
capacity gets sufficiently large and approaches k, a rational Firm 2 must choose an cutput
level near the associated monopoly level, q‘\I(E) = min{qM(m),E}.

Firm 1 does not have this ability toc communicate aggressive quantity choices. The
Appendix demonstrates that in the undominated game, the quantities 4 that Firm 1 may

choose in conjunction with kl need only guarantee the possible recovery of the avoidable



— 14—

component of fixed costs. rather than the full amcunt of fixed costs as is the case with Firm
2. Since shutdown allows recovery of the avoidable component. it follows that q; =0is
always a possible choice for Firm 1 in any subgame of the undominated game.

Intuitivelv, a strictly positive capacity choice for Firm | does not communicate that
Firm | will respornd to Firm 2's capacity choice with an output sufficiently large to earn
strictly positive profits (when q, = 0), since Firm 1's initial capacity choice may have been
based on a faulty forecast as to Firm 2’s capacity response. Rather, a strictly positive
capacity choice for Firm | communicates only that there is some Firm 2 capacity response
that would induce Firm 2 to select such an output. Once Firm 2’s capacity response is
observed, moreover, a rational Firm 1 must choose an output that is at least capable of
recovering avoidable fixed costs. This requirement is quite weak, though, and does not rule

out shutting down.

4. Second—Mover Coordination Advantages

Having seen that it is possible for the second mover to communicate aspects of its
quantity choice with its capacity selection, we now analyze the second mover’s optimal
capacity selection. The second mover chooses capacity strategically, recognizing that it
thereby communicates output responses that may eliminate certain Nash equilibria from
the postentry subgame. In other words, in the subgame perfect equilibria of the
undominated game, the second mover possesses a coordination advantage.

To examine this coordination advantage, we fix kl and consider Firm 2’s
payoff—maximizing choice of k, in the undominated game. Firm 1’s choice of k, will then
be analyzed in the next section. Before proceeding, however, we must first be certain that
at least one Nash equilibrium exists in Stage 3 for each possible k1 and kg; as discussed in

the Appendix, this requires replacing 5[2“ with a slightly—expanded strategy set, denoted by

U
32.'



To begin with, it 1s easy to see that Firm 2 can use its capacity choice to eliminate
any F'1ME that may arisc in Stage 3 of the undominated game, by simply choosing ko > 0:
this commits Firm 2 to a strictly positive cutput level, as shown in Figure 2, so the Nash
equilibria of the ensuing subgame must be either MSE or F2ME. Further, by chcosing
sufficiently large k2, Firm 2 may be able to eliminate MSE as well, leaving the F2ME, in
which Firm 2 captures the entire market, as the only possible Nash equilibrium of the
subgame. This market—capturing strategy may take two forms: (i) k2 may be large enough
to imply qL(kz) > qx(kl), in which case Firm 2 communicates a level of qq in excess of
Firm 1’s shutdown point. Firm 1 then prefers to shut down for every level of qy that could
possibly appear in the subgame. (ii) k, may induce a subgame in which, although qL(k2) <

X

q kl)’ MSE fail to exist even in the original version of the subgame.8

The scope of Firm 2°s market—capturing strategy in subgame—perfect equilibria can

be related directly to Firm 1’s shutdown point, as the following proposition demonstrates.

Proposition 1. In the undominated game, the following is true.

(a) For a given level of k|, if we have qx(kl) > min{qM(x),K}, then for all k., there exists
a MSE and/or a FIME of the (kl,kg)—subgame;

(b) For a given level of k,, if we have qx(kl) < min{qM(m),E}, then there exists k,(k,)
< k such that the following is true: if k, > ko(k,), then the unique equilibrium of the

(k{ky)—subgame is a F2ME: if k, < ko(k{) and kg(kl) > 0, then there exists a MSE

2
and/or a FIME of the (k| kq)—subgame;?
(¢c) On the range of k, such that qX(kl) < min{qM(:n),E}, we have sign{ky(k;) — ko(k;)}

X X ,
— sign{q™ (k]) - a"(k;)} when ky(k]) > 0.

Proposition 1 shows how Firm 1's shutdown point qX(kl), which gives the level of

output that Firm 2 must choose in order to induce Firm 1 to shut down, affects the
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market—capturing strategy. The critical level qM(E) = min{qn(:c),lz} represents the upper
bound of output levels that Firm 2 can possibly choose in Nash equilibria of subgames of
the undominated game. so if qx(kl) exceeds this level, it is impossible for Firm 2 to
commit to sufficient output to induce shutdown. If qx(kl) lies below the critical level,
then Firm 2 can capture the market by choosing k, in excess of the level ko(k, ), since this
serves to eliminate all equilibria save the F2ME {for one of the two reasons given above).
If k2 < 52(]{1) is chosen, however, then MSE and/or FIME exist, and so Firm 2 does not
necessarily capture the market. Finally, in part (c) it is shown that the capacity level
Ez(kl) that is needed for the market—capturing strategy varies directly with qX(kl): as
Firm 1's shutdown point rises, Firm 2 must choose a larger level of k2 to induce a F2ME.
For notational convenience, let us henceforth extend the definition of ky(k,) to all k; by
setting ko(k,) = k when qX(kl) > min{qn(x),ﬁ}.

It is apparent from Proposition 1 that the level of avoidable fixed costs plays a role
in determining the scope of the second—mover’s coordination advantage, since avoidable
fixed costs affect the first mover’s shutdown point, which in turn affects the availability of
the market—capturing strategy and level of capacity that must be chosen to exercise 1t.
Intuitively, as avoidable fixed costs rise (i.¢., @ and/or F increase), Firm 1 will find
shutdown more attractive (i.e., qX(kI) decreases), and so Firm 2 may be able to capture

the market with a smaller capacity commitment (i.e., gz(kl) may decrease). The next

proposition formalizes the sense in which this intuition holds.

Proposition 2. For given k, > 0, there exist functions o [0,F)-[0,1] and «a: [0,F)}=[0,1],
with a(F) < a(F), such that:

(a) @ < a(F) implies 152(1(1) =k, and o(F) > 0 for F sufficiently small;

(b) @ > ofF) impties k,(k,) = 0. and a(F} < 1 for F sufficiently close to F; and

(c) a(F) < a < oF) implies 0 < ky(k ) < k, and ko(k,) is strictly decreasing in @
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Observe that the functions o and « divide the possible values of F and a into three
regions, as illustrated in Figure 3. In the lower region, associated with low avoidable fixed
costs, we have 52“‘1) = k, and there is no level of k, that assures Firm 2 of market
capture. Here the low values of a and F drive qx(kl) above the critical level {qM(a:),E}.
In the intermediate region, avoidable fixed costs have risen enough to bring qx(kl) below
{q‘\I(I),E}, and the market—capturing strategy is now available to Firm 2. Note that a rise
in either o or F on this region, which reduces qX(kl), correspondingly lowers the capacity
level kg(k}) that Firm 2 must choose in order to capture the market. Finally, in the upper
region, avoidable fixed costs are so high that Firm 2 automatically captures the market at
any positive k2; the reason for this is that there is no MSE in the original subgame, and so
choosing positive k2 must induce the F2ME since it eliminates the F1ME. 1

With Proposition 2 in place, we are now prepared to offer a partial characterization

of the set of subgame perfect equilibria for the undominated game.

Corollary I. In any subgame perfect equilibrium of the undominated game, if avoidable
fixed costs are sufficiently large, Firm 1 cedes the market and Firm 2 operates as an
undistorted monopolist; that is, if «is sufficiently close to unity and F is sufficiently close

- . "o M
to F, then k; = q,(ky(k;)) = 0 and qy(k;) = g7 (0).

To understand this result, observe first that both F1ME and F2ME exist when
avoidable fixed costs are large. When avoidable fixed costs are large and firms employ
forward induction inference, however, Firm 2 can overturn the FIME by selecting an initial
capacity level that is even slightly positive. Further, this will always be a preferred

strategy for Firm 2, since it can then capture the market with ultimate capacity and
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output levels equal to the undistorted monopoly levels. Recognizing that Firm 2 will
respond in this fashion, Firm 1 does best by ceding the market.

Corollary 1 cleanly captures the sense in which strategic advantage may fall to the
second mover. This corollary, however, addresses only the interesting but special case in
which avoidable fixed costs are quite large. We thus proceed to a more general

characterization.

5. Leader—Optimal Equilibria and First—Mover Countermeasures

We now allow for general values of @ and F and construct a subgame perfect
equilibrium of the undominated game that incorporates Firm 2°s market-—-capturing
strategy. Qur purpose in constructing such an equilibrium is to examine the
countermeasures that the first mover may adopt in Stage 1 in order to offset the second
mover’s coordination advantage.

Let us begin by specifying the Nash equilibrium that arises in each of the possible
(kl,kQ)—subgames. As Proposition 1 reveals, we must choose the F2ME in

(kl,kQ)—subgames with k, > Eg(k ). For (kl:kQ)—subgames with ky <k, (k) let the Nash

1
equilibria be chosen as follows: (i) for ko = 32(}(1) < k we select the F2ME; (i1) MSE are

chosen if either 0 < k,, < 32(1(1) or kg(k ) =k; and (ili) otherwise for ko = 0 we choose the

1
Nash equilibria that are most profitable for Firm 1. This construction selects Firm 1°s
preferred Nash equilibrium whenever k, < kz(kl), and therefore the resulting
subgame—perfect equilibrium is called the leader—optimal equilibrium.1?2 The construction
is completed by specifying Firm 2’s payvoff—maximizing capacity responses in a manner
that ensures existence of a payoff—maximizing capacity choice for Firm 1. The remaining

details are discussed in the Appendix, and we summarize here with the following

pIoposition:
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Proposition 3. (a) There exists a leader—optimal equilibrium of the undeminated game;
(b) The leader—optimal equilibria maximize the pavoff of Firm 1 over the set of
subgame—perfect equilibria of the undominated game, including equilibria in mixed

strategies.

Importantly, the proposition establishes that Firm 1's payoff in leader—optimal
equilibria gives an upper bound to the payoff that Firm 1 can achieve in any
subgame—perfect equilibrium.

Let us consider Firm 1’s choice of capacity in leader—optimal equilibria. The key
new feature introduced by avoidable fixed costs and forward—induction inference is that
Firm 1 may have to alter its capacity choice in order to deter Firm 2 from exercising its
market—capturing strategy. Firm 1 countermeasures can take two forms. First, Firm 1
may be able to neutralize Firm 2°s market—capturing strategy by choosing kl SO as to raise
the shutdown point, qx(kl), and thereby to eliminate the market—capturing strategy. A
second approach is to choose k1 s0 as to accommodate Firm 2 by raising Firm 2’s profit in
the MSE above that available in the F2ME. In this case, Firm 2 will choose not to exercise
the market—capturing strategy, even though it may be feasible. We demonstrate below
that the neutralization and accommodation countermeasures both lead Firm 1 to constrain
its capacity choice.

To understand how the market—capturing strategy might be neutralized, we explore
in the next proposition the manner in which k1 affects qX(kl).

X
{

Proposition 4. (a) q kl) is a quasi—oncave function of kl’ having maximizer kf. Ifa>

0, then quasi—concavity is strict for qx(kl) > 0, and the maximizer is unique.

N N
1

(b) k7 is a strictly increasing function of a and F, with k" -0 as (,F) - (0,0), and kf =

010 as (a.F) = (1,F).



it follows from part (a) that a most—effective capacity level exists for neutralization:
by choosing k1 = k'\lv) Firm 1 maximizes its shutdown point and thereby eliminates Firm
2's market—capturing strategy, if it is at all possible to do so. Part (b) indicates that the
neutralization countermeasure involves choosing a low capacity level, as k? lies below the
undistorted monopoly output, q‘\[(O). Observe that neutralization involves even lower
capacity choices by Firm 1 as the level of avoidable fixed costs (i.e., @ and F) are reduced.

Consider next the possibilty that Firm 1 is unable to neutralize Firm 2’s
market—capturing strategy. In this event, Firm 1 may nevertheless constrain its capacity
choice in order better to accommodate Firm 2 in the MSE. A lower level of k, commits
Firm 1 to a less aggressive reaction function in post—entry competition, which may raise
Firm 2's payoff in its prefetrred MSE. In addition, by lowering k, toward qM(O), Firm 1
makes the market—capturing strategy less attractive for Firm 2, since a higher level of
capacity Ez(kl) is then needed to implement this strategy. Thus, for both of these reasons,
a lower value of k1 can raise Firm 2’s profit in the MSE relative to the F2ME, thereby
giving Firm 2 a greater incentive not to exercise its market-—capturing strategy.

To obtain a more formal expression of the idea that the first mover must reduce its
capacity commitment, we strengthen the assumptions as follows. Consider the profits of
Firm 1 when Firm 2 chooses k2 = 0, and when the postentry outcome is the point on Firm
2’s reaction correspondence at which Firm 1 operates at full capacity:

|

W’(k

) = Dk, + q"\(k10))k; — Ck;) = tky = F

If Pw(kl) 1s a strictly quasi—oncave function of kl’ then in the absence of avoidable fixed
costs (a = F = 0), there is a unique subgame—perfect equilibrium choice of kg, which we

13

may denote k\;} (this is Firm 1’s equilibrium capacity choice in Ware’s model). The next



proposition gives conditions under which Firm 1's equilibrium capacity in leader—optimal

equilibria lies below k\? .

Proposition 5. Suppose p* (kl) is a strictly quasi—oncave function of k;, and also k\f >

qM(O). Let k[i: be the largest of Firm 1's payoff-maximizing capacity choices in
leader—optimal equilibria for given « and F.

(a) k? < k\y} and ka < k\?y if (@,F) is sufficiently close to (1,F);

E W

(b) ks decreasing in @, and strictly so if 0 <k < k7.

1

Part (a) indicates that Firm 1's leader—optimal—equilibrium capacity cannot exceed

the benchmark level k\f, and must be strictly smaller if avoidable fixed costs are

sufficiently high. The assumption k\? > qM(

follows from Proposition 4(b) that k? < k" thus starting at k"l‘v, neutralization and

1 1
accommodation both involve reduction in Firm 1's capacity level. If we instead have k\f
M(O), then k:; > k"f would be possible, and neutralization could {ead Firm 1 to choose

0) is important for this result, since it then

<q
equilibrium capacity greater than k\'lV for a range of e and F.13

According to part (b), Firm 1's equilibrium capacity is reduced as a rises: the
quasi—concavity of Pw(kl) assures that k]? must be the highest level of k, that does not
induce Firm 2 to use its market—capturing strategy; as a rises, deterring Firm 2 places a
tighter constraint on Firm 1, and so k]i: must fall. A similar effect can derive from an
increase in F.14 OQverall, a rise in either component of avoidable fixed costs will reduce
Firm 1°s leader—optimal equilibrium profits, and will tend to lower the equilibrium

capacity level chosen by Firm 1.

6. Conclusion

This analysis calls into question the commonly—held view concerning the role of



capacity investment in establishing commitment to the market, which states that
expansion of capacity strengthens commitment by increasing the incentive to produce large
amounts of output. Our results show that in the presence of avoidable fixed costs and
forward—induction inference, capacity investment may turn into a liability if it makes
shutdown even more attractive than large output. As demonstrated above, establishing
commitment to the market places an upper bound on the feasible investment levels, based
on the need to discourage rivals from exploiting the avoidable fixed cost lability.

More broadly speaking, our results suggest that a first mover’s ability to exploit its
commitment power may be substantially curtailed due to the second mover’s superior
ability to communicate its strategic intent in subsequent rivalry. While our particular
application of forward induction inference relies on details of the model that we consider,
our basic point is much more general: as a firm’s cbservable commitments become further
removed from ex post rivalry, the scope for clearly communicating strategic intent in the
rivalry is diminished. Here the first mover loses commurication power as a consequence of
being further removed temporally from the ex post stage, but it is reasonable to suppose
that geographic proximity or product scope may also influence a firm’s ability to use
commitments to communicate strategic intent.

We establish further that a key determinant of strategic advantage is the extent to
which fixed costs are avoidable. The essential point may be stated briefly: sunk costs
convey strategic advantage to first movers, while avoidable costs convey the advantage to
second movers. This dichotomy emerges in our model as a consequence of the superior
communication power possessed by the second mover. It is interesting to note that a
similar dichotomy has emerged elsewhere in the broader literature on strategic rivalry;
examples include the entry—deterrence model of Eaton and Lipsey (1980) and the model of
contestable markets presented by Baumol and Willig {(1981).

Finally, when avoidable fixed costs are sufficiently large to give the strategic
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advantage to the second mover, it is reasonable to ask whether the first mover might
surrender its position by delaying investment. While this possibility is not explicitly
analyvzed here, it 1s possible to embed our medel into a game of endogeneous entry timing.
A straightforward analysis along the lines of Ramey (1988) gives the following result: in
symmetric mixed—strategy entry equilibria, second mover advantages are associated with
delayed entry, and delay rises with the relative attractiveness of the second position.
Further, delay is infinite where the first mover’s best strategy is to cede the market, i.e.

second mover advantages lead to market failure.13



Appendix

The undominated game asscciated with the sequential capacity choice model is
derived as follows. Recall that (2) holds if and only if k, > k. Fix k, < k and consider the

equation:

(Al) D(qi)qi - C(qi) —T max{qi,ki} —F=0

(2) assures that the left—hand side of (Al) is strictly positive at q; = qM(ki). Thus since
the left—hand side of {A1) is strictly concave in q;, (A1) has a single solution qL(ki) that
lies below qn(ki) {along with a single solution that lies above qM(ki)). Clearly qL(ki) >0

and II(JTE qL(ki) = q‘\I(E), using the definition of k. Similarly, consider the equation:
1

(A2) D(q;)q; — Clq;) —r max{q,.k;} — F = —(1 — a)rk,

{A2) differs from (A1) only in that the right—hand side of (A2) gives the profits {from
shutdown, which for k, > 0 will be strictly negative. Let qN(ki) denote the single solution
o (A2) that lies below q™(k,). It follows that 0 < ¢ (k) < q(k;) for k; > 0.

The sets of undominated strategies are characterized as follows.

Lemma AL SE is exactly the set of all 5| = {kl’ql(kQ)} such that:

() k, <k
. A Mo -
(b) For all k, ql(kQ) € (a(k;)q (k{)] whenever ql(kz) > 0; and
(c) There exists k, such that qy(ky) € (qL(kl),qM(kl)] whenever k; > 0.



Proof Suppose s € SLl Ifk, > k. then (2) implies that P, (s;.85) <0 for any q,, and the
inequality 1s strict if qq(k ) > 0. Thus s, would be dominated by the strategy 51 that sets

ic’ = cii(kf)) = 0 for all k,; this establishes {a). If ql(kz) ( ( 1)]; then from (A2) it

follows that P ( JE 2) <—(1 — a)k for any s, that sets k ( ) k5. and the inequality is

strict if qo( 1) > 0. Define s; as follows: ki = k1 ql(k )= qy (k )for k, # ko, and

1
qg(kg) = 0. It follows that P (s].s5) = PI(SPSQ) for any s, with k ( 1) # ki, whereas

P ( S1s 2) —(1— oL-)l-c1 > PL(51=52) for s, with kg(kl) = kj, where the inequality 1s strict

for q2(k ) > 0; thus 5| dominates s, Ifél(ké) > qM
‘\I(}ﬁcl). Clearly P (s{.s, 51,59

ky, since qQ(k ) puts Firm 1 closer to its best response for any qz(k ), while P (s

(kl), then we may define sy just as

above, except qi(ké) =q ) > Py( ) for any 5 with k (1;1) =

12)

PI(SI’SQ) for all other s,; thus s| dominates s,. This establishes (b). If 5, sets k1 > 0 and

.
q,(ky) < a"(k,) for all k,, then using (A1) we have P (s,.s,) < 0 for any s

9 and the

inequality is strict if q2(k1) > 0. Thus s, would be dominated by the strategy 51 that sets

1
ki = qi(kQ) = 0 for all k,; combining this with (b) establishes (c).

Now we assume s, satisfies (a), (b) and (c}, and show that no s; dominates s,.
First consider k; > 0 and k, # k;. By (c) there exists ks such that ql(ké) €

L ) ‘\I . 3 . . I A ] ) ) / - . ! X . !

(q (kl);q (kl)}' Let 59 satisfy kg(kl) = k2, q2(kl) =0, and kg(kl) = q2(k1) > q (kl)’
in which case PI(SI’SQ) > 02 P (s].55). Next consider k; = 0 and k; > 0, and let s,
continue to satisfy the preceding. Using (b) we have P1(51,52) >0 > Pl( T 2) Finally,
for k, = k; we must have ql(ké) # qi(ké) for some kﬂé, and since ql(ké) < q‘ (kl) we may
find g, such that when Firm 2 chooses q2(k1) = 4y, ql(ké) gives strictly higher profits in

postentry competition than does q; (k) (for example, we might have qR(Qé|k1) <qq(ky)
< qy(k))); q5 may be used to specify s, such that P (s,59) > Py(5],59)-
Q.E.D.

Lemma A2 Sg is exactly the set of all s, = {kQ(kl)’QQ(kl)} such that, for every ky:



(b) q;)('k )€ (q fk sk ))a (

)( )] whenever qy(k,) > 0: and
fe) kQ(k1) = 0 whenever q2( )=

Proof Suppose s, € SE. ky(k,) < k for all k| may be established as in the proof of

Lemma 1, so it remains to verify that (b) and (c) are satisfied. If there exists k! such that

1
q2(k’) > 0 and gqo(k ) ¢ (

), then we have Py(s <0 forall s, such that k, =
k’ with strict inequality if qy

515

)
ki) > 0. Let s) defined by k(ky) = ky(k,) and qj(k,)

2(
(11

I
(
= qQ( ) for k; # k{, and k2( )= é(k’) = 0. Then Py(s 1 55) = Po(sy,5,) for any s,
=02 Py(sy.sy) for any s, with k = ki, where the inequality
Moo
(ko).
kg(ki)), and s,)

with kl # ki, and Po(s;,s5)

)) > 0; thus s; dominates s,. Further, if 5, sets q2(k ) >q
M(

is strict if ql(kQ(kl

then we could define s to agree with S, except for putting qg(kl) =q

would dominate s, This establishes (b). If s, puts q.)(ki) = 0, then Firm 2’s profits are

9

—{1 — a)rkg(ki) when Iirm 1 chooses k; . and s, would be dominated unless ko (k

l V=0

1
this gives (¢).

Now suppose that s, satisfies (a), (b) and {c), but 5o ¢ Sg. Then there must be

some s; which dominates s,, and for some k; we will have {k2(ki),q2(ki)} #

2)
{k5(k{), é( )}, Suppose that k otk1) # ky(k), and consider s, which sets k; = kj and:

0, ky=ky(k{)
ql(kg) = -
Ay ky # ky(ky)
If k,(k;) > O, then (b) and (c) imply that q,(k;) € (a"(ky(k}))a™ (ky(k{))) Since

ql(k ( )) =0, 5o gives strictly positive profits as a response to this 81 W hile s5 must
vield nonpositive profits if q; is sufficiently large; thus, Po(s:89) > Pylsy, 55), and s5

cannot dominate s,. Ifinstead 1;2(1(’) = 0, then k/ o(k1) > 0, and so s, again fails to



dominate s,, because Py(s 1 r)) 0> P, ( 32) for qi sufficiently large.
Suppose next that k2(ki) = k! 5(k{ ). so that qg( ) # ngk ). Since qy(kq) ¢
:\l ) Oy . I oeqa . ’ ’ - 7 -
(ky(k)). we can find q; such that when Firm 1 chooses ql(k (k1)) = af, ay(k}) gives
strictly higher profits in postentry competition than does qz(k’). Thus s,, is strictly better

than s; against s, which sets k =k and ql(kQ(ki)) = q;. and s; cannot dominate s,,.

Q.E.D.

We now consider subgame—perfect equilibria of the undominated game. A technical
difficulty must be confronted: in subgames of the undominated game, the allowable

quantities associated with given capacity choices typically are not drawn from closed sets,

Mk and (o (ky(k )0

not contain their lower endpoints. This creates no problem for Firm 1's choices, as

a(ayk,) € (0" (k, ), (k

reaction function in any subgame is simply the restriction of qR(q2 | kl) Over g, €

i.e. the intervals (qx(kl):q k‘)(kl))] of allowable quantities do

] )] for any qq such that qR(quk ) > 0, so that Firm 1’s

(qL(kg),qM(kQ)]. For Firm 2, however, we might have qR(ql|k2) < qL(kQ) for some q if
ko > 0, in which case qL(k2) generates strictly higher profit for Firm 2 in response to k,
than does any q in the undominated game (this would occur if Firm 2 would not want to
enter expecting the response 4;s but once it has entered it would not want to shut down).
In this case, Firm 2’s best response function in the (k; k,)—subgame of the undominated
game would not be defined.

Ve remedy this problem by expanding set Sg slightly to include responses qL(kQ);
we denote this set by §[2;. This allows Firm 2’s reaction function to be defined for every
subgame, and further, Firm 2's reaction correspondence in the undominated game is
continuous in q, when k2 > {, as no strategy in §g allows Firm 2 to jump to qq = 0.

This modification of the undominated game 1s supportable from two perspectives.

First, we can define our subgame—perfect equilibria as limits of outcomes that specify



e—equilibria in every subgame as ¢ - 0: this allows us to take qL(kz) as the {imit of Firm 2
¢—best responses that are slightly above qL(kQ). Second, Firm 2 carns a strictly negative
payoff in any subgame in which k, > U and the equilibrium occurs at (ig(kl) = qL(kg),
whereas by choosing k2 = {, Firm 215 assured of a nonnegative payoif in every postentry
equilibrium; thus Firm 2 never chooses such a o > 0 in any equilibrium. More broadly,
whenever Nash equilibria fail to exist for a given subgame in the undominated game, Firm
2 obtains a strictly negative payoff in every Nash equilibrium of the subgame in the
original game. Firm 2 would never choose k2 to induce such a subgame in any
subgame—perfect equilibrium of the original game, irrespective of its ability to coordinate
equilibrium selection in the subgame; thus it seems reasonable to rule out such subgames
based on backward—induction rationality alone.

We now consider the possible equilibria of (kl,kg)—subgames of the undominated
game, as modified above. Let qz(qj{ki) denote Firm i’s reaction correspondence for the
“

case of zero avoidable fixed costs as in the model of Dixit, i.e. q q | ki) gives the value of

qR(qJ\ki) when ¢ = F = 0. Thus, Firm 2’s best responses in the undominated game are
given by maX{qL(kg),qZ(ql\kg)}- Put qI(kl) = qZ(qX(kl)lkl), ie atq,= qX(kl), Firm
1 is indifferent between qp =0and g = qI(kl) (if Firm 1 prefers zero output for all ay,
put qI(kl) = 0). Subgame equilibria for ky > 0 are discussed further in the following

lemma.

Lemma A3 Let the strategy sets of the original game be replaced by SI‘II and gg, and

consider a (kl,kg)—subgame with ky, > 0 If:

X

(A3) max{q"(ky).a“(a (k) [ky)} > @ (k)

then the unique Nash equilibrium of the subgame is a F2ME. If (A3} fails to hold and k,,



> 1. then the subgame possesses a single MSE (F2ME may or may not exist), and the

quantity choices in this MSE are continuous functions of kl and k..

Proof. For kg > 0. Firm 2's best responses in the undominated game are bounded away

from zero, and so there are no FIME in such subgames. If qL(kz) > qx(kl), then

qR(q2 ; kl) = 0 for all qy that are possible in the undominated game, and the unique
[ Z, 1 X
(kg)- If q™{q (k1)|k2) > q (k]_)i

then in the (ql’qiz) plane, Firm 2’s reaction correspondence lies above Firm 1°s reaction

intersection of reaction functicns is at q; =0, g, = q‘\

correspondence at q, = qI(kI); further, Firm 2°s reaction correspondence cannot cut Firm
1's from above, since that of Firm 1 must always have the steeper slope at any intersection
point, and so there can be no intersection of the reaction correspondences with q, 2 qI(kl).
k).
Now suppose (A3) fails. Existence of a MSE is shown as follows. If qZ(qI(kl) | k,)
) 2 o

kg), then q°
strictly positive responses on [qL(kg),q

Thus no MSE exasts: a F2ME exists, however, since q‘\'I(kg) > qz(ql(kl)le) > q

‘\I( ky), and we can restrict Firm 1’s reaction correspondence to

).I(

=q
kg)]. Firm 1’s reaction correspondence is a

continuous function, strictly positive and qZ(qQ[kI) > q‘\(kl) on [qL( M

k2),q (k2)]) and

Firm 2’s reaction correspondence is a . . tinuous and strictly positive function on

(q‘\(kl).q‘\[(kl)], which implies that there exists an intersection of the functions on the

restricted domains. If qZ(qI(kl)\kQ) < qM(
Z I A
(q (kl)

kg), then there are two possibilities. First, if
X
(

q ko) = " (k,), then (q,,0,) = (q'(k,).q

reaction correspondences. Second, if qé(ql(kl) |k,) < qX(ki), then we have

ko)) gives an intersection of the

qR(qz(qI(kl) | kz)ikl) > ql(kl); and so the restriction of Firm 1’s reaction correspondence
to [qL(kQ),qé}, where g = max{qz(ql(klﬂkg),qL(kZ)}, is a strictly positive and
continuous function. Further, the restriction of Firm 2’s reaction correspondence to
Z, 1 I

(q (kl)lkg)lkl) >q (kl)

implies qz(q1 \kg) < qz(q[(kl) lk,). Again there must be an intersection of the reaction

; R, L . . L. , . R
[qR(qglkl),q (a7 (ko) k)] les in [q7(ky),q5], since q; 2 ¢ (g
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correspondences in the restricted domains. In each case there exists only one MSE, since
for Gy < qx(_kll}, the reaction correspondences give continuous functions and that of Firm 1
15 everywhere steeper than that of Firm 2. These properties, together with the fact that
the reaction correspondences and restricted domains shift continously in l-:1 and k2, ensure
that the MSE quantities are continuous in k1 and kQ. Finalily. observe that F2ME will

exist if and only if q'\'l(kQ) > qx(kl). Q.E.D.

Proof of Proposition I. (a) Suppose kg > 0. Since max{qL(kz),qZ(qI(kl) | kE)} < qM(kz) <
min{q™ (x).k}, it follows that (A3) can possibly hold for some k, < K if and onty if a (k)
< min{q)'[(a:),k—}. Thus (A3) fails if qX(kl) > min{q‘\I(m),E}, and Lemma A3 assures
existence of a MSE. [fky =0 and qX(kl) > min{q‘\'l(m),ﬁ}, then from the proof of Lemma
A3 it follows that MSE fail to exist if and only if Firm 2’s reaction correspondence jumps
I\I(

k,)]; thus there must

kl)’ qy = 0.

toq, =0 for qy 1n an upper subinterval of the domain (qx(kl),q
exist an intersection of the reaction correspondences at q; = q'\I(
(b) It can be shown that qL(kQ) - min{q‘\l(x),l-?} as kg - k (as depicted in Figure 2), and
S0 qX(kI) < min{q‘\[(m),ﬁ} implies qL(kQ) > qx(kl) for k, < k, sufficiently close to k. If
follows that (A3) holds for such k,, and we may let ky(k ) < k denote the infimum of
values k, > 0 that satisfy (A3). Since the left—hand side of (A3) is a nondecreasing and
continuous function of k,, for k, > 0, it follows that when ko(k,) > 0, (A3) holds if and
only if k, > kg(kl), and thus k, < kz(kl) ensures existence of a MSE and/or a F1ME,
using Lemma A3 and the proof of part (a) above. (When koy(k,) =0, (A3) holds for k, >

0, but it may or may not hold for k, = 0.}

{c) If kQ(kl) > 0, then we have:

(A1) max{q"(ky(k,)a%(a (5 ) kylk )} = o



)= qx(k ) > qL(gg(kl)): in the

Either ql‘(g.)(kl)) = q‘\(kl), or else qz( I( ky)iko(k
latrer case we must have qz(ql(kl)@?(k ) = (k ), else k, could be reduced slightly and

(A3) would continue to hold. In either case, a decrease in q‘\(kl) implics that k,(k,) must

fall in order to preserve eguality in (Ad). Q.ED.

Proof of Proposition 2. (a) q‘\(kl) is defined by:

(a5) D+ a

kl))ql - C(ql) —-TI max{ql,kl}] -F= _(1 - Q)Ikl
Clearly qx(kl) is continuous and decreasing in « and F, and strictly decreasing in @ and F

if ™ (k,) > 0 and D(q" (k,)) > 0. Define a,(F) by:

(A6) @ (F) = — (™ [D(q, + q"(x))a, - Cla,) - r max{a, k }] = F + k]

If @ (F) € [0,1), then we have qx(kl) = qn(:c) at @ = a, (F). Further, qM(m) > 0 and
D(qM(:r:)) > 0 hold by definition, so qX(kl) is strictly decreasing in @ at & = «,(F), and o
< a(F) implies g™ (k)) > g™ (x). If a,(F) > 1, then (A3) and (A6) give g (k,) > ¢ (=)
for all o€ [0,1).

Next, define ab(F) by:

1
(A7) aylF) = — (¥R ¢ Kjay - Clay) - max{apky )] = F o+ o)
1

I ab(F) £ {0,1), then we have qx(kl) =kata= ab(F). Further, k > 0 holds by

definition, and D(k) > 0 is given by ab(F) > 0; thus qh(kl) is strictly decreasing in « at «



= &b(”' and « < o (F) implics q‘\(kl) >k If ab(F) > 1. then (A3) and (A7) give

qxfkl) >k forall a e [0.1).

Finally. define o(F) by:

Clearly a < o(F) implies q‘\(kl) > min{q‘\[(x),’ﬁ}, 50 ko(k;) =k. Ifa=F =0, then
a*(k,) is defined by:

(48) " IPlay + 0™ (kpag - Clay) —r maxay k)] = ok,
If D(qX(kl)) > C’{0), then there exists q; € (0,k,) that makes the left—hand side of (A8)
strictly greater than —rk,; thus D(qx(kl)) = C*(0) is necessary. But by definition we
have D(q!(=)) > C*(q" (=) > C(0), and ¢*!(») < q*(k,) is implied. This gives 0 <
a,(0), using (A5) and (A6), and continuity of qx(kl) in F assures 0 < aa(F) for ¥
sufficiently small, whence 0 < a(F).

(b) Using Lemma A3, we have that k,(k,) = 0 if:

X

max{q"(0).a*(a'(k;}10)} > (k)

which may be equivalentiy expressed as:

X

(49) max{q"(0) — ¢ (k,).a%(a'(k;) [0) ~ a’(

k;)} >0
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Let o{F) denote the infimum over the values of o € 0,1) at which (A9) holds; if (A9) does

not hold for any € 0.1). then set a(F) = 1. Since ky(k;) = k > 0 for a < o(F), it is

immediate that a(F) > o(F). We now show that if (A9) holds at some &', then (A9)

continues to hold for all & > a”. This is obvicusly true if qL(O) - qx(kl) > 0 at a’, since

qL(D) is independent of & and q‘\(kl) is decreasing in . Otherwise we have qz(ql(kl)m) —

X(k ) > 0 at a’, and further:

ERRSY

a .
— [67(q'(x)]10) = 4™
Jo O

8qz an 8qx

8ql (9q2 Oa

(where appropriate one—sided derivatives are used at kinked points of qZ and qX).

X

(3qz/c')qj £ (—1,0] is easily verified, so qz(ql(kl)m) —-q kl) Is increasing in ¢; it follows

that qZ(qI(kl)|0) - qX(kl) > 0 forali @ > a’. Thus (A9) holds for all @ > a(F). For

.\I( X(

(a,F) = (L,F), we have qL(D) -q7(0) > 0and qx(k ) =0, and so qL(O) —q"~ (k) > 0 for

i
(a,F) sufficiently close to (1,F); this gives a(F) < 1 for F sufficiently close to F.
(c) Based on the preceding analysis, it is easy to verify that o(F) < @ < oF) implies 0 <

ko(k,) < k. Note that ky(k;) > 0 implies q‘\‘(kl) > 0, 50 qx(kl) is strictly decreasing in o

=2V
and F at such a point, and a slight increase in either leads to lower 152(k1) according to

Proposition 1(c). Q.E.D.

Proaf of Proposition 3. (a) Fix k, and consider Firm 2’s payoff-maximizing choice of k,
for the setection of (kl,kg)—subgame equilibria given in the text. In view of Lemma A3, k2

= k,)(kl) and k2 = 0 give the only possible points of discontinuity of Firm 2’s payoff.



o E

Since the F2ME is selected at k) = 5->(k1)= Firm 2's payoff has an upward jump at this

point. At k, = 1], Firm 2's payoff may be discontinuous due to selection of the FIME.

Note however that Firm 2's payoff in MSE is independent of k:2 if k2 1s sufficiently smalil

(note from Vigure 2 that qL(k‘)) is constant on the range k., < qL(kg)). Thus Firm 2's

payoff is constant on k, ¢ (0,4) for some small ¢, and a downward jump in the payoff at ky
= 0 still does not rule out existence of a payoff—maximzing choice of k2. Conclude that for
each kl’ there exists a k2 that maximizes Firm 2's payoff. If Firm 2 is indifferent between
two or more values of kz, we specify that it chooses one of those that makes Firm 1’s payoff
the highest.

Now censider Firm L's choice of kg for the given best responses by Firm 2 and the
(kl,kQ)—subgame equilibria sciected in the text. There are four cases in which Firm 1's
payoff might be discontinuous at a point ki:

(1) ko(k{) = 0. Perturbing k; can give ky(ky) > 0, enabling Firm 2 to induce a MSE or

FIME, even though a F2ME must be selected at k since ky > ko(k;) = 0 holds

X
(ki) 2
ki) > qL(D). In the former case, a perturbation of ky

necessarily. A discontinuity of this form emerges only if either qL(O) =q
L, 1o, Z, L, X
q™{q (k{)[9) or ¢"(q"(k;)10) = q"*(

can give qL(O) < qx(kl), and an upward jump in ky would be required to restore (A3). As

can be seen in Figure 2, however, we have qL(kg) > qx(kl) for k, < qM(O), since qx(kl)
X
(ki

a F2ME, so that Firm 1's payoff is continuous at ki. As for the latter case, since
7, 1, X/, 7, 1.,
q7(q (k{)0) = a7 (ky) > 0, we have q"(q (k)

ko > 0. so that gg(ki) > 0 would be implied.

would be close to g ). Thus, 32(1(1) < qM(O), and Firm 2 would still choose to induce

ko) = qz(ql(ki)]O) for sufficiently small

(1) 0 < Eg(ki) and a shift in kj eliminates the FIME. We know that the FIME still
exists at k1 = ki, as a consequence of the fact that the reaction correspondences have
closed graphs; thus Firm 1’s payoff could only jump upward at this point.

() 0 < ky(ky) < min{qM(:c),E} and a perturbation of kj leads Firm 2 to shifts its
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capacity response discontinuously. Suppose first that gQ(’kl) 1s continuous at k, =k
Continuity of Firm 2's F2ME pavoffs in k2 ensures that Firm 2°s preferred F2ME payoff is
continuous in ki' Further, Lemma A3 ensures that Firm 2's payoff in its preferred MSE is
conuinuous in kl’ and Firm 2°s FIME payoff is constant at zero. Thus, Firm 2 must be
indifferent between its limiting capacity responses at ki, and we have specified that at ki
Firm 2 induces the equilibrium that is preferred by Firm 1.

If ky(k,) is discontinuous at k; = k;, then Firm 2 may no longer be indifferent
between its limiting capacity responses due to a discontinuous shift in its ability to induce
the F2ME. A number of possibilities arise. First, we may have QL(EQ(ki)) = qx(ki) >
qz(ql(ki)lgz(k’l)). Since ko(k) € (O,min{qn(m),ﬁ}), qL(kQ) will be strictly increasing at
ko = ko(kj) (2s can be seen in Figure 2), which implies that ko(k,) is continuous at k, =
ki ,
(k) 10 K] kg(k])) =

(0). Here, a perturbation of k| might

Second, we may have qz(ql(ki)\EQ(ki)) =q

Zo 1., , Ze b, , M
q7(q (kl)IO), then Eg(kl) =q7{q (k1)|kg(k1)) <q

lead Eg(kl) to jump to zero, but Firm 2 would induce a F2ME before and after the

perturbation. If qz(ql(ki)|0) < qz(ql[ki)fkiz(ki)) < qz(ql(ki)lr), then we have
qz(ql(ki) ' ky) = kg for ko in a neighborhood of gg(ki), assuring that ko(k, ) is continuous
at kl = ki.

Z(qI(ki)|:u). We cannot have

“(a'0c)12) > a"(ky(k})) in this case, since ¢ (k]) = q%(a'(k})12) > q"(k,) would
hold, and an MSE would exist, for k, slightly above Eg(ki) Z(ql(ki)h) =

ql‘(gg(ki)) is necessary. A slight decrease in qx(ki) to qX(kl) can then lead ky(kj) to fall

Finally, we may have qz(ql(ki)lkg(ki)) =q

q
Thus, q

discontinuously, 1o a value k, such that k, = qZ(qI(k1)|k2) = qx(kl). As long as Firm 2
prefers to induce a F2ME at k1 = ki, it will prefer to do so after the perturbation since
52(1{1) falls. If Firm 2 induces a MSE at k; = k], then it may prefer either a MSE or a
F2ME following the perturbation. Firm 1's payoff is continuous at k1 = k’l if a MSE is
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induced. while 1t jumps upward at kl = ki if a F2ME is induced.

(iv) ®o(k;) = min{q‘\l(x),E}. Now perturbing kj can give q‘\:(k ) < min{qn(m)ﬁ},

1
enabling Firm 2 to induce a F2ME. but Firm 2 cannot do so at ki. In this case a MSE
arises when Firm 1 chooses ki: so again Firm 1's payoff can only jump upward at ki.

[t follows that Firm 1's profits are upperhemicontinuous in kl, and by specifving a
profit—maximizing choice of kl we complete the constructicn.

(b) Note that if we make a different specification of postentry equilibria, then Firm 2’s
capacity choice is affected only if it chooses to induce a postentry equilibrium which gives
it greater profits. But this necessarily lower’s Firm 1’s profits. It follows that the above
construction maximizes Firm 1's equilibrium profits over the set of pure—strategy
subgame—perfect equilibria.

Finally, there will not be any equilibria with mixed strategies in which Firm 1 earns
higher profit. Note first that in the post—entry subgame, neither firm will mix among
positive quantities, as a consequence of the strict concavity of the profit function in own
quantity. Thus, if k2 > 0 Firm 2 must choose a pure quantity—strategy, and Firm 1 will
then mix only if g, = qx(kl); Firm 1 is indifferent among such outcomes. If ky = 0, there
are two reasons why Firm 2 might mix: (i} q, = qx(kz). In this case the F1ME exists,
and it gives Firm 1 greater profits than any of the mixed outcomes. (ii) Firm 1 mixes. In
this case Firm 1’s expected postentry profits are ~{1 — a)rkl, which are no greater than in
the outcome specified above. Thus, replacing the specified postentry outcomes with mixed
cutcomes can only reduce Firm 1’s profits. Further, mixed choices of k:2 will onlv reduce
the incumbent’s profits, as we have specified that if Firm 2 1s indiiferent, it chooses the

capacity which makes Firm 1’s profits the greatest. Q.E.D.

Proof of Proposition 4. (a) Using (A3) and the fact that qI(kl) by definition gives the

solution 1o the maximization problem in { A5}, the {ollowing formulas may be derived
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(where appropriate one—sided derivatives are used at kinked points of qX): {i) for k, such

that q'(k,) > k;:
(AL0)  D(a'(k) + o (k))a' (k) + Dia'(k) + k) - € (alk)) =1 = 0

and q‘\(klj is strictly increasing in k,; (ii) for k, such that qI(kl) = k,:

1 I
X , X , X ,
(A1) dq (kl)#_(D (1{1 + q (kl))kl T D(kl +q (kl)) - C (kl) — ar)
‘ _ | <
ok, D'(k, + q (k) )k,
and (iii) for k, such that q'(k;) < k:

(A1) D’(a'tky) + q(k))a (k) + D(a'(ky) + q* (k) — €' (al(k,)) € 0

(A13) = o

For F > 0, it is necessary that qI(D) > 0, and so qx(kl) is strictly increasing in k,
at k, = 0. Higher qX(kl) reduces qI(kl], which means that qI(kl) — ky 1s strictly
decreasing in k1 whenever qI(kl) > kl' As k1 rises, eventually k?‘ 1s reached such that

q'(k%) = k% and (A10) holds at k3. For F = 0, ¢'(0) = 0 and (A10) holds at k; = 0; in

this case k? = 0. Comparing (A10) and (All) and using the fact that a < 1, it follows

that q‘\(kl) is strictly increasing at k'ri‘.
Because qI(kl) > k, implies that qI(kl) —ky 1s strictly decreasing in k, it follows

that qI(kl) <k forallk, > k¥ As k, rises, eventually kll3 > kzi‘ is reached such that qI(kl)

12K
— I, for all k; € [K4kD) and (A12) holds at k? (existence of such 2 k follows from the
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continuity of q‘\(kl) and ql(kl) along with the fact that ql(kl) < ky for all k, > qM(:c)).

Comparing (A11) and (A12), and using (A13), it follows that (9(:;“((}:1)/@%1 = 0 for all'k, 2

? if @ =0, and q‘\(kl‘) is strictly decreasing at klf if @> 0. Conclude that qX(kl) has at

least one extremum in {kellklf‘

k
. and further, at any such extremum the value of the

derivative in (A1) is zero. Differentiating (A11) with respect to k, and using

8q™ (k) Bk, = 0 gives:

P (k) Dk + (kg + 2Dk + g (k) = € (k) »
{'ﬂ(% - Dl(kl + qX(kl))kl

Thus any extremum in [k?,kll)} must be a local maximum, meaning that there is exactly one
extremum, which we denote k?

If >0, then qX(kI) must be strictly decreasing in k, for k; > ktlj and qx(kl) >0,
which 1s seen as follows. If ql(kl) < kg, orif k, is on the boundary of an interval such that
qI(kl) < ky, then (A11), (A12), (A13) and a > 0 assure that qX(kl) is strictly decreasing
at k. Ifk, is on the interior of an interval such that qI(kl) = ky, then from the preceding
we know that qx(kl) is strictly decreasing at the endpoints of the interval; thus there can
be no extremum in the interval since any extremum would have to be a local maximum, as
shown above.

{b) From the preceding it follows that k? identically satisfies:

N N

(A14) D (k) +a (k)))ky + D&y + a (k))) —C/(k)) —ar =0
We must have qx(kf) > 0, since qx(k‘Y) = 0 would imply either qI(kf) = qM(O) or

ql(k?‘) = 0, while kf > qM(O) would follow from (A14) and « < 1; this contradicts the

N N

requirement that qI(k'l) = k7. It is direct to establish using (Ald4} that kf is strictly
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increasing in e and F.

Forany k, > 0. we have qI(kI) -0 as (aF)-(0.0), and so ql(kl) <k for
sufficiently small a and F; since qx(kl) Is strictly decreasing at such a kl for @ > 0, it
follows from the strict quasi—concavity of qx(kl) that k‘\f < kl’ i.e. the maximizer of
qx(kl) must lie below k;. This is true for arbitrarily small k, > 0 when a and F are taken
sufficiently small, and thus k‘\f -~ 0as (a,F)-(0,0). Finally, for any kl’ we have qX(kl) -

0as (&,F) - (1,F), and so in the limit (A14) becomes:

M(

which implies kY = q™1(0), Q.E.D.

Proof of Proposition 5. (a) Put:

M

P(k,) = D(a™ (ke (kg (k) — Cla™ (g (k))) — 1 maxfq™ (ky(k ) ko (k) )} — F

pM(

kl) gives the maxtmized payoff of Firm 2 over kg 2 ko (k). Note that PM(kl) > 0if
S

and only if ky(k,) < k. Further, let q; (kl,k2) denote Firm i’s output in the unique MSE

derived in Lemma A3 for 0 < kq < ko(k, }, and put:

) S

P )= T D(af(kyky) + ap(kkg)ag(ky i) = Cay(k;ky))

koe(0 ky(k)) R

—T max{qg(klkg):kg}} —F
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Pb(klj gives the maximized payoff of Firm 2 over 0 < Ky < Ez(kl) given that MSE are
induced in the {kl.k.))fsubgames. As in the preof of Proposition 3, existence of a

maximizer follows from the fact that qg(kl,kQ) = qL(kg) is constant for k,, close to zero. If

ky = ky(k;) gives the maximizer, then clearly P™(k;) > P3(k,). Further, P(k,) > 0

implies q3(k ko) > q"(k,). and 50 (q](k, k,).a3 (k, k,)) is a point on Firm 2's reaction

correspondence when o = F = 0. If Pb(kl) <0, then choosing k2 = 0 induces a F1ME in

the (k  ky)—subgame and Firm 2 earns zero in this MSE: in this case set Ps(kl) =0

instead.
It follows that in the leader—optimal equilibrium, Firm 1 faces the following

constraint on its choice of klc

(A15) Either ky(k,) =k or ko(k,) <K (k)2 P(k)

The first part of (A15) indicates that no market—capturing strategy is available to Firm 2,
while the second part specifies that Firm 2 must prefer its best market—sharing capacity

choice to 1ts best market—capturing one if the latter is available. Observe that Ps(k ) >0

1
is necessary in the latier case.

W

If k"l\‘ satisfies (A13), then clearly it is chosen by Firm 1. If k | violates (Al15),
W

\ft EQ(kl) is nonincreasing in k, for ky 2k,

using Propositions 1 and 4 along with the assumption k\f > qM(O), and so ko(k;) < k is

then (A13) is also viclated for all ki >k

assured for k; > k\y; Ps(kl) is clearly nonincreasing in k., while PM(kl) is nondecreasing

1)

in k1 since lower k (kl) raises the profitability of the market—capturing strategy. It

=2
follows that Firm 1 will not choose any k1 > k\f in a leader—optimal equilibrium. Finally,
for (a.F) sufficiently close to (1,F), we have 32(1("}) = 0, using Proposition 2(b); clearly
ka = 0 in this case.

E W,

(b) Consider a leader—optimal equilibrium with 0 < ky <k as shown above, (A15)
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must be violated for all kl > k\;. Further, for k1 that satisfies (A13), it can be shown that
Firm 2's equilibrium capacity responses imply the following: (i) if k1 exceeds Firm 1I's
Cournot equilibrium quantity {given by the intersection of the firms’ ki = ( reaction

S S S .
ql(kI*kQ) and (ql(kl)k2)=QZ(k1:k2)) lies on

Firm 2s k, = 0 reaction correspondence: (if) if k, is less than Firm 1’s Cournot

correspondences for a = F = 0), then k1 =

equilibrium quantity, but exceeds a certain level k’l > 0, then kl = q?(k k,) and

1'72
S S . o . L ,
(ql(kl,kg),qg(kl,kg)) iies on Firm 1’s k| = O reaction correspondence; (iii) if k1 < kl’ then

k, < q?(k k) and (q?(kl,kQ),qg(kl,kQ)) 1s independent of ky. Using the assumption that

172
W(kl) is strictly quasi—concave, it follows that for k, that satisfy (A15), Firm 1I’s payoffs

P
in the continuation game are strictly increasing in kl if k1 > ki, and independent of k1 if k1
< k{. It follows that k™ must be the largest value of k, that satisfies (A15).

The latter fact implies the following. If EQ(kEl:) =k, then qX(k]f) = min{qM(m),g}
is necessary (else some higher k1 would satisfy (A15)); thus a rise in q, leaving klij
constant, gives EQ(kEll) <k If Ps(k}i‘) > P‘\'I(k]?), then PS(kI;:) = P‘\I(k]f) is necessary
(else some higher k, would satisfy (A13)); a rise in a, which raises P‘\I(klf) and leaves
5y < pMak

the rise in @, so that Firm 1 must choose strictly lower capacity in the new leader—optimal

Ps(klf) unchanged, gives PS(k ). In either case, klf viclates (A13) following

equilibrium. Q.ED.
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Footnotes

! Throughout this paper, our criterion of forward induction requires only the elimination of
weakly dominated strategies. More sophisticated notions of forward induction, such as those
discussed by Kohlberg and Mertens (1986), are not required for our analvsis.

? This stands in contrast to the usual first—mover tactic of strengthening commitment to the
market using strategies that expand postentry output, being more reminiscent of the "judo
tactics" used by the entrant in Gelman and Salop’s {1983) model.

3 Other scurces of second—mover advantages are discussed in Gal—Or (1985,1987), Mailath
1993) and Ramey (1988). The traditional first—mover advantage may also be lost if the
rst—mover’s choice is not perfectly observed, as Bagwell (1995) demonstrates.

1 Firm 1’s strategy need not indicate what quantities Firm 1 would choose for k1 # kl’
because given that Firm 1's strategy chooses kl’ subgames with k1 # k1 are never reached no
matter what strategy Firm 2 plays. Thus, Firm 1’s quantity choices for k1 # kl are

strategically irrelevant. Similarly, Firm 2’s quantity choices for k2 # kg(kl) are strategically

irrelevant. Eliminating these irrelevant strategies gives the reduced normal form
representation of the three—stage game.

5 1f Firm i prefers zero output for every qj, then we set qx(ki) = 0.

6 This application of subgame perfection to the undominated game represents an appropriate
combination of forward— and backward—induction inference: in each subgame, players know
that rivals are rational in the subgame (backward—induction inference), and also that rivals
were rational in all decisions that preceded the subgame (forward—induction inference).

Both criteria are satisfied if and only if strategies induce Nash equilibria on each subgame
and are restricted to the undominated game.

7 The Appendix demonstrates that Nash equilibria may fail to exist in certain subgames of
the undominated game because Firm 2’s possible quantity choices do not form a closed set:

in the undominated game, the infimum of Firm 2’s possible choices, qL(k , 1s not itself a

9)
possible choice. Thus ST% expands F'irm 2’s available strategies to include those that specify

49 = q[‘(kz) in conjunction with k2. Defenses for this departure from strict
forward—induction reasoning are offered in the Appendix.

8 The latter form of the market—capturing strategy occurs when, as qy Tises, Firm 1's
reaction correspondence in the original subgame jumps to q; = 0 before it intersects Firm 2's
reaction correspondence.

# For ko(k,) = ky = 0, no MSE exists and there may or may not exist an F1ME; a F2ME

necessarily exists, however.



It is easy to show that (c) is nontrivial, in the sense that either o(F) ¢ (0,1) or a(F) € (0,1)
imply a{FY < o(F). We also have ko(ky) =k for « = o(F) and ky(k;) = 0for a=a(F). A

number of cases are possible if a(F) = 0 or I, and/or a(F) = 0 or 1, and these may be
analyzed in a straightforward wav. For k, =0 Eg[kl) becomes independent of «; it can be

shown that ko(k, ) = 0 for F sufficiently close to . while there are a number of possibilities

that may arise for smaller F.

11 Note that while Eg(kl) is decreasing in « and F in the intermediate region, it may happen
that a rise in F leads to elimination of the market—capturing strategy, as higher F might

reduce k at a faster rate than q‘\(kl), 1.e. the lower region is entered as F rises. This reflects

the fact that the second mover must incur the fixed costs as well as the first mover, so an
increase in F narrows the range of k,, such that the second mover prefers capturing the

market to staying out altogether.
2 Recall that F1ME fail to exist when k:2 > 0.

13 Results can be obtained for the limiting cases of very low and high avoidable fixed costs,

WM
(

without imposing the assumption k | 24 0): using Proposition 2, it is straightforward to

verify that Firm 1's leader—optimal—equilibrium capacity choice is k\f if (a,F) is sufficiently
close to (0,0), while Firm 1 chooses zero capacity, and thereby cedes the market to Firm 2, if
(o, F) is sufficiently close to (1,F).

4 As pointed out above, higher F allows market capture at a lower level of kg, but also
reduces the attractiveness of the market to Firm 2; either effect can dominate, so that in
general a rise in F exerts an ambiguous effect on ka. [t can be shown, however, that if C"~

= 0, then for « sufficiently close to unity, 32(1(1) < k holds for all kl; in this case, a risein F
leads to lower k? under the assumptions of Proposition 3.

5 Consider the following game. In each of the periods t = 1,2,..., two firms decide whether to
enter or stay out. If both stay out, the game starts again in the next period. If only one

firm enters, it observes that the other firm has stayed out and chooses its capacity, while the
other firm observes this capacity choice and then chooses its own capacity; this corresponds

to the game considered in the present paper. If both enter, then they play some symmetric
equilibrium (perhaps in mixed strategies) in which capacities and then quantities are chosen
simultaneously. From results in Ramey (1988) we have the following: in symmetric
mixed—strategy equilibrium of the timing game, entry is delayed if the first mover’s profits
are positive but lower than the second mover’s, and entry does not occur at all if the first
mover 15 forced to cede the market.
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