DISCUSSION PAPER NO. 113

PROOF THAT PRICES WHICH ARE

PRESENT-DISCOUNTED CERTAINTY EQUIVALENTS

FLUCTUATE RANDOMLY*

bу

Prem Prakash

November 15, 1974

* Funds for this research were provided by the Center for Advanced

Studies in Accounting and Information Systems, Northwestern University,

Evanston, Ill., 60201.

PROOF THAT PRICES WHICH ARE

PRESENT-DISCOUNTED CERTAINTY EQUIVALENTS

FLUCTUATE RANDOMLY

by

Prem Prakash

1. CONSISTENT BELIEFS

Consider a time sequence \ldots , $\widetilde{\Phi}_t$, $\widetilde{\Phi}_{t+1}$, \ldots of random vectors. As in Samuelson 1965 [4], the price of spot # 2 wheat in Chicago at time t might be some component, say, \widetilde{X}_t of the vector $\widetilde{\Phi}_t$; another component, say, \widetilde{V}_t of the vector $\widetilde{\Phi}_t$ might denote, as in Samuelson 1973 [5], the price of common stock of General Motors at time t; and so on. At any time t, the values \ldots , $\widetilde{\Phi}_{t-1} = \varphi_{t-1}$, $\widetilde{\Phi}_t = \varphi_t$ are already history and, so, are fixed forever. But the same cannot be said about the values of $\widetilde{\Phi}_{t+1}$, $\widetilde{\Phi}_{t+2}$, \ldots . These values are still in the future, and we may suppose that at time t they cannot be known with certainty.

Now, fix attention on \widetilde{X}_T , where T is some arbitrarily chosen date; and suppose that at any time t \leq T an individual assigns to \widetilde{X}_T a probability distribution

$$Prob\left\{\widetilde{X}_{T} \leq x_{T} \middle| \phi_{t}, \phi_{t-1}, \dots\right\} = P_{t}(x_{T} \middle| \phi_{t}, \phi_{t-1}, \dots). \tag{1}$$

The probability distribution that the individual assigns to \widetilde{X}_T at time t+1 would depend, in general, upon the value that $\widetilde{\Phi}_{t+1}$ takes. Suppose that at time t the individula assigns to $\widetilde{\Phi}_{t+1}$ the probability distribution

$$\operatorname{Prob}\left\{\widetilde{\Phi}_{t+1} \leq \varphi_{t+1} \middle| \varphi_{t}, \varphi_{t-1}, \ldots\right\} = P_{t}(\varphi_{t+1} \middle| \varphi_{t}, \varphi_{t-1}, \ldots); \tag{2}$$

and to \widetilde{X}_T conditional upon the value that $\widetilde{\Phi}_{t+1}$ takes, he assigns the (conditional) probability distribution

$$\operatorname{Prob}\left\{\widetilde{X}_{T} \leq X_{T} \middle| \widetilde{\Phi}_{t+1} = \varphi_{t+1}, \varphi_{t}, \ldots\right\} = P_{t}(X_{T} \middle| \varphi_{t+1}, \varphi_{t}, \ldots). \tag{3}$$

ASSUMPTION $\underline{0}$: The individual's probability beliefs are consistent in the sense that they accord with the fundamental logic of probability calculus.

Then (1), (2) and (3) above necessarily obey the relation

$$P_{t}(x_{T} | \varphi_{t}, \varphi_{t-1}, \ldots) = \int_{-\infty}^{\infty} P_{t}(x_{T} | \varphi_{t+1}, \varphi_{t}, \varphi_{t-1}, \ldots)$$

$$P_{t}(d\varphi_{t+1} | \varphi_{t}, \varphi_{t-1}, \ldots) . \tag{4}$$

Herein, $\int_{-\infty}^{\infty} f(x) g(dx)$ denotes a Stieltjes integral; and when x is a vector, it denotes a multiple Stieltjes integral.

ECONOMIC BEHAVIOR: A REVIEW

Suppose, now, that the individual owns a futures contract in # 2 wheat for delivery in Chicago at time T; and, for this contract, let \widetilde{Y}_{t} be his minimum <u>asking</u> price at any time $t \leq T$. Then at any time

t < T, the asking prices ..., $\widetilde{Y}_{t-1} = y_{t-1}$, $\widetilde{Y}_t = y_t$ are already history and, hence, fixed. But the asking prices \widetilde{Y}_{t+1} , \widetilde{Y}_{t+2} , ..., \widetilde{Y}_T are still in the future, and we may suppose that they cannot at time t be stated with certainty. We may, however, presume that when the due date T for the futures contract arrives arbitrage will ensure that

$$\widetilde{Y}_{T} = x_{T}$$
 iff $\widetilde{X}_{T} = x_{T}$ commissions aside. (5)

For all times t < T, the relation between y_t and x_T will depend upon what we posit about how the individual sets his asking price y_t .

For example, it might be posited that at any time t < T the individual sets y_t equal to the <u>now-expected level</u> of the terminal spot price \widetilde{X}_T . That is.

$$y_{t} = \int_{-\infty}^{\infty} x_{T} P_{\star}(dx_{T} | \varphi_{t}, \varphi_{t-1}, \dots)$$

$$= E_{t}(\widetilde{X}_{T}), \qquad (6)$$

where E_t denotes the "expectation operator" with respect to the probability distribution P_x ($x_T \mid \phi_t$, ϕ_{t-1} , ...) which the individual assigns to \widetilde{X}_T conditional upon $\widetilde{\phi}_t = \phi_t$, $\widetilde{\phi}_{t-1} = \phi_{t-1}$, This implicitly assumes that the individual has a linear utility for cash flow or income; further, it ignores the availability (to the individual) of risk-free investments yielding a positive interest.

Accordingly, it might more generally be posited that at any time t < T the individual sets y_t equal to the <u>present-discounted</u> expected value of \tilde{X}_T , the discount rate $(r_{t+1}, r_{t+2}, \ldots, r_T)$ being equal to the risk-free interest rate $(\rho_{t+1}, \rho_{t+2}, \ldots, \rho_T)$ suitably

<u>adjusted</u> for the individual's risk attitude toward holding out the futures contract for the next period ((t to t+1), (t+1 to t+2), ..., (t-1 to t-1). That is,

$$y_{t} = \lambda_{t+1}^{-1} \cdot \lambda_{t+2}^{-1} \cdot \dots \cdot \lambda_{T}^{-1} \cdot E_{t}(\widetilde{X}_{T})$$

$$= \int_{t}^{T} \cdot E_{t}(\widetilde{X}_{T}), \qquad (7)$$

where λ_i = 1 + r_i , with $\lambda_i > \rho_i$ [resp. $\lambda_i < \rho_i$] (i = t+1, t+2, ..., T) according as the individual is risk averse [resp. risk loving]; and t^T denotes the "discounting operator" from time T to t at the individual's discount rate schedule.

A little reflection shows that both (6) and (7) above are subsumed under the more general behavioral assumption that at any time $t \le T$ the individual sets y_t equal to the present-discounted <u>certainty</u> equivalent of the terminal spot price X_T , with the discount rate $(r_{t+1}, r_{t+2}, \ldots, r_T)$ being equal to the risk-free interest rate $(\rho_{t+1}, \rho_{t+2}, \ldots, \rho_T)$ for the period ((t to t+1), (t+1 to t+2), ..., (T-1 to T)).

The question then is what can we say about the sequence ..., y_{t-1} , y_t , \widetilde{Y}_{t+1} , ..., \widetilde{Y}_{T} (t < T) ?

Samuelson 1965 [4] -- with a slight reinterpretation -- provides an answer to this question when y_t is related to \widetilde{X}_T (t < T) by (6) and (7), respectively. The more general case, when y_t is equal to the present-discounted certainty equivalent of \widetilde{X}_T , I shall now investigate.

3. CERTAINTY EQUIVALENT: CONSISTENT PREFERENCES WITH TIME DISCOUNTING

Make the following sufficient assumptions to guarantee the existence of cardinal utilities u_t for cash flow or income at time t ($t \in \mathbb{Z}$), where \mathbb{Z} is the set of natural numbers.

<u>ASSUMPTION</u> 1: For the purpose of the individual's preferences, a risky alternative is completely characterized by the probability distributions for cash flow or income at time t ($t \in \mathbf{Z}$).

ASSUMPTION 2: The individual has, over all risky alternatives, preferences which are consistent in the sense that he cannot, so to speak, make book against himself and end up winning -- or losing -- money! In other words, posit the Axiom of Complete Ordering of all risky alternatives, and the Axiom of "Strong Independence" (see, for example, Samuelson 1952 [3]).

This much assumption implies the existence of cardinal utility functions u_t for sure cash flow or income at time t ($t \in \mathbb{Z}$) and, hence, also the expected utility maximization rule for choice among risky alternatives. The following further assumption should be acceptable to all but the mystical few.

ASSUMPTION 3: All the utility functions u_t (t $\in \mathbb{Z}$) are strictly increasing monotonic in their argument, cash flow or income.

This now allows definition of the individual's "certainty equivalent operator" C_{+} :

$$C_{\mathsf{t}}(\widetilde{X}_{\mathsf{T}}) = \zeta_{\mathsf{T}} \quad \text{iff} \quad u_{\mathsf{T}}(\zeta_{\mathsf{T}}) = \int_{-\infty}^{\infty} u_{\mathsf{T}}(x_{\mathsf{T}}) P_{\mathsf{x}}(\mathrm{d}x_{\mathsf{T}} | \varphi_{\mathsf{t}}, \varphi_{\mathsf{t-1}}, \ldots), \tag{8}$$

where $\widetilde{X}_{_{T}}$ ($\tau\in\mathbb{Z}$) is any random cash flow at time τ and $P_{*}(x_{_{T}}\mid\phi_{t},\,\phi_{t-1},\,\ldots) \quad \text{is the probability distribution which the individual assigns to } \widetilde{X}_{_{T}} \quad \text{conditional upon } \overset{\widetilde{\Phi}}{\Phi}_{t}=\phi_{t},\,\overset{\widetilde{\Phi}}{\Phi}_{t-1}=\phi_{t-1},\,\ldots$ $(t\leq\tau)$.

Thus, the behavioral axiom that at any time $t \le T$ the individual sets y_t equal to the present-discounted certainty equivalent of the terminal spot price $\overset{\sim}{X_T}$ may be formally stated as

$$y_{t} = \lambda_{t+1}^{-1} \cdot \lambda_{t+2}^{-1} \cdot \dots \cdot \lambda_{T}^{-1} \cdot C_{t}(\widetilde{X}_{T})$$

$$= t_{T} \circ C_{t}(\widetilde{X}_{T}), \qquad (9)$$

where, in this case, $\lambda_{\bf i}$ = 1 + $\rho_{\bf i}$ (i = t+1, t+2, ..., T). Lastly, make the following

ASSUMPTION 4: The individual's preferences among <u>sure</u> cash flows at different times accord with the usual present-discounted value calculus.

The following Fundamental Consistency Theorem may now be recaptured without proof from Prakash 1974 [1] and [2].

THEOREM (Prakash 1974): Grant Assumptions 1 through 4 above.

Then, the family $\{u_t \mid t \in \mathbb{Z}\}$ of the individual's cardinal

utility functions is such that, for any $\tau \in \mathbb{Z}$, and any $t \leq \tau$,

$$\pi_{\mathsf{T}} \circ \mathsf{C}_{\mathsf{t}} \equiv \mathsf{C}_{\mathsf{t}} \circ \mathsf{T}_{\mathsf{T}}.$$
(10)

Not too roughly, this says that, if an individual has consistent preferences, then it must be that his present-discounted certainty equivalent of any random cash flow $\widetilde{X}_{\mathsf{T}}$ is the same as his present certainty equivalent of the random cash flow obtained by discounting $\widetilde{X}_{\mathsf{T}}$ to the present. Using (8) above, (10) translates into

$$u_{t}(_{t}\pi_{T}(\zeta_{T})) = \int_{-\infty}^{\infty} u_{t}(_{t}\pi_{T}(x_{T})) P_{t}(dx_{T}| \varphi_{t}, \varphi_{t-1}, \dots),$$

$$where \zeta_{T} = C_{t}(\widetilde{X}_{T}).$$

$$(11)$$

4. PRESENT-DISCOUNTED CERTAINTY EQUIVALENTS FLUCTUATE RANDOMLY

Toward enunciating the main theorems, let $\{\widetilde{\Phi}_t\}$ be a "time" sequence of random vectors $\widetilde{\Phi}_t$ of which some component \widetilde{X}_t denotes random cash flow at time t. Fix a date T arbitrarily. For any $t \leq T$, let the probability laws (1) through (4) hold. Further, grant Assumptions 1 through 4, and let u_t be a cardinal utility function for random cash flows at time t $(t \leq T)$.

THEOREM: For t < T, the sequence y_t , \widetilde{Y}_{t+1} , ..., \widetilde{Y}_T defined by (9) has the property

$$c_{t}(\widetilde{Y}_{t+1} \mid \varphi_{t}) = \lambda_{t+1} \cdot y_{t} \cdot c_{t}(\widetilde{Y}_{t+k} \mid \varphi_{t}) = \lambda_{t+1} \cdot \lambda_{t+2} \cdot \dots \cdot \lambda_{t+k} \cdot y_{t} ,$$
(12)

where λ_i is the discount rate for the period (i-1) to i (i = t+1, t+2, ..., t+k) and (t + k) \leq T.

<u>Proof:</u> By definition (9), $(y_{t+1} \mid \phi_{t+1}) = \int_{t+1}^{t} \pi_T \cdot C_{t+1}(\widetilde{X}_T \mid \phi_{t+1})$. Then, using (3) and (11),

 $u_{t+1}(y_{t+1} | \varphi_{t+1}) = \int_{-\infty}^{\infty} u_{t+1}(x_{t+1} | \varphi_{t+1}(x_{t+1})) P_{t}(dx_{t} | \varphi_{t+1}, \varphi_{t}, \varphi_{t-1}, \ldots).$

Now denote $C_{t}(\widetilde{Y}_{t+1} \mid \varphi_{t}) = \zeta_{t+1}$ for short. Then, by (2) and (8),

$$\begin{array}{lll} u_{t+1}(\zeta_{t+1}) & = & \int_{-\infty}^{\infty} u_{t+1}(y_{t+1} \mid \phi_{t+1}) \; P_{t}(d\phi_{t+1} \mid \phi_{t}, \; \phi_{t-1}, \; \ldots) \\ \\ & = & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{t+1}(t_{t+1} \pi_{T}(x_{T})) \; P_{t}(dx_{T} \mid \phi_{t+1}, \; \phi_{t}, \; \phi_{t-1}, \; \ldots) \\ \\ & & P_{t}(d\phi_{t+1} \mid \phi_{t}, \; \phi_{t-1}, \; \ldots) \; . \end{array}$$

$$= \int_{-\infty}^{\infty} u_{t+1}(t+1) \pi_{T}(x_{T}) P_{t}(dx_{T} | \varphi_{t}, \varphi_{t-1}, \ldots), \text{ using (4)}.$$

Denote $C_t(\widetilde{X}_T) = \zeta_T$ for short. Then, using (11), the right side of the above equality is identified to be equal to $u_{t+1}(\zeta_{t+1}, T_T(\zeta_T))$. Hence, $u_{t+1}(\zeta_{t+1}) = u_{t+1}(\zeta_{t+1}, T_T(\zeta_T))$, so that $\zeta_{t+1} = \zeta_{t+1}, T_T(\zeta_T)$; and $\zeta_{t+1} = \zeta_{t+1}, T_T(\zeta_T) = \zeta_T, \zeta_T = \zeta_T$

COROLLARY (Samuelson's Theorem 2, 1965): For t < T, the sequence y_t , \widetilde{Y}_{t+1} , ..., \widetilde{Y}_T defined by (7) has the property $E_t(\widetilde{Y}_{t+1} \mid \phi_t) = \lambda_{t+1} \cdot y_t \cdot E_t(Y_{t+k} \mid \phi_t) = \lambda_{t+1} \cdot \lambda_{t+2} \cdot \dots \cdot \lambda_{t+k} \cdot y_t$ (13)