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Abstract

"Case-Based Decision Theory" is a theory of decision making under
uncertainty, suggesting that people tend to choose acts that performed well in
similar cases they recall. The theory has been developed from a decision-/game-
/economic-theoretical point of view, as a potential alternative to expected utility
theory. In this paper we attempt to re-consider CBDT as a theory of knowledge
representation and of planning, to contrast it with the rule-based approach, and to

study its implications regarding the process of induction.






1. Introduction

The dominant paradigm in decision, game and economic theory for decision
making under uncertainty is expected utility theory (EUT). It suggests that a
decision maker can be ascribed a utility function and a subjective probability
measure, so that her decision can be described by maximization of the expected
utility. While there is no doubt that this is an elegant an powerful theory, we find it
cognitively implausible in many decision situations, and in Gilboa and Schmeidler
(1992) we offer an alternative approach, "Case-Based Decision Theory” (CBDT). It
suggests that people tend to choose acts that performed well in similar cases they
recall. In this paper we attempt to re-consider CBDT as a theory of knowledge
representation and of planning, to contrast it with the rule-based approach, and to
study its implications regarding the process of induction.

We start with an overview of CBDT (Section 2), followed by a brief account of
the motivation for its development (Section 3). We then proceed to compare it to
the rule-based approach, arguing that the implicit induction performed by case-based
decision makers avoids some of the pitfalls of explicit induction (Section 4). In
Section 5 we extend CBDT to deal with planning, and provide an axiomatic
derivation of the suggested planning procedure. Section 6 is devoted to the process
of induction from a case-based perspective, and also helps to delineate the
boundaries of CBDT as presented earlier. We first discuss two levels of induction,
and argue that "second-order” induction might call for generalizations of CBDT in
its present (linear) form. We then contrast two views of induction, one based on
simplicity, the other — on similarity. The comparison of these offers additional
examples in which linear CBDT might be too restrictive to capture inductive

reasoning. Finally, Section 7 concludes.

2. An Overview of CBDT

Case-Based Decision Theoryv views cases as instances of decision making. It
therefore splits each "case" to three components: the decision problem, the act that
was chosen in it by the decision maker, and the outcome she has experienced.

Formally, we postulate three abstract sets as primitive:

P — the set of (decision) pronlem:s
A — the set of possible acis
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R — the set of conceivable results.
and define the set of cases to be the set of ordered triples, or the product of the above:

C=PxAxXR .

At any given time, the decision maker has a memory, which is a finite subset of
cases M C.

We argue that decisions are based on similar cases in the past. In the basic
model, similarity is a refation between decision problems (rather than whole cases).
Desirability judgments, on the other hand, are assumed to solely depend on the
cases' outcomes. We thus postulate a similarity function which may be normalized

to take values not exceeding unity:
s: PP = [0.1]

and a utility function
wR-—>MN.

CBDT prescribes that acts be evaluated by a similarity-weighted sum of the utility
they vielded in past cases. That is, given a memory M c C and a problem peP,
every act a € A Is evaluated by the functional

Ua)=U, y(a)=Y s(poqu(r)

cgon e M
where a maximizer of this tunctional is to be chosen. (In case the summation is
over the empty set, the act is assigred a "default value” of zero.)

Viewing CBDT as a descriptive theory, that supposedly describes how people
make decisions, one wonders, is it refutable? Are there any modes of behavior that
cannot be accounted for by an appropriately defined similarity function? To what
extent are the theoretical concepts or "similarity” and "utility” observable? In Gilboa
and Schmeidler (1992) we provide an axiomatic derivation of the similarity
function, coupled with the decision rule given above. That is, we assume as datum
a decision maker's preference order over acts, given various conceivable memories.

We impose certain axioms on this order, which are equivalent to the existence of an

=
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essentially-unique similarity function, such that the maximization of U (using this
similarity function) represents the given order. (In our derivation the utility
function is assumed known. However, similar, though less elegant axioms would
give rise to a simultaneous derivation of the utility and the similarity functions, in
the context of U/-maximization.)

As many other theories in the social sciences, CBDT should only be taken as a
"first approximation,” rather than an accurate description of reality. Further, there
is little doubt that it may be more appropriate for certain applications, and less for
others. In particular, there are two variations on the basic theme that are relevant to
the sequel. The first is the "averaged similarity"” version; the second - the "act
similarity” generalization. We describe them below.

The CBDT functional U is cumulative in nature. The impact of past cases is
summed up; consequently, the number of times a certain act was chosen in the past
affects its perceived desirability. For example, consider a problem with a memory
where all similarity values are 1, and where act ¢ was chosen ten times, yielding the
atility 1 in each case. Compare it to act b which was chosen twice, yielding a utility
value 4. U maximization would opt for ¢ over 5. By contrast, it makes sense to

consider a similarity-based "average” utility, namely

Via)=X ,, cus'tpghutr)

where
, | p.q) 5 well —defined
SUP) =9 Tigsries SUP )
() orfrerwise

In Gilboa and Schmeidler {1992) we also provide an axiomatic derivation of
V-maximization. In the interpretation of the functional V, memory serves only as
a source of information regardinyg the performance of various acts. By contrast, in
the interpretation of U memory can also be interpreted as affecting preferences
directly: the accumulation of positive utility values reflects "habituation,” while
that of negative ones — "cumulative dissatisfaction” or "boredom aversion.”

Both functionals U and V' judge an act's desirability based on its own history.

In many situations, it appears likelv that past performance of other, similar acts will
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color the perception of a given act. That is, the similarity function might be

extended to problem-act pairs, yielding the following functional:

U'ta)=U) (@)= Y. s{(p.a).{q.b)u(r) .

(g.b.rieM

In Gilboa and Schmeidler (1994) we axiomatize this decision rule (again,
assuming as given the concept of "utility”). One may combine these two variations
and consider "averaged problem-act-similarity,” in which the similarity values
above are normalized so that they sum to 1 (or zero) for each act. Let V' denote the
corresponding evaluation functional.

For the purposes of the ensuing discussion, it might be convenient to think of
a further generalization, in which the similarity function is defined over cases,
rather than problem-act pairs. According to this view, the decision maker may
realize that a similar act in a similar problem may lead to a correspondingly similar
(rather than identical) result. For instance, assume that our decision maker is
buying a product in a store. In the past, different prices were posted by the product.
Every time she decided “to buy,” the result was having the product but parting from
the posted amount of monev. The decision maker is now in the store, facing a new
price. We would expect her to imagine, based on her experience, that the buving
decision would result in an outcome in which she has less money than when she
entered the store, and that the ditference be the new price. While one may attempt
to fit this type of reasoning into the framework of U’-maximization by a re-
definition of the results, it is probably most natural to assume a similarity function
that is defined over whole cases. Thus, the case "the price is $10, I buy, and have the
product but 510 less" is similar to the case "the price is $12, I buy, and have the
product but $12 less.” If we assume that the decision maker can imagine the utility
of every outcome (even if it has not been actually experienced in the past), we are

naturally led to the following gereralization of CBDT:
U'ta)y=U] yia)= Z oy s{{poa.r).(q. b,r))u(r) .

We do not provide an axiomatic derivation of U”-maximization. However,
we will inctude both this rule and the corresponding (averaged) V”-maximization

in the general class of linear CBDT functionals.
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3. CBDT and EUT

Expected utility theory (EUT) suggests that people behave as if they were
maximizing the expectation of a utility function based on some subjective
probability measure. The expected utility model assumes a space of "states of the
world,” each of which "resolves all uncertainty” (as stated by Savage (1954)),
describing the outcome of every act the decision maker might take. EUT is a
powerful and remarkably elegant theory. Further, there is no denial that it is very
useful both as a descriptive and as a normative theory of decision making.
However, we claim that it is useful mostly when it is cognitively plausible, and that
it loses much of its appeal when the notion of "state of the world"” becomes a vague
theoretical construct that is not "naturally” given in the description of the decision
problem. For such problems we suggest CBDT as an alternative. Much of Gilboa
and Schmeidler (1992) is devoted to comparisons of EUT and CBDT. Here we only
mention a few relevant points.

The very description of a “decision problem” in EUT requires some
hypothetical reasoning; should the decision maker reason in terms of EUT, she
would have to imagine what would be the outcome of each act at each state of the
world. Then she would have to assess the utility of each conceivable outcome, and
the probability of each state. We argue that, unless the problem has been frequently
encountered in the past, there is no basis for the assessment of probabilities (the
"prior”). Moreover, imagining all relevant states is often a daunting cognitive task
in itself. Correspondingly, in such situations people are likely to violate the
seemingly-compelling Savage axioms (which give rise to expected utility
maximization).

By contrast, CBDT requires no hypothetical reasoning: the decision maker is
assumed to know only those cases she has witnessed, and to assess similarity values
only for the problems she has encountered. Furthermore, in the original version of
the theory the decision maker is rot even assumed to "know” her own utility — she
only needs to judge the desirabilizy of the outcomes she has actually experienced.
(Admittedly, this last principle is compromised in the generalized versions of CBDT
described above as - or V7-maximization.)

In CBDT, an act that has no: been tried before s assigned the default value of
zero. This value may be interpresed as the decision maker's "aspiration level:” as

long as it is obtained, the decision muaker is "satisficed” (a la Simon (1957) and March
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and Simon (1958)) and will keep choosing the same act; if it is not obtained, she will
be "dissatisficed" and will be prodded to experiment new acts.

In EUT the decision maker is implicitly assumed to be born with beliefs about
everything she might encounter, and she learns by excluding things that can not
happen (and updating the probabilities by Bayes' rule). By contrast, a case-based
decision maker knows nothing at the outset, and learns primarily by adding cases to
memory, that is, by learning what can happen.

EUT seems to be well-suited to problems that recur in more-or-less the same
form, thereby allowing the decision maker to realize what the possible states of the
world are, what their relative frequencies are, and so forth. The main appeal of
CBDT as a descriptive theory is in those cases in which states of the world are not
naturally given. However, it also can be viewed as a description of how people
learn to be EU maximizers: the accumulation of cases in memory is a way to learn
what the possible eventualities are, what their likelihood is, and so forth.
Furthermore, with appropriate assumptions on the way in which the aspiration
level is updated, case-based decision makers can be shown to converge to choosing
EU-maximizing alternatives, provided they are actually faced with the same
problem repeatedly (Gilboa and Schmeidler (1993)}.

4. CBDT and Rule-Based Knowledge Representation

4.1 What Can Be Known?

Much of the literature in phrilosophy and artificial intelligence (Al) assumes
that one type of objects of knowled ge are "rules,” namely general propositions of the
form "For all x, P(x).” While some of these rules may be considered, at least as a
first approximation, "analytic propositions,” a vast part of our "knowledge” consists
of "synthetic propositions."! These are obtained by induction, that is, by
generalizing particular instances or them.

The process of induction is very natural. Asked, "What do vou know
about...?", people tend to formulate rules as answers. Yet, as was already pointed out
by Hume, induction has no logical tustification. He writes (Hume 1748, Section V),

1 By "synthetic” propositions we refer to non-tautological ones. While this distinction was
already rejected by Quine (1953), we still find 1t useful for the purposes of the present discussion.
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"... The contrary of every matter of fact is still possible; because it can never
imply a contradiction, and is conceived by the mind with the same facility
and distinctness, as if ever so conformable to reality. That the sun will not
rise to-morrow is no less intelligible a proposition, and implies no more
contradiction than the affirmation, that it will rise. We should in vain,

therefore, attempt to demonstrate its falsehood.”

That is, no synthetic proposition whose truth has not yet been observed is to be
deemed necessary. In particular, useful rules — that is, rules that generalize our
experience and have implications regarding the future - cannot be known.?

Since induction may well lead to erroneous conclusions, it raises the problem
of knowledge revision and update. Much attention has been devoted to this
problem in the recent literature in philosophy and AL (See Levi (1980), McDermott
and Doyle (1980), Reiter (1980) and others.) In the spirit of Hume, it is natural to
consider an alternative approach that, instead of dealing with the problems
induction poses, will attempt to avoid induction in the first place. According to this
approach, knowledge representation should confine itself to those things that can
indeed be known. And these include only facts that were observed, not "laws;" cases
can be known, while rules can at best be conjectured. One of the theoretical
advantages of this approach is that, while rules tend to give rise to inconsistencies,
cases cannot contradict each other.

Our approach is closely related to (and partly inspired by) the theory of Case-
Based Reasoning (CBR) proposed by Schank (1986) and Riesbeck and Schank (1989).
(See also Kolodner and Riesbeck (1v56) and Kolodner (1988).) In this literature, CBR
is proposed as a better Al technology, and a more realistic descriptive theory of
human reasoning than rule-based models (or systems). However, our approach
differs from theirs in motivation, emphasis and the analysis that follows. We
suggest the case-based approach as a solution to, or rather a way to avoid the
theoretical problems entailed by explicit induction. Our focus is decision-theoretic,
and therefore our definition of a “case” highlights the aspect of decision making.
Finally, our emphasis is on a forma. model of case-based decisions, and the extent to
which such a model captures basic intuition.

One has to admit, however, that even cases may not be "objectively known.”

The meaning of "empirical knowledge” and "knowledge of a fact” are also a matter

2 Quine (1969) writes, “... I do not sew that we are further along today than where Hume lert us.
The Humean predicament is the human predicament.”

=]
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of heated debate. (For a recent anthology on this subject, see Moser (1986).)
Furthermore, as has been argued by Hanson (1958), observations tend to be theory-
laden; hence the very formulation of the "cases” that we allegedly observe may
depend on the "rules” that we believe to apply. It therefore appears that one cannot
actually distinguish cases from rules, and even if one could, such a distinction
would be to no avail, since cases cannot be known with certainty any more than
rules can.

While we are sympathetic to both claims, we tend to view them as somewhat
peripheral issues. We still believe that the theoretical literature on epistemology
and knowledge representation may benefit from drawing a distinction between
"theory" and "observations,” and between the knowledge of a case and that of a rule.
Philosophy, like other social sciences, often has to make do with models that are
"approximations,” “metaphors,” or “images,” - in short, models that should not be
expected to provide a complete and accurate description of reality. We will therefore
allow ourselves the idealizations according to which cases can be "known,” and can

be observed independently of rules or "theories.”
4.2 Case-Based Decision Theory

One may agree that onlv cases can be known, and yet question the
appropriateness of the CBDT model. Indeed, many other representations of cases
are possible, and ene may suggest many alternatives to the CBDT functionals
described above. We now turn to justify the language in which CBDT is formulated,
as well as the basic idea underlving the linear functionals, namely, the similarity-
weighted aggregation of cases.

We take the view that knowledge representation is required to facilitate the
use we make of the knowledge. And we use knowledge when we act, that is, when
we have to make decisions. This implies that the structure of a "case” should reflect
the decision-making aspect of it.

Let us first consider cases that involve decisions. Focusing on the decision
made in a given case, it is natural to divide a "case” to three components: (i) the
conditions at which the decision was made; (ii) the decision; and (iii) the results. If
we were to set our clocks to the time of decision, these components would
correspond to the past, the presert and the future, respectively, as perceived by the
decision maker. In other words, she "past” contains all that was known at the time

of decision, the "present” — the decision itself, while the "tuture” - whatever
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followed from the "past” and the "present.” In the model presented above we dub
the three components "problem,” "act,” and "result.”

There are, indeed, cases that are relevant to decision making, without
involving a decision themselves. For instance, one might know that clouds are
typically followed by rain. That is, one has observed many cases in which there were
clouds in the sky, and in which it later rained. These cases would fit into our
act,” and re-interpreting "a problem” as

framework by suppressing the
"circumstances.”
How are the cases used in decision making, then? Again, we resort to Hume

(1748) who writes,

"In reality, all arguments from experience are founded on the
similarity which we discover among natural objects, and by which we are
induced to expect effects similar to those which we have found to follow from
such objects. ... From causes which appear similar we expect similar effects.

This is the sum of all our experimental conclusions.”

Thus Hume suggests the notion of similarity as key to the procedure by which
we use cases. While Hume focuses on causes and effects, we also highlight the
similarity between acts. In the most general formulation, our similarity function is
defined over cases. However, if we wish to restrict similarity judgments to those
objects that are known at the time of decision, the similarity function should be
defined over pairs of problems, or, at most, problem-act pairs.

It is important to note that the similarity function is not assumed to be
"known" by the decision maker in the same sense cases are. While cases are
claimed to be "objectively known.” the similarity is a matter of subjective judgment.
Where does it come from, then? Or, to be precise, what determines our similarity
judgments (from a descriptive viewpoint), and what should determine it (taking a
normative view)?

Unfortunately, we cannot otfer any general answers to these questions.
However, it is clear that the questions will be better defined, and the answers easier
to obtain, if we know how the similarity is used in the decision making process.
Differently put, the similaritv function, being a theoretical construct, will gain its
meaning only through the procedure in which it 1s used.

One relatively obvious candidate for a decision procedure is a "nearest

neighbor" approach. It suggests that, confronted with a decision problem, we should
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look for the most similar problem which has been encountered in the past.
Unfortunately, this approach does not seem to be very satisfactory: if one is happy
with the result of the "nearest” case, one may indeed choose the same act that was
chosen in that case. But which act is to be chosen if the "nearest” case ended up
yielding a disastrous outcome? Furthermore, assume that the nearest case resulted
in a reasonable outcome, but in many other cases, that are somewhat less similar to
the problem at hand, a different act was chosen, and it yielded particularly good
outcomes in all of them. Is it still reasonable, from either descriptive or normative
point of view, to choose the act that was chosen in the most similar case?

It therefore appears that a more sensible procedure would not rely solely on
the similarity function, nor would it depend only on the most similar case. First,
one needs to have a notion of ufilify, i.e., a measure of desirability of outcomes, and
to take into account both the similarity of the problem and the utility of the result
when using a past case in decision making. Second, one should probably use as
many cases as deemed relevant to the decision at hand, rather than the "nearest
neighbor” alone.

The CBDT functionals now appear as natural candidates to incorporate both
similarity and utility; they prescribe that acts be evaluated by a similarity-weighted
sum of the utility they vielded in past cases. However, it should not come as a great
surprise to us if in certain circumstances the additive separability of the formula
above will prove to be too restrictive. (In particular, see the discussion in Section 6
below.)

The functionals described in Section 2 evaluate acts by resorting to the past
performance of acts. The reader might wonder, how do cases that do not involve
acts enter the CBDT functionals® Indeed, these functionals do not seem to capture
very sophisticated reasoning. In Section 5 we extend our theory to deal with
planning. In the extended model, cases that simply relate causes to effects, without
the decision maker's intervention, will play a role in her planning, to the extent

that they affect the evaluation of ruture acts.
4.3 Do CBDM's Know Rules?

Equipped with knowledyge of past cases, similarity judgments and utility
valuations, case-based decision makers (CBDM's) may go about their business,

taking decisions as the need acises, without being bothered by induction and general

rules, and without ever having to deal with inconsistencies. Yet, if they are asked

10
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why they made a certain decision, they are likely to give answers in the form of
rules. For instance, if you turn a door's handle in order to open it, and you are
asked why you chose to turn the handle, it is unlikely that your answer would be a
list of particular cases in which this trick happened to work. You are most likely to
say, "Because the door opens when one turns the handle,” that is, to formulate your
knowledge as a general rule.

In a sense, then, case-based decision makers often behave as if they knew
certain rules. Furthermore, whenever the two descriptions are equivalent, the
language of "rules” is much more efficient and parsimonious than that of "cases.”
However, the advantage of a case-based description is in its flexibility. In the same
example given above, suppose that a person (or, say, a robot we are now
programming) finds out that the door refuses to open despite the turning of the
handle. A rule-based decision maker, while struggling with the door, also
undergoes internal, mental commotion. Not only is the door still shut, one’s rule
base has been contradicted. Some rules will have to be retracted, or suspended,
before our decision maker will be able to use the second rule "If turning the handle
doesn't work, call the janitor.” Bv contrast, a CBDM has only the door to struggle
with. The failure of the turn-the-handle act will make it less attractive, and will
make another act the new ['-maximizer. Perhaps the very failure of the first act
will make the whole situation look more similar to other cases, in which only a
janitor could open the door. At any rate, a CBDM does not have to apply any special
procedures to re-organize her knowledge base. Like the rule-based one, the case-
based decision maker also has to wait for the janitor; but she does so with peace of
mind.

In other words, the rules-vs.-cases choice faces us with a familiar tradeoff
between parsimony and accuracy. Rules are simply described, and they are therefore
rather efficient as a means to represent knowledge; but they tend to fail, namely to
be contradicted by evidence and by their fellow rules. Cases tend to be numerous
and repetitive, but they are never a source of inconsistency. In view of the
theoretical problems associated with rules, it appears that case-based models are a

viable alternative.
4.4 Two Roles of Rules

While CBDT rejects the noton of "rules” as objects of knowledge, it may still

find them a useful tool. Even ir one is convinced that they are too crude to be

11
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"correct,” rules may still be convenient approximations of cases. Furthermore, they
provide a language for efficient information transmission. As such, rules can have
two roles:

(i) A rule may summarize many cases. If we think of a rule as an "ossified
case," (Riesbeck and Schank (1989)) it is natural to imagine one individual (system)
telling another about many cases by conveying a single rule that applies in all of
them;

(ii) A rule may point to similarity among cases. That is, even if two people
(systems) have the same cases in their memory, one may be unaware of certain
common denominators among them. Especially when the amount of information
is vast, an abstract rule may help in finding analogies. For instance, claims such as
"Peace-keeping forces can succeed only if the belligerent forces want them to" or
"The stock market always plunges after presidential elections” serve mainly to draw
the reader's attention to known cases, rather than to tell her about unknown ones.
Furthermore, many "laws" in the social sciences, though formulated as rules,
should be thought of as "proverbs:”™ they do not purport to be literally true. Rather,
their main goal is to affect similarity judgments. In this capacity, the fact that rules
tend to contradict each other poses no theoretical difficulty. Indeed, it is well-known
that proverbs are often contradictory.? Once they are incorporated into the
similarity function, the latter will determine which prevails in each given decision
situation.

To sum, CBDT mayv incorporate rules, and experts’ knowledge formulated as
rules, either as a summary of cases or as a similarity-defining feature of cases. Yet,
within the framework of CBDT, rules are not taken literally, they are not assumed

"known," and their contradictions are blithely ignored.

5. Planning

CBDT describes a decision as a single act that directly leads to an outcome. In
many cases of interest, however, one may take an act not for its immediate outcome,
but in order to be in a position to take another act following it. In other words, one
may plan ahead. In this section we extend CBDT to a theory of case-based planning.

3 The notion of a "rule” as a “proverd” also appears in Riesbeck and Schank (1989).  They
distinguish among “stories,” "paradigmasic cases,” and "ossified cases,” where the latter "look a lot
like rules, because they have been abstracied from cases.” Thus, CBR systems would also have “rules”
of sorts, or "proverbs,” which may, indeed lead to contradictions.

12
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The formal model of CBDT distinguishes between problems, acts, and results.
When planning is considered, the distinction between problems and results is
blurred. The outcome of today's acts will determine the decision problem faced
tomorrow. Thus the formal model of case-based planning will not distinguish
between the two. Rather, we employ a unified concept of a "position,” that also can
be viewed as a set of circumstances. A position might be a starting point for making
a decision, that is, a "problem,” but also the end "result.” We will therefore endow a
position with (i) a set of available acts (in its capacity as a "problem”) and (ii) a utility
valuation (when considered a "result”). Part of the planning process will be the
decision, whether a certain position should be a completion of the plan, or a starting
point for additional acts (or a sub-plan).

Let P be a finite and non-empty set of positions. We assume that 1t is

endowed with a strict partial order » < Px P, interpreted as "is later than." Let A
denote a finite and non-empty set of acts. For pe P, let A, < A be the set of acts

available at p. We introduce a, € A to be interpreted as "do nothing,” that is, as the
"‘null act,” and assume that @, € A, forall pe P. The set of cases is

CE{(p,n.q)EPXAXP ae,%r,,.q‘rp}.

A decision maker is characterized by a wutilify function u:P—>%R and a
similarity function s:CxC— R . A position p, can be viewed as posing a decision
problem for which it is the "initial position.” A plan is an assignment of acts to a
subset of positions that includes the initial position. Formally, a plan for a position
(or "problem") p, isa pair (V.8) where ¥ c P and 6: N — A satisfy: (1) p, €.V, and
(if) 8(p)e A, forall pe N. Ttwill prove convenient to extend § to all positions in P
by setting 8{p)=a, for all peN. (Alternatively, one may define & over P to begin
with, and set A to be the positions for which & does not assign the null act a,.
However, we find the present formulation more intuitive, since it highlights the
subset of positions that are salient to the decision maker.)

Given a plan (V.d) for a position p,, we are interested in its evaluation based

on memory, M cC. First define, for any case ¢ € C, the support that Af lends to c by

Syle) = Zt_.e_” sle.d ).

13
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We extend §,,, defined on cases, to all triples in PxAx P be setting it to zero

whenever its argument in not in C.
Next, consider the weighted directed graph G=Gy ., =(P,E,w) defined as

follows.

E={(p.g)e P |¢> p}

and
w(p.q) = Su((p.8(p)g))
2 SullpdpigT))

for (p.q)e E, provided that the denominator does not vanish, and zero otherwise.
We may view the function w as transition probabilities of an acyclical Markov
chain, whose "states” are the positions. For this interpretation, we complement its
definition by w(p,p)=1 whenever zq,SM((p,ﬁ(p),q')) =0.

Let f=f, vsu:P—=[01] be defined as follows: for geP, flg) is the
probability that a process, starting at p;, and governed by w, will be absorbed in ¢.
The plan (N.§) is evaluated by

V(N,§) = Z_qep\\'\.f(q)u(q) )

In the Appendix we provide an axiomatic derivation of this rule.
Note that the probabilities f.4) in this summation need not add up to one. A
position pe N for which Zq,S‘H[{\p.J(p),q’)) ={) has a weight f(p) which is not taken

into account in the above expression. This is in line with the CBDT model, where
an act that was not previously encountered is assigned an "aspiration level,” and the
latter is normalized to be zero. Finally, notice that V depends en memory, on the
initial position, as well as on the primitives of the model. Namely,

V= V(P,».A.:l.r.p.,,.h')'

The definition of a "plan” does not require that every position, at which an
action is planned, be reachable from the initial position p, by positive weight arcs in
G. It is easy to see that the evaluazion of a plan depends only on those positions in
it that are indeed reachable from p, in this sense. However, the present

formulation encompasses "incomp.ete” plans: a tentative plan may be devised for
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the contingency of reaching position ¢, even if it is not yet clear how the latter can
be reached from p,.

The transition probabilities are defined also for positions that are not part of
the plan. Thus, if the decision maker has a reason to believe that a position she
would like to get to would evolve, bv no action of hers, into another position, the
evaluation functional forces her to take this further development into account. The
planner's ability to foresee the future is captured by the similarity function. As in
CBDT, this function incorporates such factors as probability of recall, on top of
"intrinsic” similarity judgments. Correspondingly, a decision maker who does not
know of certain cases, or who does not bother to think about them, would be
modeled as having zero similarity values to the relevant cases. However, should
the decision maker be aware of such cases, the decision rule described above does
not allow her to ignore them by simply omitting them from the plan's domain V.

In the above formulation, memory is modeled as a set of cases. Alternatively,
one may think of it as a sequence of cases, indexed by natural numbers. Such a
formulation may complicate notation, but it tends to deal more gracefully with
repeated cases. In the present (set) formulation, it is probably simplest to assume
that no position can ever be encountered twice. While our definitions above make
sense even when repetitions are allowed, one may (implicitly) assume that the
description of a "position” is elaborate enough to contain a time parameter, the
protagenist's identity, and so forth. In this case no position may appear In memory
more than once, and "basic iden:itv” of positions is reflected in the similarity
function.

Our notion of a "position” is closely related to the notion of a "state” in the
literature on Markov chains and dvnamic programming, as well as in the planning
literature. Furthermore, out evaluation functional bears resemblance to the
evaluation of "strategies” for "decision trees.” However, there are a few differences
between our theory and Bavesian planning.

Our evaluation of plans differs from the Bayesian approach in the same way
V-maximization (in one-stage CBUOT) differs from expected utility theory. That is,
the weights assigned to transitions in our graph are not standard probabilities. As
opposed to the classical notion or “relative frequencies,” these weights are derived
from similar cases. The interesting applications we have in mind do not involve
repetitions of the same problems in more-or-less the same conditions, allowing for
standard statistical techniques. Rather, we view this application (in which the
similarity values are either 0 or 1’ as a very special case; we will resort to it as a
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benchmark, but it is hardly the motivation for developing our theory. On the
contrary, CBDT may be considered an attempt to generalize theories of decision
making under uncertainty from this special and well-studied instance to the
domain in which statistics is of little help.

An extreme example in which statistical data are scarce is the case of almost
novel situations, about which practically no past data are available. One of the
standard approaches in statistics is to resort to Bayesianism: to follow Bayes' in
arguing that one should have {subjective) beliefs over any unknowns. As explained
above, we find this view unrealistic. The way CBDT deals with novel situations is
to assign a default "aspiration level” value to unknown outcomes.
Correspondingly, our evaluation of plans differs from Bayesian planning (or
dynamic programming) in that it allows some of the probability mass to
"disappear.” More precisely, the utility is scaled so that the aspiration level is set to
zero, and unknown outcomes are assigned this aspiration level (which is equivalent
to ignoring them in the summation).

As opposed to decision-trees analysis, our model does not distinguish (a-
priori) between a "decision node” and a “terminal node” or an "outcome.” Both are
simply “positions.” It is the decision maker's plan which introduces this
distinction. Thus, one decision maker may have a more elaborate plan than
another. Alternatively, the same decision maker may take a tentative plan and
further elaborate it. We believe that the model presented above is more cognitively
plausible than the model of decision trees, in that it does not require the decision
maker to have the complete tree i her mind. Rather, the decision maker imagines
only those positions to which her similarity values assigns positive weight. As she
thinks about the problem further, or as a result of new information, she might be
aware of more cases, have more positive-weight arcs in the planning graph,
consider "terminal” positions as stacting points for further planning, and so forth.

We believe that our model, especially if taken to represent a dynamic
planning process, is a much better descriptive theory of human planning than the
decision-tree model. But even from a normative viewpoint we find that it mayv be
advantageous: in complex and new situations, the complete decision tree might be
huge, and might require probabilistic evaluations that have little data to be based on.
By contrast, our planning model might be a better tool for actual planning. It might

even be viewed as a conceptual framework within which one can derive and refine

decision trees.
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Dynamic programming models also do not distinguish between a "decision
node" and an "outcome.” They include "states," where the system is at a given state
at every time. Payoffs are collected by the decision maker along transition arcs, and
are typically assumed to be evaluated by a discounted sum. These models are
theoretically very appealing, but they suffer from a number of shortcomings. First,
they require knowledge of probabilities. Hence their normative appeal is marred
when there is no sound source for the generation of the latter. Needless to say, in
those cases their descriptive value is also limited. Second, they are descriptively
questionable because they pre-suppose a very high degree of rationality, in
imagining all payoffs along the various paths and aggregating them by (infinite)
discounted sums. By contrast, our planning model assumes that the perceived
pavoffs only appear at "terminal” positions, ignoring the paths that led to them. In
cases where the path affects pavofis in a significant way, our model may have to treat
the terminal position differently, incorporating the path payoff into the terminal
position's payoff. As long as this is the exception rather than the rule, we believe

that our model is a viable alternative to dynamic programming.

How "rational” is it to choose a plan that maximizes V? One relatively weak
criterion of rationality is dynamic consistency: suppose the decision maker has
chosen a V-maximizing plan and started following it. Now she finds herself in a
new position. She can stick to the original plan, or she can re-optimize and choose a
plan that is optimal for the new problem. If it so happens that she has to choose a
new plan, her original choice was not dynamically consistent. Indeed, one may
wonder, why has she not planned :o re-optimize at the outset? As long as no new
information is provided, why could she not envisage her choice of a new plan
already at the original position?

The following observation states that V-maximization is, indeed,

dynamically consistent.

Observation: Let there be given a model (P~ Auns.py. M) and assume that (N.5) is
an optimal {V-maximizing) plan for p,. Let pe N be a position reachable from p,

using positive similarity paths. Then (V.d) is also optimal for p.

Proof: Suppose that a different plan, (N’.§") were strictly better than (N.6) at p.
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follows (N.8) elsewhere. Since p is reachable from p,, (N”,5”) is strictly better than
(N.6)at py.

We conclude this section with two simple results regarding computational
complexity. Specifically, we show that the following two problems can be solved in

polynomial time:

1. V Calculation: Given a model (P.-.A.u.s5.py. M) and a plan (¥,9), find its V value.

2. V_Maximization: Given a model (P.~ A,u.5.pp. M), find a plan (N,8) that is

optimal (V-maximizing) for it.

Proposition 1: V Calculation can be solved in polynomial time.

Proof: Given », find a linear order »” on P that agrees with >. Following >/,
compute the probability that the Markov process visits any particular position, and
thus also the function f. Finally, compute V given f. Itis easy to see that each of

these steps requires a number of operations that is polynomial in [P[. *

Proposition 2: V Maximization can be solved in polynomial time.

Proof: In view of the dvnamic consistency result, one may start with an optimal
plan for >-maximal positions, and use a "dynamic programming” (or "backward

induction”) technique.
6. CBDT and Induction

Whereas CBDT does not involve explicit induction, namely, the generation
of rules from instances thereof, it does engage in learning from the past regarding
the future. Thus it can be said to involve implicit induction, or "extrapolation.”
We devote this section to the process of induction as viewed from a case-based
perspective. In the first sub-section we distinguish between two levels of (implicit)
induction within the CBDT model. In the second we compare implicit and explicit

induction as descriptive theories of the way people extrapolate from past cases.
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6.1 Memory-Dependent Similarity and Two Levels of Induction

In the model of Section 2 the similarity function is assumed to be memory-
independent. However, the similarity function may also depend on the problems
that were encountered in the past, as well as on the results obtained in them.

We start with the following example. Consider a decision maker who has
two coffee shops in her neighborhood, | and 2. Once in a shop (which determines a
"problem”), she has to decide what to order (which act to choose). In the past, she
has visited both of them once in the morning (M) and once in the evening (E),
ordering "cafe latte” in each of these four problems. The four problems she recalls
are: (M1,M2, E1 E2). (Notice that which shop to go to is not a decision variable in
this story.) Now assume that the quality of the coffee she had was either 1 (high) or
~1 (low). Let us compare two possible memories: in the first, the result sequence 1s
(1,1,-1.~1), while in the second it is (1,-1,1,-1). In the first case the decision
maker would be tempted to assume that what determines the quality of cafe latte is
the time of the day. Correspondingly, she is likely to put more weight on this
attribute in future similarity judgments. On the other hand, in the second case, the
implicit induction leads to the conclusion that coffee shop 1 simply serves a better
latte than 2, and more generally, that the coffee shop is a more important attribute
than the time of the day. In both cases, the way similarity will be evaluated in the
future depends on memory as a whole, including the results that were obtained.

Generally, one may distinguish between two levels of inductive reasoning in
the context of CBDT. First, there is "first order” induction, by which similar past
cases are implicitly generalized to bear upon future cases, and, in particular, to affect
the decision in a new problem. The version of CBDT presented here attempts to
model this process, it onlv in a rudimentary way. However, there is also "second
order” induction, by which the decision maker learns not only what to "expect” in a
given case, but also how to condict first-order induction, namely, how to judge
similarity of problems. The current version of CBDT does not model this process.
Moreover, it implicitly assumes that it does not take place at all.

Specifically, one would expect that when some process of "second-order
induction” affects similarity judgments, there would be some plausible
counterexamples to U-maximization. Indeed, consider the following example:
coffee shops 1, 2, 3, and + serve both cafe latte and cappuccino. Shops 1 and 2 are
in our decision maker’s neizhborzood, and she had the opportunity to try both

orders in each of them, both in the morning and in the evening. Shops 3 and 4 are
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in a different town, and probably bear little resemblance to either 1 or 2. So far the
decision maker has only tried the latte in 3 in the afternoon (A), and the cappuccino
in 4 at night (N). Both resulted in high-quality coffee. The next afternoon she is in
shop 4, trying to decide what to order. Based on her experience, both acts are likely
to have a positive U-value. Yet, she may still distinguish between them depending
on her similarity function. If she puts more weight on the time of the day, the latte,
which was successfully tried in the afternoon, is a more promising choice; if,
however, she tends to "believe"” that similarity is mostly determined by the shop,
she should perhaps order cappuccino, as she did yesterday night in the same shop.
Let us now consider the following vectors (where empty entries denote zeroes}):

act Problems

profiles M1 A2 El £2 A M2 El E2 A3 N4

X | ] =1 —1 ]

v d —1 ] ] 1

- ] ] —1 —1 |
W —] —1 | 1 |
o —1 ] —1 )

In this example memery contains ten cases. It is convenient to think of the
ten problems as formally distinct: for instance, each may be uniquely identified by a
time parameter. However, in the table we suppress this parameter and specify only
the features of the problem that are deemed relevant, namely the coffee shop and
the time of the day.

We further assume that in each of the problems only two acts — "cafe latte”
and "cappuccino” - were availatle. The vectors x, v, z, w, and d are "act profiles;”
that is, they designate a conceivarle history of an act. If the act was not chosen in a
particular case, it is assigned a defzult "utility” value of zero. If it was, it is assigned
the actual utility that resulted rrom it in this case.

We would now like to consider the preferences between cafe latte and
cappuccino under two separate scenarios. In the first, the preference question would
reduce to comparing x and v, while in the second - to comparing : and »w.
Suppose first that x is the act profile of "cafe latte” and y - of "cappuccino.”
Focusing on the first two rows in the table, the results obtained in the first eight

problems clearly indicate that it is the time of the day that matters: all morning



Gilboa and Schmeidler CB Knowledge and Planning

coffees were high quality, all evening ones were low quality. Based on this "general
observation,” the decision maker has learnt to appreciate the crucial role of the time
of the day, and she is unlikely to put too much weight on the "night problem” ¥4
when making a decision in the afternoon. Thus, she expresses a preference for x
over y when faced with the problem p=A4.

By a similar token, when comparing ; and w, the decision maker concludes
that the shop is very important, but the time of the day does not really matter.
Hence she puts more weight on the experience in the same shop - problem N4 -
and decides to order cappuccino, i.e., she prefers w over : (for the same decision
problem p=A4).

It is easily verified that this preference pattern is inconsistent with U-
maximization for a fixed similarity function s. Indeed, for any such function s,

since z—x=w-—v=d, we have

U(z) - Ux)=U0w) - Uy =)
from which we derive

Ulx)=U) =U(zy = Uw).

That is, x is preferred to ¥ if and cnly if z is preferred to w, in contradiction to the
preference pattern we motivated above. Thus second-order induction may result in
violations of CBDT as presented above.

Similar examples may be constructed, in which the violation of U-
maximization stems from learning that certain values of an attribute are similar,
rather than that the attribute itsclf is of importance. That is, instead of learning that
the coffee shop is an important factor, Agent may simply learn that coffee shop 1 is
similar to coffee shop 2. Similarlv, one may construct examples in which intuitive
preferences patterns violate maximization of the other linear CBDT functionals.

One obvious drawback of the functional U that is highlighted here is the fact
that it is additively separable across cases. Specifically, second-order induction
renders the "weight" of a set of cases a non-additive set function. Since several cases
in conjunction may implicitly suggzest a "rule,” the effect of all of them together may
exceed the sum of their separate effects. Differently put, the "marginal contribution”
of a case to overall preferences depends not only on the case itself, but also on the

other cases it is lumped together with. For instance, a utility value of 1 in problem
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M1 has a different effect when coupled with the value | in problem El (as in vector
z) than it has when coupled with the same value in M2 {as in x).

A possible generalization of additive functionals that may account for this
"non-additivity” involves the use of non-additive measures, where aggregation of
utility is done by the Choquet integral. (Choquet (1953-4). See also Schmeidler
(1989), who introduced this technique to decision making under uncertainty.)
However, it should be noted that when second-order induction takes place, it is not
only the case-additivity assumption that is being challenged. With similar examples
one may convince oneself that the very assumption that preference between acts is
determined solely by their "act profiles” may fail in the presence of inductive
learning of the similarity function. For instance, consider a matrix as above, where
the acts chosen in the first eight problems were neither “"cafe latte” nor
"cappuccino,” but rather two different ones, that yielded the results given by the
table. The decision maker would still draw the same general conclusions about the
relative importance of the two attributes of a "problem,"” and her preference between
the latte and the cappuccino would thus depend on all of her memory, including
the act profiles of other acts. In particular, second-order inductive reasoning is one
plausible example in which case-based preferences do not necessarily satisfy
“independence of irrelevant alternatives.” That is, the preference between two acts
may change when other acts are introduced into the choice set, even if the latter are
considered "worse choices” than both of the former.

The distinction between the two levels of induction may be extended to the
process of learning and the definition of "expertise.” A case-based decision maker
learns in two ways: first, by introducing more cases into memory; second, by
refining the similarity function based on past experiences. By learning more cases,
our decision maker obtains a wider "data base” for future decisions. This process
should generally improve her decision making. Of course, the cases learnt may be
biased or otherwise misleading; vet, one may expect that, as a rule, and barring

computational costs, the knowledge of more cases leads to a "better” first-order
induction as embodied in case-based decision making.

This improvement of the first-order induction may be viewed as
"quantitative.” That is, to the extent that CBDT performs implicit tirst-order
induction, it does so even with a meager memory. Thus the introduction of more
cases does not change first-order induction in a fundamental or even gualitative
way; it does so onlv quantitativelv. (The term "quantitative” may be misleading,

since memories are only partiallv ordered by inclusion; but the addition of cases has

[ES]
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a flavor of "more of the same.”) On the other hand, second-order induction may be
viewed as a gqualitative improvement of first-order induction. That is, refining the
similarity judgment introduces a new dimension to the process of learning. Rather
than simply knowing more, it suggests that a better use may be made of the
knowledge of the same set of cases.

Knowledge of cases, which we may dub "type I knowledge,” is relatively
"objective.” Though cases may be construed in different ways, there seems to be
relatively little room for dispute about them, since they purport to be "facts.” By
contrast, knowledge of the similarity function, which we refer to as "type II
knowledge,” is inherently subjective. Correspondingly, it is easier to compare
people’s type I knowledge than it is to compare type II knowledge. While even
knowledge of tvpe I cannot be easily quantified, it does suggest a clear definition of
"knowing more,” namely, having a memory that is larger (as defined by set
inclusion). On the other hand, it is much more difficult to provide a formal
definition of "knowing more” in the sense of "having a better similarity function.”
It seems that what is meant by that is a similarity function that resembles that of an
expert, or one that in hindsight can be shown to have performed better in decision
making.

The two roles that rules mav play in a case-based knowledge representation
system correspond to the two types of knowledge, and to the two levels of induction.
Specifically, the first role, namelyv o summarize many cases, may be thought of as
succinctly providing knowledge of type I Correspondingly, only first-order
induction is required to formulate such rules: given a similarity function, one
simply lumps similar cases together and generates a "rule.”t By contrast, the second
role — drawing attention to similarity among cases — may be viewed as expressing
type II knowledge. Indeed, one needs to engage in second-order induction to
formulate these rules: it is required that the similarity be learnt in order to be able to
observe the regularity the rule should express.

Similarly, "expertise” also has two aspects. First, being an “expert” in any
given field typically involves a rich memory, the acquaintance with many cases, or,
in short — knowledge of type I. However, an expert can also do more with the same
information. That is, {s}he has a1 more "accurate” and/or more "sophisticated”
similarity function, and in our terminology — possesses "more” (or "better”)

knowledge of type IL

+ Notice, however, that this s tirst-order explicit induction, le., a process that generates a
general rule, as opposed to the iyl ind cction performed by CBDT.

g
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These distinctions may also have implications for the implementation of
computerized systems. A case-based expert system would typically involve both
types of knowledge. The discussion above suggests that it makes sense to
distinguish between them. For instance, one would like to separate the "hard,”
"objective” type I knowledge that may be learnt from an expert from the "soft" and
"subjective” type II knowledge provided by the same expert. The first is less likely to
change than the second. Furthermore, one may wish to use one expert's knowledge

of cases with another expert's similarity judgments.
As a final remark, we would like to draw the reader’s attention to the fact that

even in the presence of second-order induction, case-based knowledge
representation incorporates moditications in a "smooth” way. That is, one may
sometimes wish to update the similarity values; this may lead to different decisions
based on the same set of cases. But this process does not pose any theoretical

difficulties such as those entailed by explicit induction.
6.2 Two Views of Induction: Hume and Wittgenstein

How do people use past cases to extrapolate the outcomes of present

circumstances? Wittgenstein (1922, 6.363), for instance, argued that

"The procedure of induction consists in accepting as true the simplest law

that can be reconctled with our experiences.”

The notion ot "simplicity” mayv be very vague and subjective. (See, for
instance, Sober (1975) ard Gardenzors (1990).) Gilboa (1990) suggests emploving
Kolmogorov's complexity measure for the definition of "simplicity.” Using this
measure, Wittgenstein's claim mayv be re-formulated to say that people tend to
choose a theory that has a shortest description in a given programming language.
We will refer to this theory as "simplicism." Its prediction is well-defined, but no
less subjective than the notion of "simplicity.” Indeed, it merely translates the
choice of a complexity measure to the choice of the "appropriate” programming
language.

By contrast, Hume argues that "from similar causes we expect similar effects.”
That is, that the process of implicit induction, or extrapolation, is based on the
notion of similarity, rather than on simplicity. Needless to say, "similaritv” is just

as subjective as "simplicity,” or as "the appropriate language.”
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If we take simplicism as a formulation of Wittgenstein's view, and CBDT - as
a formulation of Hume's, we have a formal basis on which the two may be
compared as theories of human extrapolation or prediction. While the following
discussion is not unrelated to the comparison of rule-based and case-based
methodologies in Section 4, our focus here is on descriptive scientific theories,
rather than on knowledge representation technologies.

Two caveats are in order: tirst, any formal model of an informal claim is
bound to commit to a certain interpretation thereof; thus the particular models we
discuss may not do justice to the original views. Second, since both "similarity” and
"language” are inherently subjective, much freedom is left in the way the two views
are brought to bear on a particular example. Yet, we hope that the analysis of a few
simple examples might indicate some of the advantages of both views as theories of
human thinking.

Consider a simple learning problem. Every item has two observable
attributes, A and B. Each attribute might take one of two values, say, A and A for A,
and B and B for B. We are trving to learn a "concept” I that is fully determined by
the attributes. That is, ¥ is a subset of {AB,AB.ABAB}. Each item poses a
"problem" or a "question” (that is one of AB, AB, AB, or AB). We are given a few
positive and/or negative examyples to learn from - that is, items that are either
known to be in X ("+") or known rot to {"-"), and are asked to extrapolate whether
the next item is in T, based on its cbservable attributes. At any given time, the set of
examples we have observed, or our "memory,” may be summarized by a matrix, in
which "+" stands for “such items are in ¥, "=" — for "such items are not in £," and
a blank space is read as "such items have not vet been observed." Finally, a ™"

would indicate the next item we are asked about. For instance, the matrix

1 B B
A
1 ?

describes a data base in which a positive example AB was observed, and we are asked
about AB.

What should we guess A3 to be? Not having observed any negative
example, the simplest theorv in any reasonable language is likely to be "All 1tems

are in £," predicting "+" for A3 Correspondingly, if we assume that all items bear

S
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some resemblance to each other, a case-based extrapolator will also come up with
this prediction.

Next consider the matrices

2 B 3 B B
A + - A ~ +
A ? A ?

In matrix 2, the simplest theory would probably be "If B then in X, else — not
in %, predicting that AB is not in Z. The same prediction would be generated by
CBDT: since AB is more similar to AB than to AB, the former (negative) example
would outweigh the latter (positive) one. Similarly, simplicism and CBDT will
concur in their prediction for matrix 3. Assuming that attributes A and B are

symmetric, we will get similar predictions for the following two matrices:

4 B 5 B B
A A -
3 - ? A + ?

However, the two methods of extrapolation might also be differentiated.

Consider the matrices

6 B 7 B
A + ! A
Y - A ? -

The observations in both matrices are identical. The "simplest rule” that accounts
for them is not uniquelyv detined: the theory "If A then in I, else — notin ¥,” as
well as the theory "If B then in ¥, else — not in X" are both consistent witn
evidence, and both would be minimizers of Kolmogorov's complexity measure 1n a
language that has 4 and B as primitives. (As opposed to, say, their conjunction.)
Moreover, each of these simplest theories would predict a positive example in one
matrix and a negative one in :the other. By contrast, a similaritv-weighted
aggregation of past examples would leave us undecided between a positive and a

negative answer in both matrices.



Gilboa and Schineidler CB Knowledge and Planning

The CBDT answer, namely, being indifferent between making a positive
prediction and making a negative prediction in matrices 6 and 7, appears more
satisfactory than the simplest-theory answer. Indeed, in both matrices the evidence
for and against a positive prediction are precisely balanced. In a way that parallels
our discussion in Section 4, we find that CBDT behaves more "smoothly” at the
transition between different rules. Since CBDT uses quantitative similarity
judgments, and produces quantitative evaluation functionals, it deals with
indifference more graciously than "simplest theories” or "rules.”

In these examples it is very natural to suggest that simplicism be interpreted
to mean some random choice among competing theories, or an "expected
prediction” (of a theory chosen randomly). Indeed, in matrices 6 and 7 above, if we
were to take an average of the predictions of the two simplest theories, we will also
be indifferent between a positive and a negative prediction. However, if we allow
weighted aggregation of theories, we would probably not want to restrict it to cases of
absolute indifference. For instance, if ten theories with (Kolmogorov) complexity of
1,001 (say, bits) all agree on a prediction, but disagree with the unique simplest
theory, whose complexity is 1,000, it would be natural to extend the aggregated-
prediction method to this case as well, despite the uniqueness of the "simplest”
theory. But then we are led down the slippery path to a Bayesian prior over all
theories, which we find cognitively implausible.

A starker enample of disagreement between CBDT and simplicism is

provided by the following matrix.

& B

A
3 -

~J + ‘:bl

The simplest theoryv that accounts for the data is "A iff in X,” predicting a
negative answer for AB. What willi be the CBDT prediction? Had AB not been
observéd, the situation would have been symmetric to matrices 6 and 7, leaving a
CBDT-predictor indifferent between a positive and a negative answer. However, the
similarity between AB and AB is positive, as argued above. (If it is not, CBDT
would have predicted "not in 7 in matrix 1.) Hence the additional observation

tilts the balance in tavor of a positive answer.
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While the CBDT prediction in matrix 8 is hardly intuitive, it is not entirely
clear that this example is relevant to the comparison of the views of Hume's and of
Wittgenstein's. The CBDT prediction in matrix 8 was "computed” based on the
CBDT predictions in the other examples, using the additivity of the CBDT
functionals. In other words, matrix 8 is not necessarily a counter-example to
Hume's dictum. It may well be a counter-example to the additive separability we
assume in CBDT. Indeed, should one consider more general functionals, the effect
of the observation that AB is in T might be different when it is added to the other
two observations in matrix 8, than when it is the only observation. Moreover, one
might argue that the similarity function depends on memory as a whole, and not
merely on the compared cases. As in sub-section 6.1, the process of learning may
entail learning the similarity function itself.

Note that simplicism also allows "second-order induction:” while a case-
based decision maker learns the similarity function, a simplicistic extrapolator
might learn the language in which the theories should be formulated. For example,
adults tend to put less emphasis than do children on color as a defining feature of a
car's quality. This might be modeled as second-order induction in both models: 1n
CBDT, it would imply that the weight attached to color in similarity judgments is
reduced; in simplicism, it would be captured by including in the language other
predicates, and perhaps dispensing with "color” altogether. In this respect, too, the
quantitative nature of CBDT mayv provide more flexibility than the qualitative
choice of language in simplicism.

To sum, the CBDT model arpears to be more flexible than simplest-theory or
rule-based paradigms. However, there is little doubt that the linearity assumption is
too restrictive. It remains a challenge to find a formal model that will capture
Hume's intuition and aliow guan:itative aggregation of cases, without excluding

second-order induction and refirements of the similarity function.

7. Concluding Remarks

71  We do not purport to provide any general insights into the question of
"Similarity - Whence?". From a descriptive point of view, this problem is studied
in the psychological literature. See Tversky (1977), Gick and Holyoak (1980), and
Gick and Holyoak (1983), among vthers.) Taking a normative approach, answers are
sometimes given in specific domains in which "cases” are an essential teaching

technique (such as law, medicine. and business).
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At any rate, we believe that the language of CBDT may also be helpful in
dealing with the similarity problem. In particular, second-order induction - as
defined in the context of CBDT ~ may provide some hints regarding the evolution

of similarity judgments.

7.2 In the discussion of knowledge representation, our main focus is on that
"knowledge" used by people (or machines) in everyday situations. However, one
may ask to what extent the case-based model applies to the representation of
scientific knowledge, or even mathematical knowledge.

Starting with the latter, we agree with Riesbeck and Schank (1989) that a
mathematician's knowledge and reasoning technique is most accurately represented
by case-based reasoning. Ideas and solutions are considered "creative” precisely
when they cannot be generated algorithmically, that is, when the knowledge base
they rely on does not contain a wide enough array of obviously-similar cases to
induct rules from. Indeed, an idea is “creative" if it does not resemble any known
case, or if it relies on original analogies. In other words, creative thinking requires
originality either in the (hypothetical) cases considered (corresponding to type I
knowledge) or in the similarity function (i.e., type II knowledge).

On the other hand, the product of a mathematician's work is almost by
definition in the form of rules. Mathematicians are, by and large, interested in
producing theorems, or, at most, counterexamples to conjectured ones. Thus the
"mathematical knowledge,” the accumulation of which is, supposedly, the "aim" of
mathematicians, is closer to rules than it is to cases.

When it comes to the sciences, an expert's knowledge is probably best
described, as in mathematics, by cases. The product of the scientific work, it would
seem, is generally expected to be in the form of rules. However, the degree to which
this partly-implicit goal is achieved varies. Generally it appears that in a simple
enough environment, that allows for many almost-identical cases to be observed,
rules are indeed formulated. But when the environment tends to bte uruque,
scientific knowledge mav also take the form of a collection of cases.

CBDT being a scientitic theory, one can hardly fail to ask how it applies to
itself. Indeed, it does attempt to te a general, rule-style theory, describing decision
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making and knowledge representation at large. Thus, to the extent that it fails, its

failure should be taken as proof of its virtue.?

73  While our main interest is in the theoretical aspects of CBDT, we would like
to note that case-based models need not be impractical. Indeed, rules appear to be
much more efficient than the cases from which they were originally derived. Yet
one need not actually program each and every case into memory. For instance,
repeated cases may be represented by higher similarity values, thus saving both

memory and computation time.

5 On the other hand, if it happens to be a valid description of reality, it is not refuted: rules
which happen to be "true” can be translated back to the collection of cases from which thev were
derived in the first place.

30
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Appendix: An Axiomatic Derivation of Plan Evaluation Rule

This appendix is devoted to an axiomatic derivation of the plan evaluation
procedure described in Section 5. We restrict our attention to numerical evaluation
procedures. That is, a procedure for the evaluation of plans is assumed to attach a
numerical index to each plan, such that higher indices are associated with "better,”
or "preferable” plans. We assume that a "procedure” is defined for all models as in
section 5. That is, a procedure is a function

V= V{P,h.—‘..u,s.pu..‘w) : :\(P.h.»\.u.s.p).j!) - A

where N, o,y 18 the set of all plans (V.8) for the decision problem p, given

the primitives of the model (P.-.A.u.y) and memory M.
Let V be such a function. We now turn to state some axioms on V that will

be shown to characterize the function defined in section 5 above.

Al Coincidence with CBDT: For a plan (V,8) with N¥={p,} and &(p,)=a, and

w(p.q)=0 whenever p# pg,

V(N.G)= zﬂ'ef“-n’w.\ Suliposd. 2 up’)

where
Silpoar)= Z A
wll-ar 2. X llpyeap”Ma.b.q"))

Al states the following: consider a "degenerate” plan that consists of a single
act. Assume that no immediate consequence of this act leads to further
developments (according to the decision maker's memory). Then the plan should
be evaluated as its act would be by the functional V” in CBDT.

The next two axioms basically state that a plan’s evaluation does not depend
on the exact description of a "position” or of an "act.” We first illustrate and
motivate them by examples, and then provide the formal statements.

Consider an agent who wants to buy a new car. In order to have enough
money, she plans to sell her old car first. Suppose that she intends to take the act
"place an ad in the newspaper” (). This act may lead to (at least) two positions: one
(say, p,) is "the car is sold to a buver who lives in the city,” while the other { p.) is

5]
—
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"the car is sold to a buyer who lives in a suburb.” In both positions, the agent
intends to take the same act, namely, "use the money to buy a new car” (5).
Moreover, the agent expects that, as long as the selling price is identical in both
positions, the success of her plan to purchase a new car will not depend on the way
she obtained the money. Assume that this implicit belief is supported by the agent's
memory. That is, the act b appears to result in the same positions when taken at p,
and at p,. (The precise definition of this condition is given below.)

Suppose now that the modeler (and perhaps the agent herself) replaces the
two positions, p, and p., by a single one, p, which is described as "the car is sold.”
(We implicitly assume here that any potential buyer lives either in the city or in a
suburb.) Since the agent anvway plans to take the same action, it appears that the
new plan, in which p, and p, are "collapsed” into p, should be equivalent to the old
one.

In a formal definition of "collapsing,” the weight of an arc leading to p
should be taken to be the sum of the corresponding arcs leading to p, and to p, in
the original graph. To see why this is the "natural” definition, consider first a
situation where city dwellers and suburban are very different creatures (according to
our agent's subjective similarity judgment). This means that all cases in memory
are either similar to a case leading to p, or to one leading to p,, but not to both.
Thus the weights of the arcs leading to p, and to p, are (normalized) sums of
similarity values over disjoint sets of cases. Correspondingly, when the agent
discards the distinction between the two positions, the new, "unified” position
inherits the similaritv weights ot both its parents.

A similar reasoning applies when a case in memory may be similar to more
than one case in the plan. However, a warning is in order here: while we use the
term "similaritv" or the function s, it may also be interpreted as "support,” "weight
of evidence,” or "relevance,” and we implicitly assume that the judgment of these is
also reflected in 5. The rollowinyg example illustrates. Assume that our agent in the
example above has but one case in memory, in which a car was sold to a city dweller.
This case is, of course, similar to {p .a.p,}, that is, to the agent selling her car to a city
dweller as well. But in general it may also be similar to (py.a.p,), namely, to the
agent selling the car to a suburban  Indeed, it is essential to atlow our planners to
have some similarity to new cases, if we hope that they would ever exhibit some
creativity.

It stands to reason that :he similarity of the case in memory to (py.a.p)

exceeds that to (p,.a.p.). However, when we consider the similarity to {p;.a.p)

o
I~
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(where p stands for the unified position), it should be the sum of the first two and
thus exceed both. Thus, if we have more details in the description of a position, the
"similarity” of the case to a case in memory may be lower than with less details,
even if these details are identical to those specified in the recalled case. "Pure”
similarity judgments generally.do not follow this pattern; on the contrary, richness
of identical details typically enhances the perceived similarity. Yet a "weight of
evidence” function is likely to decrease with specificity, and it is this role that the
"similarity” function plays in our model.

We have so far described the operation of "unifying” two positions, which we
will dub "parallel collapse.” We will require that the plan evaluation function be
invariant with respect to this operation. Before turning to the formal definition, we
describe the second operation, to be referred to as "serial collapse.”

Consider our agent again. She may consider the act a, namely, "place an ad
in the newspaper,” in more detail, and realize that she first has to find out the
newspaper's phone number. That is, she plans to first take act a4, "find the phone
number,” which she hopes will bring her to a position p,, "I know the number,”
and only then can she choose the act a,, "call the newspaper and place an ad.”
Conversely, one mayv view the act « as a "unification” of the two acts, a; and a,. As
opposed to parallel collapse, which unifies tvo positions but does not alter the acts
involved, this operation - "serial collapse” — skips a position, and unifies two
successive acts. To be precise, the first act is re-interpreted as a contingent plan, to
take q, first, and then «, if p, is reached.

We define the similarity (or "weight of evidence”) associated with the arcs
involving the new act to be the product of the normalized similarity weights
leading to and from the intermediate position p,. The intuition underlying this
definition is best explained in the case where all similarity values (between cases)
are 0 or 1. In this case, the normalived sums of similarity values are simply relative
frequencies of results {(of a given act at a given position) in the past. For relative
frequencies {which are defined per position), the product rule is almost tautological.
To be precise, if the graph involved is a tree, then this rule follows from the
definition of “"conditional frequency,” just as Bayes' definition of conditional
probability implies P(AN B)= [’(.M."(B A). In general, however, the product rule

implicitly assumes that the distritution of outcomes that may result from taking an

act at a given position, does not depend on the path that led to this position. Indeed,
should memory indicate that this is not the case, the position should be split into

several positions.

fad
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As in the case of parallel collapse, we extend this intuition to the more
general case, in which the similarity values need not be 0 or 1, and which allows the
planner to use cases that are not "identical” to the current problem.

We finally turn to define parallel and serial collapses formally. Let there be
given a model (P>~ A.u.s.py,.M) and a plan (N,8) for it. The verbal description of the
collapse operations involves changing the primitives of the model, i.e., re-defining
the set of positions and/or of acts. For simplicity of notation, however, we will keep
these fixed, and reflect all relevant changes in the similarity function. Specifically,
we fix (P> A.u.py.M) and consider evaluation functions V,(¥,8), that is, we focus
on the way in which the evaluation depends on s.

A few additional definitions will prove useful. Two positions p,, p, € £ are
said to be =-eguivalent if for all ye P, g=<p, iff ¢<p, and g>p, iff g=p.. A
position p = p, is inessential with respect to the similarity function s if for all g€ P
and ac A, Syl((p.a.q))=Sylig.a.p)y=0. It is essential otherwise, i.e., if there is a

non-zero similarity arc leading to or from it.

We now can state the conditions under which two positions may be
collapsed. Assume that p, p. € P satisty:

() p=py (I=125

(ii) p; and p. are =-equivalent;

(i) 8(p,)=5(p.):

(iv) For all ge P, w(p..q)={p..q).

The similarity function s describes a parallel collapse of p, onto p; relative to
the similarity function s if, denoting by w’ the normalized similarity weights
generated by 5" and M:

w/(g.py) = wlq. p) = vl p:)

w{q.p)=10 worall ge Ny

and w’ equals w elsewhere.

A2 Parallel Collapse: 1If, for some p, p, € P, s describes a parallel collapse of p,

onto p, relative to the similaritv function s, then



Gilboa and Schmeidler CB Knowledge and Planning

V.(N,8)=V(N.5).

Observe that condition (iv) requires that the normalized similarity weights
leading out of the two positions be identical. We argue that it captures the intuitive
notion of two positions being "practically the same” in the planner's eyes. Consider
the car selling example again. While it appears irrefutable that the source of the
money should not affect its potential use, in the final analysis this is a conclusion
one may only draw from experience. Indeed, it is conceivable that some aggressive
creditors of the buyer will show up and ask for the money with which the car was
bought; or that our agent will find herself boycotted by city dwellers for having
traded with suburbans. In short, our intuition that the seller's identity does not
matter is based on our experience. That is, on similar past cases that predict the

same results for the act a at p, and at p».

We now turn to define "serial collapse.” Assume that p,,p, € P and a,a; € A
satisfy the following conditions:

(1) pr > p

(1) S(p)=a; (i=1L21);

(iii) for g = p, w(g.p~) = 0.

The similarity function s’ describes a serial collapse of ay at p; onto a4, at p,

relative to the similarity function s if (using the same notation):
wpg) = wlpea)+wlpepinlog)  forall g po;
w(pipa) =0;
and w’ equals w elsewhere.

A3 Serial Collapse: If, for some a,.a. €A, p.p, € N, s* describes a serial collapse of u,

at p» onto «, at p, relative to the similarity function s, then

V(N.S) = V,(N.5).

Observe that the serial coilapse is allowed only if the position that is

practically deleted from the graph, namely p;, is reachable only from p, (condition
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(iii)). Indeed, should p, be reachable from other positions, collapsing a, at p,
should be reflected in all position-act pairs leading to it. Note also that the product
of the normalized similarity weight of (i} the arc entering p, and (ii) that of the arc
leading from p, to some position ¢ - is added to the weight of the arc leading from
p, directly to g. This is in line with the definition of S, as a sum over similarities.
Indeed, were multiple arcs allowed in our model, we could simply state that a new
arc from p, to ¢ has a weight that is the product of the weights of its parents, and the

summation would be taken care of in the function §,.

Finally, we need a structural assumption, stating that the set of positions is
rich enough. It is a technical assumption, whose role will become clear in the proof.
At this point we only mention that we need this assumption because we chose to
hold the primitives of the model fixed, and to reflect all "collapses” in the similarity

function.

Structural Assumption: Let & be the number of essential positions in P. Then, for

each pe P, P contains at least 2* inessential positions that are »-equivalent to p.

We can now state:

Proposition: Under the structural assumption, the function V:V(h‘_“_l_pn.m

defined above is the unique evaluation function satisfying Al-A3.

Proof: The fact that V satisfies A1-A3 follows from standard probability calculus.
We prove that it is uniquely defined by these axioms. Let there be given some
function U satisfying A1-A3. We will show that U =V in three steps.

Step 1: Consider first the set of "degenerate” plans defined by one act. (Ie,
N={po} and w{p.g)=0 whenever p=p,) In this case the graph contains only paths
of length 1, and Al defines {" unicuely.

Step 2: Next consider the pairs of plans and similarity functions for which the
graph G is a tree. By successive serial collapses, we can find a graph as in step 1, that
is equivalent to the original one according to both U/ and V, by virtue of A3. Since
the two functions coincide on all such "degenerate” graphs, they also have to
coincide on all trees.

Step 3: Given a general grazh, reduce it to a tree (that will be both U- and V-
equivalent to it) as follows. For ezch path leading from p, to some ge& P, consider

36
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an inessential position that is »-equivalent to ¢g. (The existence of these is
guaranteed by the structural assumption.) Any position ge P can be "split” into
several positions, each corresponding to a different path leading from p, to g. The
"splitting” is done in a way that mirrors parallel collapse. That is, if ¢ is one of the
"‘new" (previously inessential) versions of g, w(¢’.p) is set equal to w(g, p) for all p.
The resulting graph is a tree, and, by successive applications of A2, has the same U'-
and V-values as the original one. Thus U and V have to coincide on all graphs. e

Our analysis assumes that plans are mapped to numbers. Presumably, these
numbers only matter to the extent that they help rank plans. One may therefore
ask, whether the evaluation procedure axiomatized here can be derived from more
primitive data, namely, from a preference relation over plans given various
memories. While we conjecture that the answer is in the affirmative, we also

suspect that such a derivation is bound to be more cumbersome.

)
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