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ABSTRACT. In a 2 x 2 syminetric game with two symmetric equilibria in pure
strategies, one risk-dominates another if and only if the equilibrium strategy
is a unique best response to any mixture that gives it at least a probability
of one half. In an nxn symmetric game. we call a strategy globally Tisk-
dominant if it is a unique best response to any nixture that gives it at least
a probabilityv of one half. We show that if a finite coordination gaine has a
globally risk-dominant equilibrium then this is the one that is selected by the
stochastic equilibrium selection processes proposed by Young and by Kandori.
Mailath, and Rob.
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1. INTRODUCTION

In order to provide justification for Nash equiliblium concept and equilibrium selection
criteria simultancously. recent studies have proposed several kinds of ‘evolutionary’ or
‘stochastic” dynamies for finite strategic form games (e.g.. Foster and Young (1990). Blume
{1993), Kandori. Mailath. and Rob {1993). Kandori and Rob (1992. 1993). Young (1993).
among others). A common result derived in the literature is that those dynamics typically
select risk-dominant equilibria a la Harsanyi and Selten (1988) when they are applied to
2 x 2 games.!

It is known that this relationship between risk-dominant equilibria and ‘evolutionarily
selected” equilibria does not extend beyond the class of 2 x 2 games (e.g.. Young {1993,
p.73ff}}). Consequently. we do not have much knowledge about what kind of equilibria will
be selected by those processes in general.

In trying to shed some light on this topic. we propose a generalization of the notion
of risk-dominance in 2 x 2 syminetric games and study its stochastic and/or evolutionary
stability. In an n x n symmetric game with no asymmetric strict cquilibria, we call a
strategy globally risk-dominant if it is a unique best response to any mixture that gives
it at least a probability of one half. This is indeed a generalization of the notion of risk-
dominance in 2 x 2 symmetric games since a strategy in a 2 x 2 symmetric game constitutes
a risk-dominant equilibrium if and only if it is a unique best response to any mixture that
gives it at least a probability of one half. We show that if a finite coordination game has
a globally risk-dominant equilibrium then this is the one that is selected by the stochastic
equilibrium selection processes proposed by Young (1993). Kandori. Mailath. and Rob
(1993). and Kandori and Rob {1992).2 As an application. we will show an efficiency
result of the following kind. We say that a strategy in a coordination game is of pure
coordination if on all miscoordination profiles involving that strategy the players’ payoffs
remain constant.® It follows from the main result that if a pure coordination equilibrium
in a coordination game is efficient then it is stochastically stable.

One drawback of global risk-dominant equilibria is that. due to possible cyclic risk-
domimance relations. they may fail to exist even in the class of coordination games. Stochas-
tically stable equilibria. in contrast. always exist for that class of games and they are gener-
ically unique. We shall argue. however. by means of an example that stochastically stable
equilibria need not always secem to be plausible in games with no global risk-dominant
equilibria due to cycles.

IThere are some exceptions, however. The selection process of Binmore and Samuelson (1994) does
not always select risk-dominant equilibria even for 2 x 2 games.

2Kandori and Rob (1992) is an n x n version of Kandori, Mailath, and Rob (1993). Since we will

work in n x n setup. hereafter we refer only to Kandori and Rob (1992).
SHere the term ‘pure coordination’ predicates a strategy, not a gatne.
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Kandori and Rob (1993) have offered a detailed analysis on the relationship between
pairwise risk-dominance and stochastically stable equilibria* for coordination games with
special properties. Our analysis extends that of Kandori and Rod (1993) to general coor-
dination games. Also. it should be noted that Ellison (1995) has independently shown the
main result of this paper.

The next section offers the formal analvsis and the last section discusses the global
risk-dominance concept and its relationship to other works in the literature.

2. DEFINITIONS AND THE RESULT

Consider a symmetric n x n (n > 2) game G with a strategy set S = {s1.....8,}. Given
(si.8;) € 5 x 5. where the first {second. respectively) entry is the strategy played by the
row {column. respectively) player. the payoff for the row {column, respectively) is denoted

by u;; {uj;. respectively). See Figure 1. Also. we write N = {1..... n}and N_; = N — {i}
fori e N.
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Figure 1. A symmetric game G.

G is said to be a coordination game if (s;.s;) is a strict Nash equilibrium for cvery
¢ € N. Notice that if & is a coordination game then G has no asymmetric Nash equilibria
in pure strategies. We assume throughout this section that G is a coordination game.

It is well known that if G is 2 x 2 game the notion of risk-dominant relation of Harsanyi
and Selten (1988) can be characterized by the following inequality. An equilibrium (sk. sx)
risk-dorninates another equilibrium (s;. 5;} if wgr — Wik > s — vy In this case. (sg. sx) is
called a risk-dominant equilibrium in the 2 x 2 game. One possible generalization of this
concept to n x n games is the following. Consider an n x n coordination game G and let

4Kandori and Rob (1993) call stochastically stable equilibria long run equilibria.



i.k: € N with i # k. We call an equilibrium (sk. s) of G pairwise risk-dominant if (sy. sx)
risk-dominates (s;.s;) in the 2 x 2 game {s;. sk} % {s;. 54} for every i € N_;.

We now introduce the main concept of the paper, which is another generalization of
the risk-dominance in 2 x 2 games.

Definition. s, € S is globally risk-dominant if
Ukk — Uik = Uij — Uk

holds for everv i.j € N_g.

The definition has some immediate consequenes. In order to state these. we need to
introduce a special notation. which will also be used in the sequel.

Notation. For each i.j € N with i # j. fir a bijection [ij] : N — N on N that satisfies

i71(1) =4 and  [45)(2) = 4.

Now let @, € 10.1] (h € N) with Y, 2, = 1. We denote by (z;. .-+ X)) the mixed
strategy profile in G that gives si;;,(5) the weight 2. When we do not need to specify the
second argument. we denote (xq..... Tnluy by {21, .. Tn}ji). Where j is some arbitralily
fixed element in V_;.

Observation.

(1} sk € S is globally risk-dominant if and only if s; is a unique best response to the
mixture (1/2. 1/2.0.. ... 0):kq for every i € N_j.

(2) sk € 8 is globally risk-dominant if and only if s¢ Is a unique best response to any
mixture (py..... Pn )ik such that p; > 1/2.

(3) If G has a globally risk-dominant strategy sy then (si.si) Is a pairwise risk-
dominant equilibrium.

It 1s clear that (1) follows from gk + ur; > ik + ui; and that (1) implies (2). (3) follows
from taking i = j. By (3). we can call (sk.sx) a globally risk-dominant equilibrium if s is
globally risk-dominant.

In view of {3) above. any game that fails to have a pairwise risk-dominant equilibrium
cannot have a globally risk-dominant equilibrium. We recall that nonexistence of a pairwise
risk-dominant equilibrium can result not only from ties like wuxr — v = us; — g but also
from a cyclic risk-dominance relation.® There are coordination games that fail to have
pairwise risk-dominant equilibria due to such ¢ycles. The game in Figure 7 of Kandori and

“See Harsanyi and Selten (1988, p.217). Notice, however. that a mere existence of cveles does not
necessarily preclude existence of a risk-dominant equilibrium.



Rob (1993, p.18) is such an example. Also. there are coordination games with pairwise
risk-dominant equilibria that fail to be globally risk-dominant. The game in Example 3 of
Young (1993. p.73) is such an example.

We shall show that if G has a globally risk-dominant strategy s; then the sto-
chastic equilibrium selection processes proposed by Young (1993) and Kandori and Rob
(1992} select the globally risk-dominant equilibrium (s. s). Discussion of the global risk-
dominance is deferred to the next section.

Because of the fact that both of the equilibrium selection processes of Young (1993)
and of Kandori and Rob (1992) are built on the work of Freidlin and Wentzel (1984).°
essentially the same argument holds for both of them. For definiteness, however. here
we work in the setup of Young (1993). The case of Kandori and Rob (1992) is treated
in Appendix 1. Thus we start with a brief review of the stochastic egilibrium selection
process of Young (1993). For details. the reader is referred to Young (1993).

Let n and & be nonnegative integers with k < m. Let H be the m-fold direct product
of § x 5. Namely. H is the set of all sequences of strategy profiles with length m. H is
the state space of Young's (1993) Markov chains.

Let b = ({s:,.55,)..... (5i,.85.)) € H and b = ({t:,.45,).....(t:,. 1;.)) € H be two

states. A state b’ is a successor of A if (s4,.8;.) = (ti,_,-tj_,) for k=2,....n. Let b’ be
a successor of k. ¢; is a mistake in the transition from h to A’ if £;_ is not a best response
to any sample of size & from (s;,..... $5.. ). Define a mistake for ¢;, analogouly. For every
h.h' € H define the resistance r(h. k') of the transition from h to b’ as follows.

o if A’ is a successor of h.
the transition from h to A’

the total number of mistakes in
r(h.h') =
o's otherwise.

Since we are dealing with a 2-person game. the value of r(h.h'} is either 0. 1. 2. or x.

G is said to be weakly acyclic if from every strategy profile there exists a finite sequence
of best responses by one player at a time that ends in a strict Nash cquilibrium. Notice
that if G is a coordination game. as assumed in this section. then G is weakly acyclic since
there is a one-step path to a strict Nash equilibrium from every strategy profile (s;.s;).
Now let us assume that . the length of a history, and x. the sample size. satisfy & < m/3.
Then by the Corollary to Theorem 2 of Young (1993). the selection process of Young (1993)
will genericaily single out a unique strict Nash equilibrium of . In addition. in this case
the absorbing states of the adaptive play without mistakes are precisely those states of the
form h; = ((s:.8:).....(8:.5;)). wherei € V.

For i.j € N with 7 # j. consider an ordered tuple 7 = (h*..... k%) in H. We call
such a tuple 7 a path from i to j if R* = h; and h¥ = h;. Define the resistance v(7) of a

6Strictly speaking, both of them are based on a discrete version of the development of Freidlin and
Wentzel (1884) that is proved by Young (1983).



path 7= (ht... .. h*) from i to j by r{r) = 32071 r(h*. h**1). Finally define the resistence
from i to § by
ri; =min{r{7) |7 is a path from 7 to j }.

We notice that a resistance r;; is an integer. It will prove useful to define a ‘continuous’
version of it as follows. ¥Yor i.j € N with ¢ # j. define the exit resistance v from 1 via j
by

Yii = min { pPE [U 1}

55 € BR(1 —p. pgi. ... PGu-1)gy for some
gr € [0.1] such that Y5 7 qp = 1. '

where BR (-} is the best response correspondence of G. Further. define the exit resistance
~; from i by

vo=min{; | 7€ N_; |

The motivation for introducing ~;; and +; is the following. Imagine that the current state
is h; and we want to know how much the resistance r;p from i to another state & is. In
order to move away from h; it is necessary to have some mistakes by some player since
(8;.8;) is a strict Nash equilibrium. Moreover. it is necessary to have enough mistakes
so that some strategy different from s;. but not necessarily sg¢. can be played against the
disturbed history. In other words. the process have to ezif from the basin of attraction of h;
under the adaptive play without mistakes.” ~vij corresponds to the minimum proportion of
deviation from s; in a history that is required to have a desired exit where the first strategy
different from s; that can be played during the exit is s;.* Accordingly. v; corresponds to
the minimum proportion of deviation to get an exit at all. regardless of the destination.
By definition. v;; solves the minimization problem that defines «,;;. In general. the
n — 1 probability vector (¢q..... In-1) associated with ~;; may have a support of size two
or more. In addition, its support need not include s;. It will prove useful. however. to
define resistances that ignore these two complications. For : € N and j € N_;. define

Ji; =min{pe 0.1]|s; € BR(1—-p. p. O..... 0)uis }

By definition. v; < 3;; for every i.j € N with i 3£ j.

Given a real number x, denote by (2] the minimum integer weakly exceeding z. We
make the following assumptions on the length m of a history and the sample size k. The
first of these has been already stated above.

Assumption.
(1) & <m/3.

"By the basin of attraction of the state h; we mean the set of states that are absorbed into h; with
probability one under the adaptive play without mistakes.
8Thus we call i; the exit resistance from ¢ via j. not fo 3.



2) k is sufficiently large so that z > y if and only if [zx! > [ys
) o b * [ 1

forevery .y € { vy 3y | .j € N withi#j}U{1/2}.
We are now ready to present our result.
Lemma 1. Foreveryi € N and j € N_;. [wr] <7y,

Proof. First. it follows from the definition of ~; that if p < ~; then

{si} =BR(1—p. pq1. - Pln—1)i

for every ¢, € 10.1] with }°, ¢, = 1. Now by the definition of r;; there is a path 7 =
(hi Rl ... h*_h;} such that r;; = r(7). At state h;. the best responses of both players
to any sample from h; is s;. which is different from s;. Thus. during the path 7. there
is a first state h* that includes a sample of size k to which either row’s or column'’s best
response differs from s;. Assume that at h* the row can optimally play a strategy that
is different from s;. Then at A* the number u of periods in which the column has played
strategies different from s; must satisfy u/k > ~;. by the argument given in the beginning
of the proof. On the other hand. by the choice of h*. all non s; strategies played by the
column up to i* have been mistakes. Thus. at 2*. the column has made mistakes at least
p times. Therefore ry; > p. Consequently. r;; > [yl 0

Lemma 2. Assume that G has a globally risk-dominant equilibrium (sg. sy ). If (84.8;) is

2

P}

. ey . 1
a strict Nash cquilibrium that is different from {s;.sy) then r; < |:~K:| < Tgs.

Proof. Pick any strict Nash equilibrium (s;.8;) # (8%.s1). The proof takes two steps.
First. we show that 1/2 < ;. Subsequently. we show that ry < [(1/2)k] < rgs.

Let us prove that 1/2 < ;. Pick p € [0.1] and assume that p <1/2. Then1-p > 1/2.
Thus by the global risk-dominance of sg.

{Sk} =BR(l1—p. pq1. .... an——l){ki}'

Therefore
s; ¢ BR(1~p. pa1. ---. Pgn-1)ikq-

Thus we have shown that
ifs; € BRE(1~p. pg1- ... P@n—1)iky then 1/2 < p.

which implies that 1/2 < ~;;.°

*Since BR (") is upper-hemicontinuous, the argument does show 1/2 < 7. rather than 1/2 < ~,,.



Since our proof of 1/2 < ~v; does not depend on 7. we have 1/2 <~ by the definition
of ~. Thus by Lemma 1 and the Assumption above, we have [(1/2)x| < [t ] < g

It remains to prove that r; < [(1/2)x]. Consider k. Clearly. { Jur|/k > Fix. Thus
by the definition of 3.

(4, B
sp € BR (" [Buer] ""‘],0 ..... 0) .
(ik]

[ %

Since s is globally risk-dominant. 3 < 1/2. Thus by the Assumption on sample size.
[3wr] < [(1/2)s]. This corresponds to the situation where. starting from the state
hiy = ({(8i.8:).....(84.8;)). the column (say) player has continued to play sp by mistake
[ Jikr| times in a row and it is now possible for the row player to play si optimally. Let
us call this state h*. From the state h*. there is a positive probability to move into the
state hy = {(Sk.Sk). ... (sg.sx)) without further mistakes. This can be seen as follows.
Suppose that the row will continucusly be given as her sample the right most sequence of
size K in A*. This event can happen with a positive probability at least next 2x periods
since k < m/3 by assumption. During these periods. the row can optimally play s, each
time. Assume. on the other hand. the column observes the most recent sequence of size
% every period. Under this event. the proportion of s in the column’s sample is strictly
increasing. In particular, after k — [ 3k periods from h* at the latest, the column can
also play s optimally. Continuing this fasion. after 2k periods from h* the process moves
into a state h** whose right most sequence of size £+ [ Jiex | consists of (sk, sk). From h**.
by taking most recent samples. the process eventually moves into hy without any mistakes.
Therefore rix <[ Jixr| by the definition of ri. Consequently, riy < [(1/2)k]. C

A binary relation T on N is an i-tree (i € N) if for every j € N_;.

(1) (i.5) ¢ T.

(2) There is a unique h € N_; such that (j.h) e T.

(3) There are j..... jn € N with j; = 7 and jn = @ such that (4. 741) € T for every
[=1..... h—1

Given an i-tree T. we define the stochastic potential p{T) of T by

pT) = Z(j.h)eT Tih-

Following Young (1993). we call a Nash equilibrium (s;, s;) of a coordination game G
stochastically stable if for every j-tree T (j # ¢) there is an é-tree 73 such that p(T}) <

p(T5).



Theorem. If G has a globally risk-dominant equilibrium {s. sx) then the stochastically
stable equilibriwn is (s. s¢).

Proof. Fix any strict Nash equilibrium {s;. s;) # {sg.s¢) and an i-tree T;. Consider the
binary relation T} on N defined by

Ty = (T = {{(k.ph u{i. R}

One can verify that T} is a k-tree. Moreover it follows from the construction of 7} and
Lemma 2 that

(L) — p(Tk) = 1y — ik > 0.

which shows that (sg.s) is stochastically stable. "

Before closing this section. we state an immediate application of the Theorem. A
strategy si in a coordination game G is a pure coordinotion strategy if there are numbers
¢.n & R with { < iy such that for every i € N.

b = s — n ifi==k.
' i { otherwise.

This means that under all miscoordination situations involving the strategy si the players
get the same payoff (. In other words. miscoordination pavoffs do not depend on how
palyers fail to coordinate. See Figure 2. We notice that if a coordination game G has a
pure coordination equilibrium then its stochastic stability relates to its efficiency in the
following way.

Corollary. Assume that G has a pure coordination strategy sy. Then (sy. si) is globally
risk-dominant if and only if upy > us; for every i.j € N with (.7} # (k. k). In particular,
if (sk. sx) Is efficient then it is stochastically stable.

Proof. If s, is a pure coordination strategy then the defining inequality of global risk-
dominance for s reduces to ugr > u;5. U

There are coordination games with pure coordination equilibria that are both stochas-
tically stable and inefficient. Thus efficiency is not a necessary condition for pure coordi-
nation equilibria to be stochastically stable.

Since the seminal argument by Schelling (1960. p.2911f). it has been a controversial
issue that whether efficiency of an equilibrium in a coordination game can make the equi-
librium focal. For discussions of this issue in the context of ‘non-evolutionary’ equilibriun
sclection theories. see. for example. Harsanyi and Selten (1988, p.88ff. p.355ff). Aumann
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Figure 2. A symmetric game. If { <7 then s,41 is a pure coordination strategy.

(1990). and Carlsson and van Damme (1993. p.1005ff). The Corollary suggests that, al-
though mere efficiency is not enough to be focal in the sense of stochastic stability. an
efficient equilibrium in pure coordination strategies is indeed focal. Constant payoffs in
the corresponding row and column. together with efficiency. make the equilibrium conspic-
uous enough for the players so that they can successfully coordinate on it without worrying
about any other sophisticated strategic consideration. In particular. an efficient pure co-
ordination equilibrium can escape Aumann’s (1990) argument. which casts doubts on the
self-enforcing property of a certain kind of efficient equilibria. Because we are working in
an evolutionary context where players are assumed to be myopic. the Corollary cannot be
interpreted directly in the context of focal point arguments. where players arc assumed to
be fairly intelligent. Our point here is. therefore. that the above argument for efficient pure
coordination equilibria in the context of focal points can be backed up by the evolutionary
argurnents of Young (1993) and of Kandori and Rob (1992).

Another implication of the Corollary is that for any coordination game (G one can
construct. by adding just one strategy to G. another game G that has a stochastically
stable equilibrium with payoff exceeding the maximum payoff of G. This is clear from
Figure 2. We should notice that, in Figure 2. any n of the form

n=max{u;y |i.7€{l..... n}}+e with >0

can be used for this construction. On the other hand. in addition to ¢ < 1. { needs to
satisfy ( < uy; for every 1 € N to ensure G to be a coordination game.



3. DISCUSSION

The analysis in the last section shows that the notion of global risk-dominance has some
strong implications. Therefore it is important to know what classes of games have globally
risk-dominant equilibria and what kinds of interpretations can be given to the global
risk-dominance. Roughly. we claim that a game is more likelv to have a globally risk-
dominant equilibrium if the game desribes a coordinating situation of a certain kind. In
addition. there are at least two interpretations. one is ‘rationality’ based and the other
is “evolutionary’. that make sense of the global risk-dominance. We also argue by means
of an example that. in games with no pairwise risk-dominant equilibria due to cycles.
stochastically stable equilibria need not always seem to be plausible.

For a non 2 x 2 symmetric game G (not necessarily a coordination game). there are
possible properties of G that G could not have possessed if it had been 2 x 2. One such
property is that. even when a player is playing a mixture of particular two strategies.
a third strategy might be a best response for the opponent to that mixture. Alsg. the
pairwise risk-dominance relation of G might exhibit cycles. and these cycles in turn can
result in nonexistence of a pairwise risk-dominant equilibrium. It turns out that if G has
neither of these then it has a globally risk-dominant strategy sg. Consider the condition

(CD) For every distinct i.j,k € N and p € 0. 11
ptgr + {1 — plug; < max { pure + (1 — plun;. puje + (1 — pluy; }

This simply says that. as long as your opponent is playing a mixture of s; and s;. yvour
best response to the mixture is also either sx or s; but never a third strategy. s;. We
regard {CID) as a forinal description of a coordinating situation where pairwise mixtures
are allowed. A coordinating problem arises when we are in a situation where we want
to do a particular action if. and only if. others do the same action. In other words. in a
coordinating situation. you want to do the same thing as others do. You want to drive
left if. and only if. vour fellow drivers drive left. It is this intuition that (CD) expresses
for in any situation where (CD) is violated you have an incentive to act differently from
what others do. In fact. one can show that

Claim.
(1) If G satisfics (CD) then G is a coordination game.
(2) If G satisfies (CD) and has a pairwise risk-dominant equilibrium then the pairwise
risk-dominant equilibrium is globally risk-dominant.
Proof of the Claim is given in Appendix 2.1 It follows from {2} that in the class of

0%We do not need full strength of {CD) to get global risk-dominance. We need (CD) to hold just
for every ¢.j € N_; with 7 # j. where (s;, ¢} is the risk-dominant equilibrium.

10



coordination games with (CD) a stochastically stable equilibrium is pairwise risk-dominant
if and only if it is globally risk-dominant. As a consequence. our Theorem tells us that.
in coordinating situations described by {CD). the notion of pairwise risk-dominance does
incorporate some global properties of the game and can be used to determine relative
stability between ‘conventions’.

Kandori and Rob (1993} have formulated a condition called total bandwagon property.
It dictates that. given a mixture of strategies in (5. every pure best response to that mixture
is in the carrier of that mixture. With an additional and independent condition. Kandori
and Rob (1993) have shown that the ‘long run’ equilibriuin coincides with the pairwise
risk-dominant equilibrium. if the latter exists. Our result is stronger than theirs in two
ways. First. (CD} is a restricted version of the total bandwagon property to mixtures
between two pure strategies. Second. the additional condition is not needed.!’ Further.
since the defining condition of global risk-dominance involves no probability calculation. it
has a desirable property that it is easy to check if a given game has a globally risk-dominant
equilibriumn. The Corollary of the last section illustrates this point.

Working in a different setup and using a different stochastic selection technique from
those of Young (1993) and of Kandori and Rob (1992). Blume (1993. p.413) has shown that
if a pairwise risk-dominant equilibrium of a coordination game satisfies a certain condition
then it is selected by the selection process of Blume (1983). Since Blume's {1993) condition
implies global risk-dominance. the corresponding results in Kandori and Rob’s (1992) and
Young's {1993) settings follow from our result.!?

We can give another interpretation to (CD). which in turn makes the global risk-
dominance itself meaningful by the Claim. In their book. Harsanyi and Selten (1988)
write

Imagine a hvpothetical situation where it is common knowledge that all playvers think that
either UV or V must be the solution without knowing which of both equilibrium points is the
solution. Risk dominance tries to capture the idea that in this state of confusion the players
enter a process of expectation formation that may lead to the conclusion that in some sense one
of both equilibrium points is less risky than the other. (Harsanyi and Selten (1988, p.204))

As such. the notion of risk-dominance is indeed based on the idea of pairwise comparisons
between equilibria. In general. however. it would be unreasonable to determine the risk-
dominance relation between U = (U.0U;) and V = (V). V2) by restricting attention to
the corresponding 2 x 2 game {U;.V1} x {Uz,Va}. This can be seen as follows. In the
process of expectation formation (i.e.. the tracing procedure). it may happen that the
players” beliefs fall in a region where (CD) is violated. In such a region. the supposed

117t should be noted, however, using the total bandwagon property and an additional condition,
Kandori and Rob (1993} have succeeded to approximate the cost of transition, which corresponds to our
resistance, for each ordered pair of equilibria.

12 A global risk-dominant equilibrium need not satisfy Blume’s (1993) condition.

11



common knowledge of the restriction of the solution to U or V conflicts with the best
response principle. That is. the expectation that either I or V will be played. coupled
with a rationality assuruption. leads to the expectation that other strategies can be played.
Consequently. it appears unreasonable to restrict attention to U or V in the first place.

In order to avoid this kind of inconsistency. Harsanyi and Selten (1988. p.198ff) in-
troduce the notion of a formation. Roughly. the formation spanned by U and V is the
minimal restricted game including U; and V; that is closed under best responses. Harsanyi
and Selten (1988. p.208) then determine risk-dominance relation by applying the trac-
ing procedure to the formation spanned by two equilibria. Now the significance of the
condition (CD) in the selection theory of Harsanyi and Selten {(1988) is clear. For each
pair of equilibria in a coordination game. the corresponding 2 x 2 game is qualified as the
formation if and only if {CD} is satisfied. Consequently. in the class of symmetric games
with {CD). risk-dominant equilibria reduce to pairwise risk-dominant equilibria. More-
over. it follows from the nain theorem and the claim above that if a symmetric game with
(CD) has a risk-dominant equilibrinm in the sense of Harsanyi and Selten (1988) then it
is stochastically stable.

Alternatively. it is also possible to give the global risk-dominance an ‘evolutionary' in-
terpretation. The global risk-dominance represents a kind of evolutionary stability against
possibly large fraction of mutants. Imagine a population where everyone plays si. All of
sudden. a considerable fraction of the population mutates into playing another strategy
sj. In reacting to this mutation. the natural selection process presumably begins to work
and reselects a (possiblly third) strategy s; that does best against the disturbed strategy
frequency. Let us now suppose that the mutants are fixed. That is. the natural selection
process does not operate on the mutated fraction but only on the nondeviating fraction.
In this event. the global risk-dominance guarantees that the natural selection process res-
clects sx again if the fraction of mutants is at most one half. The story can be exemplified

in matrix notation as follows.

Ukk Uki Ukj 1-—--¢ Ukk  Uki Uk 1—-=¢
(1—c 0 &)l wue ty Uiy 0 {0 1 —-¢g &)t wp wy Uy 0
Ujk Uqgi ‘Ujj & Uik Uqg Uqj &

= (1— 5)2(Ukk — k) ~ (1 — 5)5(7115 — Ukj)

The right hand side is positive if s is globally risk-dominant and ¢ < 1/2. Stability against
large deviations seems to be a relevant idea in environments like those of Young (1993).
and Kandori and Rob {1992).1* where any amount of mutation (i.e.. deviation) is possible
all the time. The analysis in the last section verifies this intuition.

!3That is, models built on the work of Freidlin and Wentzell (1984).
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51 89 83 S4
51 10.10 11.7 3.8 0.7
52 7.11 18.18 2.2 —9.16
83 8.3 2.2 6.6 0.0
84 7.0 16. -9 0.0 1.1
Figure 3. A coordination game.
&1 S 81 8o
51 10.10 0.0 81 6.4 0.0
52 0.0 10.10 S2 0.0 4.6

Figure 4. 2 x 2 games from Schelling (1960).14

One drawback of global or pairwise risk-dominant equilibria is that. due to possible
cyclic pairwise risk-dominance relations. they may fail to exist even in the class of coor-
dination games. Stochastically stable equilibria. in contrast, always exist for that class of
games and they are generically unique. There is no doubt that the general existence is a
desirable property in itself. The existence result. however. need not imply that the selec-
tion process always singles out an equilibrium that is consistent with our intuitive notions
of stability. Let us consider the game in Figure 3. The game in Figure 3 is a coordination
game with {(CD). There are two cycles in the pairwise risk-dominance relation. One con-
sists of (81.51). {82.52). and (84.84) and the other involves (s;.82). (83.53). and (s4.54).
Thus there is no pairwise (hence. global) risk-dominant equilibrium. One can verify. on
the other hand. that the stochastically stable equilibrium is (s3.s3}.}%

In this example. the efficient equilibrium (s2. s9) might look attractive at first glance.
but it is rather ‘risky’. In this respect. 53 does look ‘safer’ than s;. The difficulty in this
example is that $; and s4 are also safer than s; and there seems to be no clue that would
distinguish s3 favorably from sy and s4. On the face of it. one can argue that it is simply
‘difficult’ to achieve a successful coordination in the coordination problem described by the
game. In this regard. we recall that Schelling (1960. p.291ff) has classifed games like those
in Figure 4 as ‘insoluble’ on the ground that there is no clue in the payoff structure of
the game that would distinguish an equilibrium from others. It is interesting to note that

14 According to our definition in Section 2. the game on the right is not a coordination game.
15For details, see Appendix 3.
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all games that Schelling (1960. p.291fT) has classified as insoluble are those that have no
risk-dominant equilibria due to ties. Given the example above. our point here is that the
existence of cycles in the pairwise risk-dorminance relation might correspond to ancther
kind of difficulty in a coordinating situation. which can arise only if there are more than
two strategies. If this is so. the example suggests thar this kind of difficulty need not
always be overcorne by the selection processes based on stochastic stability.

Alternatively. we can examine the game in Figure 3 from a formal point of view.
Recall that we defined in Section 2 the exit resistance ~; by

vi=min{y; {je N}

Roughly. ~; measures the difficulty for the process to get out from the basin of attraction®
of the equilibrium (s;. s;). The higher ~;, more mistakes are needed to get out from (s;. s;).
Given this intuition. we call an equilibrium {s¢. sx) v-dominant if

Y= =max{y i€ N}

That is. a y-dominant equilibrium is one that is most difficult for the process to get out
from. It is immediate that a globally risk-dominant equilibrium is a v-dominant equilibrium
with v > 1/2 and that a v-dominant equilibrium always exists and is generically unique.
As mentioned earlier, in the class of coordination games with (CD) and with pairwise risk-
dominant equilibria. globally risk-dominant equilibria and stochastically stable equilibria
coincide. In particular. within this class. stochastically stable equilibria are always ~-
dominant cquilibria. Thus it is interesting to know if stochastically stable equilibria are
v-dominant equilibria in general. It turns out that these notions do not coincide in general
as the unique +-dominant equilibrium in the game in Figure 3 is (s;.s;} with v = 3/10.%7
In summary, in the class of coordination game with (CD). although a stochastically stable
cquilibrium in a game with a risk-dominant equilibrium can be described as the one that
is most difficult for the process to get out from. it may lose this intuitive characterization
when the game has a cyclic risk-dominance relation that results in nonexistence of risk-
dominant equilibria.

In the context of equilibrium selection based on ‘global payoff uncertainty’ & la Carls-
son and van Damme (1993). a recent paper by Morris. Rob. and Shin (1995) have proposed
the notion of p-dominant equilibria. which is similar to our y-dominant equilibria just de-
fined above. An action profile (s1. s2) in a two person finite strategic form game associated
with a state w in an information system is called p-dominant at w if s; is a unigue best
response for the player 7 as long as she believes at that state that player j will play s; with

183ee footnote 6.
175ee Appendix 3.
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probability at least p.!® Morris. Rob. and Shin {1995) have shown that if an information
system has an action pair (7. s2) that is p-dominantat at every state with p < 1/2 and
some additional conditions are met then the only rationalizable play in the incomplete
information game is playing (s1.82) at every state. Our main result in the last section
and the example in Figure 3 show that the number 1/2 is a threshold for the stochastic
equilibrium selection processes of Young (1993) and Kandori and Rob (1992). Similarly.
the result of Morris, Rob. and Shin {1995) shows that the number 1/2 also palys a role of
a threshold for the equilibrium selection based on the global payoff uncertainty of Carlsson
and van Damme (1993).

Finally. we mention a work by Ellison {1995), where our main result has been derived
independently. Ellison (1995) includes. among other things. applications of global risk-
dominance concept to the local interaction model developed by Ellison (1993).1°

18 TFhus, ziven a strategy s;. Morris. Rob, and Shin's (1995) *p’ refers to the probability attached to
si, whereas our vy’ refers to the sum of probabilities attached to strategies different from s;.
19Ellison (1995) calls a global risk-dominant equilibrium a 1/2-dominant equilibrium.
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APpPENDIX 1

Here we verify that the analysis in Section 2 also works for the process of Kandori. Mailath.
and Rob (1993) and Kandori and Rob (1992). Since the process of Kandori, Mailath. and
Rob (1993) is a special case of Kandori and Rob (1992). we henceforth refer only to the
latter. The reader is referred to Kandori and Rob (1992) for details.

Let G be a symmetric n x n coordination game with the strategy set {s;..... Sn}.
Since their model is one of random matching, we first have a population {1..... M} of
playvers. The state space is defined to be

Z={z=(21..... zn) €RY |z e Nforeveryie Nand ) o, % =M}.

Denote by ¢; the state {(0..... 0.3.0..... 0) € Z. where M lies on the i-th coordinate.
Since we are considering a coordination game G and their process is also a best response dy-
namic in the case of without mistake. the recurrent communication classes (i.e.. limit sets.
as Kandori and Rob (1992) call them) of the case without mistake are just {e1}..... {en}

As in Section 2. we define for every z.2' € Z the cost of transition c{z.z') from z to
z’ to be the minimu nuinber of mistakes in the transition from z to 2 (see Kandori and
Rob (1992)). Again similarly to Section 2, for every i.j € N with ¢ # j we call an ordered

tuple 7 = (z1..... 2%y with 2! = ¢; and z¥ = e; a path from an equilibrium i to another
equilibriurn j. Given a path 7 = (2'... .. 2"y define ¢(7) = Y2071 ¢(2% z*T"). Finally

define the cost of transition from i to j by
¢;; =min{e(r) | 7 is a path from i to j }.

Assuming that G has a globally risk-dominant equilibrium (sk. si). we try to evaluate
ci; in terms of v; and 3. which are defined in Section 2. Here we also make use of a "large
parameter’ assumption. Recall that in the proof of the Lemma 2 in Section 2. we have
shown that 3 < 1/2 <~ forevery i € N .

Assumption. The population size M is sufficiently large so that for every i € N_

Af -1

-

Z {,31;;3\{1'

For example. if max{ %, { i € N_x } = 0.4999 then M = 10000 will do. Given this, what
we are golng to show are the following.

(1) ¢ = ~vi(M — 1) foreveryt¢€ N and j € N_,.

(2) {3uM] >y foreveryie N with1 € N_g.

R

It 1s indeed enough to show these since it follows from (1). (2). and the Assumption.
together with 1/2 < ~g. that ¢y < 1/2(M — 1) < ¢k
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(1} can be shown as follows. Let a path {(e;. 22 2%... .. e;) be a minimizer of the
definition of ¢;;. By the ‘triangular inequality’ shown by Kandori and Reb (1992, p.17).
we can assume that there is A € N with z£ # 0 such that s; is not a best response to the
adjusted mixture that s, playing players are facing. In this event it must be the case that

either
5 2p — 1 2
>~y Zh ; ~;
D v T N v e Z};fh T
2
by the definition of ;. Therefore Zz AT =1 > ~;. Thus by the definition of ¢;;. ¢;; =

(M - 1).

Now let us turn to (2). It suffices to show that starting from the state e;. where
everybody plays s;. the process can move into e by just [ 3 M | mistakes. Consider the
state

= (M — [ B ML [BuM]. 0.+ 0.

where the first (the second. respectively} entry denotes the number of players who play s;
(sg, respectively). By the definition of 3. players who play s; at z can optimally play sg
next period. Consequently, we can take as the next state a state z’ where the number of
players playing sy is at least M — [ 3. A ]. Now we notice that it follows from the large
population assumption that
M- [3:M) -
A -1

which means that at 2’ every player is facing a mixture at least a one half of the population

| —

(excluding herself) playing sx. Then it follows from the definition of global risk-dominance
that everybody can optimally play si next period. thereby moving into ey.
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APPENDIX 2
Here we prove the Claim in Section 3. Let G be a syvmmetric n x n1 game. It suffices to
show the following two lemmas.

A.1 Lemma. Assume that G satisfies {CD}. Then the set of pure strategy Nash equilibria
of G is {(s1.81)..... (Sn-8n)}. Moreover. all of them are strict.

Proof. Fix k€ N. It suffices to show that s; is the unique best response to sx. In other
words, it suffices to show that wuir < ugr and ujp < wgp for every i.j € Ny with i # 7.
By (CD) with p = 1. we have

(1) Uik < MaX {Ukk. Usk } < MAX {Upk. Uik Uk }-
Flipping 7 and j and then applying (CD} with p = 1.
(2) Uik << MAX { Uk Uik } < MAX {Ujek - Uik Ujk }-

Now (1) and (2} together imply that arg max {ugk. - w50} = {ure}- O

A.2 Lemma. Assume that G satisfics (CD) and has a risk-dominant equilibrium (sy. s.).
Then for every i.j € N_p., Ugk — Usp > Uy; — Ukj.

Proof. If i = j then the inequality follows from the assumption that (sg.sg) is risk-
dominant. Thus assume that ¢ # j. Consider the ‘subgames’ {sk.s;. 8} % {sk. 5.5}
and {sx. 85} x {sk.55}. Applying (CD) to the completely mixed equilibrium of {sx.s;} x
{5k.5;}. which exists since both (s. sz} and (s;.s;) are strict. we have

U (Uyy — Uky) N Uiy (kg — Ujk) o UkklUjy — Ukl
Ukk + Uj; — Uk — Uik Uk — Ujy — Ukj — Ujk Ukk + Ujj — Ukj — Ujk

First cancelling denominators and then rearranging terms.

Uij — Uk
i j
Uiy — Wpj < (U — Uik )
Ukk — Ujk
. . . Uy — Uk
Since {sk. sx) risk-dominates (s;.5;). ————= < 1. Therefore u;; — ux; < tkr — . 0

Uk — Ujk
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APPENDIX 3

Here we verify that the stochastically stable equilibrium of the game in Figure 3. which is
reproduced below. is (s3.53).

81 $2 S3 54
51 ! 10.10 11.7 3.8 0.7
s | 711 18.18 | 2.2 | —9.16
85 8.3 2.2 6.6 0.0
S4 7.0 16.-9 | 0.0 L1

Figure 5. The game in Firure 3.

First, we compute =;; for each ordered pair i.j ¢ {1.2,3.4} with ¢ # j. Notice
that since the defining minimization problem for «;; is a linear program. we can use. for
example. the simplex algorithm to compute ~;;. We have following values.

~10 = 3/10 = .3000 ~1y = 2/5 = 4000 11 = 9/22 & 4091
val = 20/44 % 6591 a3 = 31740 = 7750 e = 1/6 = 1667
va = 13/40 = 3250 g = 1/5 = .2000 ~vaq = 11/24 & 4583
vap = 1/4 = 2500 vap = 5/6 & 8333 vay = 1/7 %1429

Now assume that the sample size « is so large that applications of addition (4) and
integer operator ([ - 1) (in any order) to ~;s preserve order between ;5. Then we have
following resistances ry;.

— [(3/10)k] = [.30006] 713 = [(2/5)K] = [.4000x] ria = 1(9/22)k] = [4091x]

= [(5/12)k] = [ 4167k] rag = [(13/42)k] = [3095k] Tog = 1(1/6)k] = [.1667k]
r31 = [(13/40)x] = [.3250k] rs2 = [(1/5)k] = [.2000«] r3a = [(11/30)k] = [.3667k]
rq1 = [(1/4)x]| = [.2500k] rao = [(12/35)k] = [.3429x] rag = [(1/7)k] = [.1429k]

In increasing order. we have
Ta3 < Taq <T3p < Ty <712 <723 < T3 < T4 <Tyq <713 <Tpgq <721
or
[.1429k] < [.1667K] < [.2000x] < [.2500k] < {3000k} < {.3095k] < [.3250k] < [.3429k]
< [.3667x] < [.4000k] < [.4091k] < [.4167x].
Now it is easy to see that the unique minirnum tree is
1-2—-4-3.

Therefore (s3.53) is the stochastically stable equilibrium.
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