DISCUSSION PAPER NO. 113

PROOF THAT PRICES WHICH ARE
PRESENT-DISCOUNTED CERTAINTY EQUIVALENTS
FLUCTUATE RANDOMLY*

by

Prem Prakash

November 15, 1974

* Funds for this research were provided by the Center for Advanced Studies in Accounting and Information Systems, Northwestern University, Evanston, Ill., 60201.
1. CONSISTENT BELIEFS

Consider a time sequence ..., \(X_t \), \(Y_t \), ..., of random vectors. As in Samuelson 1965 [4], the price of spot \(\Phi \) wheat in Chicago at time \(t \) might be some component, say, \(X_t \), of the vector \(\bar{X}_t \); another component, say, \(Y_t \), of the vector \(\bar{Y}_t \) might denote, as in Samuelson 1973 [5], the price of common stock of General Motors at time \(t \); and so on. At any time \(t \), the values ..., \(\bar{X}_{t-1} \), \(\bar{Y}_{t-1} \), ..., \(\bar{Z}_{t-1} \), are already history and, so, are fixed forever. But the same cannot be said about the values of \(\bar{X}_{t+1} \), \(\bar{Y}_{t+2} \), ... These values are still in the future, and we may suppose that at time \(t \) they cannot be known with certainty.

Now, fix attention on \(\bar{X}_T \), where \(T \) is some arbitrarily chosen date; and suppose that at any time \(t \leq T \) an individual assigns to \(\bar{X}_T \) a probability distribution

\[
\text{Prob}[X_T \leq X_T \mid Y_T, \bar{Y}_{T-1}, \ldots] = F_T[X_T \mid Y_T, \bar{Y}_{T-1}, \ldots].
\]

(1)
The probability distribution that the individual assigns to \tilde{y}_{t+1} at time $t+1$ would depend, in general, upon the value that \tilde{y}_{t+1} takes. Suppose that at time t the individual assigns to \tilde{y}_{t+1} the probability distribution
\[
\text{Prob}[\tilde{y}_{t+1} \leq \omega_{t+1} | \omega_t, \omega_{t-1}, \ldots] = P_t(\omega_{t+1} | \omega_t, \omega_{t-1}, \ldots);
\]
and to \tilde{y}_t conditional upon the value that \tilde{y}_{t+1} takes, he assigns the (conditional) probability distribution
\[
\text{Prob}[\tilde{y}_t \leq x_t | \tilde{y}_{t+1} = \omega_{t+1}, \omega_t, \ldots] = P_t(x_t | \omega_{t+1}, \omega_t, \ldots).
\]

ASSUMPTION 0: The individual's probability beliefs are **consistent** in the sense that they accord with the fundamental logic of probability calculus.

Then (1), (2) and (3) above necessarily obey the relation
\[
P_t(x_t | \omega_t, \omega_{t-1}, \ldots) = \int \cdots \int P_t(x_t | \omega_{t+1}, \tilde{y}_t, \omega_{t-1}, \ldots) P_t(\omega_{t+1} | \omega_t, \omega_{t-1}, \ldots).
\]

Herein, $\int \cdots \int f(x) \, g(dx)$ denotes a Stieltjes integral; and when z is a vector, it denotes a **multiple Stieltjes integral.**

2. **ECONOMIC BEHAVIOR: A REVIEW**

Suppose, now, that the individual owns a futures contract in #2 wheat for delivery in Chicago at time T; and, for this contract, let \tilde{y}_t be his minimum asking price at any time $t \leq T$. Then at any time
t < T, the asking prices ..., \(\tilde{y}_{t-1} \), \(\tilde{y}_t \) are already history and, hence, fixed. But the asking prices \(\tilde{y}_{t+1} \), \(\tilde{y}_{t+2} \), ..., \(\tilde{y}_T \) are still in the future, and we may suppose that they cannot at time \(t \) be stated with certainty. We may, however, presume that when the due date \(T \) for the futures contract arrives arbitrage will ensure that

\[
\tilde{y}_T = y_T \quad \text{iff} \quad y_T = x_T \quad \text{commissions aside.} \quad (5)
\]

For all times \(t < T \), the relation between \(y_t \) and \(\tilde{x}_T \) will depend upon what we posit about how the individual sets his asking price \(y_t \).

For example, it might be posited that at any time \(t < T \) the individual sets \(y_t \) equal to the non-expected level of the terminal spot price \(\tilde{x}_T \). That is,

\[
y_t = \sum_{s=0}^{\infty} x_t \mathbb{E}_t \left(\frac{dx_{t+s}}{G_t, G_{t-1}, \ldots} \right) = \mathbb{E}_t (\tilde{x}_T) \quad (6)
\]

where \(\mathbb{E}_t \) denotes the "expectation operator" with respect to the probability distribution \(\mathbb{P}_t (\tau_t, G_t, G_{t-1}, \ldots) \) which the individual assigns to \(\tilde{x}_T \) conditional upon \(\tilde{y}_t = G_t, \tilde{y}_{t-1} = G_{t-1}, \ldots \). This implicitly assumes that the individual has a linear utility for cash flow or income; further, it ignores the availability (to the individual) of risk-free investments yielding a positive interest.

Accordingly, it might more generally be posited that at any time \(t < T \) the individual sets \(y_t \) equal to the present-discounted expected value of \(\tilde{x}_T \), the discount rate \((\rho_{t+1}, \rho_{t+2}, \ldots, \rho_T) \) being equal to the risk-free interest rate \((\rho_{t+1}, \rho_{t+2}, \ldots, \rho_T) \) suitably
adjusted for the individual's risk attitude toward holding out the futures contract for the next period \(((t \text{ to } t+1), (t+1 \text{ to } t+2), \ldots, (T-1 \text{ to } T))\). That is,

\[
Y_t = \frac{\lambda_{t+1}^{-1} \lambda_{t+2}^{-1} \ldots \lambda_T^{-1}}{t} E_t \left(\tilde{X}_T \right),
\]

(7)

where \(\lambda_1 = 1 + r_1\), with \(\lambda_1 > \rho_1\) \(\text{[resp. } \lambda_1 < \rho_1\] \(\text{[resp. risk loving]}\); and \(t \tilde{\Pi}_T\) denotes the "discounting operator" from time \(T\) to \(t\) at the individual's discount rate schedule.

A little reflection shows that both (6) and (7) above are subsumed under the more general behavioral assumption that at any time \(t \leq T\) the individual sets \(Y_t\) equal to the present-discounted certainty equivalent of the terminal spot price \(X_T\), with the discount rate \((r_{t+1}, r_{t+2}, \ldots, r_T)\) being equal to the risk-free interest rate \((\rho_{t+1}, \rho_{t+2}, \ldots, \rho_T)\) for the period \(((t \text{ to } t+1), (t+1 \text{ to } t+2), \ldots, (T-1 \text{ to } T))\).

The question then is what can we say about the sequence \(\ldots, Y_{t-1}, Y_t, \tilde{Y}_{t+1}, \ldots, \tilde{Y}_T\) \((t < T)\)?

Samuelson 1965 [4] -- with a slight reinterpretation -- provides an answer to this question when \(Y_t\) is related to \(\tilde{X}_T\) \((t < T)\) by (6) and (7), respectively. The more general case, when \(Y_t\) is equal to the present-discounted certainty equivalent of \(\tilde{X}_T\), I shall now investigate.
3. CERTAINTY EQUIVALENT: CONSISTENT PREFERENCES WITH TIME DISCOUNTING

Make the following sufficient assumptions to guarantee the existence of cardinal utilities u_t for cash flow or income at time t \((t \in \mathbb{Z})\), where \(\mathbb{Z}\) is the set of natural numbers.

Assumption 1: For the purpose of the individual's preferences, a risky alternative is completely characterized by the probability distributions for cash flow or income at time t \((t \in \mathbb{Z})\).

Assumption 2: The individual has, over all risky alternatives, preferences which are consistent in the sense that he cannot, so to speak, make book against himself and end up winning -- or losing -- money! In other words, posit the Axiom of Complete Ordering of all risky alternatives, and the Axiom of "Strong Independence" (see, for example, Samuelson 1952 [3]).

This much assumption implies the existence of cardinal utility functions u_t for sure cash flow or income at time t \((t \in \mathbb{Z})\) and, hence, also the expected utility maximization rule for choice among risky alternatives. The following further assumption should be acceptable to all but the mystical few.

Assumption 3: All the utility functions u_t \((t \in \mathbb{Z})\) are strictly increasing monotonic in their argument, cash flow or income.
This now allows definition of the individual's "certainty equivalent operator" C_t:

$$C_t(X, \gamma) = \gamma_t \text{ iff } u_t(\gamma_t) = \int dx_t \cdot u_t(x_t) \cdot P_t(dx_t|\gamma_t, \gamma_{t+1}, \ldots),$$

(8)

where X_t ($\tau \in T$) is any random cash flow at time τ and $P_t(x_t|\gamma_t, \gamma_{t+1}, \ldots)$ is the probability distribution which the individual assigns to X_t conditional upon $\gamma_t = \gamma_t, \gamma_{t+1} = \gamma_{t+1}, \ldots$ ($t \leq \tau$).

Thus, the behavioral axiom that at any time $t \leq T$ the individual sets γ_t equal to the present-discounted certainty equivalent of the terminal spot price X_T may be formally stated as

$$\gamma_t = \sum_{t+1}^{T} \frac{\gamma_{t+1}}{\lambda_{t+1}} \ldots \frac{\gamma_{T}}{\lambda_{T}} \cdot C_t(X_T)$$

(9)

where, in this case, $\lambda_t = 1 + \rho_t$ ($4 = t+1, t+2, \ldots, T$).

Lastly, make the following

ASSUMPTION 4: The individual's preferences among sure cash flows at different times accord with the usual present-discounted value calculus.

The following Fundamental Consistency Theorem may now be recaptured without proof from Prakash 1974 [1] and [2].

THEOREM (Prakash 1974): Grant Assumptions 1 through 4 above.

Then, the family $\{u_t|t \in T\}$ of the individual's cardinal
utility functions is such that, for any \(r \in \mathbb{Z} \), and any \(t \leq r \),

\[
 t^\Pi_t \cdot C_t \cdot C_t = t^\Pi_t .
\]

(10)

Not too roughly, this says that, if an individual has consistent preferences, then it must be that his present-discounted certainty equivalent of any random cash flow \(\bar{X}_r \) is the same as his present certainty equivalent of the random cash flow obtained by discounting \(\bar{X}_r \) to the present. Using (8) above, (10) translates into

\[
 u_t (t^\Pi_t (x)) = \sum_{m=0}^{\infty} u_t (t^\Pi_t (x)) \int_t^\infty \frac{dx}{x} \cdot \phi_t \cdot \phi_{t+1} \cdot \ldots ,
\]

(11)

where \(\phi_t = C_t (\bar{X}_r) \).

4. PRESENT-DISCOUNTED CERTAINTY EQUIVALENTS FLUCTUATE RANDOMLY

Toward enunciating the main theorems, let \(\bar{X}_t \) be a "time" sequence of random vectors \(\bar{X}_t \) of which some component \(X_t \) denotes random cash flow at time \(t \). Fix a date \(T \) arbitrarily. For any \(t < T \), let the probability laws (1) through (4) hold. Further, grant Assumptions 1 through 4, and let \(u_t \) be a cardinal utility function for random cash flows at time \(t \) \((t < T) \).

THEOREM: For \(t < T \), the sequence \(y_t, \bar{Y}_{t+1}, \ldots, \bar{Y}_T \) defined by (2) has the property

\[
 \begin{align*}
 C_t (\bar{Y}_{t+1} \cdot \phi_t) &= \lambda_{t+1} \cdot y_t , \\
 C_t (\bar{Y}_{t+k} \cdot \phi_t) &= \lambda_{t+1} \cdot \lambda_{t+2} \cdot \ldots \cdot \lambda_{t+k} \cdot y_t ,
 \end{align*}
\]

(12)
where λ_1 is the discount rate for the period $(i-1)$ to i

$(I = t+1, t+2, \ldots, t+k)$ and $(t + k) \leq \tau$.

Proof: By definition (9), $(y_{t+1} | \omega_t) = E_{t+1}^{\tau} \cdot c_{t+1}(x_T | \omega_t)$. Then, using (3) and (11),

$$u_{t+1}(y_{t+1} | \omega_t) = \int_0^\infty u_{t+1}(y_{t+1} | \omega_t) \cdot P_t(dx_T | \omega_t, \omega_t, \omega_t) \cdot \ldots$$

Now denote $C_{t+1}(x_T | \omega_t) = C_{t+1}$ for short. Then, by (2) and (8),

$$u_{t+1}(c_{t+1}) = \int_0^\infty u_{t+1}(y_{t+1} | \omega_t) \cdot P_t(dx_T | \omega_t, \omega_t, \omega_t) \cdot \ldots$$

$$= \int_0^\infty \int_0^\infty u_{t+1}(y_{t+1} | \omega_t) \cdot P_t(dx_T | \omega_t, \omega_t, \omega_t) \cdot \ldots$$

Denote $C_{t+1}(x_T) = C_{t+1}$ for short. Then, using (11), the right side of the above equality is identified to be equal to $u_{t+1}(t^{(t+1)}(c_{t+1}))$. Hence,

$$u_{t+1}(c_{t+1}) = u_{t+1}(t^{(t+1)}(c_{t+1}))$$

and $t^{(t+1)}(c_{t+1}) = t^{(t+1)}(c_{t+1}) = t^{(t+1)} = t^{(t)} = y_t$ by definition. Recalling

that $t^{(t)} = \lambda_{t+1}^t$, we may rearrange the terms to yield the result

$C_{t+1}(x_T | \omega_t) = \lambda_{t+1}^t \cdot y_t$. The second part of (12) now follows by

repeating the above argument k times. \Box

Corollary (Samuelson's Theorem 2, 1965): For $t < \tau$, the sequence

$y_t, y_{t+1}, \ldots, y_k$ defined by (2) has the property

$$E_t(y_{t+k} | \omega_t) = \lambda_{t+k} \cdot y_t.$$

$$E_t(y_{t+k} | \omega_t) = \lambda_{t+1} \cdot \lambda_{t+2} \cdot \ldots \cdot \lambda_{t+k} \cdot y_t.$$ (13)