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Abstract

This paper reconsiders the Strotz-Pollak problem of consistent planning and argues
that a solution to this problem requires a refinement of subgame-perfectness. Such
a refinement is offered through an analysis based on Greenberg's 'theory of social
situations’. A unifying framework is presented whereby consistent one-person
planning as a problem of individual time-consistency and renegotiation-proofness
as a problem of collective time-consistency are captured through the same general
concept.
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1. INTRODUCTION

Consider a single person facing an intertemporal decision problem. At the initial node, the person
would like to realize a path that maximizes the person's payoff as evaluated at the initial node.
Such a path is said to be optimal. Likewise, a decision rule (defined by the property that it at
every decision node determines an action) is said to be optimal if it generates an optimal path. A
optimal decision rule is fime-consistent if at each decision node reachable by the optimal path, the
decision rule is still optimal in the sense of maximizing the person's payoff as evaluated at the
reached node. Strotz (1955-56) and Pollak (1968) are concerned with the case where there is no
optimal and time-consistent decision rule because the person has time-inconsistent preferences.
Time-inconsistency is a real-life phenomenon, sometimes of economic relevance. The following
illustrations are included in order to support the claim that seemingly rational individual decision
makers may in fact have time-inconsistent preferences.

Procrastination. It 1s a common experience that people tend to postpone unpleasent
tasks, preferring to have them done in the next period (day, week, ... ). Yet, when the next period
comes along, still further postponement seems preferable. Such "... [p}rocrastination occurs when
the present costs are unduly salient in comparison with future costs ..." in the words of Akerlof
(1991, p.1), who gives the subject an interesting treatment filled with economically relevant real-
life examples. Hence, at any time, the time preference between the present and the first future
period 1s greater than between a future period and its successor. These are the kind of
inconsistent time preferences which are explicitly analyzed by Strotz (1955-56).

Intoxication. The following situation may also seem realistic: After work, some would
prefer to go by the local pub and have one beer instead of going straight home. At the pub, afrer
the first beer, it may, however, seem preferable to consume another three beers. These
preferences are time-inconsistent if, when leaving work, going straight home is preferable to
consuming four beers at the pub. Such endogenous preferences are treated by e.g. Hammond

(1976), who argues that there is no need in a formal analysis to distinguish between inconsistent
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time preferences (changing exogenously due to the passing of time) and endogenous preferences
(changing endogenously due to the person's choice of actions; e.g., the consumption of alcohol
and other intoxicating substances). Both types of time-inconsistency are thoroughly reviewed by
Elster (1979), whose terminology [ have adopted.

Addiction may be considered as a combination of both types of time-inconsistency. When
a person becomes addicted to a substance (or unproductive habit), his preferences changes
endogenously due to actions taken: Past abuse increases the craving for the substance. When the
person is addicted and tries to drop the habit, however, it is a common phenomenon that the
person—while acknowledging his health damaging (or unproductive) behavior—wants to indulge
for yet another period before quitting. This latter perspective on addiction as procrastination is
stressed by Akerlof (1991).

If there 1s no optimal and time consistent decision rule, Strotz {1955-56) suggests two
possibilities: Precommitment or Consistert planning.  Precommitment is a special case of
consistent planning if the original decision problem allows for it; else it amounts to changing the
decision problem. Precommitment as such will not be discussed here. The problem of consistent
planning is according to Strotz (1955-56, p.173) for the person "to find the best plan among those
that he will actually follow". If preferences are time-inconsistent, the problem of consistent one-
person planning can be analyzed by turning the intertemporal decision problem into an extensive
game where the decisions at different nodes are taken by different selves of the decision maker.
These selves are agents of the same person, but corresponds formally to separate players. The
payoff of an agent depends on his decision node and the path—originating at his node—that the
decision rule generates. The strategy of an agent is the action that the decision rule determines at
his decision node. Thus, a decision rule corresponds to a strategy profile. Peleg and Yaari (1973)
and Goldman (1980) analyze the notion of consistent one-person planning in such a game-
theoretic context, They claim that a plan is the best that will actually be followed ("optimal in the
Strotz-Pollak sense”, Peleg and Yaari (1973, p.345); "a Strotz-Pollak equilibrium", Goldman

(1980, p.534)) if and only if it is a SPE of the corresponding extensive game.
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As long as the decision problem has a finite time horizon and the agents are not indifferent
between any two outcomes, this solution concept uniquely determines the consistent plan. If]
however, the time horizon is infinite, or if there are indifferences, then multiple SPEa may exist.

Furthermore, as the following examples will make clear, not all of these SPEa are solutions to the

problem that Strotz (1955-56) posed.

FIGURE 1

EXAMPLE | (see Figure 1) considers a person who lives at times 1, 2, and 3. At time 1 he has to
decide whether to {/ndertake or Delay an unpleasant task. If he chooses {/ at time 1, there is no
decision at time 2. If he chooses [) at time 1, he has to decide whether to Undertake or Delay at
time 2. With D at time 1, the person is—at time 2—indifferent between {/ and D. Note that
(D,U) is the unique optimal and time-consistent decision rule since this is the only decision rule
that is optimal at all nodes that is reached if the rule is followed. Using (D,UJ) enables the person
to delay the unpleasant task from period 1 to period 2. However, both (D,I)) and (U/.D) are
SPEa. Hence, there exists a SPE in which the person at the initial node does not choose the best
plan among those that he will actually follow. Rather, he receives a lower payoff by undertaking
the task immediately. He does so fearing that if he delayed the task at time 1, he would delay the

task at time 2 as well and be worse off as evaluated at the initial node.



EXAMPLE 2—which is inspired by an example by Asilis et al. (1991)—has the person choosing g,
e {0,1} at each time &N with payoff at time ¢ being given as min_ga_ Also in this example
there exists a wnique optimal and time consistent decision rule, viz., "always choosing 1" Note,
however, that "always choosing 0" is a SPE since no single agent can profit by a unilateral
deviation. Then, by using "always choosing 0" as a punishment, any feasible action path can be
supported as a SPE path. Hence, even though the problem of consistent planning is trivial and

has a unique solution, the concept of a SPE has no bite what-so-ever in this example.

EXAMPLE 3 (presented in detail in Section 3) is an infinite horizon capital accumulation problem
where the person has inconsistent time preferences of the kind that Strotz (1955-56) explicitly
analyzed. Here, there is no optimal and time-consistent decision rule. However, the decision
rules "always maintaining the capital stock intact" and "always consuming the entire capital stock”
are both SPEa even though the person prefers the former decision rule to the latter. This is an
economically relevant example, where—in contrast to Example 1—the person is not indifferent
between two different actions, and where—in constrast to Example 2—actions taken in the

distant future do not influence the person's payoft significantly (i.e., there is ‘continuity at infinity').

These examples show that the notion of subgame-perfectness is not conceptually valid as a
solution to the problem of consistent planning! The reason is the following: The notion of
consistent planning is based on the premise that the agents (representing the selves of the person
at different decision nodes) are symmetric with respect to their ability to influence later agents. In
a SPE, each agent can reconsider only his own action; thus, by the symmetry requirement the
agent at the initial node is not the one suggesting or coordinating on a particular SPE. Hence, by
playing according to a SPE the person is not at any decision node doing any planning; instead
each of his selves chooses a best response given that his other selves play according to an

exogenously given decision rule. This discussion—as well as the examples above—suggest that a

UIn a slightly different context, this is also illustrated by the model of Asheim (1988a).



refinement of subgame-perfectness is required in order to conceptually solve the problem of
consistent one-person planning. Such a refinement will be offered in Section 2 through a concept
which is based on the following premise: The person can—given that one of his decision nodes
has been reached—sclect any decision rule for the remaining problem, taking into account that
he can reselect at any later decision node.  This concept of a revision-proof decision rule
respects the symmetry between the different selves of the person, while allowing him to engage in
planning by choosing "the best plan among those that he will actually follow". It will be shown
that the suggested concept solves the examples above in an attractive manner. In particular,
Section 3 analyzes its implications in the economically relevant Example 3.

The subsequent sections are organized as follows  [n Section 4 it is pointed out that the
definition of a revision-proof decision rule may be considered as a special case of Bernheim et al.'s
(1987) definition of a Perfectly coalition-proof equilibrium, extended to an infinite time horizon.
This in turn permits relating consistent one-person planning as a problem of individual time-
consistency to renegotiation as a problem of collective time-consistency. Stationary one-person
decision problems allow for the adaptation of concepts of renegotiation-proofness in repeated
games. Kocherlakota (1995) exploits this to suggest an alternative refinement which he terms
"reconsideration-proofness”. An evaluation of his concept is contained in Section 5. For this
purpose, the time-consistency of a pay-as-you-go pension system is considered as Example 4.

The present paper entails that it matters for the analysis whether the agents of a game are
interpreted as different selves of the same person, or as different persons. Section 6 addresses this
question. Furthermore, the present definition of a revision-proof decision rule is based on
Greenberg's (1990) theory of social situations. In Section 6 it is pointed out that the concept of a
revision-proof decision rule is related to Greenberg's (1990) notion of optimistic stability in the
tree situation. Finally, the assumptions underlying the definition are chosen in order to keep the
analysis simple and thereby make the conceptual arguments more transparent. Section 6 contains

a brief discussion of possible extensions. All proofs are relegated to Section 7.



2. REVISION-PROOF DECISION RULES

Consider a one-person 7-stage decision problem. The sets of histories are defined inductively:
The set of histories at the beginning of the first stage 1 is H, = {h,}. Let H,_, denote the set of

histories at the beginning of stage 7. At A € H_,, the person's action set is 4" . Define the set of

-1
histories at the beginning of stage t+1 as follows: H, = {(ha)h € H_, and a, € A"}, This

H

s H, is set of decision nodes, and (if 7'< %) H, is the

concludes the induction. Then # = U,_; H,

set of terminal nodes. Assume that, Vi € H, A" is non-empty, but possibly singular. The latter

case means that a trivial decision is taken at #. The person's decision rule s, determines for each 4

€ H an action s(h) in A", with § being the set of decision rules. Given A, s determines a path of

deciston nodes, H*(s) = {geH| g is reached given & and s}, originating at k. Write f* =
U, s 27"(s)) . The person's payoff given h and s, equals u(s,), where #”(s,) depends only on A

and the properties of 5, on H*(s,). If payoft functions can be normalized such that, VAcH and Vs,
€S, u/'(s) =u"" (s, then the person's preferences are said to be time-consistent.2 A decision
rule s, is optimal at A if s, € argmax, . #'(r,). A decision rule s, is optimal and time-consistent at

hif, VgeHA(s), s, eargmax . uf(r,). If preferences are not time-consistent, an optimal and

time-consistent decision rule may not exist.

Assume that, at each dectsion node, the person can select any decision rule. However, he
takes into account that he may revise the decision rule at the current or any later decision node.
In order to capture this one-person planning situation, let a standard of behavior (SB) be a
correspondence o, assigning to each decision node # € H a subset o(h) of S. A SB o in the
one-person planning situation 1s optimistic internally stable if
(IS) Vh e H, Vs, eo(h), there do not exist g € H*and 7, €a(g) such that »*(r) > u*(s)).

A SB o, in the one-person planning situation is optimistic externally stable if

(ES) Vhe H Vs eSo(h), there exist ¢ € H"and 7, eo,(g) such that #¥(r) > u*(s).

2 See Blackorby et al. (1973, Theorem 3).



A SB o, in the one-person planning situation is said to be optimistic stable if it is both optimistic

internally and externally stable > Consistent one-person planning can now be defined.

DEFINITION 1. A decision rule s, is revision-proof at h if there exists an optimistic stable SB o, in

the one-person planning situation, with s, e o (h).

The rationale underlying this definition is the following: Interpret o(h) as the set of plans that will
be followed at /. (IS) means that if a plan is followed, then there does not exist, now or later, a
strictly preferred plan that will be followed. This explains why a plan in o (/) will be followed.
Conversely, (ES) means that if a plan is not followed, then there exists, now or later, a strictly

preferred plan that will be followed. This explains why a plan outside o,(#) will not be followed.

EXAMPLE | (Continued). As indicated in Figure 1, refer to the decision nodes where non-trivial
decisions are made as A, and A, with S = {(U,U),({/.D),(D,U),(D,D)}. Let o be any optimistic
stable SB. Then o,(h) = S, by (ES) since no domination can occur at or subsequent to /4,
Furthermore, (D,1/) € o(h,) since otherwise (ES) would have been violated, while {{{/,1}),(U,D),
(D.D)} < S)o(h,) since otherwise (IS) would have been violated. Note that o, so determined

satisfies (IS) and (ES). By Definition 1, (1,U) is the unique revision-proof decisicn rule at /.

This analysis shows that in Example 1, Definition | picks out the unique optimal and time-
consistent decision rule. The following proposition establishes general results on the relation
between revision-proofness and the set of optimal and time-consistent plans. Part (i} shows that if
an optimal and time-consistent decision rule exists, then a revision-proof decision rule gives the
person the same payoff. By part (i1), "always choosing 1" is the only revision-proof decision rule

in Example 2. Hence, also in this example does Definition 1 yield the satisfactory solution.

3 This is an application of the general notion of optimistic stability, which is closely related to von Neumann and
Morgenstern (1953) stability, and which is a central solution concept in Greenberg's (1990) theory of social
situation. The term 'optimistic stability'—coined by Greenberg (1990)—reflers here to the optimistic attitude of the
person at # in the sense of believing that he can select any viable decision rule at £, Greenberg's {1990) alternative
netion of conservative stability, which does not correspond to vN-M stability, will not be treated here.



PROPOSITION 1. (i) If s, is revision-proof at h and r, is optimal and time-consistent at h, then

w'(s)=u'(r). (i) If, VheH, there exists a non-empty set of decision rules that are optimal and

time-consistent at h, then s, is revision-proof at h iff s, is optimal and time-consistent at Vge H".

Part (1) of the following proposition shows that a revision-proof decision rule exists at a
decision node iff there exists an optimistic stable SB in the one-person planning situation. Hence,

part (1) establishes existence, given a finite horizon and a restriction to finite action.

PROPOSITION 2. (i) If there exists an optimistic stable SB o in the one-person planning situation,
then, ¥h € H, o(h) # . (i) Assume that T < o, and that, ¥h € H, AJ" is finite. Then there

exists a unique optimistic stable SB o, in the one-person planning situation.

Even though—under the assumptions of part (ii)—there exists a unique optimistic stable SB,
there may still exist multiple revision-proof decision rules at some # € /. Example 1 illustrates
this possibility since o,(h) = .S, Under different assumptions, the existence of a unique optimistic
SB cannot generally be established: With infinite and compact action, there are finite horizon
examples where no optimistic stable SB exists (see Hellwig & Leininger (1987; Section III); this
example is included in Asheim (1991b, Example 6)). With finite action, but infinite horizon, no
counter example to existence is available; in this case, there are examples (see Example 4 of
Section §) with multiple optimistic SBs.

Turn the one-person 7-stage decision problem into a perfect information game I', where
the decision maker is regarded as having different selves at different decision nodes. These selves
are agents of the same person, but have different preferences and are formally separate players.
Le., H is the set of players, and, YheH, s(h) is player #'s strategy, and «"(-) is player A's payoff
function. Then s,1s a multi-self subgame-perfect equilibrium (SPE) of I at A, if there do not exist

g € H"and r(g) € AF such that u*(r(g).s, \s.(g)) >u"(s;). The concept of a revision-proof

decision rule is in general a refinement of the concept of a multi-self SPE of T,

PROPOSITION 3. If the decision rule s, is revision-proof at h, then s, is a multi-self SPE of I at h.



As Examples 1 and 2 of the introduction as well as Example 3 of the following section illustrate,
this refinement can be strict.

Under the condition of the following proposition, the concepts coincide.

PROPOSITION 4. [f Yh € H, (a) there exists a multi-self SPE of T at h, and (b) s' and s being
SPEa of T at h implies s!=s" on H', then s, is a revision-proof decision rule at h iff s, is a

multi-self SPE of I at h.

3. AN EXAMPLE OF INCONSISTENT TIME PREFERENCES

In this section, Definition | is applied to an economically relevant example of inconsistent time
preferences, where the concept of revision-proofness yields a strict refinement of the concept of a
multi-self SPE of I'. For the example, the following definitions are useful. Let the stafe space K
be a partition of H such that, with #' 4" ¢ H and k € K, ' /" e k iff the problem faced at /'
is isomorphic to the problem faced at #”. Say that a decision rule s, is Markovian if s(h") = s(h")

whenever 4 H' c k.

EXAMPLE 3 (Continued). Consider an infinite horizon capital accumulation problem where the
capital stock can take values in K = {0, &', ... & A=} with O < K < <= <}~ The
discreteness of K reflects indivisible real capital or—in the case of financial capital—a smallest

money unit, At each stage ¢, the person inherits a capital stock 4,_,, and his action is to choose a

-1
capital stock &, which will be inherited at the next stage r+1. Let A" ={k e K]k, <k, _/p} if he
k_,. Interpret ¢, :=k_, - pk, as consumption at stage f and 1/p as the gross rate of return. The
person derives payoff from consumption. If the decision rule s, generates the consumption path
(¢, .y, ... ) given h e k. then u'(s)) = v(c) +AX..,,67'v(c.). Here, v(c,) is the utility

derived from consumption in stage 7, with v(-) being strictly increasing and strictly concave.

Normalize v(-) such that v(0) = 0. Assume inconsistent time preferences: A is the discount factor
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between this stage and the next, and & is the discount factor between a future stage and its
successor, with 0 <A < §< 1, Also, assume that, YkeK, v{k) > v(km—pk) + Av(k). This requires
A < p and implies the person will choose to consume the entire capital stock at stage ¢ if any
remaining capital stock will be entirely consumed at stage 1+1. Finally, assume that (1 + A + Ad+

A8+ =) 1+ =15 (=1+p+p°+p'+ ). Thisrequiresthat A<p<§ (eg, A= 4, p=

5, and & = .6) and implies that the person will choose to maintain the capital stock intact at stage

t (k,=k_,) if the capital stock will be maintained intact at each future stage (Vr>1, k,=k_)).

Let § denote the Markovian decision rule defined by, VA € H, 5(h)=0 ("always
consuming the entire capital stock"). If h € &, then #'(3)=v(k). Let § denote the Markovian

decision rule defined by, Vh € H, §(h)=k 1if h € k ("always maintaining the capital stock

intact”). If & € &, then #(3) = (1+ Z5)v((1- p)k). Since v(0) = 0 and 1+%5 =15 it follows

-
from the strict concavity of v(-) that #"(3) <u'(3) if h € k with k > 0. Hence, if h € & with &k >

0, the person strictly prefers 5, to 5. Note that neither of these decision rules are optimal and
time-consistent: If the grid K i1s sufficiently fine, at any stage ¢, the person's optimal, but time-
inconsistent, decision rule would yield a consumption ‘binge' at the present, followed by positive

capital accumulation in the future.

Since the person strictly prefers § to 5, it would seem that consistent planning should
lead the person to select § rather than § . The following claim establishes that the concept of

revision-proofness supports this intuition: While both § and § are multi-self SPEa of T, only §

1s a revision-proof decision rule.

CLAM 1. Consider Example 3. (i) YheH, the Markovian decision rules s ("always consuming
the entire capital stock”) and 5, (“always maintaining the capital stock intact”) are both mullti-
self SPEa of T at h. (ii) Yhe H, the Markovian decision rule s ("always maintaining the capital
stock intact”) is revision-proof at h. (iii) If a Markovian decision rule is revision-proof at h, then

5 =35 onH"
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4. PERFECTLY COALITION-PROOF EQUILIBRIA

Consider a n-person 7-stage decision problem. The sets of Aistories are defined inductively: The
set of histories at the beginning of the first stage 1 1s //, = {h,}. Let H _, denote the set of

histories at the beginning of stage 1. At A € H,_,, each person's action setis 4", withi € N = {I,

-1
., n}. Write A" := A" x...x A" Define the set of histories at the beginning of stage 7+1 as
follows: H, := {(ha)lh € H_ and a € A*}. This concludes the induction. Then H = Ul H is
the set of subgames and (If 7 < o«c) H, 1s the set of ferminal nodes. Person i's strategy s,
determines for each € H an action s(#) in A", with S being the set of strategies. Write, V.J C
N, §=8x.x8 =8x85, Givenh, s determines H'(s) = {geH| g is reached given / and
sy. Write H" = U, _; H"(s). Person i's payoff given h and s equals #"(s), where #”(s) depends

ses
only on 4 and the properties of s on H*(s). If payofl functions can be normalized such that, VhcH
and Vs € S, u/(s) = u"*"’(s), then person i's preferences are said to time-consistent,

Assume that, in each subgame, any coalition can coordinate on any strategy profile, taking
into account that, in the current and each later subgame, any weakly included coalition can do so
in turn. In order to analyze this #-person decision problem, consider the following perfectly
coalition-proof situation: A standard of behavior (SB) is a vector of correspondences o
assigning to each coalition (&%) J < N and each subgame # € H a subset g,(h) of §. A SB oin
the perfectly coalition-proof situation is optimistic internally stable if
(IS) V(@=yJc N, YheH Vs=(s,s ) € g(h), there do notexist (Z=)IcJ, g e H", and

r=(r,.s_) € gfg)suchthat, Vi e [, w*(r)>u"(s).

A SB oin the perfectly coalition-proof situation is optimistic externally stable if
(ES) V(©@=)JC N, Vhe H Vs=(s,5 ) € S\o(h), thereexist (D=)/cJ, ge H" and r=

(r,,s_;) € ofg)suchthat, Vi e I, 15(r)>u*(s).

A SB o in the perfectly coalition-proof situation is said to be optimistic stable if it is both

optimistic internally and externally stable. Note that if N = {i}, the perfectly coalition-proof

situation reduces to the one-person planning situation.
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p

With time-consistent preferences and a finite horizon, Bernheim et al. (1987) define a
perfectly coalition-proof equilibrinm inductively as follows: Let pbe a vector of correspondences
assigning to each coalition (&%) J < N and each subgame 7 € H a subset p,(h) of §. Assume,
VI, g)=(J, h) with @=/cJ and ge H", pl(g) has been defined. Let p,(h) = {5 € S there
does not exist (/, g) # (J, h) with @ =/ < Jand g € H* such that s € $\p(g)} * Then plh) is
defined by s € p{h) iff 5 € p,(h) and there does not exist r=(r,s ) € p,(#) such that, Vi ¢
J, ul(ry>ul(s). A strategy profile s is a perfectly coalition-proof equilibrium at hif s € p(h).
Note that the assumption of time-consistent preferences plays no role in this definition. Hence, it
can in a straight-forward manner be generalized to (possibly) time-inconsistent preferences.
Using the perfectly coalition-proof situation, the following proposition characterizes Bernheim et

al.'s (1987) concept given a restriction to finite action.

PROPOSITION 5.5 Assume that T < x, and that, Vhe H, A" is finite. Then there exists a unique
optimistic stable 8B o in the perfectly coalition-proof situation.  Furthermore, a strategy profile

s is a perfectly coalition-proof equilibrium at h iff s e o {h).

Using this characterization, Bernheim et al's (1987) concept can be extended to infinite horizon

decision problems.

DEFINITION 2. A strategy profile s is a perfectly coalition-proof equilibrium at h if there exists an

optimistic stable SB o in the perfectly coalition-proof situation, with s e, (/).

Note that it follows from Definition 2 that a perfectly coalition-proof equilibrium 1s a revision-
proof decision rule in the special case where N = {i}. Hence, the extended concept of a perfectly
coalition-proof equilibrium yiclds the definition of one-person consistent planning offered in
Definition 1 of this paper. Bernheim et al. (1987) do not, however, discuss time-inconsistent

preferences and do not consider their concept as a solution to a one-person decision problem.

4 Note that p,my=S it J={i} and hell .
5 This characterization was noted by Asheim (1988b). It is discussed by Asilis and Kahn (1992).



In a repeated game, a SPE can be supported by a threat which—if called—is Pareto-
inferior to the original SPE. Hence, it the players can coordinate before each stage of the game,
they prefer renegotiating back to the original SPE rather than undertaking the threat. However,
this undermines the credibility of the threat and questions the viability of the original SPE. The
literature on renegotiation-proof equilibria® seeks to answer the following question: What SPEa
are not prone to this kind of criticism? A SPE that is not renegotiation-proof may be considered
as a strategy profile that is not collectively time-consistent (see e.g. Bernheim and Ray, 1989):
There are subgames where the grand coalition as a collective gains by revising the strategy profile.
In these terms there is an obvious similarity between the notion of consistent one-person planning
as a problem of individual time-consistency and the notion of renegotiation-proofness as a
problem of collective time-consistency. This similarity is brought forward below by noting that
the extended concept of a perfectly coalition-proof equilibrium yields also a definition of
renegoliation-proofness. Let the n-person 7-stage decision problem be a repeated game with n =
2. Then, with T finite, Bernheim et al's (1987) perfectly coalition-proof equilibrium coincides
with Bernheim and Ray's (1985, 1989) Pareto-perfect (or Consistent) equilibrium. Furthermore,
with 7 finite or infinite, a perfectly coalition-proof equilibrium as defined in Definition 2 coincides
with a Pareto-perfect equilibrium as defined in Definition 1 of Asheim (1991a) (provided that Vie
N, VheH, Vs €S, argmax, u'(s,,s,)#@). Hence the concept of a perfectly coalition-proof
equilibrium yields the usual and uncontroversial definition of renegotiation-proofness in finitely
repeated games as well as the extension that I have suggested for infinitely repeated games.

The reason why problems of individual and collective time-consistency are related is that
both types of problems arise because the person (in consistent one-person planning) or the grand
coalition (in a repeated game) is at any stage able to select a decision rule or a SPE. Taking into
account the opportunity for future selection, the individual decision maker or the grand coalition

is forced to select a decision rule or a SPE that will actually be followed at later stages.

¢ See e.g. Farrell and Maskin (1989). Bernheim and Ray (1989). Asheim (1991a) as well as Abreu et al. (1993)
and Bergin and MacLeod (1993).
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5. STATIONARY DECISION PROBLEMS

An infinite horizon decision problem is stationary if, VA', A" ¢ H, the problem faced at 4" is
isomorphic to the problem faced at 4. An infinitely repeated game is a stationary decision
problem. Given the relation between renegotiation-proofness and consistent one-person planning,
concepts of renegotiation-proofness as developed for infinitely repeated games can be applied to
stationary one-person decision problems. Kocherlakota (1995) successfully applies Farrell and
Maskin's (1989) concept of weakly rencgotiation-proof and strongly renegotiation-proof
equilibria, the analogs being called symmeiric and reconsideration-proof equilibria, respectively.
By normalizing the payoff-function such that #”(s,) does not depend on /4 but only on the actions
taken along H*(s,), a symmetric equilibrium is defined as a multi-self SPE of I vielding the person
the same payoff at any decision node. Kocherlakota (1995) considers such symmetry a necessary
condition for consistent planning.” A symmetric equilibrium is reconsideration-proof if there is no
symmetric equilibrium yielding the person a higher payoff, a concept for which Kocherlakota
(1995) establishes general existence. Kocherlakota (1995) also shows that if an optimal and time-
consistent decision rule exists, then this rule is reconsideration-proof, a property that—by
Proposition 1(ii)—is shared by revision-proofness. The following proposition gives a result on

the relation between revision-proof decision rules and reconsideration-proof equilibria.

PROPOSITION 6. (Kocherlakota, private communication). In a siationary one-person decision

problem, a revision-proof decision rule is a reconsideration-proof equilibrium iff it is symmetric.

However, there are examples where revision-proof decision rules are not symmetric. In fact,
Example 4 below illustrates the case where the set of revision-proof decision rules and the set of
reconsideration-proof equilibria are disjoint.

To evaluate the concept of reconsideration-proofness, two issues must be addressed:

7 In a slightly different context. this view is supported by Dekel and Farrell (1990).



« What 1s the economic relevance of stationary one-person decision problems with time-
inconsistent preferences?

» Given a stationary one-person decision problem with time-inconsistent preferences, what is
the appropriate solution concept?

Section 1 lists three empirically relevant examples of time-inconsistent preferences:
Procrastination, intoxication, and addiction. These examples have in common that the problems
faced at different decision nodes are not isomorphic. The problem facing a person that still needs
to undertake a task is different from the problem facing a person who has already done the task.
The problem facing an intoxicated person is not the same as the problem facing a sober person.
The problem facing a person addicted to some substance or unproductive habit, is not the same as
the problem facing a person that is not addicted. Even though these examples are far from
exhaustive, it seems restrictive to analyze consistent planning in a stationary environment 3

For the second issue it is instructive to consider the following example of a stationary one-
person decision problem. Actually, since the stationarity makes it hard to interpret the example as

a one-person problem in a literal sense, 1 choose to present it as a decision problem of a dynasty.

EXAMPLE 4. Let a dynasty be described by an overlapping generations model where—leaving
reproductive 1ssues aside—there at each stage are two individuals: an agent of the dynasty and his
parent. The agent can choose whether to pay a pension to the parent (@ = 1) or not (a =0). The
parent does not act. Hence, Vh € H, A» = {0, 1}. The cost of paying a pension is 1; the benefit
of receiving a pension is 2. Hence, VA € Hand Vs, € S, u"(s)= —s(h) + 2s(h, s(h)). At each
stage, the agent of the dynasty can select any decision rule to be followed by the present and

future agents of the dynasty, taking into account that future agents can do so in turn,

8 As Example 4 of Kocherlakota (1995) illustrates. a reconsideration-proof equilibrium need not be a Markovian
decision rule. Hence. it 1s not possible to generalize the concept of a reconsideration-proof equilibrium to non-
stationary one-person decision problems by imposing that the decision rules be Markovian, and then choosing a
most preferred Markovian decision rule,
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Here, the unique symmetric equilibrium is § defined by, VA € H, §(h)=0. Hence, 5
("never paying a pension”) 1s the unique reconsideration-proof equilibrium, yielding, vh € H,
u"(5)=0. However, following Hammond (1975) and Kotlikoff et al. (1988), it is straight-
forward to construct decision rules where a pay-as-you-go pension system is established. For this
purpose, determine inductively a partition of / as follows: Let it be given whether the agent at 4,
has a 'cooperative' or a 'non-cooperative' parent. Consider the agent at # € . If his parent was
‘cooperative', then choosing 1 is 'cooperative' and choosing O is 'non-cooperative'. If his parent

was mon-cooperative’, then choosing 0 1s 'cooperative' and choosing 1 is 'non-cooperative'. Let

5! (s) be the decision rule "always choosing cooperatively" given that the agent at A, has a

'cooperative’ (‘'non-cooperative') parent. Note that, witha=1ora=0, #'(s°)=1 (= 2) ifthe
agent at # has a 'cooperative' ('non-cooperative') parent. Hence, Vi € H, s’ yields a higher
payoff than the unique reconsideration-proof equilibrium 5. The following claim establishes that

s, and s’ are revision-proof, while § is not.

CLAMM 2. Consider Example 4. (i) Yh € H, s and s° are revision-proof at h. (i) If s is a

reconsideration-proof equilibrium, then, Yh € H, s is not revision-proof at h.

The problem with the concept of reconsideration-proofness in the context of this example is that
the imposition of symmetry as a necessary condition implies that plans yielding all generations a
higher payoff in any contingency are not considered. In particular, the concept does not comply
with the view that a plan will not be followed only if there exists a strictly preferred plan that will
be followed.

Finally, note that the proof of Claim 2 shows that in this example there are multiple

optimistic stable SBs in the one-person planning sttuation.
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6. CONCLUDING REMARKS

The possibility of communication is a distinctive feature of a one-person decision problem: With
perfect recall, any agent of the person is able to communicate to later agents of the person, while
the converse is not true.® This enables each agent to select a decision rule for the remaining
decision problem. Without communication or with bi-directional communication, the refinement
of Definition 1 need not be applicable. This can be seen by considering Example 1 as a two-
person game with x = 2. Then, in line with the argument of Bennett and van Damme (1991) and
Tranzs (1995) (see also Nalebuff and Shubik (1988)), it seems natural to expect that 2 will
communicate his intention to punish 1 for not playing U/, by himself playing D. If 1 believes that
this is a credible threat, she will indeed be induced to choose U/, Furthermore, without
communication this still seems like a plausible outcome. Even with communication from 1 to 2
only, I cannot rule out that 2, if asked to play, will behave out of vengeance. Hence, Definition 1
relies on uni-directional communication as well as no agent behaving out of vengeance. This
seems to be appropriate in the case of a one-person decision problem. It also implies that
Definition 1 appears to be applicable to any entity that exists over time and where agents of the
entity do not act vengefully. Examples here include dynasties (like Example 4 above) and
organizations (e.g. firms). It is less applicable to a government in a democratic society where the
different governing parties are antagonistic.

The definition of a revision-proof decision rule is based on the general framework of
Greenberg's (1990) 'theory of social situations’. As I have explored in Asheim (1991b,
Proposition 1), his specific concept of optimistic stability in the tree situation is formally closely
related to the present concept of revision-proofness. However, Greenberg (1990) does not
interpret optimistic stability in the tree situation in terms of consistent planning. In fact, it is hard

to give an interpretation that directly corresponds to the one-person problem of finding "the best

? For an analysis of onc-person decision problems without perfeet recall, see Piccione and Rubinstein (1994).
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plan among those that he will actually follow" (Strotz, 1955-56, p.173).!1°® Furthermore, the
concept of optimistic stability in the tree situation relies on paths, not decision rules. This makes
it hard to extend the analysis to incorporate exogenous uncertainty. The present analysis can in a
straight-forward manner be extended to exogenous uncertainty by introducing moves by nature.
Even though Proposition 2 ensures that a revision-proof decision rule exists if there exists
an optimistic stable SB in the one-person planning situation, existence of the latter is established
only under restrictive assumptions. In order to ensure existence, Asilis and Kahn (1992) argue in
general that Roth (1976) semi-stability {or ‘subsolution') should be substituted for von Neumann
and Morgenstern (1953) stability. In the present specific context, this amounts to dividing—at
each decision node—the set of decision rules into a good, a bad, and an ugly set. A decision rule
1s good 1f and only if there does not exist a good or ugly decision rule at the current or any later
decision node that is strictly preferred at that node. A decision rule is bad if and only if there
exists a good decision rule at the current or some later decision node that is strictly preferred at
that node. This definition differs from the one given here by allowing there to be decision rules
that are neither good nor bad; rather, they are ugly. Although it is conceptually hard to interpret
the significance of a non-empty ugly set, it may still—if necessary—be worthwhile to pursue this

variant of Definition 1 in applications.

10 n the tree situation. an 'optimistic’ agent acts at his node and suggests a path to be followed by later agents.
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7. PROOFS

Since the one-person planning situation is a special case of the perfectly coalition-proof situation,

this section first provides a useful observation for the latter as well as a proof of Proposition 5.

LEMMA 1. Let o be an optimistic stable SB in the perfectly coalition-proof situation.  Then
o, (@)oo, (g) fO=xlic/ and ge H"

Proof. Suppose s ¢ ofg) forsome (O=)/cJ/ and g € H* By (ES) of o there exist (J=) I’
c I, ¢ € He, and r=(r,.s ) € og) such that, Viel’, uf'(r)>uf'(s), By (IS), s ¢ o(h)

since (K=)/'cJ/ and g8 e A" T

Proof of Prop. 5. Let ¢ be any optimistic SB. Let (Jz)/Jc N and h e H. Assume, V(/, g) =
(J,h) with @=1cJ and g € H", (1) p{g) = o,(g) and (ii) s € p(g) iff there do not exist (=
yI'cl g e Hs, and r=(r,.s,) € o,(g’) such that, Viel, uf'(r)>uf'(s). By Lemma 1,
p,(hoolh). If s e pflh), then — by the definition of p — there does not exist r=(r,s_)) €
p,(h)2 o(h) such that, VieJ, u"(r)>u'(s), implying by (ES) of o that p,(h) < oih).
Conversely, if s € p,(h)\p,(#), then — by the definition of p and the finiteness of p,(h) —-
there exists r=(r,.5_,) € p(h) < o,(h) such that, VieJ, w'(r)>u’(s), implying by (IS) of o that
p,(M 2 o,(h). By induction, it follows that o is an optimistic stable SB, and if & is any optimistic

stable SB in the perfectly coalition-proof situation, then p=o. C

Proof of Prop. 1. (i) Since s, is revision-proof at h, there exists an optimistic stable SB g, with s,
€ o(h). Consider g, defined by ¢, =r on H'(r) and q,=s, on H\H'r) By (ES), g, € o(h)
since 7, is optimal and time-consistent and s, € o(h). By (IS), u"(s) =u"(q,)=u"(r). (ii)
Define the SB p, by, VheH, p(h) = {s € S|VgeH", s is optimal and time-consistent at g}. By
assumption, YhAeH, p(h) = @. Let o be any optimistic stable SB. Then, VheH, Vs, € p(h),

there do not exist g € H" and r, € S D ofg) such that »*(r)>u"(s). Hence, p, satisfies (IS),
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and by (ES) of g, YheH, p(h) < o(h). Conversely, VAcH, Vs e S\p(h), there exist g ¢ H”
and r € p(g) < o(g) suchthat #*(r)>u®(s). Hence, p, satisfies (ES), and by (IS) of o, Vhe

H phyoolh). C

Proof of Prop. 2. (i) Suppose there exists hie H with g(h) = &. Let G = {g € H" o(g) = C}.
By (ES) of o, G # J. By Lemma 1, there exists 5, € S, such that, Vg € G, s, € g(g). By (IS) of

o, there do not exist g € H" and r, € o(g) such that #*(r) >uf(s). By (ES)of g, s, € o(h),

which contradicts that ¢, (h) = . (ii) is a corollary of Proposition 5. T

Proof of Prop. 3. Since s, is revision-proof at A, there exists an optimistic stable SB in the one-
person planning situation such that s, € o,(4). Suppose s, is not a multi-self SPE of I at . Then
there exist g € H" and r, = (r(g), s\s,(g)) with r(g) € A% such that «*(r)>uf(s;). By dS), r €
S\o(g). By (ES), there exist f ¢ H¢ and ¢, € o(f) such that «/(q,)>u/(r). If f=g, then
' (g)>u' (r)>u/(s). If fe HA\g}, then v/ (¢)>u/(r)=u’(s). Since s ¢ o(h), this

contradicts (IS). =

Proof of Prop. 4. Consider o, defined by, VheH, o(h) = {s, € S| s, is a multi-self SPE of I at
h}. By Proposition 3, it suffices to show that g, is an optimistic stable SB. (IS} is satisfied since,
VheH, s/,s" € ofh) mplies, Vg € H* s'(g)=s5(g). To show (ES), suppose § e S, and
there do not exist § € H* and 7 e o, (§) such that ¥¥(7) >uf(5). If 5 € S\a(h), there exist g
e Hrand g, = (¢(£).5\5(g) ) with g (g) € AF such that #¥(q,)>u*(5). Lets € o(g). Thenr,
defined by », = ¢, on H5(q) and r, = s, on HF\H#(g) is a multi-self SPE of I at g. This leads to a

contradiction since g € A%, r, € o(g) and «f(r)=uf(q)>u*(s). Hence, 5 € o(h) C

Proof of Claim 1. (i) (Abvays consuming the entire capital stock is a multi-self SPE of T.)
Suppose r(g) =k > 0 for some g with g € kand k > 0. Then, u*(5)=v(k) and «*(r,(£),5\5(g))
= v(k—pk)+Av(k). Hence, u*(3)—uf(r(g).5\5(g)) = v(k) — v(k - pk)—Av(k) = v(km) -

v(k™ - pk)—Av(k) > 0 by assumption, exploiting the concavity of W-). (Always maintaining
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“

the capital stock intact is a multi-self SPE of T} Suppose r(g) =k =k for some g with g € k
and k > 0.  Then, u'(5)=(+Z0(1-p)k) and wf(r().5\5(g) = vlk-pk) +
Zv-p)k). Hence, wl(3)-ui(r()5\(®) = wW(-pk) - vk-pk)
E (1= pk) - v(L- p)k) > v)plk —k) <5 (1-p)k=k)) = v'(K)X1=p)k—k)
(1 +ﬁ—ﬁ) =0 by assumption, exploiting the strict concavity of v(-). (i) Consider o, defined
by, VheH, o, (h):={s, € §|s, =5 on H"}. (IS)is trivially satisfied. To show (ES), supposer, €
S, and there does not exist geH" such that «f(5)>u’(r). Consider any geH". Let k= arg
max{keKlheH:(r )\{g} and hek}, and let f be the first decision node along H#(r )\{g} at which
k is reached. Let f be the predecessor of f along H«(r), with f € k_, Let (k/ k[ ,,..) and
(c/,cl.,,...} be the capital and consumption paths associated with (). Let g, € §, satisfy e € k
whenever ¢ € H(g©\{f}. Let (k7 k%, ..) and {(c/,c!,,...) be the paths associated with H{gq,).

Since k =k? =k’ and ¢f =¢/, and, Yo>r, k =k? 2 k! and := (1 - p)k =7, it follows that

wl () —ul () = AXI 87T ((el) v(eD)

> AV(E)X7,, 87 (¢ ") (by the concavity of v(-))

= AVE@)TE, ST E - p) k! —k]) (sincee, =k, — pk)

>0 (since &> p, with strict inequality if, for some ¢, k! > k).
Hence, #/(q,)>u’ () with strict inequality if H(q) = H{(r). Since 5 is a SPE of I" at f (see
part (i), it follows that ' (5)>u'(g) with strict inequality if H{(5 ) = Hf{q). Therefore,
u/ (§)<u/ (r) onlyif H{3 )= Hfr). Note that f= g, since otherwise / is not the first decision
node along A=(r )\{g} at which k is reached. Hence, r.=5 onHrand r ec,(h). (iij) If s/ isa
Markovian decision rule that revision-proof at 4, then there exists an optimistic stable SB o, with
s, € o(h). Suppose there exists ge H* such that #*(5)>uf(s;). Let g € k. Since § and s, are
Markovian, 5(g) = s(g). Letr satisty r(f) = 5(f) if feHs and fek, and r(f) = s() if feHe and f
gk. By (IS) of g, r, € S\g(h). By (ES) of o, there exist feHs and g, € off) such that
w/ (q)>u! (r)(=u/(s)). This contradicts (IS} of o. Hence, if 5, is a Markovian decision rule

that revision-proof at /4, then there does not exist gef” such that #*(5)>u*(s,). By the proof of

part (i), s, =5, on f*
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Proof of Prop. 6. 1f s is symmetric, but not reconsideration-proof, then there exists a symmetric
equilibrium 7, such that, VAeH, u'(r)>u(s)). If s, is revision-proof at h, then there exists an
optimistic stable SB ¢, with s, € o(h). By (IS) of o, r, € S\o(h). By (ES) of g, there exist ge
H" and ¢, € o(g) such that #*(q,)>u*(r)}>uf(s)). This contradicts (IS) of o, Hence, if a
revision-proof decision rule is a symmetric equilibrium, then it is reconsideration-proof. The

converse is trivial. —

Proof of Claim 2. (i) Leta=1ora=0. Consider o defined by, VheH, o’(h):= {5, € S| s, =
s* on H#}. (IS) is trivially satisfied. To show (ES), suppose r, € S, and there do not exist ge/*
such that #®(s*)>u®(r). If s7(g)=0, then r(g) = O, because otherwise #*(s’)=2>1 =
uf(ry. If s°(g)=1, then r{g) = 1, because otherwise 0 =s"(g,r(gh = r(g, r{g)). implying that
uf(s')y=12>0= u*(r). Hence, r =s" on A" and r, eo(h). (i} Let heH. Suppose there
exists an optimistic stable SB o, with § € o(h). By (IS) of o, s € S\o(h). By (ES) of g, there
exists geH" and ¥, € o(g) such that #*(r)>u*(s }>u¥(5)). This contradicts (IS) of o, and

establishes that no such optimistic stable SB exists. Hence, § is not revision-proofat . U
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