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Abstract

Earlier contributions have shown that imposing common knowledge of rationality 1s problematic
when rationality 1s defined as choosing an admissible best response. Here we instead impose
common knowledge of rational reasoning and define the concept of rationalizable sets. General
existence (for any non-empty valued best response operator) is established, and a finite algorithm
(eliminating strategy sets instead of strategies) is provided. Combined with the ordinary best
response operator, Bernheim-Pearce rationalizability 1s fully characterized. Combined with the
admissible best response operator, rationalizability is defined under the assumption of cautious
and sequentially rational behavior, and a notion of forward induction is captured.
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1. INTRODUCTION

Bernheim (1984, Definitions 3.2 & 3.3) and Pearce (1984, Definitions 1 & 3) define rationaliz-
ability in a normal form game by imposing that it be common knowledge that each player chooses
rationally. They define a choice to be rational if it is an ordinary best response, implying that the
choice of a weakly dominated strategy is not necessarily irrational. It would seem desirable
instead to define a choice to be rational if it is an admissible best response since this would
exclude such incautious behavior from being rational.! However, the project of combining
common knowledge of rational choice with admissibility easily runs into problems. Samuelson
(1992) presents a thorough investigation of these problems and concludes that, for some games,
common knowledge of rational choice is inconsistent with admissibility. The following example is

a simple illustration of this inconsistency.

EXAMPLE 1: Samuelson (1992, Ex. 8; also included as Ex. 2 in Bérgers & Samuelson, 1992).
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Only {/ is an admissible best response for 1. Hence, if 2 chooses an admissible best response and
knows that 1 chooses an admissible best response, then 2 knows that 1 chooses {/ and only /. is an
admissible best response tfor 2. Now, if | chooses an admissible best response and knows that 2
chooses an admissible best response and knows that 2 knows that 1 chooses an admissible best
response, then | knows that 2 chooses /. However, if 1 &nows that 2 does not choose R, then
both {/ and D appear to be admissible best responses for 1. The problem is: Why should 1 be

cautious if 1 knows that 2 knows that 1 1s cautious??

U The prescription that plavers should avoid plaving weakly dominated strategies is argued by ¢.g. Luce & Raiffa
(1937). Kolilberg & Mertens (1986). and Dekel & Fudenberg (1990).
I Cubitt & Sugden (1994) present a similar example and make a similar argument,



Lo

Our suggestion for resolving the inconsistency of common knowledge and admissibility 1s
to change the object for the common knowledge: Instead of imposing common knowledge of
rational choice, we impose common knowledge of rational reasoning. We will seek to show that
by modeling the reasoning of the players rather than their choice, no logical problems are
encountered when common knowledge 1s combined with admissibility.

To motivate our modeling of the players' reasoning, note that if a player makes prescrip-
tive use of Bernheim's (1984) Definition 3.2, then his reasoning will determine a subset of his set
of feasible conjectures. This set consists of independent conjectures with support included in the
set of the opponents’ rationalizable pure strategy profiles. Here we accommodate alternative best
response operators by assuming that each player has not only a primary conjecture, but also a
secondary conjecture in the hypothetical case that his opponents make a choice inconsistent with
the primary conjecture, etc. Such a hierarchy of non-overlapping conjectures can be derived from
Myerson's (1986) concept of a conditional prohability sysiem. Select some best response opera-
tor. In analogy with the prescriptive use of Bernheim's (1984) Definition 3.2, assume that the
reasoning of each player leads to some subset of his set of conditional probability systems, being
the set of conditional probability systems that are consistent with his reasoning about the strategic
situation. This is turn determines the plaver's hest response set, defined as the set of strategies
that each is a best response to some conditional probability system in this subset.

A player realizes that the reasoning of each opponent will determine a best response set.
Say that the player reasons rationally it he finds 1t anfinitely more likely that each opponent
chooses a strategy in her best response set rather than a strategy outside her best response set.
Since a player may be uncertain as to w/ie/r set 1s an opponent's actual best response set, we
assume that the plaver has an independent probability distribution over vectors of sets that can
possibly be the vectors of his opponents’ actual best response sets.  Furthermore, let rational
reasoning be appropriately generalized to vield a set of conditional probability systems that are
consistent with this probability distribution A rutionalizable set is a non-empty set of strategles

that can be a best response set if it 1s common knowledge that all players reason rationally.
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The concepts of rational reasoning and rationalizable sets can be illustrated in Example |
for the case of the admissible best response operator. The only possible best response sets for
player 2 are {L}, {R}, and {L R} If 1 assigns probability | to {L} being 2's best response set,
then 1 finds it infinitely more likely that 2 chooses /. rather than R, thereby determining a unique
conditional probability system.  Since an admissible best response to a conditional probability
system satisfies lexicographic optimization (see Blume et al. (1991) and Definition 4 of Section
5), {/1s the unique admussible best response to this conditional probability system. For any other
probability distribution over 2's possible best response sets, {/is clearly the unique admissible best
response to any conditional probability system consistent with the probability distribution. Hence,
tf | reasons rationally, {{/} is his best response set. If 2 reasons rationally and knows that 1
reasons rationally, then 2 knows that {{/} is 1's best response set, leading her? to find it infinitely
more likely that 1 plays [/ rather than /2. This determines a unique conditional probability system
with L being the umque admissible best response to this conditional probability system. Hence, if
2 reasons rationally and knows that | reasons rationally, then {/.} is her best response set. 1f 1
reasons rationally and knows that 2 reasons rationally and knows that 2 knows that | reasons
rationally, then 1 knows that {/.} 1s 2's best response set, leading him to find it infinitely more
likely that 2 plays [ rather than &\ As argued above, { I/} 1s still 1's best response set.

Hence, while imposing common knowledge of rational choice leads to iterated elimination
of strategies, the above procedure illustrates how imposing common knowledge of rational
reasoning leads to iterated elimination of strategy sefs. In particular, since the sirategy R is not
eliminated (rather, the procedure eliminates the strategy sefs {/} and {/. . R}), common knowledge
of rational reasoning does not prevent player I from taking into account the possibility that 2 will
play R With the admissible best response operator, sets that survive the iterated elimination will
be referred to as admissible rationalizable sets. Thus, in Example | {{/} is the unique admissible

rationalizable set for player | and {/} 1s the unique adimissible rationalizable set for player 2.

¥ In two-player games, we refer to | as the male plaver and 2 as the female plaver.



The "Burning Money" game (included as Example 5 of Section 6) due to Ben-Porath &
Dekel (1992, Fig. 1.2) and van Damme (1989, Fig. 5) illustrates how the elimination of strategy
sets rather than strategies may have attractive consequences. When "Burning Money" is solved
by iterated elimination of weakly dominated strategies, the first elimination by 2 requires her to
interpret burning as an explicable action. Still, any strategy involving burning is eventually
eliminated; hence, burning does not emerge as an explicable action. Thereby the validity of 2's
interpretation is undermined. When this game is solved by iterated elimination of strategy sets, 2
need at no stage interpret burning as an explicable action. The reason is that 2 always has the
option of assigning probability 1 to a strategy set for 1 in which no strategy involves burning. In
fact, this set is the only set for 1 that survives the iterated elimination of strategy sets; hence, it is
I's unique admissible rationalizable set. As for iterated elimination of weakly dominated
strategies, common knowledge of rational reasoning yields the forward induction ontcome.  Still,
2 does not interpret burning as an explicable outcome, and her unique admissible rationalizable set
imposes no restriction on her action conditional on 1 burning.

In the above examples, the iterated elimination of strategy sets implied by the common
knowledge of rational reasoning leads to a unique admissible rationalizable set for each player.
However, in certain games (see e.g. Examples 3 and 4 of Section 6 as well as Reny's (1993)
"Take-it-or-leave-it") where there happens to be no game-theoretic consensus on a unique set-
valued prescription, it turns out that there are multiple admissible rationalizable sets for each
player. Thus, in the present framework, a player endogenizes the prescriptive ambiguity by being
uncertain as to which admissible rationalizable set is the actual best response set of an opponent.

For a fixed non-empty valued best response operator, Section 3 formalizes common
knowledge of rational reasoning, and defines, characterizes and provides a finite algorithm for the
concept of rationalizable set. This algorithm does not eliminate strategies; rather, it eliminates
strategy sefs that cannot be best response sets. It is established that, for each player, there exists
at least one rationalizable set. If the ordinary best response operator is applied, Section 4

establishes that a strategy is contained in some ordinary rationalizable set iff it is a rationalizable



pure strategy as defined by Bernheim (1984) and Pearce (1984). Hence, common knowledge of
rational reasoning combined with the ordinary best response operator fully characterizes
Bernheim-Pearce rationalizability. In Section 5, the admissible best response operator is
introduced. Using Mailath et al's (1993) concept of a swrategic independence, it is shown how
admissibility implies sequential rationality in any underlying extensive form. It is established that
combining common knowledge of rational reasoning with the admissible best response operator
refines Bernheim-Pearce rationalizability:  Any admissible rationalizable set is included in the set
of rationalizable pure strategies as defined by Bernheim (1984) and Pearce (1984). In Sections 6
and 7 we consider five examples to illustrate the properties and applicability of the concept of
admissible rationalizable sets, while Section 8 concludes. All proofs are relegated to Appendix A,
while Appendix B contains derivations for the examples.

In closing this introduction, we would like to stress that this application of admissibility
deals directly with two types of imperfect behavior discussed by Pearce (1984). implausible
behavior at unreached information sets and incautious optimization. To cater for the first
imperfection Pearce develops his solution concept 'extensive form rationalizability' in which
players exploit information embodied in extensive form information sets. To cater for the second
he requires players' conjectures to have full support. In contrast, the present framework of rational
reasoning leads to an admissible best response being defined by lexicographic optimization. This
implies optimization at all extensive form information sets, and it entails cautiousness without
constraining players to full support conjectures.

It should be pointed out that our interpretation of normal form games differs from Pearce's
(1984, p. 1031) who views these as "a convenient representation of a perfectly simultaneous
game, in which no one can observe any move of any other player before moving himself”. In
contrast, we take a normal form game to represent any underlying extensive game. As it turns
out, once we insist on lexicographic optimization, sequential rationality is nevertheless adequately
captured. For this reason, the results we report have a bearing on any given extensive game

although our formal definitions deal with games represented in normal form.



2 PRELIMINARILS

With N={1,..n} astheset of players, let S’ denote player /'s finite set of pure strategies, and
let #:S" >N bei's payoff function, where S* =5 x. xS . Then G*=(S",#") isa normal
form game. Let G = (S.) be the corresponding pure strategy reduced normal form (PRNF)
game (Mailath et al., 1993, Def 1), with §=35x.x5 = Sx5, where —i denotes M{7}.
Throughout, — (<) denotes weak (strict) set inclusion. If @ =X, < .5, let A(X) (A"(X)))
denote the set of probability distributions on S, with support included in (equal to) X_, (with A(-
) and A%(-) later being used likewise for finite sets of "states” other than S ). Let p_ (s_|X_) be
the (subjective) probability assigned by / to s_ conditional on X ,;ie., p_ (s |X_)eA(X ).
Abuse notation slightly by writing » (s, p (| X)) for i's expected payoff given the (subjective)
probability distribution p_ (X ). Say that p_{}) is a conditional probability systenm if there
exists a sequence of probability distributions {p" };., in A"(S) suchthat V(&%) X < 8 and
Vs, e S, p s X)) =lim  pA )/, o pL) i sieX, and p (s X)) = 0 if s €S
\X . Say that p_(-]') is an independent conditional probability system if, in addition, Vj=,

3{!‘); Ve in A(S) such that, V=1, pfis.)= I1,.. f)j (s)if s, =(5).,

Remark: By Myerson (1986, Theorem 1), taking the limit of full support conjectures is sufficient
and necessary for a conditional probability system satisfying Bayes' law. In the present context,
this use of full support conjectures should not be given any behavioral interpretation; e.g., that
players make mistakes. Players making mistakes is nor part of the subsequent analysis since (a)
players only optimize given the conditional probability system obtained in the limit, and (b) in the
limit, there are no full support restrictions on the conditional probability systems. The independ-
ence condition above is strong; see Kohlberg & Reny (1992) and Swinkels (1994) for defenses of
its appropriateness. Independence is assumed since it implies that if a player observes that either
one or two of his opponents have made a choice to which he assigns probability 0, then he finds it

infinitely more likely that only one has done so (rather than both). The assumption is dispensable.



3. COMMON KNOWLEDGE OF RATIONAL REASONING

The purpose of the present section is to construct a framwork for analyzing the reasoning of the
players. The analysis presupposes that a best response operator has been selected. The precise

nature of the best response operator is not specitied here. The only requirement on the best
response operator imposed by the analysis is that, for each player /, if p (/) is a conditional
probability system, then there exists a best response to p {-|-}. In the subsequent sections, the
implications of the analysis are explored using various best response operators.

The modeling of the reasoning of each player / will provide guidelines for determining the
best response set for i, being the set of strategies from which / may choose given that he chooses
a best response to some conditional probability system consistent with his reasoning about the
strategic situation. Player 7 realizes that the reasoning of each opponent j will likewise lead to a
best response set for j. Player / finds it infinitely more likely that each opponent j will choose a
strategy in rather than outside her best response set.

Allow i to be uncertain as to which subset of S, is /'s actual best response set. Writing
Y= 27 \@Y et n(-) € A(Y) be a probability distribution having the interpretation that /
assigns probability z(c) to g, being 's actual best response set. Note that 7(') expresses
player /s uncertainty concerning the reasoning—not the choice—of opponent ;. Impose that,
Vo',o) el

,» i finds it infinitely more likely that j chooses r, e, conditional on o being j's

best response set, rather than j chooses s, € 5, \a/ conditional on ¢ being j's best response set.

Writing =%, x .. x £, =X x £, this motivates the following definition.

n

DEFINITION 1. Say that p () is consistent with 7 ()=T11,,,7,(-) €A(E ) if p (}) isan
independent conditional probability system that is generated by {ﬂ}:,ﬁf}::, satisfying, Vj # i,
Vo, e, 3{pi(o, )., in A'(S) such that

I r ec’ and s, €5 \a” imply lim_,, 7 (a")s,)/ P} (a)(r,) =0,

2. Vk=21, Vs, eS8 pis)=Xs o x,(0,) PN,



Note that the consistency of a conditional probability system for / depends only on best response
sets for his opponents to which 7 assigns positive probability. Player i believes with probability 1
that each opponent ; will choose a strategy in the union of the best response sets to which 7
assigns positive probability. Conditional on j choosing outside the union of the best response sets
to which 7 assigns positive probability, Definition 1 yields no constraint on conjectures, reflecting
that—according to /'s reasoning—;j is making an inexplicable choice.

If 7 (-) is an independent probability distribution in A(Z_), then b (z (1)) = {r, € §| 3
p_.(}) consistent with 7 () such that r, is a best response to p_(}) } denotes /'s best response
set. For any independent probability distribution _(-) in A(Z), there exists p_(-|-) consistent with
7 (+); thisis seen by letting, Vj =i, Voel, him, ., }Sf(oj)(sj )= 0 iff s, eo,. Furthermore, by
assumption, there exists a best response to any p_(-]-). Hence, b (7 (-)) # & for any independent
probability distribution z () in A(Z ). If P_, is a nonempty rectangular subcollection of T_, let
B ={b(m(Nx ()=TI1,.7,0) AP )} denote the collection that contains a strategy set
for i iff it is a best response set to some independent probability distribution in A(P_). Note that 3
() is defined neither for the empty collection of sets (i.e.. we require P_ = &) nor for a

collection of sets that contains the empty set (ie., werequire @ ¢ P_ since & ¢ Z_ 2DP)

PROPOSITION 1. VieN, (i) if @=P =T11,..P,c X, then B(P Y@ and Dep (P ), and
(i)if @=#P', =11, P cP"=T11,P'cZ. . then (P Y p(P").

JEr g jres g o=

Consider a nonempty rectangular subcollection of vectors of nonempty strategy sets, P, and write

APy =B(P_) x .. x B(P ), where S(P) is a nonempty rectangular subcollection of vectors of
nonempty strategy sets by Proposition 1(i). For later reference, let A'(P):= P, and, for Vi1,
define B*(P) inductively by £*(P):= S(5*'(P)). In analogy with the terminology of Greenberg
(1990), say that P is internally stable if P < B(P), externally stable if P 2 AP), and stable if

P = /AP). Internal stability means that any set in P, is a best response set given some independent
probability distribution in A(P_). External stability means that any best response set given some

independent probability distribution in A(P_)is a setin P,.



To define the concept of rational reasoning and to explore the implications of common
knowledge of rational reasoning, consider the following epistemological analysis. A state @ 1s a
complete description of the reasoning of the players, including how the players reason about the
opponents' reasoning, how the players reason that the opponents reason about their opponents'
reasoning, etc. However, a state does not determine the actual strategy choices of the players.
This seems appropriate as the present analysis models each player's reasoning, not his choice.
Each player is assumed to reason independently of the game actually being played. Thus, what
this reasoning yields does not depend on the actual outcome of the game if it were to be played.

Formally, with Q denoting the stafe space, each state <€ specifies for each player
« Tl(w) c Q, which denotes /'s set of possible states given w. Here, I1(-) is partitional in the

sense that there is a partition of € such that, Vwe Q, TI{w) is the element of the partition
that contains w. Say that i knows the event E < Q given wif IT(w) < E. Since well(w), it
follows that an event is true (weE) if i knows 1t.

« p(w) e I, which denotes i's best response set given . This is the set of strategies from which
i may choose given that he chooses a best response to some conditional probability system
consistent with his reasoning about the strategic situation. Since V@'l (@) are indistinguish-
able for 7, we have that, Vo'ell{w), p{e) = plw).

Since each player / thinks that his opponents reason independently of each other, we
require that, Yo € Q, P’ (w):={p ()| w'ell(w)} isrectangular. Hence, Vo € Q, p_(w) €
P' (@)=]1,., P (w)C L, since w € Il(w), and P’ (") =P (@) if @' e Il{w) since @' € [1{w)
implies [1(®) = I1(w). The interpretation of P’ (w)=T],.,P(w) is that / knows given @ that,

for each opponent j, /'s actual best response set s in P ().

Say that the event E < Q is nutnal knowledge given w if, VieN, Il (w) < E. Write T1(w)
= U . TI (w). Then the event E < O is mutual knowledge given wiff l{w) c E. If & < O,

write TI(®) := & and, Vizl, [15(®D) = U MM{w). Say that the event E < Q is common

@1

knowledge given wif, Vk=0, |} _ 1T ({w}) < E. Then, since, Vk=1, TIY(P) 2 TT+-1(P), the event

=t

E < Q is common knowledge given wiff lim,  TT"({w}) < E.
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Say that i reasons rationally given w if p(w) € (P (w)) Let E] = {weQ)] i reasons
rationally given w}, and let E*:=(,. E]. Then it is common knowledge given @ that, VieN, /
reasons rationally iff lim, _TT{({w}) C E*. Imposing that / reasons rationally puts a constraint on
his reasoning about the strategic situation. Rational reasoning entails that i's set of consistent

conditional probability systems can be determined by Definition 1 for some independent

probability distribution 7 (-) with a support that does not contain any vector of sets that / knows

cannot be the vector of his opponents’ actual best response sets.

The concept of rationalizable scts can now be defined and characterized.

DEFINITION 2. A non-empty set p, 1s rationalizable for iif there exists we Q0 with p(w) = p,

such that it is common knowledge given w that, vieN, ireasons rationally.

PROPOSITION 2. A non-empty set p_is rationalizable for i iff P=P x. . xP C X wiih p € P,

such that P < B(P).

Proposition 2 states that p is a rationalizable set for 7 iif there exists an internally stable collection
P =P x. %P such that P, contains p_

The following proposition establishes general existence and provides an algorithm.

PROPOSITION 3. There exists, YieN, at least one rationalizable set for i Write, YieN, P for
the collection of rationalizable set for i, Then P* =P x <P isstuble, and B*(Z)} comverges

fo P ina finite nunther of iteraiions.

The stability of P* means that, VieN, p is a rationalizable set for 7 ift o, 1s a best response set

viven some independent probability distribution in A(P’)) . Moreover, P* is the largest stable
collection since, by Proposition 2, any stable collection is included in P*. Finally, by Lemma 1 of

Appendix A. the alecorithm of Proposition 3 can be given the following decision-theoretic
g f i g

interpretation: Write, vz 1, P=P < xP!:= 4" (T). Then p € P iff there exists we Q0 with

plw)=p suchthat, vm=0, . k-1, [itis mutual knowledge that]”, VieN, ireasons rationally.
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4. CHARACTERIZATION OF BERNHiiIM-PEARCE RATIONALIZABILITY

The present section shows that Bernheim-Pearce rationalizability can be completely characterized
by imposing common knowledge of rational reasoning instead of common knowledge of rational

choice. First, however, we have to define the ordinary best response operator,

DEFINITION 3. is an ordinary best response to p_ () if, Vs.e8, w(r.p_(15.)) = u(s.p {

S

By the finiteness of (J, it follows that if p_(:]') is a conditional probability system. then

there exists an ordinary best response to p_(). If 7 () is an independent probability distribution

in A(Z ). then 2™ (x_ (N =1{r €S

3 p_,(}) consistent with 7 (-} such that #, is an ordinary best
response to p_ () } denotes /'s ordinary best response set. If P is a nonempty rectangular sub-

collection of T_, let B(P )= {b"(x (N7, ()= I1,.7,()€A(P,)} Say that arationaliz-

able set is ordinary if, WicN, rational reasoning for i given w is defined by p(w) € B (P! (@)) .

PROPOSITION 4. Ler R* =R = xR denote the set of rationalizable pure strategy profiles as
defined by Bernheim (1984) and Pearce (1984). Then, VieN, re R’ iff there exists an

ordinary rationalizable set p, for i such that v €p,.

Hence, for each player 7, the set of rationalizable pure strategies is equal to the union of I's
ordinary rationalizable sets. There may exist multiple ordinary rationalizable sets for each player:
this is the case in games with multiple strict Nash equilibria, since any strict Nash equilibrium

constitutes a vector of ordinary rationalizable sets.



5. ALTERNATIVE BEST RESPONSE OPERATORS

The purpose of the present section is to combine common knowledge of rational reasoning with
best response operators that generate cautious and/or sequentially rational behavior. First, we
define three different, but related best response operators,

Let p () be a conditional probability system and write Y7:=S_ . Since G is finite, Y,
V>, .. can be defined inductively by Y*=Y""\supp[p (/¥ )] for ke{l,.. K} such that
Y*' £ and Y* =@ In the terminology of Blume et al. (1991), (p_,(1¥2)....p(1¥ ™)) isa

lexicographic conditional probability system with full support.

DEFINITION 4. ris an admissible best response to p () if, Vs, € S, (0 (r,p (Y0 2,

(s, p (VN

Following Mailath et al. (1993, Def 2), the set X' 8 is a straiegic independence (S1) for
player iin G, if (1)) X=X =xX_, and (i) Vs.f eX,, 3reX suchthat Vs eX
w(r.s )=u(s,s ) and Vs, eS \X_,, u(r.s,)=u(l,s,). Wrte H:={XCS|X isa
SI for player /} and H (s )= {XeH s eX}.

DEFINITION 5. r, is a sirategic independence respecting (SIR) best response to - p_ () if,

)

VX=X xX_ eH (iIND}, Ys e X, u(r,p (X Dzuls,p (X ).

Let T' be an extensive game without nature; with (5 being the corresponding PRNF. For
each information set /# for 7 in T, there exists a corresponding set S() € .5 in G, see Mailath
et al. (1993, Section 2). By perfect recall, S(f) = S(M)xS (h). Write H' = {S(h) < S his an
information set for iin I’} and H'(s):={X e H |s ¢ X} A conditional probability system p_

(|) determines for each information set /# for / in I' a conditional conjecture p {|S_(h)).

4 Fortwo vectors a and b, a 2, b iff whenever b, > a,. there exists m < & such that a, > b



DEFINITION 6. Given an extensive game without nature I', r is a sequential best response 1o

p_ () if, VX xX e H (r), VseX, u(r.p (X)) zulsp (X))

The following propositions establish existence and provide characterizations for these best

response operators.

PROPOSITION 5. (i) If p (-} is a conditional probability system, then there exists an admissible
best response to p (). (i} If r, is an admissible best response to p_(-1), then r, is a SIR best

response to p_(-|-). (i) If r, is a SIR best response 1o p (-

), then, given any extensive gane T

with GG as the corresponding PRNE, r, is a sequential best response (o p_(:|).

PROPOSITION 6. (i) There exists a conditional probability system  p (') such that r, is an
admissible best response to p (| iff r, is not weakly dominated by a pure or a mixed strategy.
(ii) There exists a conditional probability system p_ (-} such that r is a SIR best response (o p_
C1) only if r, is not weakly dominated by a pure strategy. (i) Given the extensive game T,
there exists a conditional probabiliny system p (-|-) such that r, is a sequential best response to
p 1) iff there exists in T a system of conjectures satisfying Bayes' law such that r, is optimal

at all of i’s information sets that r, does not prechide from being reached.

Remarks: 1. The if part of Proposition 6(i) does not hold for (5 with »n > 2 if the conditional
probability system is required to be independent. 2. There are examples of PRNF games where a
SIR best response is weakly dominated by a nuxed strategy. 3. If GG corresponds to an extensive
game ', then s, € 8 corresponds to a plan of action (Rubinstein, 1991) in I, precisely because
(; is a PRNF game. Hence, s, does not specify actions in I at those of /'s information sets that
s, precludes from being reached. This restriction to plans of action in extensive games is innocent

when players do not make mistakes.

If 7 (-} is an independent probability distribution in A(E ), then 5™ (z_ () / 67 (z_,())

[ B (x_()) denote i's admissible | SIR | sequential best response set. If P is a nonempty
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rectangular subcollection of £, let (P )= {7 (w_ (DIx (=11, 7,()cdP )} for ¢ =
adm, SIR, seq. Say that a rationalizable set is admissible if, VieN, rational reasoning for i given
w is defined by p(w) € (P’ (w)). Say that a rationalizable set is S/R if, VieN, rational
reasoning for i given @ is defined by p(w) € A7 (P! (w)) Say that a rationalizable set is
sequential if, YieN, rational reasoning for i given @ is defined by p(w) € 5, (P! (w)).

By the following proposition, the concept of admissible rationalizable sets refines Bern-
heim-Pearce rationalizability. Examples 2 and 5 of Section 6 illustrate that this refinement can be
strict. The proposition holds also for SIR and sequential rationalizable sets.

PROPOSITION 7. Ler R =R x. xR, denote the set of rationalizable pure strategy profiles as
defined by Bernheim (1984) and Pearce (1984).  Then, VieN, reR’ if there exists an

admissible rationalizable set p, for § such that r.ep.

Borgers (1994) suggests combining admissibility with approximate common knowledge of
rational choice. He shows that this leads to a procedure due to Dekel & Fudenberg (1990). In
this procedure, which is also promoted by Gul (1995), first all weakly dominated strategies are
eliminated, and then strictly dominated strategies are iteratively eliminated. The following propo-

sition establishes that any strategy in an admissible rationalizable set survives this procedure.

PROPOSITION 8. Let R= R x. xR denote the set of pure strategy profiles surviving one round
of elimination of weakly dominated strategics and then iterated elimination of strictly dominated

strategics. Then, YieN, r.e R if there exists an admissible rationalizable set p, for i such that

rep.

Examples 2 and 5 of Section 6 illustrate that not all strategies surviving this procedure are
elements of some admissible rationalizable set. In these examples, combining admissibility with
common knowledge of rational reasoning captures a notion of forward induction; combining

admissibility with approximate common knowledge of rational choice does not achieve this.
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6. EXAMPLES: FORWARD INDUCTION AND STRATEGIC MANIPULATION

In this section we present four games that are chosen to illustrate the notions of forward induction
and strategic manipulation. For these games the concept of admissibie rationalizable sets coincides
with the concept of SIR rationalizable sets and—given the particular underlying extensive forms
indicated in the text—with the concept of sequential rationalizable sets. The collection of admis-

sible rationalizable sets is derived verbally in the discussion below and formally in Appendix B.

EXAMPLE 2: (G, is the PRNF of an extensive form "Battle-of-the-Sexes-with-an-outside-option”
game, where 1 and 2 move in sequence, with 2 being asked to play only if 1 does not choose the
outside option {/. Such a game, first introduced by Kreps & Wilson (1982) (who credit Elon
Kohlberg), has been widely used to illustrate forward induction. Pearce (1984) uses the game to
promote his extensive form rationalizability. Kohlberg & Mertens (1986) argue that the informa-

tion contained in the PRNF (i, should suftice to analyze any underlying extensive game.

L R
U 22 22
M 31 00
D 0o 13 Gy

In (G, the analysis of the present paper supports the forward induction logic in the
following manner: Since [ is a strictly dominated strategy, and since 1 reasons rationally, D
cannot be an element of I's admissible best response set. Now, {R} is 2's admissible best
response set only if 2 assigns positive probability to {3} or {{/.D} being 1's admissible best
response set. Since 2 reasons rationally and knows that 1 reasons rationally, it follows that L has
to be an element of 2's admissible best response set. This in turn implies that {{/} cannot be 1's
admissible best response set. Knowing that {Af} or {{/Af} is 1's admissible best response set and

reasoning rationally, player 2 will—conditional on 1 choosing from {AM,D}—believe with
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probability 1 that 1 is choosing M. Hence, common knowledge of rational reasoning implies that
2's admissible best response set is | 7.}, and, consequently, 1's admissible best response set 15 {M}.
The argument above shows that ({Af},{/.}) is the unique vector of admissible rationalizable sets.
The strategy profile implied by this vector entails that 1 can signal—by asking 2 to play—that he
seeks a payoff as high as 2, leading to the implementation of I's preferred B-o-S outcome.

It is noteworthy that common knowledge of rational reasoning combined with

admissibility yields the forward induction outcome in (75.°

EXAMPLE 3: (5 is the PRNF of an extensive game due to Battigalli (1989) and Borgers (1991).

Note that this game 13 a slight variation of (75.

L R
U 22 2,2
M 01 3,0

D 10 o3 (G

A3 .

Let us investigate the consequences of imposing common knowledge of rational reasoning. Since
D is a strictly dominated strategy, and since 1 reasons rationally, 1) cannot be an element of 1's
admissible best response set. Now, {R} is 2's admissible best response set only if 2 assigns
positive probability to {} or {{/,1D} being 1's admissible best response set. Since 2 reasons
rationally and knows that 1 reasons rationally, it follows that 7 has to be an element of 2's
admissible best response set. This in turn implies that {A7} cannot be I's admissible best response
set. However, common knowledge of rational reasoning cannot rule out that the remaining sets
— {7}y and {{/AS} for 1 and {L} and {L, R} for 2—can be admissible best response sets. Hence,

the collection of vectors of admissible rationalizable sets is { { {7} { UM} < {{L} {L.R}}.5

¥ Iterated elimination of weakly donunated strategics as well as Pearce's (1984) extensive form rationalizability and
procedures proposed by Battigalli (1993a. 1993b) vicld the forward induction outcome. In contrast to the present
analysis, these procedures have not formally been given a common knowledge basis: however, sce Stahl (1991),

¢ This means that in this example commen knowledge of rational reasoning combined with admissibality yiclds a
result that differs from that of the procedures listed in footnote 3.
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It is instructive to verify that
B () = Uy it mLy) >, and m({LR}) =1 - m(L))
() =My if m(Ly) <y and m({LR)) =1 - m({L})
pe(m )y ={Ly if m({Up <1 and m({UMYH=1-n({U})
A () = UL RY if m({U)) = 1.
To demonstrate that F“"(z.() ={U/} if m({L})y>", and m({L.R}) =1 m({L}), note that
a conditional probability system is consistent with m,(-) iff I's unconditional conjecture assigns at
least m,({L}) probability to 2 playing /.. It is now straightforward to verify that {{/} is the set
of admissible best responses. To demonstrate that A" (7, () = {L, R} if m({{/}) =1, note that
a conditional probability system is consistent with 7, ({{/}} = 1 if and only if 2 finds it infinitely
more likely that 1 plays {/ rather than Af or 13, Hence, p,(U1S)) =1 and p,(M|S)) = p,(D]S)) =0.
However, this puts no constraint on p,(:|{A£,}) and allows each of L and R to be an admissible
best response to some conditional probability system consistent with 7 ({{/}) =1
Observe that /2 is in 2's admissible best response set given &, ({{/}) = 1. This implies that 2

may—conditional on 1 choosing from {A7.1)]

assiun positive probability to 1 choosing the
strictly dominated strategy /2. How is this compatible with Definition 1, which is based on the
premise that 2 finds it infinitely more likely that 1 chooses a strategy in rather than outside his
admissible best response set? To resolve this, note that if 7 ({{/}) = 1., then 1 choosing from

IM. D} can be caused by each of the two following probability 0 events:

» Player 1's actual admissible best response set is not {{/}.

« Player | chooses outside his admissible best response set.

Given 7,({1/}) = 1. Definition 1 does not exclude the possibility that player 2 will—conditional
on 1 choosing from A /) }—conclude that | chooses outside his admissible best response set,
allowing 2 to assign positive probability to 1 choosing 1.

In the extensive game of Battigalli (1989) and Borgers (1991) that (75 represents, 1 and 2

move in sequence, with 2 being asked to play only if 1 does not choose the outside option [/,
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This extensive game can be called a game of strategic manipulation: Not to choose U/ 1s in 1's
admissible rationalizable set only if he believes with sufficiently high probability that {L R} is 2's
admissible best response set. Furthermore, {L.R} is 2's admissible best response set only if she
believes with probability 1 that {{/} is 1's admissible best response set. Hence, not to choose U/
can be explained only if 1 believes with sufliciently high probability that 2 believes with probability
1 that she cannot explain why he does not choose {/. This argument also implies that not to
choose {/ cannot be explained if T believes with sufficiently high probability that 2 believes with

positive probability that she can explain why he does not choose {/.

EXAMPLE 4: Dekel & Fudenberg (1990) consider an augmented version of (59.

L R VA
U 22 22 XK
M 31 00 AKX
D 00 13 X¥ Gy

(74 is the PRNF of an extensive game where a "Battle-of-the-Sexes" game 1s preceded by
opportunities for the players sequentially to exercise outside options: First player 2 may secure
the payoffs (£, 3). If she does not, player 1 may secure the payofls (2,2). If none of this happens
the B-0-S game is played. The derivation contained in Appendix B shows that the collection of
vectors of admissible rationalizable sets is { (M} (UMY <{{Z} L2}

When Hammond (1993) discusses the underlying extensive game, he argues that there
may be a tension between forward and backward induction in this game: For 2 to ask 1 to play
may be interpreted as signaling that she seeks a payoff as high as ¥, contrary to the payoff of 1
that 2 gets when the remaining subgame (=(;5) is considered an independent game. This may
thereby induce 1 to play it safe by choosing {/. The present analysis implies, however, that if 1
chooses U, he believes with probability 1 that 2 is making an inexplicable choice when she is not

choosing Z. Hence, 'strategic manipulation' is a more appropniate term for such behavior by 2
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than 'forward induction’. In particular, 2 hopes by asking 1 to play that 1 will choose {/.
However, if he does not, she will give in and play L. Also Dekel and Fudenberg (1990) consider

({/.L) to be a reasonable outcome in this game.

EXAMPLE 5: (G5 is the PRNF of the "Burning Money" game discussed in the introduction.

LL LR RL RR

NU 3.1 3.1 0.0 0.0
ND 0.0 0,0 1,3 1,3
BU F. /0 A1 -40
BD -%.0 <43 -%0 -43 Gs

(G5 is the PRNF of a B-0-S game with the additional feature that player 1 can publicly destroy one
and a half unit of utility before the B-0-S game starts. B/ (N/) is the strategy where 1 burns
(does not burn), and then plays {/, etc, while LR is the strategy where 2 responds with L
conditional on 1 not burning and X conditional on 1 burning, etc. The forward induction outcome
(supported e.g. by iterated elimination of weakly dominated strategies) involves implementation of
player 1's most preferred B-o-S outcome, with no atility being burnt. One might be skeptical
about the iterated elimination of weakly dominated strategies in the "Burning Money" game
because it seems to require 2 at one stage to judge burning by 1 as an explicable action, although
burning eventually does not emerge as an explicable action.

As demonstrated in Appendix B, common knowledge of rational reasoning uniquely
determines { NI/} as 1's admissible rationalizable set and {L/L,LR} as 2's admissible rationalizable
set. Hence, the forward induction owicome is obtained, but 2 is free to interpret burning as she
sees fit. This result follows from iterative elimination of sets of strategies, where at no stage of
the iteration need 2 interpret burning as an explicable action since {NU} is always included as a

possible admissible best response set for 1.7

7 Also Battigalli (1989}, Asheim (1994). and Dufwenberg (1994) argue that (VU LL) and (VU LR) are the viable
strategy profiles in the "Burning Money” game.
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7. EXAMPLES: BACKWARD INDUCTION

During the last few years, a number of papers have discussed—in the context of extensive
games—whether backward induction is implied by an assumption of common knowledge of
rational choice® The background for this interest is the following paradoxical aspect of
backwards induction: Why should a player believe that an opponent's future play will satisty
backward induction if the opponent's previous play is incompatible with backward induction?

Reny (1993) studies the "Take-it-Or-Leave-it" game with k stages (TOL(k)), where at the
mth stage of the game, the total pot is m dollars. If m is odd (even), player 1 (2) may take the m
dollars and end the game. or leave it, in which case the pot increases with one dollar. Should the
game continue until the ith stage and the player whose turn it is decides to leave the & dollars, it is
given to the other player. It is straightforward to show that in TOL(), then with k odd {even),
there are (k+1)/2 (k/2) admissible rationalizable sets for each player. Furthermore, for each
player, the sets are nested. The smallest set contains only the backward induction strategy, while
the largest set coincides with the set of strategies surviving one round of elimination of weakly
dominated strategies and then iterated elimination of strictly dominated strategies. It is interesting
to note that Aumann (1995) argues that common knowledge of rational choice leads to the former
set of strategies, while Ben-Porath (1994) claims that common certainty? of rational choice leads
to the latter set of strategies.

Binmore & Brandenburger (1990) observe that the backward induction paradoxes arise
because players can "throw surprises” on one another by deviating from the backward induction
path. Basu (1994) argues by way of an example (see below) that such backward induction
paradoxes can occur also in a simultaneous move game. In the analysis of the present paper we

have not distinguished between a simultaneous move game and an extensive game as long as the

8 These papers include Aumann (1995). Basu (1990). Ben-Porath (199, Bicchieri (1989), Binmore (1987}, Gui
(1995). and Reay (1993).
? A plaver is certain of the event E if he assigns probability 1 1o the event.
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games have an identical PRNF  This implies that in the context of our analysis, it 1s
inconsequential whether a backward induction outcome is based on fait accompli reasoning or

based on as if reasoning. We therefore find it of interest to reconsider Basu's (1994} example.

EXAMPLE 6: In Basu's (1994) "Travelers' Dilemma" (TD) game, two players simultaneously
announce bids, being integers between 2 and 100. If their bids coincide, each gets his bid. Else,
the lowest bidder gets his bid +2, the other gets the lowest bidder's bid -2. In this game, (2,2) is
the unique Bernheim-Pearce rationalizable strategy profile. Yet Basu argues that "there is
something very rational about rejecting {2,2) and expecting your opponent to do the same”. He
draws a parallel between his game and extensive games in which backward induction paradoxes
occur. However, he argues that the paradox in the TD game runs deeper because it 1s a
simultangous-move game in which players cannot "throw surprises on one other".

We show in Appendix B that in the TD game common knowledge of rational reasoning
leads to a unique admissible rationalizable set for each player. This set contains only the back-
ward induction strategy 2. In TOL(k), player 2 need only optimize as if player 1 is not choosing
the backward induction strategy. In the TD game, however, optimization uniquely determines a
player's strategy if the opponent chooses the backward induction strategy. By modifying the TD
game slightly so that a player need only optimize as if the opponent is not choosing the backward
induction outcome, the results are drastically altered. Furthermore, we argue that this Modified
TD (MTD) game more adequately serves to support Basu's (1994) intuition,

The MTD game has the same rules as the TD game except that players are guaranteed a
minimum payoff of 2 whatever they do. In neither this game nor the TD game is it crucial that the

highest bid is 100. Assume instead it is 4. Then we have

2 3 4 2 3 4
2 22 40 40 2 22 42 42
3 04 33 5,1 3.3 5,2

3

4 04 15 44 TDiGg, 4 24 25 44 MTD: Ggp

o
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These games have a lot in common. In particular, any subset not containing 2 is eventually
eliminated by common knowledge of rational reasoning. But while the collection of vectors of
admissible rationalizable sets is {{2}}x{{2}} for the TD game, for the MTD game it turns out
that the collection of vectors of admissible rationalizable sets is {{2}.{2.3}}x{{2},{2.3}}. The
reason why {2.3} s included in the case of the MTD game, can be explained as follows.
Suppose 1 (-) satisfies & (42}) = 1. Then no constraints are imposed on /'s conjecture
conditional on {3,4}. Clearly, each of 2 and 3 can be an admissible best response to some
conditional probability system consistent with 7z (-). The reason why {2,3} is not included in the
case of the TD game, can be explained as follows. Given that 7 (-} € A({{2},{2,3}}), foranyp
(") consistent with 7 (), the unigue ordinary best response to p (-[) is 2. 1t follows from
Proposition 5(i) that this is also the unique admissible best response.

With 100 as the highest bid, the collection of vectors of admissible rationalizable sets is
still {{233x{{2}} for the TD game. We find it hard to argue against this solution, even when the
highest bid is large. In line with the interpretation of the algorithm of Proposition 3, ({2}.{2})
as the unique vector of admissible rationalizable sets can be justified through unbounded iterated
knowledge of rational reasoning. This iteration corresponds to a backward inductive (though as
if rather than fuir accompliy argument. By contrast, for the MTD game it turn out that {{2},
12,3%, 42,399 42.3.12.3), ... .{2,3,..,99}} is the collection of vectors of admissible
rationalizable sets if the highest bid is 100. We argue that in this game indecisiveness is plausible.
If instead a unique vector of strategy sets were to be suggested, the only candidate would be
({2Y,{2}). However i's sct of admissible best responses given 7 ,({2}) =1 is {2,3,..99}.
Hence, common knowledge of rational reasoning entails non-uniqueness in the MTD game.

Although we think that Basu's intuition is better supported by the MTD game than by the
TD game, it is not unrealistic to predict that perfectly sensible humans will realize an outcome
other than (2,2) in actual play of the latter game. Still, we maintain that if there is common

knowledge of rational reasoning, a player's admissible best response set will contain only 2.

However, in the MTD game his admissible best response set may contain more than 2.
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8. A FINAL REMARK

By Proposition 6(i), a strategy is an admissible best response to a conditional probability system
iff it 1s dominated by neither a pure nor a mixed strategy. Hence, always choosing an admissible
best response corresponds precisely to never choosing a weakly dominated strategy. The
examples, however, show that admissible rationalizable sets do not generally coincide with the
sets of strategies surviving iterated elimination of weakly dominated strategies. What can—in
principle—account for these differences?

One difference occurs in games with three or more players since we impose that
conditional probability systems be independent. This modeling choice—which leads a player to
form plausible conjectures conditional on his opponents making inexplicable choices—is,
however, inessential for the analysis.

The main distinguishing feature is that admissible rationalizable sets are arrived at by

eliminating strategy sefs, not by eliminating strategies. This has two consequences:

« Any strategy that is in the player's admissible best response set given some probability
distribution over the opponents' remaining strategy sets is an available choice for the player.'
When iteratively eliminating weakly dominated strategies, a strategy that is an admissible best
response given the opponents' remaining strategies, may already have been eliminated.

« Through lexicographic optimization each player exploits opportunities for free insurance even
against events that can occur only if opponents choose outside their remaining strategy sets.
When iteratively eliminating weakly dominated strategies, no player exploits opportunities for

free insurance against events that can occur only if opponents choose eliminated strategies.

We believe that both these consequences lend support to the approach to rationalizability

proposed in the present paper.

1U This follows since the atgorithm of Proposition 3 determines i monolone sequence.
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APPENIX A PROOFS

Proof of Prop. 1. (i) follows since, Y (-)=I1_7(-}eA(Z). b{m (N2D. (i) AP!)c A(PY). ©

Proof of Prop. 2. (If) Let EV .= {we Q)| VieN, p(w)eP, and P’ (w) =P} and let OF = {wel)]|

lim, IT({w})< E"}. Then lm,

k= e

o [T{®") = E* since P < AP) implies that E'CE*. Finally, V
peP, dwe OF suchthat p(w)=p,. (Onlyif) Let e Q satisfy p(w)=p, and lim_ JI{w
YW E* Let, VieN, P, = {p(a)| 3k=0 with o'elP({w})}., and write P =P x._.xP Then, P

c KP) since, Vk>0, TI(|w}) < E*. Finally, p, € P, since w e II"({w}). —

The epistemological analysis of Section 3 may be interpreted in terms of a knowledge
function. Given the event E < Q, let KE denote the event that E is mutual knowledge. Hence,
KE ={we QTl(w)c E} Since, Vw e Q, @« [(w), it follows that, VE< Q, KECE.

Write, @ = Q. and let, ¥k21, O = E* ~ KD Le, Vkzl, &= {we Q] Vim=0,...,

[it is mutual knowledge that]”, VieN, i reasons rationally}. Let ®* = {w e Qlim,_ IT({w}) <
E'}. le, @ = {w e Qitis common knowledge given w that, YieN, / reasons rationally}.

Then it follows from the definitions that &' o P o P D> > .. 2 D"

LEMMA 1. Let, Vkz0, P* =Pfx. xPX=p(T). Then, Ykz0, p e P' iff there exists o e ®*

"

with p{(w) = p.

Proof. (Only if) Repetitive use of Proposition 1(i}&(ii) implies that, V=1, (=) P* P& (cX).
If k=1, then, VpeP*' 3w e &' suchthat @)= p. Assume that this is true for some k=1

Then Ef ={w e KO*'|WVieN, p(w) cP* and P' (w)=P*"} isnon-empty. Furthermore, since
el . . pty

P+ A(P*1) implies that EX  E* it follows that E* < ¢ Finally, P* < P*' implies that, Vpe P,
Jw e E* ¢ & such that p(w) = p. (If) Let, k20 and VieN, P¥ = {p(w) o € '}, and
PY =P¥ x xP* . Then P* c P". Assumethat P*"" < P*”' for some k21. Then, since ®*¢
E* ~ KO+ implies that P™ < A(PY"7), and P™ ' < P* " implies that B(P*") < AP+) = P it

follows that P )
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LEMMA 2. If P° with @ = P2 < X, is externally stable, then there exists P°, with &= P'=
P'x. xP. < P, such thar P* is the largest (hence, unique maximal) internally stable collection
included in P2V Furthermore, P is stable, and Pt defined by, Wk=1, P* .= PX"), converges

to P* in a finite number of iterations.

Proof. Repetitive use of Proposition 1{i)&(ii) implies that, Vizl, (@=) P < P! (cX). From
this monotonicity and the finiteness of T, it follows that P¢ converges in a finite number of
iterations to P~ with (&%) P = APy < P (cX). Let P denote the smallest rectangular
collection that includes all internally stable collections included in P*. There exists an internally
stable collection included in P since P c AP)< P, and P < P* < P since P 1s
rectangular. If P is an internally stable collection in P*, then P < AP} < ZP*) by Proposition
1Gi); e, P* < BP*) since MAP?) is rectangular. Hence, P* is the largest internally stable
collection included in P As (@=%) P~ < P* ¢ AP < AP") = P' (cZ) (by Proposition 1(i1)),
repetitive use of Proposition 1(ii) implies that, Vkz1, (&=) P < P* ¢ KP) ¢ AP = PX ().

Since P* convergesto P, it follows that P =P = (P*). =

Proof of Prop. 3. Note that T is externally stable. By Proposition 2 and Lemma 2, P* is the

collection of vectors of rationalizable sets, where P* = S(P*), and where B*(Z) converges to P* in
a finite number of iterations. Repetitive use of Proposition 1(i}&(ii) implies that & = P*C .

Proof of Prop. 5. Given p (), write Z':=S and define Z', Z°, .. inductively by
ZF = arg max_ .. #,(5,.p (1 Y¥'yy for ke{l, . K} Then r is an admissible best response to
p (1) iff 7 € Z¥ . (i) By the finiteness of G, Z* 2@ . (ii) To show that7, € Z" implies that r,is
a SIR best response to p (-|-), suppose to the contrary that r, is not a SIR best response to p_(-[).
Then there exist X = XxX, € H (r)\|@} and reX, such that w(r.p (X)) < u(t.p (X))

Since X is a SI, 7, can be chosen such that Vs €S\ w{fs) = u(r,s) Since

1T A collection is fargest if any other collection is included. A collection is maximal if no other collection strictly
includes it
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S,=Y'oY o . or"'orY =0, there exists a largest integer ke{l1,..K} satisfying
¥ 5 X in particular it holds that p_ (X_[Y*™')>0. By construction of #,and ¥*'', either (a)
both 7, and 7, are in Z""', in which case it follows from Bayes' law (Vs,eX, p (s X))
p (X V5 =p (s IYE)) that 7 eZ 275 since Vs eV '\X | u(r.s y=ufl.s), or

” =

(b) both r, and ¢ are not in Z*"' in which case » ¢ Z'"' 2 Z" . (iii) By Mailath et al. (1993, the

if part of Theorem 1), H (x) < H (r)\iD}.

Proof of Prop. 6. (i) (If) By Pearce (1984, Lemma 4), if r, is not weakly dominated by a pure or
mixed strategy, there exists a conditional probability system p_(-[) with p (-|5_) € A ) such
that, Vs, € 8, w(r.p. (1S ) =z w (s p (1S)). Since K =1, r, is an admissible best response to p_(:
). (Only if) Assume that r, 1s weakly dominated by a (possibly degenerate) mixed strategy p(-) €

A(S). By applying the notation of the proof of Proposition 5, it suffices to show that, for any
conditional probability system p_(-]-). r & Z" = Note that {r lusupp[p(-)] € Z". Furthermore, V
ke{l,. Ky, {ryusupplp()] <Z'" implies (r, € Z' only if supp[p()} €Z). To see this,
observe that w(r.p (IS )< ¥ o p. (50, (s.p  ([Y") since p(-) weakly dominates r,. Also, if
roeZf 5t eZX (e p CIYE N zu(p (1YE7)). Hence, 1, e ZF implies, Vs, € supp[p()]
ZHwe e ZE urp CIYS N =ulsp CIYTIN zu(p (V). However, {r,bosupplp ()]

< Z" contradicts that p(-) weakly dominates r. (i) Suppose, Vs €X . w(t.s ) > ufr.,s ) and,

Vs eSS\, ult.s)=w(r.s,). Then {r.}xX is a Sl for i and there exists no conditional

probability system p_(-|-) such that r is a SIR best response to p (-]-). (iij) follows directly from

the definition of a sequential best response.

Let, VieN, a(R ) ={r e 8] 3 an independent conditional probability system p_(-|-) with
p (1Y) € A(R ) such that 7, is an ordinary best response to p (1) }, where X is a nonempty
rectangular subset of S . Write a(R}=a (R ) = ... xa (R ), where R=R x .. xR_ Note
that & = R'=[1_ R < R'=[1.. k" <5 implies a(R) € a(R"). Following Pearce (1984), R

satisfies the best response property if R < a(R). By Bernhein (1984, Prop. 3.1) and Pearce

(1984, Prop. 2), R" = (") 1s the largest subset of § satisfying the best response property.
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Proof of Prop. 4. (Only ify P ={(R ..., R)} satisfies P =B (P} since R* = a(R’). By
Proposition 2, ¥ieN, R’ is an ordinary rationalizable set for 7. (If} By Proposition 3 and Defini-
tion I, VieN. R =, o, = U, s,0, Cafll) Since K a(R) implies R < R*, 1t
follows that, VieN, U, o, ¢ K

Proof of Prop. 7. By Proposition 3 and Definition 1, VieN, R = U, 40, = Uy om0, ©

a(R ). Since RC a(R) implies R ¢ R°, it follows that, VieN, U, o, < R'. _

Proof of Prop. 8 Let R'= R x xR denote the set of pure strategy profiles surviving one

round of elimination of weakly dominated strategies, and let, V&>, R = Rf x. xR* denote the

set of pure strategy profiles surviving, in addition, -1 rounds of iterated elimination of strictly
dominated strategies. Write P' = £, and let, ¥kz1, P¥ =P x_ xP%:= g (P*"). By Proposition
6(i), VieN, U, .no, < R'. Suppose, for some k>1, VieN, U, 40, < R¥' Then, by

Definition I, VieN, U, a4 0, < a (k) c RF. C

APPENDIX B DERIVATIONS FOR TIHE EXAMPLES

-

The algorithm of Proposition 3 is used to determine the collection of vectors of admissible

rationalizable sets in Examples 1-6.

Fxample 1.
Pr=Y= I xZ

p = YU <5,
Pr=Pr= {{U}})x [{L})

Example 2
Pr=X= % xZ,

1

P = UMY UMY x 5

Pr= {{ULMLUMY) < (UL ALRY)
Pr=  (MLLUMY) < ULLALRY
P MM <L

PP LA L



Fxample 3.
Pr=E =
Pl =
P2 =
Pr=P=

FExample 4.
Pr=x=
Pl =
P2 =
pi=
Pr =P =

Example 3
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