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Abstract

This paper presents a model in which organizational structure emerges as the solution of
an optimization problem. The objective is to compute the desired decisions in a given
class of economic environments, and the constraints express limitation on the abilities of
agents to compute and communicate. The “variable” to be solved for, whose values are
interpreted as different organizational structures, is a type of directed graph (an
EADAG). Depending on its structure, a solution graph may represent organization into
one or more informationally independent units. The structure of solution graphs is
derived from the nature of the coordination problem as expressed by the desired decision

function.

Key words: Bounded rationality, Coordination, Computational complexity,

Organizational structure, Theory of the firm.



Introduction

Section 1. Theory of the firm

All economic activity is ultimately economic activity of individuals; individuals are the
atoms of economic theory. However, in a developed economy, a large part of that activity
takes place in multiperson organizations. Production of goods and services 1s usually
carried out by firms, which have been created to act as economic agents, and which even
have in some respects the legal status of persons. Holmstrom and Tirole observe that
“the volume of trade within firms is probably of the same order as market trade. Large
firms are substantial subeconomies of their own with thousands of participants.”
(Holmstrom and Tirole [5], p. 63). Nevertheless, in economic theory a firm is typically
treated as an individual decision maker. If, as Frank Knight thought, the focus of
economic science is to understand how a society organizes its economic activity, a theory
of the firm should address the firm’s internal organization. Holmstrom and Tirole begin
their chapter with the comment, “The theory of the firm has long posed a problem for
economists. While substantial progress has been made on the description and analysis of
market performance, firm behavior and organization have remained poorly understood.”

(Holmstrom and Tirole [5], p. 63).

A theory of the firm should determine the set of firms that exist, and their organizations
and behaviors. One approach to this task derives from Coase’s idea that economic
institutions, including firms, exist to facilitate exchange and can be understood as optimal

adaptations to contractual constraints. The transaction costs approach to the theory of



the firm follows Coase. (Williamson, Q. [25], [26]). According to that approach, a firm
is a contract between parties (individuals) designed to minimize transaction Costs

between specialized factors of production.

““A prime source of transaction costs is information. For technological reasons it
pays to have people become specialized as specialization vastly expands the
production potential. But along with specialization comes the problem of
coordinating the actions of a differentially informed set of experts. This is costly
for two reasons. Processing information takes time and effort even when parties
share organizational goals. More typically, individuals have differing objectives and
informational expertise may permit them to pursue their own objectives to the

detriment of the organization as a whole.” (Holmstrom and Tirole [5], p. 64).

The foregoing observations suggest what a formal theory of the firm should (perhaps

ideally) look like. The formal model should contain:

I.  aset of environments incorporating the relevant constraints on the activity to be
coordinated, such as the set of individuals, preferences,technology and resource
endowments;

II.  aset of entities that can be interpreted as different organizational arrangements and

behaviors, 1.¢., possible firms;



III. a collection of constraints that apply to individuals or the entities in II; the
constraints should include those related to information processing, and those related
to incentive compatibility, as well as technological and resource constraints;.

IV. acriterion in terms of which alternative organizational arrangements and behaviors
can be compared, and which incorporates the effects of technological and resource
constraints given from the environment, as well as the objectives of economic

activity.,

In other words, there should be a variable whose values correspond to different kinds of
firms, a set of constraints on this variable expressing technological and resource
constraints, the constraints on information processing, and incentive constraints on
individuals, and groups of them, and a criterion of performance that expresses the goals of
action. A model of this kind defines a set of possible firms. To solve the model means to
find a subset of the set of possible firms that maximizes the criterion over the set of

environments specified, subject to the constraints.

The distinction between positive and normative theory becomes subtle when theory is
built on the idea that a firm is to be understood in terms of optimal adaptation to
constraints. We may therefore take the viewpoint of a designer of firms, without

commitment as to whether the theory is to be interpreted as positive or normative.

The aim of this paper is to take a step toward the formulation of such a theory. In this

step the constraints arising from incentives are ignored. The focus is on the effects of the



“prime source of transaction costs,” namely the fact that information processing takes
time and effort. This fact arises from limitations on the capacities of individuals and
equipment to process information. This leaves us with the problem of solving for firms
as optimal adaptations to the constraints on information processing capacities of
individuals, 1.e., adaptations to the bounds on rationality. Of course, a model with this
limitation will not yield a complete theory of firms, but at best a theory of organizational
units that are in some sense informationally distinguished from one another. Such a unit
might be called an informationally distinct organization, or briefly, a division. As the
statement quoted from Holmstrom and Tirole suggests, the problem in which only
informational aspects are treated is analytically separable from that in which incentive
constraints are considered. The Benchmark Case discussed later in this Introduction
supports the view that confining attention to informational constraints yields a
substantial area of problems with significant practical implications. Radner has noted that
“ . areasonable estimate is that more than one-half of U.S. workers (including managers)
do information processing as their primary activity. If we add to managers (managers are
those who figure out ‘what to do’, while workers are those who ‘do’) those who support
managerial functions, we probably come out with roughly one-third of the U.S.

workforce” (Radner, R. [18]). (Radner, R. [19], p. 1109).

We tum now to a brief, informal summary of the model, followed by a summary of the

other contents of the paper.



We begin by considering how economic activity in a given class of economic environments
might be organized. It is useful to think of organizing production in a class of
environments in which production possibilities (technology of production), and
constraints on the initial distribution of information about them, (“differentially informed
experts”) are given. In how many separate units (“divisions™) should production be

organized, and what should those divisions be doing (their structures)?

A class of environments, (represented parametrically in what follows) together with a
performance criterion, or goal function, determine the optimal or desired action(s) to be

taken in each possible environment; call this a desired decision function. For example, in

a market economy a given production possibility set, and the goal of maximizing profit,
determine the (decision) function that associates with each environment (technology,
resources, etc.) the profit maximizing action(s) for that environment. (In this informal
discussion functions also stand for correspondences.) A decision function (including its
domain, the set of environments) and the constraints on the imitial distribution of

information define a coordination problem.

Managing production in a firm has many aspects. In this context, we ignore many of
them and take the task of managing to be to figure out what to do; it is the task of
computing the value of the desired decision function from the given information about the
prevailing environment. This computation is constrained by the existing technology of
information processing (distinct from the technology of production), and by the resources

available for information processing tasks. To analyze this task, we need a model of



information processing. The model of information processing technology used here is
based on the Modular Network model (Mount and Reiter [15], [16], [17]). As extended
here, the model allows us to define a “variable” whose “values” represent the available
ways of solving the coordination problem. The variable is an Assigned Directed Acyclic

Graph (ADAG).

An ADAG has several (four) components of cost associated with it. These include:
costs of communication, a cost associated with the length of the computation, called
“delay,” and a cost associated with the number of agents used to carry out the
computation. Two kinds of communication are distinguished; one is internal the other
external. This distinction is important in the analysis. The motivation for it is discussed

in the Rowing Example presented below.

It is assumed, mainly for simplicity, that the cost function is linear in these
components. [t follows that if the cost coefficients are positive, the cost minimizing
solutions are found among those ADAGs that are efficient in the space of the cost
components. These are Efficient ADAGs, or EADAGs. Each EADAG represents a
solution to the coordination problem, i.e., to the managerial task of figuring out what to do
given the decision function, the constraints on initial information, and the constratnts on

information processing. Each EADAG represents an efficient organization of that task.

The organization represented by an EADAG can be interpreted as consisting of a number

(one or more) of informationally distinct organizations, depending on its structure. An



EADAG can be cut arbitraily into components, connected by external communication
channels, called “crosslinks”. The components can be regarded as separate
organizational units, i.e., divisions, or as parts of a single division. The criterion is the
relation between the number of crosslinks between components and the number of
parameters characterizing environments. Roughly speaking, if the number of links is
independent of the number of environmental parameters, then each component of the
decomposed EADAG represents a separate division. If there is no such decomposition
of the EADAG, then it represents one division. (Theorems that characterize EADAGs,
and methods for constructing them are presented in Appendix 1 and Appendix 2.) The

intuition behind this definition 1s discussed in Section 4.

Given the decision function, and the value function for which it is optimal, the”size” of
the organization may or may not be bounded above. This depends on the net value
function. The net value at a particular environment is the value corresponding to the
actions determined by the decision function, less the costs of computing those decisions.
Because environments are represented by parameters, the “size” of a coordination
problem in a particular environment can be taken to be the number of parameters
characterizing that environment. It is convenient to think of a class of environments

such that the number of parameters is unbounded, called a large class of environments . If

there is an environment with q parameters such that for all environments whose number
of parameters is less than q, the net value function is positive, while for all environments
whose number of parameters is at least ¢, the net value is not positive, then the size of

the unit is bounded on that class. The bound on the size of a unit, and the size itself,



which might be less than the bound if additional factors are involved, depends on all the
components of cost, while the structure of units depends mainly on communication

COsts.

The organization of the rest of this paper is as follows. Because the approach taken in
this paperis likely to be unfamiliar to most economists. it seems desirable to devote
more effort to clarifying the intuitive underpinnings of the approach than might be
needed for a more familiar model. We therefore begin with the case of a real
manufacturing firm (a gear factory), very briefly described, that will illustrate some of the
issues and ideas used in the formal model, and which is a real example to which the model

is intended to apply.

In Section 2 the idea of coordination, which plays an important role in the case of the gear
factory, is addressed directly, and its informational consequences are explored with the
help of a thought experiment, the Rowing Example. In this example coordination requires
that certain things become common knowledge among the participants. Whether common
knowledge can be achieved depends on the nature of communication between the
participants, which in turn depends on the organization in which the participants live.
The consequences of different ways of organizing the activity to be coordinated motivate
building the distinction between two types of communication, internal and external, into

our formal model.
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Following this, the informational task of coordinating is specified in terms of decision
functions, and the Modular Network model. The salient features of this model are
presented, following the formulation of Mount and Reiter [15] [16] [17] . Then the

execution of an algorithm by assigning the component tasks to agents is modeled.

In Section 3 the costs of information processing are modeled, the concept of efficient
assignments of tasks to agents is introduced, and the relationship between efficient

assignments and cost minimization analyzed.

The interpretation of an assigned graph as a representation of organizational structure is

discussed in Section 4.

In Section 5 the model is applied to three prototypical examples. In Example 1, which 1s
intended to capture elements of the coordination problem in the gear factory, the efficient
organization of production is in one unit, in Example 2, which is superficially similar to
Example 1, but differs from it in an essential way, the efficient organization consists of
two units. Example 3 is an Edgeworth Box economy. Two versions are considered, a
static equilibrium version, and an iterative dynamic one. The efficient graphs vyield
decentralized organization into two units in the static case, and three in the iterative

dynamic version.

It is also shown for Example 1 that the size of the one division which is the solution is

bounded. This question is not addressed for the other examples.
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Section 6 has two parts. The first presents some general results useful for analyzing the
amount of external communication implied by a given coordination problem. This
problem is closely related to a problem that has been addressed in two different contexts.
One is the analysis of the communication requirements imposed by a distributed
computation of a function (Abelson [1], in the smooth case); the second 1s the analysis of
the communication requirements of realizing a given goal function by an (equilibrium)
decentralized mechanism, which we may refer to briefly as the “message space
literature.” (A review of that literature can be found in Hurwicz IDE). Section 6 includes
a brief summary of results based on Abelson [1],Hurwicz [6], Chen [2], and Hurwicz and

Reiter [8].

The second part of this section summarizes William’s genericity theorem (Williams [23],
which shows that the coordination problem in Example 1 1s prototypical in the sense that
the function to be computed in that example is generic in the space of smooth functions
with the Whitney topology. This suggests that we might expect that a large fraction of
economic units would be multiperson organizations coordinated by internal information
processing, i e, that we should expect to see a lot of economic activity organized in

informationally distinct organizations each consisting of more than one agent.

Finally, two appendices that present characterizations of, and methods for constructing,
efficient assigned directed acyclic graphs from a given modular network with assigned

inputs, may be found in Reiter [22].
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A Benchmark Case

In building theory it is useful to have in mind a real instance of the phenomena the theory
is designed to capture. The following brief description of the experience of one firm is
presented for this purpose. The description is based on the author’s experience
designing and implementing a system for managing production in that firm. Only a
sketchy description is given here. A more complete account can be found in

Reiter [20]. The description given here is of the firm at the time when the system was

designed and implemented.

The company manufactured high quality gears and gear assemblies, such as power
transmission systems, for a variety of customers and applications, such as tractors,
earthmoving equipment, among others. The gears ranged from small gears with diameters
of about 3 inches to large gears about 3 feet in diameter. Some are on shafts, some on
internal rings, external rings; virtually every type of gear and tooth geometry is made, and

close specifications may apply to all physical and metallurgical properties.

These products were produced to order in a plant with about 1000 machines grouped 1n
250 work centers The number of operations (on different machines) involved in
producing a gear may vary from about 7 to about 50. In addition to its physical and
metallurgical properties the promised time of delivery (due date) is important. Two

aspects of delivery time are important:
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(1) the length of time between the placing of an order and its due date, (called “lead

time”) ;

(2) the reliability of delivery at the requested or agreed time, called “meeting due date.”

Several orders for the same physical gear placed at different times, or calling for different
due dates even if placed at the same time are effectively different products. The
specification of what 1s to be produced can be, and typically is, complex; in terms of the
parameters needed for its description, 1t 1s of high dimension. Most orders are for
between 50 and 300 pieces, but they can be for as few as 1 piece, or as many as 5000,
The mix of orders shifts even in periods when the total volume of work remains relatively

constant.

The performance on any one order depends on decisions made about how and when to
produce the other orders in the shop, and on the state of machines in the shop during the
relevant period. The task of managing production includes figuring out how to coordinate
the execution of the thousands of operations needed to produce the mix of orders in the
shop--figuring out what to do and when to doit. This task involves bninging to bear the
values of many variables for each of hundreds of orders and thousands of operations. As
the number of orders grows, the number of parameters that must be included in the
calculations leading to the decisions required to manage production also grows, as does

the complexity of the calculations.



Moreover, this task must be repeated periodically as old orders are completed, new
orders enter and unforseeable events occur, such as machine breakdowns, or changes
onginating with customers.

The system in use at the time was the standard one for managing job shop production.
Production managers decided when to release orders to the shop, using the due date, and
allowing standard time estimates for completing the required work; the foreman of each
work center scheduled the work 1n his work center using manual methods to calculate
Gant charts; expediters from the production management department intervened in the

shop to alter decisions in light of unforseen events and pressure from customers.

The new system that was designed and installed for this company combines computer
programs for processing information and making decisions, human information

processing, and human decision making.

The new system changed the information communicated within the firm and between the

firm and its customers. It also changed the way management decisions are made about

what to do and when to do it. The machines and workers in the shop were unchanged, at

least until the firm decided to expand, and the incentive systems used were the same

before and after the system was introduced.

The effects of the new system were manifold. We note here only two of them.

16



®  When the installation of the system was completed there was a jump in productivity
of about 33% The new level was maintained thereafter.

e After several years the company built a second plant, about the same size as the first
one. Several years later it built a third plant. All plants were managed as one firm

by the same system, with one computer.

The relevance of this case to the theoretical model presented below may be indicated by a

few observations.

We are not here concerned with modeling production in the shop, but rather with
modeling the management of that production. The decisions that must be made in order
to produce a given assortment of orders with the given resources (machines, tools, labor
and skills, etc) are the focus. Among these are the decisions as to what operations among
those in the given assortment of orders will be performed on each of the 1000 machines at

each moment of time, (the schedule).
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It is conceivable that each machine or work center (a group of similar machines} could be
managed by a separate business unit, a “mini-firm,” even if physical considerations made
it desirable that the work centers all be located in the same building.! Each mini-firm
might, for instance, sell time on its machines, along with the other services needed to
execute the specified operation on that machine. The buyers of time might be the
customer submitting the orders, or for each order (job) a job-manager internal to the gear
producing firm, who would know all the relevant information about a particular job. The
idea behind this form of organization is that the prices of machine times would serve as
the coordinating device. But, as the following simple example suggests, this hope 1s not

likely to be fulfilled.

Consider a plant that consists of two work centers, A and B, each with just one machine,
which we may also call A and B respectively. The customer’ s job requires two
operations, the first on machine A, the second on B. Each operation takes one hour per
piece. The order is for 100 pieces. The due date for the job 1s D. We suppose that,
because of the time and effort required to change the set-up of a machine, once processing
starts on a machine it continues without interruption until all 100 pieces are done.
Suppose to begin with that the customer has bought the interval [0,100] on machine A,
and asks himself, What 1s the value to me of an interval [t, t’] on machine B? We consider
a few specific intervals. For instance, the interval [100,200]. If the due date is later than
200, then this interval 1s worth more to the customer than 1t would be if it D were less

than 200. If, for instance, D = 150, then the intervals [1, 101]. [2.102], .., [50. 150]

18



would each be worth more to the customer than would the intervals [t, t'] where t is
greater than 50. Furthermore, given that the customer has already bought the time intervel
[0,100] on machine A, he could meet any due date D later than 101, if he could buy the
appropriate interval on machine B. Thus, the due date D = 101 could be met by buying
the interval [ 1.101] on B and processing the first piece to finish on A, which it does at
hour 1, immediately, so that it finishes on B at hour 2, the second so that it finishes at

hour 3 and so forth.

However, if the due date were 150, value to the customer of an interval on machine A
would be the same for all intervals [a,a’] where a is between 0 and 49, provided that the
customer can buy the interval [50, 150] on machine 2. The customer cannot know the
value to him of an interval of time on machine m, where m is either A or B, unless he also
knows which interval of time on the other machine he will have to go with it.  If the job
has more operations in different work centers, in order for the customer to know the value
to him of time in any one of them, he must know the intervals available to his job 1n all
the work centers. Morever, since the intervals are determined by the processing time per
piece in each work center and the number of pieces, when there are different jobs with
different processing times per piece, and ditferent numbers of pieces per job, the number

of intervals that must be distinguished can be very large.

If prices are to be used to equate supply and demand for machine time, then each interval
of time in each work center will require a different price. Even if a set of equilibrium

prices (making supply equal to demand) existed, it would be a very large problem to find
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them, a problem not different from that of constructing production schedules directly.
But we cannot be assured that equilibrium prices do exist, because of the indivisibilities
inherent in the problem, and because of externalities also inherent in the problem. The
latter arise because intervals of time on given machines that are each independently
feasible, may together not be feasible. For example, the interval [50, 150] is feasible on
machine A, and so is the interval [1, 101] on machine B, but the pair is not feasible. In
other language, the production set describing the two machine technology is not the
cartesian product of its projections onto the axes containing the individual production sets

of machines A and B respectively.

The preceeding discussion of the coordination task in this gear manufacturing plant is
informal. However, without claiming to have proved anything, it strongly suggests that
the coordination problem presented in this case calls for all the information to be
processed within a single organizational unit, and that, because of informational
complementarities, management of production could not be improved by creating

informationally distinct divisions, and might well do worse.

Moreover, as the number of orders (per unit time) grows, the amount of information (the
number of parameters) to be taken into account also grows. With that growth, the
difficulty of figuring out good schedules grows rapidly. The method used by the company
was the standard way of calculating Gant charts, a calculation carried out in part by
production schedulers and mainly by work center foremen. This could be described as

applying an algorithm to the data about jobs and machines, using the resources available
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for information processing. The algorithms known at that time and the resources available
to execute them are inadequate to the task of computing shop schedules when the number
of jobs and machines is moderately large. While in fact decisions made in the shop,
however arrived at, in effect determine a schedule, that schedule is generally far from
efficient. Symptoms of inefficiency included long lead times, chronic failure to meet due
dates, very large in-process inventories and in general a chaotic atmosphere of recurrent

emergencies.

The size of the firm was not limited by technological constraints, or by the extent of the
market, either of which could be binding, but in this case were not. Instead, the firm was
limited in size by the capacity of the management to run it efficiently, i.e, by the
technology of information processing, and by the capacities of the resources available for
information processing, that is, by the limitations of the algorithms for scheduling
production known at the time, and by the capacities of the resources (people and

machines) for executing the algorithms.

The new system changed the technology of information processing, and therefore the
technology of managing. The new system introduced a new algorithm for calculating shop
schedules, and new resources in the form of computers, for executing the algorithm. The
result was a large increase in the abihty of the management to make good decisions to
control production. This improved productivity and also permitted a large growth in the

size of the firm they were able to manage.
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The role of incentives in bringing about the changes this firm expenienced in its internal
organization, productivity and size was limited. The incentive system used in the
business, both in the shop and for the management, was the same before and after.
Incentives to make higher profits no doubt encouraged the management to run the nisk of
investing in the design of a new and then unproven system, but, their perception that the
existing system was overwhelmed played a more important role than any then necessarily

vague anticipation of higher profits.

This example tends to support the notion that it may sometimes be productive to
consider information processing and computational constraints separately from incentive
constraints. It also represents a real situation of which Example 1 below 15 a more

abstract prototype.

We return to this case at the end of Section 4 after the proposed model has

been presented.
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Section 2. Informational limitations and coordination

Multiperson organization is in a sense forced on economic activity by limitations on the
capacities of economic agents to communicate and process information, even with the aid
of computers and telecommunications equipment. These limitations define constraints on
organization analogous to the constraints on production imposed by technological
knowledge generally. A design of organization that violates these constraints is Utopian
in the same sense as one that violates other laws of nature, physical or human. However,
within the limits of feasibility imposed by informational constraints there appear to be
many choices, just as there are options in production. It 1s of central interest to the
design of organizations, and therefore to the theory of firms, to know the structural
organizational consequences of different coordination requirements under given limitations

on information processing capabilities of economic agents.

The common understanding of the term "coordination" is that it refers to a situation in
which several actions "fit well together," or "match." A formal way of expressing this in
general terms is that at least two variables specifying actions or decisions are involved,
and that not every feasible combination of these vanables leads to the same “utility” of
outcomes. In a simple setting, there is a function whose domain is the cartesian product
of the domains of the two (or more) variables. Fixing a value of this function defines a
locus of points in the product domain, a level set. A vector of vanable values 1s deemed

coordinated if it lies in the specified locus. An alternative formulation is that the value of
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the function defines a “degree of coordination.” The following example helps to explore

and clarify ideas about coordination that motivate the model presented subsequently.

Rowing, a motivating example.

We consider two oarsman in a racing shell. The speed of the boat depends on a number of
factors: the power of the oarsmen, the pace-number of strokes per minute- the skill of
the oarsmen in executing the strokes, and the interaction between the oarsmen. For any
given characteristics of the individual oarsmen the speed of the boat depends on the
degree of synchronization of the strokes. The strokes of different oarsmen should be
synchronized to obtain the highest speed given the other characteristics of the strokes.
Any deviation from simultaneity reduces the speed of the boat. That is, the actions of
the oarsmen should be coordinated. To focus on the issue of coordination it is helpful to

consider a thought experiment.

Instead of the two oarsmen sittting in one boat, imagine that there is a “sculling
simulator”, similar in concept to a flight simulator, in which the scullers (rowers) each sit
alone 1n a room equipped with a rowing seat and a pair of oars. The simulator calculates
the movements of the boat, including its speed, resulting from the actions of the two

oarsmen.

Suppose the event involved is a trial in which the rowers seek to attain the highest
possible speed for a given number of strokes, once they have started rowing. Maximum

speed s attained when the two rowers synchronize each of their strokes, other things



equal. We may simplify the situation by assuming that the pattern of a stroke in time is
the same for the two rowers. Hence coordination reduces to synchronizing the start of
each stroke, in particular the first stroke. Thus, each rower must decide when to start
his first stroke. We may suppose that no rower will start his stroke unless he 1s assured
that the other will also start at the same time, because one rower starting alone will

destroy the possibililty of maximizing the speed.

Suppose that the simulator has a communication channel through which the rowers may
send signals or messages to one another, say a runner who can carry messages down the
corridor between the rooms. The channel is not completely reliable; the time it takes for
a message to be transmitted is variable and unknown, and includes the possibility that a
message sent may never arrive. One rower, say, rower [, could send a message to the
other of the form, “I will start rowing x time units from now ” Because transmission
takes some variable unknown time, rower 2 cannot know exactly when the message was
sent, and hence cannot know exactly when to start rowing himself. Furthermore, he might
think that rower 1 does not know whether his message was received, or, if received, when

it was received.

This is a version of a problem well-known as the Coordinated Attack problem. In that
problem two commanders are physically separated and can communicate via an unreliable
channel. They must agree to attack at dawn. Here, while the time of the attack is not a
problem, because the dawn is observed by both and this fact is common knowledge, it is

not common knowledge that they will both attack at dawn. To attain common knowledge
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that they will both attack at dawn is equivalent to an infinite sequence of statements of
the form, “I, commander A will attack at dawn.” “I commander B will attack at dawn.”
“I commander A know that commander B will attack at dawn.” “I commander B know
that commander A will attack at dawn.” “ I commander A know that commander B
knows that I will attack at dawn,” and so on ad infinitum. In the Coordinated Attack
problem, neither commander attacks, because common knowledge that they will both
attack cannot be attained in finite time. In the equivalent rowing experiment, neither

rower will start rowing.

Of course in actual rowing races, the organization of rowing allows the rowers to use a
different channel of communication from that in the rowing simulator. The thought
experiments helps to illuminate the actual rowing situation, in which the rowers sit one
behind the other in the same boat. That arrangement somehow allows them to attain
common knowledge of their agreement to start the next stroke at a particular time. In
other words, physical proximity makes available channels through which a very large
amount of information can be communicated quickly. Experience as a rowing team

allows them to learn to use that information to coordinate their actions.

Another configuration is a rowing crew consisting of two oarsmen and a coxswain. Both
rowers face the coxswain, who, like the conductor of an orchestra, gives the beat. (He
also steers the boat ) This configuration makes the time of the next beat common
knowledge for all practical purposes. Each rower senses the beat given by the coxswain,

by hearing, seeing, and feeling the vibration of the beat through the boat, and each knows
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that the other is exposed to the same signals. (The coxswain actually beats a rhythm
which the rowers use to predict the start of the next beat. Therefore it takes a period of
experience together for the crew of three to come to have confidence in one another’s
responses. In this situation the common knowledge is perhaps of the functions that
describe their individual reactions. Of course, in practice they may achieve only a close
approximation to common knowledge. In the case of an eight person crew, it is evidently
too difficult to achieve a satisfactory degree of coordination without the use of a

coxswain. A coxswain is part of the crew in all eight cared crew racing events.)

To sum up, the coordination task involved in rowing efticiently requires the
communication of a very large amount of information among the crew. If the rowers are
separated and therefore must use the technology of remote communication, they cannot
coordinate their actions well, while if they are physically close, a different type of

communication channel is available which does enable them to coordinate well.

To anticipate the modeling to come we introduce a little notation into the rowing example.
For the present purpose we consider the actions of the rowers to be a sequence of
strokes. We take explicit note of the time at which each stroke starts, and assume that all
other relevant quantities are built into the function whose value measures the
performance of the shell, e g, its velocity, or the time it takes to cover a given distance.
Thus, let x; and y; denote the times at which rower 1 and rower 2 start stroke |,
respectively. Then the sequence (x;,y1). ... . (X,.y») determines the performance of the

shell over the course of n strokes. The funcuon
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F(IP_‘/.P...,I",_‘,»") = (k —h(xj,_vj))

gives the performance of the shell once rowing has started. (To avoid complexities which
we will not in fact do anything with, we do not model here what happpens if neither
oarsman starts rowing.) Here k 1s a constant (actually a parameter determined by all the
relevant quantities other than the time at which the j™ stroke begins, and which have been
assumed constant) representing the best performance given all the relevant quantities, and
h represents the deduction from optimal performance due to failure of coordination. A

particular example of the function h is

h(xf’-"j) = E((" - ."j)z ) where (8} > 0,and h(0)=0 .

J

In informational terms, the problem of achieving coordinated behavior is that of
computing the minimum of the function h. In general, as remarked above, from an
informational standpoint a coordination problem is a problem of evaluating a function of

the variables whose values are to be coordinated.

To sum up, tasks differ as to the amount of information required to achieve coordination.
Some can require transmission of very large amounts information among the participants.
The channels available for communication seem to be of at least two types, those for

remote communication, , and those that apply when human beings are in close proximity

for long periods of time. The latter seem to be capable of carrying a great deal of
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information, often subtle, quickly. The former seem to be of relatively limited capacity,
i.e., relatively slow, and unreliable. The distinction between two types of

communication links is important in the model presented below.

Firms and Information Processing

With these examples in mind, we return to the discussion of firms and economic
organizations. In economic theory, the firm is typically viewed as a single economic agent
whose behavior is described by a decision rule. In carrying out an action, the firm may be
viewed as computing the value of its decision rule--a function from inputs that specify its
environment, to outputs that designate its actions. (Here we are focusing on the routine
operations of the firm ) Because of the limitations on information processing capabilities,
the task of deciding must be spread among a number of individuals or agents. The
outcome of this process depends on how the information processing is organized , i.e., on

how the component tasks are allocated.

While a firm typically computes its decisions repeatedly as circumstances change over
time, we abstract from the full dynamic problem and instead consider that the firm faces a
set of possible environments and that it must compute its decision rule not just for one
particular environment, but for any environment in that set. In the case of the gear
factory, the management must be able to compute its shop schedule for any set of orders
it might receive. The set of environments and the decision rule that characterizes a firm

are specified once and for all. Exploration of a dynamic model in which the firm is



viewed as adapting to a changing environment is reserved for subsequent analysis, in

which the analysis carried out here would be one step.

Accordingly, a mode of organization in its informational aspect consists of’

(1) an algorithm for computing the decision rule, and

(1) an assignment to agents of the steps required to execute the algorithm.

In the case of the gear factory, an environment includes the set of orders that must be
produced, including specification of due dates and technical dimensions of the product, as
well as the state of the machines in the shop given from the past at the time the decisions
must be made. The decisions to be made include how and when all the required work will
be done. Thus, the decision function has as inputs all the data available about orders and
machines, and as outputs, the shop schedule for some prescribed interval of time into the
future. This is the function to be computed. Note that while the shop schedule itself
involves time, and is dynamic, the algorithm is one that computes a single shop schedule,
having a single date at which it takes effect. In the gear factory this algonithm is
embedded in a dynamic system that computes a sequence of schedules. We abstract from

the latter dynamics here.

An algorithm for computing a function will be modeled here by a modular network,

following the formulation of Mount and Reiter, [15], [16], [17]%. In that model, a modular
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network is specified by a set of modules (elementary operations or functions), and a
directed graph showing constraints on the order (partial) in which elementary operations
can be performed. In other terms, a module can be visualized as a black box with possibly
many input lines and one output line, taking one unit of time to compute its output from
its inputs. {Here a unit of ime 1s the time it takes to execute one elementary
computational step and 1s assumed to be the same for all modules. Reference to time
could be eliminated altogether by counting elementary steps instead.) A modular network
consists of modules wired together subject to the condition that each input wire of a
module is connected to at most one output wire. A module is interpreted as representing
an elementary computation. What is considered to be elementary may be relative to the
available means for computing. For instance, in some circumstances the basic arithmetic
and logical operations may be taken to be the only elementary operations, while in other
circumstances, say, when the computing is to be done by a person equipped with a
computer and a program for finding the roots of a polynomial of given degree pinn
variables, then one might sometimes want to consider finding roots of such polynomials
to be elementary. The functions allowed to be modules, i.e, the operations assumed to be

elementary, are restricted to a specified class.

The class of elementary functions, a primitive of the model, provides a formal way of
expressing limitations on computational powers. The set of functions allowed to be
modules might include, for example, Boolean functions, or Heavyside functions, or
smooth functions, or polynomials of no more than a specified degree, or real analytic

functions. (For some purposes it is appropriate to regard even continuous functions as



elementary.) The class of elementary operations can formalize other limitations on
computational abilities. For example, if, as has been pointed out by psychologists, the
amount of information that a person can absorb at one time {or the inputs that a machine
can accept simulataneously) is limited, then the class of elementary operations may be
required to satisfy the condition that a module 1s a function of at most r vanables, where
ris a given positive integer, and each variable may be a d-dimensional vector, d a positive

integer. A modular network that satisfies that condition is called an (r.d)-network.

Making the class of elementary operations a primitive of the model gives control over the
level of reduction in a particular application, because a computation need only be reduced
to expression in terms of the operations specified as elementary. (The graph expressing
the structure of the algorithm involved is also a primitive of the model. Restrictions on
the class of directed graphs allowed can also express bounds on the rationality of the
agents. It should also be noted that the possibility of d > | allows the elementary
operations to include conditional switches even when modules are restricted to be

continuous or even smooth functions of real variables.)

Execution of a computation--assignments

The process of arriving at a decision is modeled as one of computing the value of the
decision rule from observation of the values of its arguments. The possibilities of
observing the values of variables in the environment are restricted. These restrictions are
here assumed to be given; this assumption expresses the i1dea of “differentially informed

experts” quoted in the Introduction. The computations called for by the algorithm used
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to evaluate the decision function must be performed by individuals, perhaps with the aid

of computers or other equipment. The computational capacities of an individual, or an

individual-computer combination, are expressed by the set of elementary operations

(modules) that individual can execute.

(2.1) The assignment of modules to individuals is made subject to three constraints:

1) Any module assigned to an individual must be one of her elementary operations;

2) A module representing the observation of an input variable must satisfy the restriction

on who may observe what;

3) Parallel Constraint: Each individual is capable of carrying out at most one elementary

operation in one unit of time.

Thus, even if the algorithm allows two particular operations to be carried out in parallel,
and therefore both could in principle be executed in one unit of time, (or one
computational step) that can be done only if those operations are assigned to different

individuals.

Different assignments of elementary operations can induce different organizational
performance. For instance, the time (number of sequential computational steps) needed

to complete the evalution of the function, and the patterns of communication and memory
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involved in the process depend on the assignment of modules to individuals. These
factors play a central role in our analysis. If the computations can be spread out among
many people, the time required may be reduced by doing them in parallel. But
distnbuting the computation may entail more communication among the individuals,
which might offset or even reverse the advantage of parallel operation. Furthermore,
using more individuals, who are typically employees of the firm, usually entails higher
costs. Modeling the time and effort of information processing when individuals have

limited information processing capacity is the focus of the next section.

Section 3. Costs of information processing and efficient assignments

Suppose that the function P: X — Y, where X and Y are Euclidean spaces, is the
function to be computed, 1.e., the decision rule. We might take “optimal adaptation to
informational constraints” to mean organizing the required computation so that the cost
of carrying it out 1s minimum. To this end, we first seek efficient ways of carrying out
the required computation. Minimum cost is achieved by choosing among the efficient
organizations of computing given the cost weights, or prices, which allow the different

dimensions of cost factors to be combined into a cost figure.”

Suppose that there 1s an (r,d)-network (A with modules in the class _f that computes P

in time t*. If t* is minimal for (r,d)-networks with modules in £, then t* is the



computational complexity of P relative to _ £ (Mount and Reiter, [16], [17]). We

suppose that the network (A is one that achieves the minimum delay t*.

The network A may have feedback loops. It is well understood that such networks can

be delooped. It is shown in Mount and Reiter (Mount and Reiter, [16], [17])* that for

each such network (A4, and a function P that it computes in time t*, there is a loop-free

network, a directed acyclic graph (DAG), G, with the following properties:

(1) G has the same modules as (A, with the possible addition of projections,

(i) G computes P 1n time t*.

We may therefore without loss of generality suppose that G 1s a tree.
The length of the longest walk from a leaf to a root of G, is t*. Denote by M the number
of vertices of G that have modules other than projections. Denote by C the number of

arcs in (5 that connect a pair of modules that are not both projections.

Figure A and Table | show a modular network and the computations it carries out. Figure
B shows the tree that computes the function that the network in Figure A computes in 4

units of time ( four elementary sequential computational steps).
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The function computed in time 4 by the (2,1)-network in

Figure B has the following expression as a superposition,

EB(F (B (W F(x D)), B (. F (x F(r.0)) =

Fx By R(x1))

By A(xL)

B3R F(0))  1+y+ E(xF(y,0) i}

x(I+ v+ F(x.1y) _ x(l+y+x)

_ x(l+x+y)

l+x+xB(n0)  T+yv+x(d+y)  (1+x)(1+y)
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Assigning modules

We use the term agent to stand for an individual, or a computing devise, or an individual
with a computing device capable of carrying out an elementary operation, i.¢., capable of
evaluating a module.

Let the set of agents be {1,---, N} Let @ denote an assignment of the modules of G to
agents, i.e, @ is a function from the set of modules of G to {1,---,N}. The restriction of
a to the leaves of G must agree with the given restrictions on who may observe whait.
The assignment « determines several quantities of interest. First, the length of time
(number of sequential steps ) required to compute P under the given assignment, denoted
7(a). Second, the amount of communication that takes place within each agent..

Third, the amount of communication that takes place between different agents.

Because the graph G is acyclic, (and so is the assigned graph) each arc camies one
“message” in the course of a computation. Therefore the number of arcs is a measure of
the amount of communication required to execute the algorithm represented by G. The
distinction between different types of communication channels is modeled in the simplest
way, namely, that there are two types of channels. Therefore, an assignment a

determines the number of arcs of G that go between modules assigned to the same agent,

(referred to as internal communication links, or briefly, selflinks); this number is denoted

¢,(a); the number of arcs of G that go between modules assigned to different agents,

(referred to as external communication links_or briefly, crosslinks) , is denoted ¢,(a).

The difference between the two types of channels is expressed as a cost difference.
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Finally, an assignment « ajso determines the number of agents who are assigned modules

of G, denoted n{a) € N. These items determine costs associated with the assignment a.

Let

Z(a)= x{c(a).c,(a).T(a).n(a))

denote the cost function, a real valued function of the arguments shown.

We assume for simplicity that ¥ is linear and that the coefficients satisfy some

inequalities.
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Thus,

(3.1)  xle(a)c,(a)t(a)n(a)) = o, + oy (a) + e, (o) + a,T(a) + an(a)

and,

(32) 0 fa,<a,, Oso,<a, 02«

Notice that the assumptions (3.1) and (3.2) say that all selflinks have the same cost per
link; crosslinks have a higher cost per link, but the same for all crosslinks. Since the
network is acyclic, each link is used only once per computation, so the cost measured can
also be interpreted as including the cost per message over the link. Use of an internal link
may be interpreted as a retrieval from the “memory” of a single agent, since the link

connects two modules that are executed by the same agent.

The interpretation of a crosslink and its cost coefficient is more complicated, because, as

the rowing example suggests, the nature of a crosslink depends on whether the two agents

RN 2

involved are or are not in the same organizational unit. “L.earning curves,” “organizational

k2 N1 RIS

leamning,” “organizational culture,” “organizational memory” and “learning-by-doing,” all
suggest the existence of mechanisms of coordination internal to an organization, that do
not operate across boundaries between organizations. They refer to situations in which
close, stable and persistent interactions among agents allow them to observe one

another’s behavior closely and repeatedly in different situations, and so in these
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circumstances a transmission between agents in the same organization is more like a
retrieval from memory than it is like a message exchange between strangers. In this way
the cost of transmitting information between different agents in the same organization is
less than it would be if those agents were not in the same organization. This can be
expressed in the present model by making the cost coefticient of a crosslink, a link
between two different agents, depend on whether the the agents are or are not part of the
same organization. By choosing to put different agents in the same organization the cost
per message of communication between them can be reduced. But we assume that this
can be done only by incurring a fixed cost. The additional component of fixed cost
represents the capital cost of creating and maintaining an organization as a going concern,
and includes the cost of the internal infrastructure that facilitates internal communication.’
Let «; denote the cost of a crosslink between agents in the same organization or firm, and
let &, be the cost of a crosslink between agents in different organizations. We assume

that

33 o <o, <o =a,.

The fixed cost increment @, is required in order to change crosslinks from external to

internal, and hence the cost coefficient from @, = @, to a,.



Cost minimizing and efficient assignments

The problem of finding cost minimizing assignments is complicated by the fact that the
minimization is subject to nonlinear integer constraints due to the complex
interdependence of the cost factors, ¢y, ¢z, T, n, given the directed graph that describes
the algorithm. Instead of looking for minimum cost assignments directly, we first focus
on efficient assignments, for a given number of parameters. We can consider this
problem independently of whether crosslinks are or are not internalized. This becomes
clear when we see that the properties of the cost functions on which the result depends

are the same 1n both cases.

We show next that the problem of finding efficient assignments reduces to the problem of
finding efficient pairs, ¢, (a),7(a) for each fixed value of n, where a denotes the
assignment. That is, for any number of individuals to whom modules may be assigned,
we find the efficient combinations of the number of external communication links
(whether external or internal) that result from the assignment, and the length of the
computation that results from the assignment.

To see this we consider an assignment «, and note the following simple facts. ® (To
lighten notation we drop reference to a where it is possible without confusion, and
indicate the effects of different assignments by other notation. We should note that

Proposition 1 1s valid for a broader class of cost functions than those for which itis
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stated. However, it is stated here for the class we are concerned with, and because of the

interpretation, for cost parameters satisfying assumption (3.1).)

Proposition 1) If (Cl,Cz,T,n) 1s not efficient then (CI,CE,T,H) does not minimize

cost for any (an,a] ,az.aj.m) satisfying the assumption (3.1).

Proof of 1)  Suppose (CI,CQ,T,n) is not efficient. Then there is some assignment that
. rd r r ’ Is ’ ’ V4 .
yields (CI,CZ,T Wh ) such that ¢ € ¢, ¢ ¢, T <7, n <n,with at]east one

strict inequality. First, let € be the number of arcs in G (not counting projections), and

note that

cgtey=C,

i.e., each arc of G is assigned to be either an internal or an external communication link.

Therefore, ¢, = C — ¢, and hence 7{a) =, + ,C +(a, — @, )¢, + T+ ayn

Therefore,

z(a) - 2(a) = (e, e f(ch — ;) + (v = T)+ e (n" —n) <0,

which means that (6‘1 ,Cr, T, n) does not minimize cost.
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2) Itis also obvious that if, for a given assignment, (Cz, T) is not efficient then neither
15 (C2 , T, n)A

Suppose (Cz’r’n) minimizes cost. Then by Proposition 1) it is efficient. Denote by

(c2(n). 7" ()

the number of crosslinks and delay that results from a cost minimizing

assignment a'(n)ion agents. le,
)((c;(n), T'(n),n) = ;{(cz(a'(n)),’r(a'(n)).n) < ;{(cg(a(n)),f(a(n)),n)z x(c,(n).t(n).n)

for every n and a(n) , such that a(n)is an assignment to n agents. Let n* minimize

Z(C; (n), T*(n),n) with respect ton. Then

“

* € *® * E3 .. . . .
4) (C') (n ),T (n ),n ) minimizes cost over all feasible assignments.

By Proposition 1), it follows that (c; (n*),f*(n*),n*) is efficient. Hence, the

. R . * * * * .
assignment of modules to n* agents that results in the pair ((,‘2 (n ),T (n )) 1s an

efficient assignment.

As is the case in other familiar contexts, the search for cost minimizing assignments can be

confined to search among efficient assignments.
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Procedures for constructing efficient assignments, which it should be noted involves both
assigning nodes to agents, and scheduling their execution in time subject to the parallel
constraint and the precedence relations given by the modular network representing the

algorithm, are presented in Appendices I and Il respectively of [Reiter 1995]



Section 4. Assigned graph as a representation of organizational structure

Given the decision function, an algorithm for computing it represented by a minimal
delay tree, G, and an assignment of the leaves of G, which specifies who can observe
what, an assignment of the modules of G to agents results in a new graph that satisfies the
three constraints in (2.1). The graph resulting from each such assignment may be
interpreted as a (multiperson) organization for performing the managerial function of
deciding what to do, given the restrictions on the dispersion of information, and the
constraints on each individual’s capacity to process information, including the Parallel
Constraint. It is the formal entity in the model that is to be interpreted as one or more
divisions. For this interpretation we need to know what properties distinguish an
assigned graph that is interpreted as representing one division from one that represents

two or more divisions.

Before presenting the definition, a few remarks may be helpful in explaining the intuition

behind it.

An organization or firm is often likened to an organism in that it must adapt to its
environment. If we consider from an informational viewpoint how an individual adjusts
his or her behavior to the environment, as against how two or more persons do that, it

seems clear that the internal mechanisms used for coordinating the behavior of an
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individual are different in kind from those used to coordinate the behavior of two persons.
Neither neurons nor hormone flows extend through the skin of a person to the inside of

another, nor do light or sound waves penetrate directly to the inside of a person.

In the case of multiperson organizations the distinctions between the mechanisms for
internal coordination and those that mediate interactions with the outside environment
analogous to the clear anatomical and physiological distinctions that apply to human
beings individually are not immediately obvious. In the case of multiperson groups,
written documents transmitted by mail or fax, conversations in person or via telephone,
and the like are used for both internal communication and communication with those not
in the organization. Unlike neurons, which do not go outside a person's skin, telephone
lines cross the boundaries of firms. Moreover, units that are legally or descriptively parts
of the same organization may be functionally separate in the sense that what coordinates
their interactions with each other is not “anatomically or physiologically” different from
what coordinates their interactions with what is outside the formal organization.
Nevertheless, the rowing example of Section 2, and other observations, suggest that
communication channels exist among members inside the same organization that are orders
of magnitude higher in capacity and therefore in speed, and lower in cost, than the
communication channels that exist between individuals in different organizations. Thus,
what distinguishes mechanisms for coordination inside a multiperson organization from
those that coordinate its interactions with the outside world is the existence of high
capacity internal communication channnels. These should be understood to include the

effects of shared knowledge and memory. Such channnels permit communication of
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highly complex and subtle information. This sort of channel is difficult to observe
directly, because it operates through interactions of persons, and 1s not necessarily
embodied in hardware, although persons may employ hardware (e.g., a telephone, or a
local area network) in a process that flows naturally into and out of personal interactions.
We have expressed this distinction in terms of selflinks and crosslinks, and the differences

between them in terms of cost.

Given a set of environments, a decision function and an initial distribution of information
about the environment, we construct efficient assigned graphs. An efficient assigned
directed acyclic graph (EADAG) specifies how the agents involved compute the decision
variables. These efficient graphs represent solutions to the problem of adapting to the
constraints on information processing. If the solution graphs have many crosslinks, then
it may be better (lower cost) to pay the fixed cost of setting up an organization to
internalize some or all of those crosslinks so that the communication involved is done via
the cheaper kind of crosslinks (the high capacity internal channels) and the remaining
communication between agents inside and those outside the organization uses the more

costly external channels.

Furthermore, we must recognize that the graph involved depends on the number of
parameters. In the gear factory example the number of vanables that appear as arguments
of the decision function, which 1s the number of variables that characterize a set of orders,
can vary. Since the system for computing the schedule must work for any set of orders

received, we must look at the solution EADAGs over the entire set of environments under
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consideration. Thatis, if q represents the number of parameters characterizing an
environment, we must consider how the efficient graphs vary with q, for the set of
environments we are dealing with. So, suppose that for some value of q, an efficient

assignment results in the vector (¢,(¢).¢,(g).7(¢).n(g)). If we treat all agents connected by

a crosslink as in different organizations, the resulting cost is

7.(q)= o, + o (q)+ a;‘cz(Q) +a,T(gq)+ o n(q),

while if we put all agents associated with crosslinks in the same organization, the cost is

fl(q) =0, + +a|C1(Q)+a;C2 (Q)+ aar(Q) + aa”(q)A

Costs favor internalizing crosslinks in one organization if

Z(Q)_ Z:((]) <0,

This reduces to

< cs(g)ai - o).
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O<af,and O<(a) —a3)

which, since * can be written

Thus whether to centralize the computation in one organization or not depends on how the
number of crosslinks depends on the number of parameters. Since the computation must be
carried out for any environment in the given class, and since the left hand side of the
inequality is a constant, if the possible values of q forms a large set, say, an unbounded set
as 1s typically the case in economic models, and if the number of crossiinks increases with
q, then eventually (4.1) will be satisfied, and organization in one unit will be optimal. 7 We
may take our cue here from a familiar example in economic theory, namely trade between

two individuals. There the class of environments is customarily infinite dimensional.

For example, in an Edgeworth Box model representing trade in two goods, between two
agents, an environment consists of the preferences of each agent, and the aggregate (or
individual) resource endowments. (The commodity space and consumption sets are
assumed to be fixed.) Any continuous and convex preference relation is allowed. Hence the
set of environments includes infinite dimensional preferences, as well as those
characterized by a finite number of parameters, such as a preference relation represented
by a quasi-linear utility function, or one represented by a Cobb-Douglas utility. If
environments are represented by real parameters, then the number of parameters specifying

an environment in this class is not bounded. We say that a class of environments with this



property is a large class. Suppose that a decision function is given, such as one that
specifies some Pareto optimal trade (or allocation) for each environment. Then the
computation of the decision as a function of the parameters can have an unbounded
number of crosslinks. That is, the computation of the decision function imposes the
requirement that an unbounded number of crosslinks may be needed. On the other hand, if
the computation is such that all but a fixed number of crosslinks can be internalized by
agents, then those agents are natural candidates for organizational units. In the Edgeworth
Box model, the familiar result is that the computation splits into two parts, one internal to
each agent. The internal computation of an agent may involve arbitrarily many parameters,
but the communication between them depends only on the number of goods, and is
independent of the number of parameters needed to specify preferences. As we show in
Example 3 below, in the case of verifying a Pareto optimal trade in an Edgeworth Box
economy, only two numbers need be transmitted (and in the case of a stable adjustment

process no more than four) independent of the number of parameters.

In the case of the gear factory, the nature of the decision function leads to the conclusion
that all efficient assigned graphs involve a number of crosslinks that increases without
bound in the number of parameters. This suggests that for efficient coordination the entire
calculation of production schedules be internal to one organization. There is no split such

that the communication required between different agents is bounded.
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Of course, even if the computation is organized in one unit, it would generally be the case
that the cost of executing it would increase with the number of parameters, and in some

cases reach a size for which it is no longer worth figuring out the decision.

These considerations motivate the following definition, presented next informally.

Suppose a coordination problem is given on a large class of environments. That is, we are
given a function from the set of environments to a space of decision variables, and
restrictions on the observability of environmental parameters expressed by an assignment
of input variables (environmental parameters) to economic agents, (possibly multiperson
agents). Consider the environments with a certain fixed number of parameters, q, and
suppose we have a solution EADAG, G(q) for the class of environments with q
parameters. Suppose that G(q) can be split into component subgraphs, each consistent
with the initial assignment of information about the parameters. The components of G(q)
represent candidates for organizational units. Consider the communications reguired within
and between the components. Communication between components is represented by
crosslinks, i.¢., arcs of the graph that go from one component to another. Suppose that as g

varies the component structure of G(q) remains the same. Le., there is a one-to-one
correspondence between the component subgraphs of G(q) and G(q) for any two values of

qandq.

Of course, as q increases the number of vertices and arcs in each component may increase,

and hence the amount of communication {and computation) within a component may



increase. But it is possible that the amount of communication between components is
independent of q, i.e, constant. If that is the case then there is a sharp distinction
between the different components; communication between components remains
constant, while communication (and computing) within each component may, and
typically does, grow without bound. This property serves to define the boundaries
between organizational units. These units may be interpreted as informationally distinct

divisions.

To sum up so far, the analysis proposed here has the following structure. The basic
economic unit is an individual or person. Individuals are equipped with (limited)
capacities to observe, communicate and compute. There is given a set of possible
environments, say, a set of possible technologies. These are specified parametrically.
Information about a technology is dispersed among individuals in the sense that a
particular person can observe only some parameters. There is a function that associates
to each environment some optimal (with regard only to technological and resource
constraints) or desired behavior. This function may be derived, say, by optimization,
from the given data about the environment. The coordination problem is to determine the
desired or optimal actions for a given environment from the dispersed information about
the environment and subject to the information processing limitations of individuals. The
analysis results in an algorithm for the required computation, and an assignment to
individuals of the operations to be performed that is efficient in the sense that the
determinants of cost form an efficient configuration. An efficient assignment of the

computations is described by a multiperson modular network, an EADAG. The criterion
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for distinguishing separate entities is applied to the structure of this network (or
networks) to determine whether the organization corresponding to the efficient
network(s) should consist of one or more separate (multiperson) units, each of which

may be interpreted as a separate division.

The preceding interpretation of a solution graph as organizational structure depends on
communication and not on other determinants of cost, such as delay and the number of
persons employed. However, these elements play a role in determining the size of the

organizational unit in the static analysis, and an even more important role in analysis of

dynamics. Dynamic analysis is reserved for another paper.

We may revisit the gear manufacturing case in light of the model just presented. First, in
that case the central task involved in managing production is to compute a “good” shop
schedule, given an assortment of orders. The pre-existing technology for doing this (the
available algorithms) was the then standard system for determining Gant charts, and
related systems such as Material Requirements Planning (MRP). The resources available
to carry out the computations involved were people (production managers and foremen)
with office equipment such as calculators, printed forms, telephones and the like, and the
then existing commercial computer systems. The management of the gear company had
determined that applying the new resources {existing computer systems) using the old
algorithm would increase costs, but probably not result in a significant improvement in
performance. They were probably correct in this assessment. The new system was based

on a new algorithm for computing shop schedules, and used new resources for



information processing, mainly new computing equipment which was announced, but not
then immediately available. The nature of the decision to be computed was the same for
each system. Expressed as a modular network, it does not split into subgraphs with
limited communication between them. The old algorithm executed by people without
computers becomes infeasible (very costly) at low values of q, i.e., a small set of orders.
The old algorithm executed with new equipment (computers) does not yield significantly
better performance and costs more even for low values of q. The new algorithm executed
by people with the old resources does better then the old one for low values of q, but as q
increases also quickly becomes infeasible. The new algorithm executed by people with
computers produced the improvement in productivity described above and remained

relatively cheap as q increased, thus enabling a tripling in the size of the firm.

In the next section we apply the model to examples . These examples may seem rather
special, but, as we see in Section 6 below, they are prototypes of situations that prevail
quite generally. The first example includes a version of the kind of coordination that
occurs in rowing, as comparison between the functions to be optimized in the two
examples shows. It also abstracts in a highly simplified form an essential feature of the
gear manufacturing firm. As in that case, and in the Jordan-Xu model [Jordan and Xu
[10)], in Example I, coordination requires that all parameters involved must be brought to

bear on the decisions to be made.
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Section 5. Three Examples

We present three examples in this Section. In analyzing these cxamples we suppose that
each agent has a set Ui of elementary operations, and is subject (o the parallel constraint.
For definiteness, we take _#£i to be the elementary operations of arithmetic of real
numbers, together with the operation of raising a number to an arbitrary positive integer

power. Thus, in particular an elementary operation can have at most two numbers as

input.®

The sct of possible environments is represented by a parameter space ©, that has real
coordinates. We say that © represents alarge class of environments if for every natural
number # there are points in @ with at least # nonzero coordinates. That is, for each n there

is at lcast one n-dimensional Euclidean subspace R” that is contained in ©.

To avoid complexities that are not cssential here, suppose that the subspaces R” are nested.

le., for n=12,-"

9~{n c C.Rnﬂ

In that case all functions defined on the set of environments can be indexed by the

parameter 7, or ¢, representing the number of parameters.
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Example 1.

Consider a two-stage production process. The first stage technology consist of two
processes, Py and P,. The second stage consist of a process Py which combines the

outputs from Py and P,. Thus, the process P; is specified by a function

f:X'x0 -Y i=12,

where Y is the space of propertics of the outputs of P;, including their quantities, X'is the
space of activity levels of process P, and @ is a space of parameters relevant to process

P;. In this formulation

fix.6) =y, i=12

Suppose that f'{x'.8') produces x! units of (intermediate) output 1 and that the vector
g' = (91] e 9;) of parameters of Py determines the characteristics of output that are not
included in the specification of the commodity. For simplicity assume that the mapping
from paramcters of Py to characteristics of the product is the identity. Le., process P
when conducted at the level x! producces x' units of output whose ‘hidden’ characteristics
arc 0'. Similarly, f:(_rE,Bz) produccs x* units of (intermediate) output 2, with hidden
characteristics 6°.

There is a third process Py in which the outputs of Py and P, are combined to produce a
third (final) output. Thus, Py 1s given by f”(z,@“) such that P; has the outputs of Py and

P, as inputs. We suppose that the hidden components of the output of P are determined
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by those of the outputs of Py and P, as follows. When the outputs of Py and P; are

. - 3 . . <l 2 e
combined, the values of the parameters 87 are functions of 8 and 67, Specifically,

2
"

0 =(0)-03) . =1l

Suppose further that effort is expended in combining the outputs of Py and P,. Supposc
that when an amount of effort z is devoted to Ps the effect is to determine the value of a unit
of output as follows:

f]

K —((1 - ;){Z(ej ej)zj+ w;iJ-

=4
Here K is the value of a unit of the output of P3, (in a market this would be the price), and
the second term is the deduction from value corresponding to the elfort devoted to

.. - 2 -
combining outputs of P, and P, when the parameters are 6" and 67, and the cost of the

4 1
effort z is quadratic. The quantity Y (6] —6;) measures the extent to which a unit of

i=1
output of Process 1 and onc of Process 2 are mismatched. Work done in Process 3 to
correct the mismateh is measured by z, and the effect of the mismatch of characteristics
depends on the value of z. Then, the net value of the output resulting from operating the

. . o 12 .
three process with the mtensities X, X7, 718

V(x',xz,z:B],QE):min{xl,x:} K- (l—:(
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where ¢ is a cost parameter, the same for processes Py and P, and z belongs to the interval

[O0.1].

With this technology efficient production corresponds to maximizing the value of V subject

only to x' 20, i=1.2,and 0<z< 1. Tosimplify notation a little, write

and

in which case V can be writien as

V(.rl.x:.:,,a.b) = x(K - ((I — D+ wz )) - c((xl )3 + (_7(2 )q) H

Assume that

D:i(aj—bj)st,

i=!

and that

N3 e
[Fa%
=
1A
-~



Writing

a{z)=K~(1-z2)D-wz’

the {irst order conditions are,

o x(D=2wz) =0
ok
j 1 ifx=x
__8‘;/’ :_8.:_ oz)—cx' =0, where éf—: 1 r‘ Ci=12.
ox' o dx' |0 otherwise

Solving for the optimal values 2,%', %%, we get

and hence

Ifx= xi. then,

61



62

and

, forj#i, ij=12

These values do yield the maximum of V; it is an interior maximum if the incqualities on

D, K and w are strict.

As we have already said, the problem of coordination in its informational aspect may be
viewed as that of computing the values of the three decision variables given the
parameters, a and b, and subject 10 the conditions that limit the information processing

capabilities of individuals.

We introduce the idea of an organizational Role- a collection of information processing

functions that might be performed by an organizational subunit, such as a multiperson

department, or by a single person, or by a free standing organizational unit, such as a firm.

We make two informational assumptions. First, that the parameters of Py and P, cannot be
observed by the same organizational unit, whether a person or a group of people. Second,
that the elementary operations available to individuals, and therefore to groups of them, are

the binary operations of arithmetic together with the operation of raising a number to an



arbitrary positive integer power. This last assumption is made only for convenience,

nothing essential would change if it was omitted.

Given the assumption about the initial distribution of information about the paramelters,

there are at least two Roles, denoted 1,2, Fori = 1,2, Role 1 observes 8" (either a or b).

For definitencss assume that Role 1 also observes K, w and ¢. Each of these Roles must
employ at least one individual. The remaining information processing tasks may be

assigned to cither Role, or to additional Roles that might be introduced.

Two algorithms.,

We hegin with two algorithms obviously available for this problem. The first, Algorithm I,

is to compute

7 2
Z(("j _bf)
2w

dircctly, and then to compute ' and &', as shown in the following modular network.

Under the assumption that the class of elementary operations consists of the binary
operations of arithmetic together with the operation of raising a number to an arbitrary
positive integer power, the modules of the network can have at most 2 input lines, 1.c., the
network is a (2,1)-network. Figure 1.1 shows the network for computing 2 , and Figure

1.2 shows the network for computing £' = x* from Z.



ap-by ap -by ag.1-bg1
2 2 2
(a;-by) (az'bz) (aq-'l 'bq.1)
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z

Figure 1.1
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Figure 1.2

The second algorithm, Algorithm 11 results from writing the formula for 2 as follows.
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i jzi;(aj —bj)2 g(aJ)E +§;(bj)u _2,:1

2w 2w 2w

£y

_D
2w
The (2,1)-network shown in Figure 2.1 computes the values Z, &' and %% by computing

A(a), B(b) and -2 ¢ bseparately and combining them.

For cach algorithm, the modules of the network must be assigned to individuals subject 10
the parallel constraint. Under the assumption that Role 1 obscrves a, K and w, the

following conclusions emerge for Algorithm L.
(1) Every efficient assignment has the property that only Role 1 computes 2.
(i) In every efficient assignment Role 2 communicates all its parameters b to Role 1.

(i)  Let vxq,(q,n, .nz) denote the minimum number of crosslinks required by an efficient
assigned neiwork that executes Algorithm I with »; individuals employed in Role i, and
where cach process has g parameters, Then, for all g, ny and ny,

Vsqr(q’n[ vnz) 2 q

For Algorithm 11, as in the case of Algorithm I, there are two symmetric equivalent

. ~ o~ ~7 . .
schemes for computing 2, %', ¥, depending on who observes K, w and c. If, as in the

casc of Algorithm I, Role 1 observes a, K and w, then the efficient scheme is that Role |
computes A(a), 2, # and possibly x°. Rolc 2 obscrves b, computes B(b)and possibly

%%, The network shown in Figures 2.1, 2.2.1, 2.2.3 shows this scheme.
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Since the assignment of the input nodes gives all input nodes labeled ¢; to Role 1 and all
those labeled b, 10 Role 2, and the efficient graph assigns all other nodes to Role 1, the
solution graph splits into two parts, one consisting of all the input nodes labeled b, and the
other consisting of all other nodes. This part of the solution EADAG has g crosslinks

between the subgraph assigned to Role 2 and the one assigned to Role 1.

The graph shown in Figure 1.2 shows the algorithm for computing %' (or &) from Z and
#* from &' (they are equal) (or respectively &' from £%). If this subgraph is assigned to
Role 1, there is one additional crosslink, corresponding to the transmission of the value of
%7 to Role 2. If the graph is assigned to Role 2, there are 2 additional crosslinks,

corresponding to the transmission of # from Role 1 to Role 2 and to the transmission of &'

o Role 1.
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Efficient Network for2a-b

2a-b

Figure 2.2.3

Analysis of the efficient assignments of modules in the case of Algorithm II yields the

following conclusions.

(1) It is efficient for Role 1 to compute A(a) and for Role 2 1o compute B(b). As in the

case of Algorithm I, in every efficient assignment, only Role T computes Z.

{ii) In every efficient assignment, Role 2 communicates all the parameters b to Role 1.

(i)  Let V‘-p((], n, ,nz) denote the minimum number of crosslinks required to compute 2

by Algorithm I1. Then, for all ¢, n; and n;, vjp(q,nl,nz)z q+1.
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Let 7,(g,n) denote the delay as a function of g and n, for an efficient network that
computes the inner product. Similarly, let v,(g,n) and 7,(q,n) denote the corresponding
quantities for the networks that compute %' from z and d, and let v,(g,n,) and 7,(g,n,)
denote the corresponding quantities for the computation of x, from z and ¢, where n, is the

number of individuals employed in Role 2.

Analysis of efficient networks for computing the inner product, which is what the
computation of z entails, tells us that v,(q,n,,n,) = q, while the delay, t, = 7,(g,n,,n,)
varies with g and n,. In scheme [, the overall time to compute all three decisions 18
T(q,nm,n,) =1T,(q,n)="17,(q,mn)+1, which is the same as the overall time to compute x,

since 7,(¢,1) =1, and X, and X, are computed in parallel from Z, in one unit of time.

Role 2 might also compute Z, but this would be inefficient, since it would increase the

number of crosslinks from g to 2q, and have the same delay.

In Example 1 any assignment of nodes to Role 1 and Role 2 results in at least g crosslinks,
and exactly g crosslinks is attained only if all the nodes are assigned to Role 1 and none to
Role 2, or the reverse. Therefore, as in the case of algorithm I, the number of crosslinks

between the subgraph assigned to Role 1 and that assigned to Role 2 grows without bound.

One might speculate about the possibility that there is some other algorithm for computing
the decision variables, especially Z, which might result in a less centralized organization.

There is no such algorithm, a fact that will be discussed in Section 6 below.
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Size of the firm in Example 1

The preceding analysis of the implications of the coordination requirement in Example I,
expressed by the decision rule (or the goal function from which it is derived) tells us that
production in this class of environments is best organized in one firm, for a class of

environments where large values of  are possible. When production is organized in one
unit, the cost per crosslink is ¢, which is strictly less than «,, and the fixed cost is o, + ¢g
instead of or,. When the class of environments 1s large, then it is possible that organization

into one firm cannot work for all environments. The size of the firm or organization will be
bounded if the net value function goes from positive to negative for some value of . We
next compare the cost of computing optimal decisions with the benefit of doing so, as

functions of the number of parameters.
We write
Vq(i],fz,i,a,b)
for the value of output when the optimal decistons are taken and the vectors a and b have g

components. This value is net of production costs, but not of the costs of computing the

optimal decisions. The full net value is

(5.2) 1/{;(-%17%2!“;’“9[))_)’_»4

when 7 is the cost of computation associated with a minimal EADAG. We show that the

value function, the first term in (5.2)is bounded by a constant, independent of . Therefore,
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if for some value of  the cost of computing the optimal decisions exceeds that constant, then

it is not worthwhile to compute optimal decisions for a coordination problem with larger

values of q. We begin by showing that there is a constant such that for all g, V, is bounded

by that constant.

Note that

V(%822 a.h) = (k= (1-3,)D, - wil) - c(£,)?

where )%q is the optimal value of x* when the parameter vectors are q -dimensional and
similarly for z_ and D,.

We know from the conditions assumed in the original optimization problem that

2 |QQJ

which implies

Now

" A2
k=(1=Z)D, —w 2, —k—(l—z—q)Dq—w
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Furthermore, from this and the formula for X_, it is immediately evident that

. ] D* 1
xq—z—(;I:k—Dq+7j|S“2*C—(k+W)

Therefore,

Vq(ié,ij,iq,a,b) < iq(k —(I-z)D,—w E:) <(+ +1) k+w= constant.
We turn now to the analysis of the growth of cost as a function of the number, g, of
parameters. Itis sufficient to show that the cost of computing  the inner product is
unbounded in q. The computation of A(a) and B(b) can only add costs. For this we must
analyze the other determinants of cost, namely delay, and the number of individuals
(processors) used, n=n, +n,. Thisis a little more complicated than the preceding

analysis.

By assigning enough individuals to perform Roles 1 and 2 it is possible in Example 1 to

achieve the minimurmn possible delay, namely 7 *(¢) = ¢ units of time.
More generally, let £(¢g,n,,n,)= {(v,r) (v, T) 1s efficient given q,nl,nz}. Let

vig.,n,ny)= min {v}

Zlg.ny.n;)
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and let

E(q,nl,nz): max {v}.

E{(q.ny,ny)

If (v,t)e &(¢,n.n,) and v=v{qg,n,n,), then T="7(q,n,n,)>1 for all t for which there
exists v such that (v,1)e g(q,nl,nz). That is, if (v,T) is efficient for (q,ny, np), and if V
is the minimum number of crosstinks among efficient assignments, then T is the maximum

delay among efficient assignments.

The following properties hold in Example 1.

(5.3)

Forgz2, vig+Lny,m)=v(g+1,1,1),=v(q,1,1)+1=v(g,n,1m)+1, where v(2,1,1)=2

(5.4)

Forq22, T{qg+1,n,n5)=T(q+1,1,1)=7(9,1,1)+2=7(q,n;,13)+2, where 7(2,1,1}=3

Let 7% (g)denote the minimum delay for computing Z in Example 1 by a modular network

without regard to the parallel constraint.  Then

(5.5 t*(q)=INT|log a]+1 22
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where INT[x] denotes the smallest integer larger than x. It follows that, forpa

(nonzero) natural number, if 2"_1 <q <7’ then 7*{q)= p+1. Furthermore,

(5.6) The number of persons required to carry out the Roles 1 and 2 while attaining the

minimum delay satisfies the following conditions. For n=n, +n,,
(5.7) < q<D"=2"<n<)r,

and

(5.8) ¢g=2" = n=gq and n =n,.

Thus, n (q) does not grow monotonically with g, but, for n{g)=(n, + 1, )(¢) such that
t(g,n,m)=1%(q), g€ (2”71,2 ]:> 27 %< n(q). And further, since for
g="2%, n(g)=q, n{g) is bounded above by q.

Thus, both n(q) and 7 *{g) grow roughly as l()gjq.

The number of crosslinks grows linearly with g. Itis at least ¢ when g =27, and at such
values of ¢, ny = n; and n; + n; = n =q. Then, at such values of g, the number of

crosslinks is

vgmom) =244 =v(27.2727)= 2741,
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In addition to the number of crosslinks, and the minimum delay as functions of g, we also
need the total number of arcs C(g) in a (2,1) -network that computes the inner product of q -
dimensional vectors. For even values of ¢ there is a simple formula for C(g). For ¢ =2n,

where n=2,3,

59y C@p=C2)+ (% - 1)8,

where C(2)=6.
Since 27 is even for p a positive integer, (5.9) is valid for ¢ = 2”.

The formulas for v(g,n,,n,) and for the delay 7(q,n,,n,) together with the formula (5.9) for

C(q) give a convenient indicator how the cost of computing grows with the number of

parameters. Because the cost of a unit of delay is assumed (Section 3; (3.2)) to be at least as
large as the cost of hiring another computer (person) it is useful to look at the growth of cost

when enough people are hired for each g to achieve the minimum delay. Recall that 7*(g) is
the minimum possible delay, and that it is equal to 7 * (¢, n*(g)). For this analysis we may

ignore the constant term. Then,

x(q) =, C+ep(g)an — o) +azT*(q)+ agn (g).

The following formulas, are all valid when ¢ =2*
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Clg)=6+ (% - )8 when ¢ is even,

~

c,(qg)=v(g.n,n)=q for all ¢,

and  T*(g)=p+1 when q=27, (hence z*(q)=1+log,q.)

and  n*(g)=gq.

When g =27, writing x{p)= 7(2") and substituting from the four formulas above, yields

L

Z(p) a{“{%“l]gjﬂaz —a,)2" +oy(p+1)+2°

2" (o, — o) + 4 + o)+ e (p+1) - 20,

Now, because the cost of a crosslink within a single firm is o, the term (q, — ;) is
replaced by (a; -, ), which from ($) is nonnegative. Hence, the cost grows exponentially
in p, which means that as ¢ increases, the cost of computing exceeds all bounds, although
as shown above not all determinants of cost increase monotonically in the intervals of g
between successive values of 27, This remains true even if it is the case that within a firm
there is no difference in cost between communication via crosslinks and via selflinks, i.e.,

when o, = .

The total cost of processors (persons or other units capable of carrying out an elementary
operation) can be reduced by trading off increased delay for reduction in the number of
processors. The relations (5.3) and (5.4) of this section tell us the extent to which such a

tradeoff can be made, since the maximum delay is achieved when there is only one processor
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of each type, i.e. when n=n, +n, =1+1=2 . Inthat case the delay is roughly equal to half
the number of vertices in the graph. The number of vertices, N{g) in the graph of a (2,1) -

network that computes the g-dimensional inner product is
N{g)y=1+{g-1)-2

and

T(g,1,1) = INT[;I)—N((;)} - JNT{W#Q} - INTB +q- 1]

“

Thus, trading off processors for increases in delay can reduce the cost of processors to 2a,

independently of ¢, but the cost of the corresponding delay is unbounded, since for g =2°
T(g,1,1)=2".

The effect of the tradeoff on cost 1s given by
o, (T ¥ (g, n%) = T{q, L)) + o, (n* (g) = 2),

since the differences in the first two terms of the cost function add to zero.

Substituting g = 27 vields



a,(p+1-2")y+a, (27 =2)

=27, —a )+ a(p—-1)-2a,

Recalling assumption (3.1) which is that o, 2 ¢,

If a,=a,, then

o(p—-1D-20, =a,(p—1)-2a, =o;(p—3)

which is positive if p> 3, (or ¢ >8).

If a; > .. Then,

e, —a)+a(p-1)-2a,>0

1s equivalent to

(5.10) 27 (e, — ) > 20, —a,{p —1)

If p=2; the inequality reduces to

o, >3,

which is satisfied in view of the assumption that a, > .

(If p=1, then the condition &, > 2e, is equivalent to the inequality (5.10)).
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Thus, p 2 3 (or g 2 8) is sufficient for the inequality (5.10) to be positive, or equivalently

for the tradeoff to increase cost.

One might think that the decision rule in Example [ is special in the sense of being rare, but
this is far from the case; functions like that are ubiquitous in the space of smooth functions.
William'’s genericity theorem, discussed in Section 6, tells us that there is an open dense set
of functions which require that all but one of the Roles transmit all their parameters 1o the
remaining Role. If we take the inner product as the prototypical representative of this class
of decision rules, we see that it represents a maximal requirement of coordination and that
efficient organizations for computing it are fully centralized. This fact may go some way
toward explaining the informational basis for the prevalence of centralized organization of

firms.

Example 2. (Abelson (1980))

We consider a second example involving the same parameters and decision variables, but a

different value function, W instead of V, where

q g 2

1,2 [ <
W(x' 2% zab)=x'x? 2| Y alb. + > ab| -5 —cx' —dit
J=1 =1

P

-

g 4 .
Blz)=|z ;a{bﬁr;a‘b{ 5



and let

k= (ia{bj + ia‘bf}
i=1 i=i

Then the first order conditions for maximizing W can be written as

I~
~

v o

™~

b2
=

b3

[\ F)

An efficient network for computing Z in this example is shown in Fig. 3.3, In this

q
scheme Role 1 observes the parameters a,c, and computes Zalb{
j=2

A, the final term
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A + B, and I'; Role 2 observes the parameters b,d, and computes zafb.- =B, and %’

i=1

Figure 3.1 and 3.2 show networks for A(a) and B(b) respectively.
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Figure 3.1
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Figure 3.2
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In this scheme Role 1 computes the term Zajb{ = A, and Role 2 computes Za{b‘. =B.

j=2 i=1
The final term A+B is computed by Role 1. The computation of Z requires exactly 3
crosslinks, since Role 2 transmits the value of by, and eventually B to Role 1, who

transmits the value of a; to Role 2. Thus,

sz(q’”lanz) =3

The computation of &'requires no additional crosslinks, while that of %*requires 1, either

if Role 2 computes it, because Role 2 needs the value of 7 to compute X7, or if Role 1

computes it and transmits the result to Role 2. Finally, if process P is controlled by

someone other than Role 1, the value of 7 must be transmitted to that Role, entailing one

more crosshink. Thus,
2 2 _ s
vig.n.m) =V, L (gmam) =4, ors.

And, letting

n
Z

Z; (({,fq,nz)

be the time required to compute 2 when n, individuals belong to Role i, 1 = 1,2, it follows

that the total time required to compute all the decision variables is

T?,.%l,.fz(q,nl,nz) = T%(q,nk,nz)+l {or2)
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depending on whether the computation of 'and *’requires 1 or 2 units of time.

A second scheme simply interchanging Role 2 and Role 1 in the sense that Role 2 computes

7 instead of Role 1 leads to symmetric results.

Comparison of Examples I and 2

In Example 2 the number of crosslinks between Role 1 and Role 2 is independent of the
value of q and of n; or n,. Thus, no matter how many more parameters are needed to
specify the technology, coordination requires only that the organizational unit
corresponding to one of the Roles send one real number to the other, and the other Role
send two numbers to the first, one to compute the decision variable z . and one more to
compute the remaining decision variables. Internal coordination of each of the units
corresponding to Roles 1 and 2 is more complex than is the coordination between them,
and involves internal communication of the values of many parameters. The number of
individuals n; who make up Role i may vary with the number of parameters in order to
reduce delay. The amount of internal computing and communication will grow with g,

but the communication between the units carrying out Roles 1 and 2 will be the same for

every value of g. To an outside observer, the units corresponding to Roles 1 and 2 will
appear functionally the same for all environments in the class generated by different values
of q. One the other hand, in Example 1 the communication between units corresponding
to Roles 1 and 2 grows with q, and is hardly distinguishable from the communication

within the units.

Figure 4 presents in a graphic way the different structures that emerge in the two examples
when ¢ = 3. In Example 1 Roles 1 and 2 form what is essentially one unit; the

communication that Role 1 has with itself is not very different from what it has with Role



2. In Example 2 the graph splits into two units, as the alternative cuts that partition the

graph show. Communication between these units remains the same as g grows.

a by aj by a3 by

Example 1

2 b
a by A e o2 s | |PUT T2 @ b

Example 2

N

Figure 4
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Example 3

Consider an environment given by gq-dimensional parameter vectors a and b, as in
Examples 1 and 2, but with a different function specifying optimal decisions. We begin

with the case of two parameters, i.e., ¢ =2 and take the function to be

Fla,b)= hza )
a,—b,

We suppose that, as in Examples 1 and 2, a and b cannot both be observed by the same
Role. Therefore there will be at least two Roles in any organization for coordinating action

in this class of environments.

Before proceeding further we note that the function F represents a class of functions for
which the structure of organization would be the same. We know for instance from

application of the Method of Rectangles (Hurwicz and Reiter [8]) that F can be written as

the composition of the function, denoted &(a,b), whose value at (a,b) is the solution of the

equation system

ny = aym, ~aq =0
(5.11) ,
m, —bypt, — b =0

followed by the function

h(m, ,my ) = m,.
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Solving the system (5.11) we obtain

a, i
r?; - b] _b2 — azbl aibz
! 1 —d, a, b2
| —h,
1 g
PR
e a, —b, ,
| b,

and,

b}“'al

a, =5,

hod(a,b)= h(rm,,m,)=r, =

= F(a,b).

The function F is representative of functions F*(a,b) which can be written as the

composition of a function h* with 0%, where ¢’ (,(a), o, (a), B.(b), B, (B)) = (my.r,),

gives the solution (7,71, ) of equations

m, —a,(a)m, —a(a)=0

(5.12)
my, — B,(hym, - Bi(h)=0,

where the coefficients are given functions of a and b respectively, the dimension of a (and

b)is g =2, and h* is an arbitrary (regular) function of (my, myy).
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We can see from (5.11) or (5.12) that it is possible for the solution to be computed by
algorithms such that communication between the two Roles is independent of q, the
dimension of a and b. We consider two types of algorithms, direct and iterative. Among

the direct algorithms for F there are two with the following efficient assigned networks.

1) The individual filling Role 1 computes ¢, (a) and e, (a) and transmits them to
the individual filling Role 2, who computes everything else. This results in 2 crosslinks
and a delay of 3 units of time, when there is just one individual in each Role, (n; = 1, for
i=1,2). The graph for this is Figure 5.2. (Figure 5.1 shows the algorithm before

assignment.)

a bl dy bz
b, -a, a,-b,
\ /

A/B

!

Figure 5.1
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Figure 5.2

2) The individua! who plays Role 1 sends a; to the one who plays Role 2; Role 2
sends b, to Role 1, who computes, bj- a; while Role 2 computes ax-by. This saves a unit
of time, but costs a crosslink, because either a, - b, must be sent from Role 2 to Role 1 or
b;- a; must be sent from Role 1 to Role 2 in order to perform the final division. The

assigned network for this procedure is shown in Figure 5.3.
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4, b1 ay bz
b, -2, a,-b,
X /

A/B

Figure 5.3

Both these assigned graphs also apply to the computation of F*, when a; is replaced by o;
and b; by B, i=1,2, and the networks for computing ¢; from g and B3; from b; are

included. Although the delays of the internal computations of the &’s and B’s increase

with increases in ¢, the number of crosslinks does not. Thus, the number of crosslinks is

independent of g, the number of parameters.

Both of these efficient assigned networks represent organization into two separate units.
The example includes a situation which is generally regarded as the prototype of
decentralized organization, namely, two independent units whose actions are coordinated
by prices. This becomes even clearer when we consider a related iterative computation of

F* | rather than the direct computations just presented.
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The iterative process involves three Roles; Role 1 observes a, Role 2 observes b, and Role
3 observes no parameter directly, but can communicate with Roles 1 and 2. The three
Roles together compute the value of F* by a convergent iterative process specified as

follows.

(i) At step t Role 3 computes i(t) = (i, (1), 71, (1)) according to the rule

(6.0) fort=0, m(0)=m,,and fort>0 m(t)= %(ml(t) + mz(r));

(i) Atstep tfori= 12 Roleicomputes m'(r+1}= (m{(r+ 1), (1 + 1))according to

the following rules:

(6.0 m(t+1)= ;((az)zm,(r)+ o, (1) +a1)
+1

(6.2) mi(t+1)= W—l(azﬁl(r) + o, i, (1) — a0,
2

(63) MU+ =S {(B) () + Bmilo) + B

il

(;B )u 1 (Bzﬁl(f) + ﬁ:mz([) - ﬁlﬁZ)_

(6.4) mi(t+1)=

It has been shown [Reiter (1979)] that
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lim m(z) = lim m' () = lim m*(t) = (m,,m, ) = ¢(a.b)

== I — oo 0

This process is a classical tatonnement, in which the first equation of (5.1) (orof (5.2)) is
the equilibrium condition of Role 1 and the second of Role 2. Role 3 acts as the ‘market
institution,’ receiving the analogue of ‘excess demands’ from the other two Roles and
replying with signals that play the role of tentative prices. The number of signals per
iteration is larger than in the classical market demand adjustment process where price is
assumed to adjust to excess demand. This is unavoidable because that price adjustment

process is not (locally) stable for all environments for which the equilibrium exists, in this

case, for which & — 8 =0 (Jordan [9]).

The obvious network for Role 1’s computation is shown in Figure 6.1.
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The same networks apply to Role 2 with [} in place of a.

The networks for Role 3 are

m m? my m;
Am+m) Kimy + )
Figure 6.3

When each Role has just one individual in it, these networks show that the delay required

for one iteration is 16 units of time. The number of crosslinks per iteration is 6. The

number of crosslinks depends only on @ and B and noton a and b.

Section 6. Some general results useful for analyzing external communication

Communication complexity

Example 1 shows that it is possible given the initial distribution of
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information to compute the value of Z while transmitting q variables from one Role to
another. Is there another way to compute Z that requires transmission of fewer than q

variables? The answer to this question is obtained from several related results.

First, Abelson [ 1] addressed the question of how much communication is required to
compute a function F when knowledge of the values of its arguments is distributed among
processors. Abelson’s result is most easily presented when there are two processors P,
and P;. He considered real-valued functions of n + m real variables, where n variables are
in the memory of processor P, and m are in the memory of P. A lower bound on the
number of variables whose values must be transmitted between the two processors in a
multistage computation, when communication may be in both directions, is given by the
rank of the Hessian matrix of F. More precisely, let F:R"xR™ - R, let AxBbea
neighborhood of a point(c?,f;) in R"x R™, If F can be computed on A X B with (two-

way) communication of k real variables between the processors, then the matrix

aphy F“l by,
H(F)= : '
F:z,l b, Fa,‘ b,

has rank less than or equal to k atevery pointof Ax B.

A more complete treatment of the result announced by Abelson is given in Mount and
Reiter [17]. The necessary and sufficient conditions that k be a lower bound on the
communication complexity of F involve two matrices associated with F. These are the

Hessian of F, and the Full Bordered Hessian of F, abbreviated FBH(F).
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0 K, F,

a Fa b Fa b

FBH(F) — 1 .1 1 - 10
ayb,,
F‘aR Fa,bl Fa,,b,_

If F can be computed as described above with interchange of no more than k variables, then
the rank of H (F) is no more than k {on the relevant neighborhood). On the other hand if
the rank of H(F) is k and is equal to the rank of FBH(F) on the relevant neighborhood,
then F can be computed on the neighborhood with transmission of no more than k

variables between the processors.

Message spuaces

The same question has been addressed in another form in the literature on size of message
spaces of privacy preserving mechanisms. In this setting, the size of the message space
describes the number of variables that must be transmitted among economic agents in order
to verify equilibrium conditions in a privacy preserving manner. There are several types of

results in that literature that are useful in the present context.

For the case of two agents, each with 2 parameters 8' =(a,,a,), 6° =(h.h,),
corresponding to ¢ = 2 in Examples 1 and 2, Hurwicz, L. [6], gives necessary and
sufficient conditions that there exists a privacy preserving static mechanism that realizes
F(aj,as, by, ba) and uses a two dimensional message space. In this case we know that the

message space of the parameter transfer mechanism has dimension 3, and Hurwicz’s
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condition tells us that there is no privacy preserving mechanism with a message space of
dimension 2. The equilibrium equations of the parameter transfer mechanism in this case

are:

! -
m, —a =0
! -
m,—a, =10

m’ — F(mf,m;,bl,b:) =0.

Hurwicz’s necessary (and sufficient) condition that there exist a privacy preserving

mechanism that realizes F with a message space of dimension 2 1s that

0 F K
F, Falbl Falbz =0n
‘chl1 ay by a by

for all a and b.

In the case of the inner product, when F(a,h)=a-b, The determinantis

) a q,
b 1 O|=-a-b,
b, 0 1

which means that there can be no such mechanism for the inner product.
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q 2
For the case of the function g{a,b)= 2 (a, - b‘.) the Hurwicz condition, when q =2, is

1=1

Hence, there is no mechanism that realizes g with communication of fewer than 3 variables,
including the value of the function g. Therefore one of the agents must transmit at least two

variables.

Chen [2] has generalized Hurwicz’s necessary condition to the case of more than two

parameters per agent.

Privacy preserving mechanisms that realize a given function F and Abelson’s model of a
distributed computation of F are related as follows. The processors in a distributed
computation of F can be identified with agents in a privacy preserving mechanism that
realizes F. The initial distribution among processors (or agents) of knowledge of its
arguments is therefore the same for processors (or agents). Privacy is preserved in either
case, because agents or processors can only base their calculations or responses on
knowledge of parameters which they have either directly, or via messages received from
others. Abelson considers an iterative process in which at each stage processors exchange
messages based on the parameter values that reside in their respective memories, and on the
messages received at earlier stages. If after a finite number of stages one of the processors
computes the value of F, then the computation ends. The communication complexity is the
total number of values of variables transmitted between the processors in all preceding

stages.
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For each such distributed computation of F there is a privacy preserving mechanism that
realizes F with a message space whose dimension is 1 more than the number of real
numbers exchanged in the distributed computation of F. The size of the minimal message
space of mechanisms that realize F minus 1 is a lower bound on the communication

complexity of F.

Rectangles method

Knowledge of the equilibrium equations of a privacy preserving mechanism that realizes a
given goal function or decision rule can be helpful in designing an algorithm for computing
the decision rule. This is illustrated in Example 3. The equilibrium equations can in
principle be obtained from the goal function by constructive methods. When the goal
function is smooth, the methods reported in Hurwicz, Reiter and Saari [7], permit
construction of mechanisms using methods of differential topology. These include
methods based on Frobenius’ theorem for integrable distributions, and methods based on
differential ideals. They involve solving systems of partial differential equations in one

guise or another.

The Rectangles Method has been developed for the same purpose (Hurwicz and Reiter,
[8]). This method uses elementary algebraic constructions, and given the distribution of
knowledge of parameters among the agents, constructs the message space, the equilibrium
equations and outcome function of the mechanism, using only properties of the given goal

function F.
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Williams genericity theorem

Williams considered a parameter space @ = @' x---x ®" where @' is an open subset of
R*  the Euclidean space of k; dimensions, for I e {1,---,N}. The set ©' consists of
parameters that may be observed together; an agent who may observe parameters in ®'may

not also observe parameters in @7 if j#i.

Williams considered functions on @ that are continuously differentiable of every order.
The space of these C~ functions, denoted C™(®) is given the Whitney topology. Because
Williams’ analysis is local, for any point 6 € @ he defines as equivalent all functions that
are the same on some neighborhood of 8. For 8 €O, the space of all such functions is

denoted C;(®). In the present interpretation, these are the possible goal functions or
decision rules. Williams supposes that given a function F € C; (©),(considered on some

neighborhood ® of @) can be realized by a privacy preserving mechanism in equation

form, with agent i having g; equations. He imposes conditions that ensure that the
N
dimension of the message space of the mechanism is Zq‘.
i=1
Williams genericity theorem says that for any € € ©, satisfying his assumptions, there is an

open dense set Q of C;(@®) suchthatif F e isrealizable as above, then there is at

most one value of the index 1, say 1 =j, such that q; # k;.

In the context of this paper, Williums’s result tells us that for an open dense subset of
decision rules, ail but one of the (minimal) set of Roles defined by the initial distribution of
observed parameters will have to transmit all observed parameter values to the Role (or
Roles) involved in computing the decision rule. This in turn means that for an open dense

set of functions, the task of coordination presented by that decision rule requires that
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communication among Roles grows with the dimensions of the parameter spaces. The

resulting organizational structure will look like one centralized firm.

It is a question whether the functions that define coordination tasks that permit a higher
degree of separation among subunits, which are relatively rare in C>(®) are as rare in the

economic situations that exist.
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FOOTNOTES

1. Indeed, some manufacturing in Sheffield, and Leeds in England was organized in
this way in the the 19th century. Alternatively, since gears are an intermediate product used
in the manufacture of something else, any purchasers of gears could make their own gears.
This is sometimes done, but the indivisibility of machines and the fact that some advantages
of specialization are lost militate against this. Often a manufacturer of a final product, say
earth moving equipment wilt choose to make the gears they require, encurring significantly

higher costs in order to get more reliable control of delivery time.

2. The Modular Network model is an extension of the neural network model of
McCulioch and Pitts [ 13]. The relationships between our model and standard models of
computation, namely Turing machines a nd finite state machines is discussed in Mount and
Reiter [16], where it is shown via certain limit theorems, that the Modular Network model
is an idealization of standard computing in the same sense in which measurement, say, of
length, using real numbers is an idealization of actual measurement, which can be at best

rational.

3. Alternatively, if deviations from optimal decisions could be weighed against costs

of computation, then ‘optimal adaptation’ could mean *maximization of net performance.’

4. In fact it is shown that G may be replaced by an equivalent regular tree, i.e., a fan-

in, in which every path from a leaf to the root has the same length.

5. Generally that cost would depend on the scale of the organization. In the present
model the scale or size of the organization depends on the number of parameters needed to

specify an environment. Hence, we would expect the capital cost to be a function of the



108

number of parameters. A step function, with the steps depending on the number of
parameters, would be a good candidate for that function. The present formulation is the
simplest case of such a function, namely one with one step of size ¢ for any non zero

number of parameters

6. Note that Proposition 1) and remarks 2) and 3) which follow it hold whether

crosslinks are or are not internalized.

7. It is also possible for a given coordination problem that if the set of environments
is small, a form of organization into several independent units might be preferred or
indifferent to organization into one unit, even though the later would be strictly better when

the set of environments is large.

8. For the distinction between 1 and 2 real numbers to be meaningful requires a
regularity condition that has the effect of excluding dimension-increasing continuous maps,

such as the Peano function. See [Mount and Reiter [ 14].
S. (Without this simplifying assumption, given any parameter vector 8(n) with n

nonzero coordinates, the projection of #(n) on an n -dimensional subspace R can be

written

Gn) = (Bit ,8‘2 .. ..,Bl." )

where /; 1s the 7™ non-zero coordinate of 6(n). In this language the simplification is to

assume that ij = for j=1,...,n.)
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10. Note that D and V are also functions of q.

11. Abelson’s result is based on a thecorem of Leontief [12].
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Appendix 1

Introduction

In the Appendix we consider the problem constructing ctlicient assignments of modules to
agents. To begin with we consider networks that are trees. That is, we are given a
modular network in the form of a tree, together with specitication of obhservability of
inputs-the initial dispersion of information-and we want to construct all efficient
assignments of modules 1o agents and schedules of exceution of modules in time subject
to the parallel constraints. The construction of efficient assignments is done in two parts.
The first is the assignment of modules to agents so as to minimize the number of
crosslinks, without regard to the parallel constraint. This is presented in Appendix I The
second begins with 2 modular network whose modules are assigned (0 agents so as to
minimize the number of crosslinks, and schedules the evaluation of the modules in time

subject to the parallel constraint. This is presented in Appendix 11

Appendix I Assigning Modules to Agents 50 as 1o Minimize Crosslinks

To avoid heavy notation we begin with the problem of assigning a (2,1)-network Lo two agents.
For the present purpose it is not necessary to specity the set of clementary operations, because

the properties of the graph that matter do not involve distinctions among modules.” We assume
here that a real valued function P: X — Y is given, and that we are also given a (2,1)-network

(with some class of elementary operations) that computes P in time t*. Recall that every such

t However, under ¢ertain conditions the minimal delay network for a given function P is unique {up to
equivalence). This is the case when the function P is real analytic to be computed up to degree M, and the
elementary functions are truncated (1o degree M) real analytic Tunctions of two variables, See [Mount and

Reiter (1993)] tor the tull details.
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network has an equivalent network with the properties: (A) its directed graph is a tree; (B) 1t uses
the same modules as the original network; and (C) it computes P in time t*. Since we are
dealing with (2,1)-networks that are trees, the graphs have the property that:

(1) each node has input degree equal to 2, except for the input nodes, which have input
degree ();

(i1} each node has output degree 1, except for the root, which has output degree 0;

(iii) there is a unique walk (directed path) from cach node to the root.

The problem of finding efficicnt assignments is approached in two steps. The first step is
to find an assignment of nodes to agents that is "good"” in the sense that it results in a small
number of crosslinks. Such an assignment becomes the starting point for the sccond step,
scheduling the operations in time so as to minimize delay. Then the resulting assignment is
revised to generate all efficient assignments. We begin with the tirst step, which focuses on
crosslinks.

To achieve a more colorful exposition, let the two agents be named "red” and "blue”,
respectively and denote them 1, and b. (Since the parameter r in the (r.d)-network has the
value 2 throughout this section, there is no ambiguity in this notation.) Since the effects of
assigning modules o agents depend only on the (2,1)-tree we start from, we may suppress
reference to the modules associated with the vertices V(T) of the tree T. In the case of
(2,1)- trees the problem of finding assignments that give a minimal number of crosslinks
may be approached in two different ways, one in terms of finding minimal cuts, the other

in terms of properties of coloring functions or colorings. We begin with the latter

approach.

Prelimingrics and Notation,  Denote the set of agents by C = {r,b}.
Afunction W :V(T)— C={r,b} from the set of vertices of T to the set of agents,
called a_coloring of T, is an assignment of the vertices of T to agents. The restriction of W

to the set of input vertices of T, denoted W, is called an input coloring. It is assumed
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unless otherwise stated that ¥, is given. (This corresponds to the assumption cither that
each agent has been given the task of observing certain variables--arguments of P--or that
cach agent has private information about (environmental) parameters that are the arguments
of P.)

An arc of T from vertex x to vertex y is denoted (x,y).

A coloring y of T induces a function vy A — {0.1} on the arcs of T defined hy the

condition

() if Wix)=Y(v)

1 otherwise

Vy (_r‘-\:) = {

If A o Ais asubsct of the arcs of T, let

Ve(A) = 2 vy (a).

nEA

A coloring y of a tree T is minimal if it minimizes the number of crosslinks vy(T).

Recolorings and Changes in the Number of Crosslinks

If N < V(T) is a subsct of nodes, the operation Ay carrics the coloring Wto w7, 1.e.

Vo, by
. v i) ifigN
v, ()= e
: xwhercxe Ch\y (i) ifieN

If N = {j}, we shall write Aj for A, The operation AN changes the color of each node in

the subsct N.
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(Recall C = {r,b}. Therefore if y(i)=randie N, then Va, (y=b;ify(i)=bandice
Nthen vy, ()=r)

If A and B are subsets. then AAB=(A N B)u (AN B), where X denotes the
complement of X; A A B is the symmetric difference of A and B.

In particular, if N1,...,Ng form a partition of N, then Ay, =A, o0...0A, where
pil

P

Py-Pg 18 @ permutation of 1,....g, and "0" denotes composition.

A recoloring AN of T induces a change in the number of crosslinks vy — vy, as

follows.

Leta = (x,y) be anarc of T. Then

[ve(a@)+0] (mod2) if x#jandy=#j
1% = .
s, W= @)+ 1] (mod 2) if x=jandy=

Define

Ajvq, ()= V“J () =vy(a)
The expression Ajvy(a) is the change in the status of the arc a (counted as 0, +1 or -1
according 1o whether a remains a selflink, changes from a sellink to crosslink or vice
versa) as a result of the recoloring A ;.
Note thatif a = (x,y), and j# x and j # y, then Vi, ()-vy(@)=0,anditx=jory =],

then Vipa, (a)—vyg(a)==x1. Hence,

0 ifjexandjey
Avyla)= Vs, (@y-vy(a)=+1 itvy(a)=0and j=xorj=y

Vg, (@) —vela)=-1 ifve(a)=land j=xorj=y
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It follows directly from the fact that AAOAR = AgoA,, for every A, B, that,

Lemmal: v =V
AL e L ‘YAJ- YA

oM oy

Let N = {1,2.....q}, and let Ap,A2,...,Aq be a sequence of recolorings of nodes
1,2,....q. The total effect of these changes on the crosslink count for any subset A of arcs

of T is as follows.

Lemma?2: Let V(T)> A Then,

9
V\PA"‘A - vwaq”""’/\l (A) = Z [ZAI'V*PAJ ,(a):l + V.*,((J)

a€A =}
q
=Y [ZAMA: ‘ (a):| + Vg (A)
a€A i=1

Proof: By definition of Aj v, forany a€ A
Apvgla)=vy, ()= vy (@)

Ay (@) =Vy, (4) = vl ()

Aqv“’f\‘,,. (@)= v“q {a)— Vs, | (a)

Summing these cquations yields



Al-6
Avela)+Avy, (@) +...+ Aqvmq,, (a) = N {(ay—vy(a)

or

i AV, (a)+vyla)= Vi, {a)

i=1

Summing over a € A gives the statement to be proved,

2 [iAEV‘PA,.. ((J’)} + vy (A) = vy, (A)

ged =1

Because of Lemma 1, any permutation of 1,....q gives the same results, 1.e. the
changes of color of nodes may be done in any order, with the same result.
Consider a connected subgraph G of the graph T such that G has a root. T will refer

to such a subgraph as a subtree of T. Examplcs are:

l 2 3 4
5 6
7
8
FIGURE AI-1

The subsct of nodes and directed arcs are indicated in the enclosed arcas in Figure Al-1.
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Those nodes that receive inputs from nodes outside the subset are input nodes of G and the
node outside of G to which the output of the root node of G is sent is the output connection
of G. E.g. in figure a, G consists of nodes 5, 6, and 7 and arcs (1,5), (2,5), (3.6), (4,6),
(5.7) and (6.7); nodes 5 and 6 are input nodes of G, 7 is the root and & is the output
connection of G. The given input colors of G are the colors of nodes 1, 2, 3, and 4 i.c. of
all nodes i not in G such that there is an are (i,x) where x is in G; for such an arc, x is an
input node of G.

Levels or Ticrs of Nodes or Vertices in a Tree

The level of a vertex v in T is defined as follows. A path

p = ng,n1,n2,....nq is a complete path through v in T if:

(i) ngisalcatof T
(11) ng is the root of T
(iiiy  forecachi=0,..9-1, (nynj+1) isanarcof T

(1v) for someie {0..,9.1} ni=v.

We define the height of a vertex v in a complete path p = ng,nj....,ng-1 through v in
T to be the value i* of i such that nj* = v, where i € {0,1,....9-1}.

The level of a vertex v in T s, 1(v) = max {i*li* is the height of vin p, and pis a
complete path through vin T }
The ordering of the nodes of G by level or tier is the ordering inherited from the ordering of
T by level or tier.
The first level nodes of G are those whose level in T is the minimum over G. Second level
nodes are all those in G whose level in T is one more than the (common) level in T of the
first leve! nodes of G. The it level nodes in G are all those whose level in T 1s one more

than the (i-1)tlevel nodes of G.



Conditions for Minimal Colonings

Given a coloring of the inputs of G, the tirst level nodes of G may be classified as (x,x)-
nodes, if both inputs are colored x, and (x,y)-nodes if there is one input of each color
x,ye C.

Recall that a coloring v of a tree T (or subtree) is minimal if 1t minimizes the number of

crosslinks vy(T) over all colorings.

The following are necessary conditions for minimality.

Lemma 3.(): If G is a subtree of T all of whose input nodes are (x,x)-nodes, then in a

minimal coloring of G every node in G is colored x.

Proof: Suppose there is an (x,x)-node, say J, colored y # x. Then the two possibilities are:

Casc 1) ily Casc 2) ily

FIGURE Al-2
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In case 1) there are 3 crosslinks and Zac {(x.j)(y.j).G.2))3jV(@) = +3. Hence if y(j) = y=x

then the total of cross links goes down by 3 with no change in the rest of the network.

In case 2) changing node j from y to x leads to a reduction of 1 in the number of crosslinks
with no change in the rest of the network. Henee if w(j) =y, W cannot minimizc v(T). As

a Corallary, Lemma 3.(1) implics Lemma 3.(11).

Lemma 3.(ii): In a minimal coloring of T cvery (x,x)-node is colored x, x € C.
Lemma4: If G is a subtree of T all of whose input nodes are (x,y)-nodes, and whose root
i has the output connection j whose coloris z € {r,b} then in a minimal coloring the color

of every node in G must also be 7.

Proof: Suppose G has p input nodes, all of which are (x.y)-nodes, as in Figure 3.
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FIGURE AI-3

First note that the number of crosslinks [rom input connections to (input) nodes 1s
in this case independent of the coloring of first tier nodes, because each first tier node is an
(x,y)-node, there is exactly one crosslink per node, whether its color is x or y.

Second, if all the nodes of G are assigned the same color, then there are no
additional crosslinks between the input nodes and the root. If some node in G is assigned a
dilferent color, then there is at least one additional crosslink in G. If the common color

assigned to all nodes is x, and x is also the color of the output connection of i, Le., f x = z,
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then there is no crosslink between the root and the output connection; if the color is y # z,
then there is one crosslink hetween the root of G and the output connection. It follows that
the minimum number of crosslinks, equal to the number of input nodes of G, is attained by
assigning all nodes of G the color z. []

We turn now to sufficient conditions for minimality.

Lemma 5: Let G be a subtree whose input nodes are cither (x,x)-nodes or (x,y)-nodes and

whose output connection is colored x. Then,

(1) the constant coloring ¥ I (]) =x for all | € G minimizes the number of
crosslinks,

(2) the number of crosslinks Vi, .(G)(G) is equal to the number of (x.y)-nodes
among the input nodes of G, and

(3) the minimizing coloring v | 1s unique.

Proof: Let the number of (x,y)-nodes among the input nodes of G be g If each such node
is colored x then, since (x,x)-nodes must also be colored x (as required by Lemma 3.(1), a
necessary condition for a minimizing coloring), all input nodes are colored x. Consider the
subtree G' consisting of the nodes of G other than its input nodes. The subtree G has
input nodes consisting entirely of (x,x)-nodes. Since ils output connection is the same as
that of G, it is colored x. Hence assigning the color x to all nodes of G' yields a total of
zero crosslinks. This is minimal.

Thus, in the original subtree G there will be one crosslink for cach input colored y.
Therefore the number of crosslinks is equal to the number of (x,y)-nodes among the input
nodes of G.

To sce that this coloring is the unique minimizer, suppose there 1s another. Then
some node j must be colored y # x. The path from j to the root of G must contain only

nodes colored y, for if any node on this path were colored x, there would be at least one



Al-12

crosslink added by the arc from the last node colored y to the tirst node on the path colored
x. This implics that the root must be colored y. But then the are from the root of G to the
output connection is a crosslink. Thus, the number of crosslinks determined by such a

coloring function is larger by at least 1 than v@l(G). §

The proof of Lemma 5 can be slightly extended 10 establish:

Lemma 6: Let G be a subtree whose input nodes are either (x,y)-nodes or (x,x)-nodes and

whose output connection is colored y # x. Then:

(1) If there is at least one (x,x)-node, then the minimum number of crosslinks is
one more than the number of input nodes that are (x,y)-nodes. (Note that if there are no
(x,x)-nodes, then Lemma 3.(1) applies and shows that the minimizing coloring 1s the
constant coloring v I (]): y and the minimum number of crosslinks is the number of
input nodes).

(2) The constant coloring ¥ I (]) = x forevery j € G is a minimizing coloring.

Lemma?Z: Let G be a subtree whose input nodes are either (x,y) or (x,x)-nodes, and
whose output connection is colored y # x.

1) If the minimum subtree of G generated by the (x,x)-input nodes of G is not G
itself, then the minimizing coloring is not unique. Moreover,

2) if Wlg is a coloring such that the sct of nodes colored x is a subtree, H, that
contains all input nodes of G that are (x,x)-nodes, and whose complement in G, consisting
of all nodes colored y, is also a subtree, G\H, such that its root is the root of G, then ¥iG

is also a minimizing coloring of G, and is not a constant coloring.
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Proof: If all nodes are colored x, then the there are as many crosslinks as there are (X,y)-
nodes among the input nodes, plus one for the arc from the root, colored x, to the output

connection colored y # X.

To sec that this is minimal given that there is at least one (x,x)-node among the
input nodes, note that the number of crosslinks is at least the number of (x,y)-nodes, and
that all (x,x)-nodes, of which there is at least one, say, node j, must be colored x. Hence
the path from node j to the root either, (i) consists entirely of nodes colored x, including the
root, or (i) there is somewhere in that chain a node colored y # x. I (i), then the arc from
the root to the output connection is a crosslink. 1f (ii), then the arc from the last node in the
chain colored x to the node colored y is a crosslink.

To sce that the colonng Y l; is not always the unique minimizer when there is at
least one (x,x)-node, color all the (x,x)-nodes x and let H be the smallest subtree with these
nodes among its input nodes.

It H = G. then the constant coloring ¥ l; (j)=x, je Gisthe unique
minimizer.

If H# G, then the root of H is not the root of G. Color all nodes of G\H the color
y, including the root of G. Then, all nodes of H are (x,x)-nodes except for the input nodes
of H that arc (x,y)-nodes, and all nodes of G\H arc (y.y)-nodes except for the input nodes
of G that are not input nodes of H and are (x,y)-nodes, and except for the additional (x.y)-
node of G\H which is the output connection of the root of H. Thus the number of
crosslinks is the total of (x,y)-nodes of G plus 1, which is the minimum. [}

Some examples.
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Example |

b

FIGURE Al-4

The minimal subtree of G generated by nodes 2, 3 and 4 is equal to G. The unigque

minimizing coloring is ¥/l (]) = r.for j=1,...,7. The minimum number of crosslinks

1s 2.



Example 2
r b r Y r b T b¢ Y r b
/ \ / \ Fi rd \ \ /
r r I b b
I
H G\H

b

FIGURE AI-5

In Figure AI-5 the number of crosslinks is 4, equal to the minimum.

The constant coloring r, shown in Figure Al-6, also gives 4 crosslinks.
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FIGURE Al-6

We turn now to sufficient conditions for a minimal coloring.
Theorem 1. A coloring function y defined on a (2,1)-tree T is a minimal coloring of T if
and only if it satisfics Lemmas 3 to 7. Le., the conditions of Lemmas 3 to 7 are gach

necessary and_together sufficient.

Proof. Necessity is already cstablished by the Lemmas,

Sufficiency: If given a coloring W there is a subtree G of T that can be recolored to
reduce the number of crosslinks below vy, then there is a subtree G of G which satistics
the hypotheses of one of Lemmas 3 to 7, but not the conclusions. This is the case,
because, by Lemmas 1 and 2 recoloring of G can be reduced to successive recoloring of
subsets of the nodes of G, []

Next we present an algorithm for constructing minimal colorings.



An Alporithm for minimally coloring a (2 1)-tree T

A minimal coloring function y can be constructed by a two-pass process. The first
pass starts with the leaves of the tree T and goes level by level to the root; the second pass
starts with the root and goces in reverse order level by level to the leaves. The process
makes use of a provisional color, an indeterminate or variable denoted u, whose domain is
the set C. This color is used in the first pass and is replaced in the sccond pass by one of

the colorsror b.

Eirst Pass.

1) A node may be colored during the first pass whenever the color of its inputs or
parent nodes 18 known.

2) A node whose parents (or inputs) have the same color (either r,r, or b.b or uu)
is given the same color as the parents.

3) A node whose parents (or inputs) have colors r,b (or b,r) 1s given the
provisional color u.

4) A node whose parents have the colors x,u (or u,x), where x is ¢ither r or b, is
given the color x.

5) The first pass is completed when all nodes have been assigned a color,

(including u).

Second Pass.

6) 1If the root is colored u, then it is recolored arbitrarily either ror b,

7) A node colored u on the first pass may be recolored it its child is colored ror b;
a node colored u is recolored with the color of its child. Thus, once the root is recolored, if
nceessary, as provided by 6), the parent nodes of the root may be recolored, and so on

through the levels of the tree to the leaves, until all nodes are colored either ror b.
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8) The coloring process ends when all nodes have been assigned one of the colors

rorb.

It is straightforward to verify that the coloring function defined by this process
satisfies the necessary and sufficient conditions for a minimal coloring given in Theorem 1.

More Than Two Agents;

Consider next assignment of nodes to more than two agents. The aim is still to find
an assignment that minimizes the number of crosslinks. The algorithm presented above can
be extended o more than two agents as {ollows.

A coloring aleorithm for (2, D)-trees with more than 2 colors.

Let the set of colors be C = {c1,....cp}. Let (T, ‘P,) be a (2,D)-tree T with input
coloring ¥, : I — C. The algorithm, like the one for p=2, consists of two-passes.

First Pass.

Let ¥: V(T) = 2C denote a provisional coloring of (T,yry). The provisional

coloring must satisty
(1) \P |[ = \'IJI .

A node n of (T,yy) is called an A,B-node if u and v are the parents of n and
w(u)=A y(v)= B, where A and B are subscts of C. (If B = A, then nis an A,A-

node.)
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(1) If n is an A,B-node, then

ANnB it AnB#¢
AUB otherwise.

W(n) = {

Second Pass.

If n is the root of T, let
w(n)ey(n).
i.c., choose any element of §{n) as the color of the root. If nis not the root of T, let

xe )N Em), if g(Em ngén) =@, where §(n)
w{n) = denotes the child of nin T,

xey(n) otherwise,

i.c., the color assigned to n is an arbitrary clement of W(n) my(&(n)) if that set is not

empty and is an arbitrary clement of ¥(n) otherwise.

Notice that this procedure reduces to the coloring algorithm described above when there are

just two colors.

Minimal colorings of DAG's in terms of c-culs

We now take up the second approach, which is based on the characterization of
minimal colorings in terms of ¢-cuts, defined below.  The approach via c-cuts is treated in
the more general context of finite directed acyclic graphs, rather than (2,1)-trees.

Let G be a directed acyclic graph (DAG). Let V(G) denote the sct of nodes

(vertices) of G, and A the set of directed arcs. The arc from node m to nede n is denoted
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(m.n). A path of G is a connected sequence of distinct arcs of G with distinct vertices, i.¢.
(ng.n1)(nt.n2),....(nk_1,nk), where for each arc (n,n, o #n,,,isa path from np 1o ni,
That G is acyclic means there is no path from a node ng to a node ng with ng = ng.

DAG G has a root if there is exactly one node ng of G such that there is no arc of G
of the form (ng,m).

We associate with a DAG, G, an undirceted graph G, such that G has the same
nodes as G: the arcs A of G are the arcs of G considered as undirected, i.e. (m,n) € Aif
and only if either (m,n) € Aor (nm) € A. The graph G is not in general acyclic, even if
the graph G 1s acyclic.

A graph G is 2-DAG if G is a DAG such that for cach node n of G there are at most
2 arcs of G of the form (m,n) where m is a node of G. A DAG G is connected it for any
two nodes m and n of G there is a path from m to n in the undirected graph i.e. if there is a

sequence (mg,m1),....(mg.1.mg) of nodes of G such that

mQ = m

ng=n

and, for cach my, i = 0, 1,...k-1, cither {mj,mj41) or (mj4q,m;) is an arc of G.
A DAG G is disconngeted if it is not connected, i.¢. if there are nodes m and n with no path
hetween them in G

An input node of G is a node n of G such that there are no arcs of G of the form

(m,n), where m is a node of G. Let [ denote the set of input nodes of G.

Note that in the following example there is no path between nodes nand m in G,

but there is one in G, because (m',m) is an arc of G . but not of G.
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n n
m
m
m' m'
G G

A cut, K, of a graph G is a subsct of the arcs of G whose removal disconnects G.
More formally, let A 2 K and let Gg be the graph whose nodes are V (G), the nodes of G,
and whose arcs arc A\K, then K is acut of G it Gk is disconnected.

A cut disconnects a finite graph G into a finite number of connected components.

An input coloring of G is a function yj: 1 — C, where C is the set of colors, and /
the set of input nodes of G.

The pair (G,y1) is an_L-colored graph (resp.. DAG) if G is a graph (DAG) and
an input coloring of G.

A colored graph (DAG) is a pair (G.y) where y: N — C maps the sct of nodes of

G to the set of colors, and G is a graph (DAG).

A coloring of an I-colored graph (DAG), (G.,yy) 18 a colored graph (DAG),
(G'¢"), where G' =G and | [ =W, Le. the coloring Wy agrees with yy on the input
nodes of G.

When G is given we can speak of the coloring function  as a coloring of G.

Let (G,yy) be an I-colored graph (DAG), let K be a cut of G, and let Gy,...,Gp be
the components of Gk, where V(G,) is the sct of nodes of Gj, and Aj the set of arcs of Gi
and T; the set of input nodes of Gy, fori=1....p.

Note that
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‘p
V(G) = V(G
i=1

and

UI,.QI

i=1

The cut K is a_color cut (c-cut) of (G, yy) if:

1) foreachi=l...p G NI#@. Le,every component of G(K) contains input
nodes of G;

2) fmandne V(G)andm,andn € G NI forsomel=1, .., p, then
w,(m)=y,(n). Le., all inut nodes of G that belong to the same component of G(K) have
the same color (are assigned to the same agent).
The size of a cut K, denoted cither card K, or | k1, is the number of arcs in K.

Let (Gyp) be an I-colored graph (DAG) and let K be the set of all c-cuts of

(G- Acut Kof (G is a minimal cutif

H Ke K
2) Ikl < K| forall K' e K.

Ie., K is a c-cut of (G,y) and there is no other c-cut of (G, y) consisting of fewer arcs

than K.
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Let (G, W) be a colored digraph G, where Y/ is the coloring function. A c-cut of (G,

y) is a cut K that separated G into monochrome components, Gp.ee, Gp. Le.,

for i=1--,p, ifuandvarceclementsof G, then y{u)=w(v).

A pair of vertices u, v in a digraph G form a parcntal pair, or briefly a p-pair if there are
arcs (u,x) and (v,x) in the arcs,A(G), of G. Le., vertices u and v are a parental pair if they
have a child in common.

Let (T, ) be an I-colored(2,1)-tree T with input connections set 1, let V(T) be the set of
nodes of T, and A the sct of arcs.

A partition P = Ip,....I of 7 is an gligible partition of 7 if:

(1) If for someie {1....p}, ve Ij and there exists w € 1 such that (v, w)
form a p-pair (i.e., have a common child in T), then w € Ij;

(1) Foreveryie {l....p},if vand we [jand (v, w) form a p-pair such that
wi(v) = yiw) =x, x € C, and if uand z € Ij also form a p-pair {(u, 7), then cither yy(u) =

X oryiz) = x.

An eligible partition of 7 is a partition whose component sets consist of parental pairs that
are X,x or X,y pairs, or of nodes that do not form a parental pair with any other node in £,

The coloring of such "isolated” nodes of 7 is not restricted.

Given an eligible partition P =11,...Ip of (T.yp), a cut K of (T,yy) is a P-cut if:

(1) K cuts T into p components Ty,.... Ty,

(i1) Tini=1, for1=1,.p.
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A component Tj of the P-cut K of T is an x-component if Ty M / contains a p-pair colored
X,X; it is an (x,y) component if all the p-pairs are colored x,y, forx,y € C,x #y.

The following Lemma tell us that if (i) a (2.1)-tree T is given, (i) a coloring of its input
nodes is given, and a P-cut is given, then the coloring of input nodes can be extended to a
coloring of T, and the P-cut K can be extended to a cut that disconneets T into monochrome
components, 1.¢., a ¢-cut.

Lemma 8. A P-cut K of (T,y;) can be augmented to form a c-cut of (T,yy).

Proof. Let K be a P-cut of (T, ), and let P = Ty,.... T be the partition determined by
the P-cut K. Forie {1,.,p}if Tjis an x-component, color all its vertices not already
colored with the color x. Le., it vis a node in TAL, lety(v) = x.

If T; is an (x,y)-component, and the number of vertices in T; N 7 =1 colored x is
larger than the number colored y, then give all uncolored nodes in TMIj the color x. Le., if,
l{ve Gyv)=x} > Hve Liyiv) = y}lthen for all n e Ti\lj; let win) = x; otherwisc
w(n) =y tor all n € Ti\lj. (Note that the number of nodes in I colored x is larger than the
number colored y if and only if the number of x-nodes in Ij not part of a p-pair is larger
than the number of y-nodes not part of a p-pair.)

We now augment the P-cut K to a cut K' 5 K as follows.

1. For all i such that T; is an x-component include in K" all arcs that originate at
nodes v e I with ywy(v) =y # x.
2. Recall that if T; is an (x,y)-component then all its nodes not in [j have been

assigned the same color.
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For all 1 such that Tj is an (x,y)-component colored x, augment K by including all
arcs originating at y-nodes in Ij; if the nodes of T{\lj are colored y, then augment K by
including all arcs originating at x-nodes in [;.

This process increases the number of components determined by the augmented cut
K' by exactly the number of nodes that originate arcs in the augmenting cut
K\K ={ae Alae K'anda ¢ K}.

It is easily verified that K’ satisfics all the conditions for a c-cut. []

The process described in the prool of Lerama & provides a natural and convenient
way of going from an eligible partition to a ¢-cut. This appears to be a good way of finding
minimal c-cuts, and in graphs in which minimal c-cuts are not unique, of finding all
minimal c-cuts.

In I-colored binary (rooted) trees, it seems often to be the case that the number of eligible
partitions that need to be explored is relatively small.

We turn now 10 some cxamples to illustrate the concepts and procedure described in
Lemma 8.

Some examples:

Example 1.

b
b

FIGURE AI-7
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It is convenient to represent this colored binary (rooted) tree in the form:

k

FIGURE A-8

so that the set I and the tiers of nodes are clearly represented.

The nodes are labelled a, b, ¢,....k. The nodes {a.b,c.....f} = I, are the input connections,
g, h and 1 are input nodes.

Eligible partitions of [ arc:

Py = {ab} {cd} {cf}
P2 = {abet} {cd}
Py = {ab} {cdet}).

The associated P-cuts are as follows:

1. There are three Pr-cuts:
(1) {thp).G}
(i) ((hj)G.k}
(1) {(h.p.(g.k)}
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2. There is one P2-cut, namely {(h,j)}.
3. There are two P3-cuts:

(1 {G.k)}

() {(gk)}

It is clear that Py cannot lead to a minimal c-cut, and that both P2 and P3 lead to minimal c-
cuts when augmented as prescribed in the proof of Lemma 8. The partition P2 leads to the

augmented cut K'2 = {(.k),(£,1)}, with IK'l = 2, and hence to the coloring,

X

FIGURE AI-Y

Here Ixi =4, lyl = 1.

Partition P3 leads 1o K'3 = {(e,1),(j.k}}, and hence to the coloring,
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K 3=2{d=2.b{=3

FIGURE Al-10

and K= {(¢,1),(g,k)}, shown below

Y

FIGURE Al-11
where IK"3)l =2, and IxI = 1, lyl = 4.
While all three ¢-cuts are minimal, we will see below that only the cut Ky' leads to
an efficient assignment, when the time of computation is taken into account.
Application of the 2-pass coloring algorithm described in section I(1) 10 this

example gives the tollowing coloring.

1st pass.
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FIGURE AI-12

2nd pass. If y(k) = x, we gel

=2, IxI=2, lyl=3

FIGURE AI-13

If w(k) = y we get

=2, Iki=1, lyl =4,

FIGURE Al-14



Note that the 2 pass algorithm cannot yicld the celoring corresponding to Ko

Al-30)
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Example 2. Starting with the graph,

we represent it in the form,

FIGURE AI-15
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Some possible partitions are:

2. P> = {abcd}, {efg)

3. P3 = {a} {bed] (efg}

P; determines the augmented c-cut K, and coloring shown in Fig. Al-16.

K l=3

Xl =6, Iyl =0

X

FIGURE Al-16

P> determines Kop, or K22, shown in Fig, AI-17.



Al-33

or
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FIGURE AI-17
IKI = Kl = 4.
P3 leads to Kshown in Fig. Al-18.
X y X y X X Y

IK'I=3
3

Xl=4, lyl=2

X

FIGURE AI-18

The 2-pass coloring procedure applicd 1o this example leads to the coloring shown in Fig.

AI-20. (Figure AI-19 shows the result of the first pass:)



X

FIGURE AI-19

Al-35
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=3

Xl =4, lyl=2.

X

FIGURE AI-20

Le., the ¢-cut determined by the 2-pass coloring procedure is K. It Teads 1o an efficient

point in this example.
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Examplg 3:

FIGURE AI-21

In this example the following eligible partition of 1 is particularly interesting
P| = {abcdetklm}, {ghij} = (I11 W 112)). I2.
where

111 = {abedef}, 112 = {kim}, [» = {ghij}

This leads to the c-cut K, and the coloring funciion y shown in Figure Al-22.
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K| 1=5

Xl =3, lyl=9

y

FIGURE AI-22

The 2-pass coloring algorithm applied to this example yiclds the coloring in Figure Al-24.

(Figure Al-23 shows the result of the tirst pass.)



y

FIGURE AI-23

Al-39
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=5
Xl =3, lyl=9

y

FIGURE AI-24

This s, of course the same coloring as W, and hence determines the same ¢-cut K,
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|K2I:6

Ixl =29, Iyl=3

X

FIGURE Al-25

Another partition of [ of interest is

Py =1y, o, I3 = {ab} {cdefghij} {klm}.

Here I is a y-component, I an x-component and I3 an (x,y)-compenent. This partition
leads to two ¢-cuts, K, consisting of the arcs marked with a slash in Figure 25, and K,
which difters from K in that the are from node n to 1 is replaced by (q.r). This changes
the color of r from x to y. Neither of these c-cuts is minimal, cach containing 6 arcs, but

K, haslxl=8,lyl=4.
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The difference between the eligible partitions Pr and P is that P2 has more

components than Py.

Detinition. An cligible partition

P = Il, 121"'111')

is a minimal eligible partition if it has no more components than any other eligible partition,

i.c., P =1y, In....Ip is a minimal cligible partition of [ if
(1) P is an ¢ligible partition of [ and;

(i1) if P"=1,...,1, Is an cligible partition of /, then

psp.

Conjecture: Let (T,y) be an I-colored (2,1)-tree. If Pis a minimal eligible

partition of /, then the augmented P-cut K’ is a minimal c-cut of (T,yp).
Notice that the P-cut determined by an cligible partition P = 1y.....Ip must divide T into
exactly p components Ty, Th.
Thus, in Example 3 above, the partition, P, of 7 given by
I1 = {abcdk}, 2 = {cfghijlm}

and

P =1y, 1o,



is not an cligible partition of 7, because although I is a y-component and I an x-

component, we cannot find 2 connected components T and Tz with

Tl =1, andT2 I =1

x| =29, Iyl =3

FIGURE Al-26

We can see in Figure 26 that any connected component that includes {abed ) and {k} must
disconnect {Im} from {ghij}. Alternativcly, any connected component that includes
{ghijlm} must disconnect {k} from the remaining nodes in Ty

The next section of this Appendix pursucs the problem of finding minimal colorings in a
special class of directed aeyclic (rooted) graphs, brictly, DAGS, called Diamond DAGS.
Because these graphs are not trees, the material in Appendix 1T does not depend on this

one, so it ¢can be skipped without loss of continuity.
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On Diamond DAG's

We consider a special class of directed acyclic rooted graphs, as follows. Let a set
of input conncction nodes I be given. Supposc that two of these nodes, called the left end
node a and the right end node b, are specificd, that another node r, the root, is also
specitied.

If there are nonodes in 1, then the graph consisting of nodes shown in Figure Al-27

is called a ¢complete 2.2-DARG (directed acyclic rooted graph) on n input connection

nodes.

FIGURE Al-27

Every interior node has in degree 2 and out degree 2. The nodes along the lines
connecting the left and right end nodes, respectively, to the root have in degree 2 and out
degree 1.

Let (G,wp) be a complete 2,2-DARG on n+1 input connections. We can associate
to each input connection in 7 two integers i and J, satisty the conditions i +j=n,

0 <1, j<n. We can regard such a pair as the label of the node to which it 1s associated.
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The first integer i of the pair (1,j) is the "distance” of the node from the left end node
and the second, j, is its "distance” from the right end node, cach intervening node counting
as 1 unit of distance.

The node labelled (i+1, j-1) is the immediate right hand neighbor of (1)), and (-1,
j+1) is its left hand nieghbor.

A subset of input connection nodes, [ > I, is contiguous in a graph G (contiguous
in G), or an jnterval, if, whenever it contains two nodes, it contains all the nodes of I that

lie between them. More formally, I © Lis gontiguous in G, or an interval, if

(ij) € Land (i"j) € I, with i <i'and j > j, and if (i"j") € 1

withi<j" <i'and j' < j" <], then (i",)")e [.

(Here (i,j) € I means “the node labeled (i,j) is an element of 1°.)

Suppose 1 is an interval in /. Node (i) is its left end pointif

(i,j) € land (i-1j+1) L

Similarly (i',j} is the right end point of I, if

(i')) e I'and (i+13-1) L

Lemma. Let G be a 2,2-DARG with input connection set . Suppose / D 1) is an interval,
and I3 = 7\ I is its compiement in /. There are 8 cuts that determine a component Gy with
the property that

GinI=1.

These 8 cuts are shown in the fellowing table.
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[able Name Formula for size of cut
symmetric endcut 1+ ]
S|
1)
FIGURE AI-28
right 2-cut j+j+1=0G+14)
(providedi =0, j' = 0)
2)
FIGURE AI-29
left 2-cut 1+i'+1
(provided i+ 0 %7
3)

FIGURE AI-30



4)

5a)

center cut

FIGURE AI-31

FIGURE AI-32

AL-47

J+l-7+i'+1-1
=)1-]+1-1+2
=(-1)-(-1)+2
(provided1# 0 #7)

'+1if t'#n

0 otherwise

yoor#n

()  otherwise
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Suppose the interval Iy has endpoints i,j and i',j' withi# 0 and j' # 0. Then there
are four possible cuts, namely 1), 2), 3} and 4) in the preceeding table. These may be

compared as follows.
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iz | ize of
1+ < J+1+7
| < j+1
Sincei=n-j
n-j < ]+1
n—1 <
2

. . : . . e -1 .
Therefore, size of cut 1 is less than size of cut 2 if and only if j > HT Comparing the

remaining cuts, we see that:

Size of Cut 1 Size of Cut 3
1+ < i+1+1
7 < 1+1
n-1 < i+1
n- | <1
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1+ 1 <

If =0 we have

1z¢ of izg of

Suppose G, yyis a complete 2,2-DARG on n + 1 nodes of 7, labelled as above.

We define a regular partition of  into maximal monochrome intervals as follows.

Let It contain the node labelled O,n. Suppose y;(O,n) = x. Then I containsi, n-1
if and only if y(i,n-1) = y(i-1,n-1+1) = x. Le., Iy is the largest interval that contains (.n
and all nodes of the same color as (Ln.

Suppose i,j is the last node in Iy, (ie., if ')’ € I1 then i’ <1i). Let I be the largest
interval that contains i + 1, j - 1, whose color yj(i+1,)-1) = y, where y # x, and such that
all of its nodes have the color y. Continue in this fashion until Ip 1s reached, where Ip
contains the node n,0 and is the largest monochrome interval to do so.

For brevity we refer to P so defined as a monochrome partition of /, or an M-

partition of [.
The c-cut K with components Gj.....Gq is associated with an M-partition
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FIGURE AI-37

I={abcde}

Ki={@b.i} Kp=2

K2 = {(b.D).(g.}).(kom) (k). (hD(di)}  Ko=6
K3z = {(a.D)(d.i).(h,]),(h,n),(m,0)} K3l =5

FIGURE AI-38
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A sharper bound is as follows. Ifi1s odd, letlljt = o, where 1 =2j - 1,
j=12,.s1andi<p;andifiiseven, letljl=fB;i=2j,j=12. .spandi<p.
Consider two cases: 1) piseven,

2) pis odd.
If p is even, then ywi(Iy) = wilp);
if p 1s odd, then wp(ly) = yi(lp).

Among the c-cuts associated with an M-partition P, the following two are of

nterest.

Kj: isolate each of the odd intervals I3,Is,..., {except those colored x), by a "center
cut,” (cut 4 in the table) and isolate 1j by a left end cut, (cut 5a in the table).

K2: isolate each even interval Inly,....Ip.1 by a center cut and I; by a right end cut.

The size of Ky is given by Kl =2 (&, +...+a, D+, +a, providedaj <n+ 1.
The size of Kz is given by Kol =2 (f, +...+ 3, ) + p.

So the smaller of these two numbers is an upper bound for the size of a minimal ¢-
cut. This bound is easily calculated, and once calculated enables us to eliminate a priori
possible ¢-cuts associated with P.

If p is odd, then the M-partition P has the form

%A

if £ 1s odd

if i 1s even

X
where y (11} = x, wi(l;) =y, ie. fori= 1,....p, yilj) = {
¥y

While if p is even, yi(I1) = x = y(Ip). If p is odd, the odd intervals are
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marked in the figure is immediately seen to excecd the bound given by K i or IK2l in that
example. This rules out about half the a priori possible c-cuts associated with P.

In the examples given above, this screeming Ieads to the following

Example 1. {; = {a}, > = {b}, I3 = {c}, la = {d}, Is = {e}. In each case the size of I; is

1. Theretore

Kil=aj+2a2+a3=1+2+1=4

Kol = 2by + 2by = 2e] + 2¢] =4,

All the c-cuts shown in this example are minimal.

Example 2. Iy = {a}, I2 = {b,cd}, I3 = {e}

Kil=aj+ax =11+l =2

Kol =2by =2l2l = 6.

Therefore tK (| = 2 is an upper bound for minimal ¢c-cuts. It is the minimum in this

example.

Example 3. 1; = {a.b}, Iz = {c.d}, Is{efg), Iy = {hij}, Is = {k.])

Kil=aj+2a2+a13=2+6+2=10

K2l =2by + 2bg =4 + 6 = 10.

Theretore, the upper bound 1s 10.
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given (T,y). le., a.(T,lu) is a minimal assignment if r’i <71y ., for all schedules A of

(T y).
N nditions for 3 Minimg! Schedul
If an assignment A of the nodes of the colored network (T,y) has gaps, then it cannot be a
minimal assignment.
Proof of the proposition that a minimal assignment must be free of gaps is immediate; if A
has a gap, subtract 1 from each value of A that follows the first gap and repeat for each
subsequent gap in numerical order.

Let (T,y) be given.

Let

NT

N,rr " ={ je V(I jisnot the root of T and w(3) =1}

i.e. N Tis the set of nodes of T, other than the root, that are colored r by the coloring

function, y, and let

N b= NEI)' v= {nodes j of T1jis not the root of T and y(j) = b}.

The color x is called the majority color of the colored tree (T, y) if

card (N ¥} > card (N Y) where x € {rb} ye {rb}andy# x.

(In the case of equality either colored is a majonty color.)

Suppose for definiteness that b is the majority color ( r is the minority color).

Definition: A schedule A of the colored tree (T, ) has the matching property

(Property M) if forevery ne N T, there exists n' € N P such that A(n) = A(n). Le., A
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Nodes are labeled by two integers as tollows. The first integer indicates the tier of
the tree T on which the node is located, starting with the tier containing the leaves, or input
nodes, of T.” The second integer, separated by a point or large dot from the first, indicates
the rank of the node on that tier, numbering them from the left. Thus, for example, in the

tree shown in figure AII-1 the nodes are numbered as shown.

01 0.2 03 04 06 07 08 09
Inputs

i1 . . 14
13V Tjer Nodes

3.1

FIGURE All-1

Inputs are denoted 0.1, 0.2, etc., following the same ordering scheme. The lexicographic
ordering of nodes, i.e. 1.j<i'j if i <i'ori=1i"andj <j,is a complete ordering of the
nodes of T. For ease of reading we shall usually write i.j. as i j.

A regular tree with L tiers has 2L-1 nodes on the first tier 21-2 on the second, 20K

on the kth tier; 1 £k <L-1, and 2I- inputs on the O% tier nodes.

" We refer to the levels of the unassigned tree T as "tiers”, starting the numbering from the
level of input nodes, to distinguish them from the levels assigned to nodes by an

assignment function.



All-6

* *
lcz Ao_—>{(),q0 +1,q0_ +2,..}

assigns nodes of A - (cligible at stage ©) to levels, (A(i # j) # 0) or carries them over to

stage ¢ + 1, (lG(i ei)=0).

Ag, = lisie NI()isje A and A (ie)) =0, or. (D) isjd Aj

where i'ej" and 1"ej" are parent nodes of i)},

and

* *
)"GH: A {005 +Lag + 2.}

It remains to specify the stage schedule functions lo" o= 1,2,.... This is done by

a sequence of steps within each stage.

The first stage schedule function Aq is defined as follows. Let

Agb = {(1ej, 1¢)) € AjxA1 | lej and lej form an (r.b)-p-pair}

= {(19j, lej'e AxA]) (i) 3 2¢k € N such that (1], 2ek} is
an arc of T, and (1ej’, 2¢k) is an arc of T and

(i) w(le)) =x, y(lej) =y and x #y.}

First the nodes of Aib are assigned levels. The pairs in Arlb are considered in

(lexicographic) order, according to the rank of the lower ranked member of the pair.

We may write
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We may write

Al = (lsupleus...lou | }
41
and
b
Al ={levy,levy,. .  lev 25 }
q]
where
up<up <.<u |
41
and

Vi<V <. <V )
q1

[Note that if b is the majority color in (T,y) then q% > qi . However, this observation

itself is not used in the process detining the schedule functions.]

We assign nodes to levels in pairs in order. Thus,
A(Leuj) = Aq(levj) =q1 +]
for

0<j<minql ) 1. if min{q) q] }>0

1=0 if min{qi ,q% } =0,
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Next, as in stage 1, define

Ay ={isje Axlw(ie)) =randif i'sj € Ap(isj, i'sj) area

p-pair, then y(i'ej') # b}

e, Ag consists of all nodes in A that are colored r, but are not part of an (r,b)-p-pair.

Similarly, define Ag . We may write

Ay =1{i e x.L, XX, 'xl?;}
2 2

and

A’f ={k, ® ¥,k '.V:---kq! 'ng}-

2

Note that the nodes in AE and Ag can be in tiers | or 2, but that only one of these sets

can contain nodes from tier 1.

Then, define

*
Aaijexy) = Aa(kjey)) =qy +qa+]

for

1< Smin(qé ,q% ), if min[qé ,q% } >0
and =0 if min{q:lz ,q% =0

rb r b .
At stage o, we form Ac . A0 and Ao’ , from Ao_ , where
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* * 12

Finally, Ka(i-j) =0ifiee AG , and is not one of the nodes assigned as above.

. - . . b . -
There exists a first stage, call it 6*, at which Ac’ = AG , because b is the majority

color and the process assigns equal numbers of r and b nodes at each step. Then the nodes

of Ao"‘ are assigned in order using the rule

*
lo*(xj) = qo_*_l +1]

if xj is the node of ji rank in A+ . where

where
2 b
qo_* =card(Ac* ).

If y is a minimal coloring then Ag =A, forallg2 c*.
The scheduling process terminaies when A =@ . Finaily, A: N> {1.2,...} 15

defined for each x by A(x) = kc(x) for the (unique) value & such that lo(x) # ().
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node, kj 1s the j integer such that node kj is an r-node. The proof is by finite induction.
We show first that the first r-node, k1, is matched. Let the first r-node be node iej. If
i# 1, so that the first r-node is not on tier 1 of T, then N T=9 , i.e. there are no r-nodes.
Hence, in this case Property M holds vacuously. Tosee thatN '=9 inthecasei= I,
notice that if i # 1, every node on tier 1 is a b-node. In that case a minimal coloring W
requires all nodes in N to be b-nodes. Therefore, N T=9 .

So we may suppose the first r-node is on tier 1. Let it be the node 1] for some
1 <j<ny.

If 1#j has no mating node (i.c., if n] = 1) then T consists of the single node 1ej =
lel sothatn f=1andn ®=0, contradictingn T<n b,

So we may suppose that node 1#j has a mating node; for definiteness let it be
le(j+1). If the mating node 1e(j+1) were a b-node, the p-pair 1ej and le(j+1) would be
matched according to the matching algorithm, because both nodes are eligible initially, 1.¢.
Isj € Ajand le(j+1) € Aj. In this case we have shown that 1) 1s matched.

Therefore, we may suppose that the p-pair (1#j, 1#(3+1)) form an (r,r)-pair, and,
because W is a minimal coloring, their descendant, 2el, a node in tier 2 of T, is an r-node.
Suppose that 1#j is unmatched. Then all nodes on tier 2 form either (r,b)-pairs or (r,1)-
pairs. To see this note that if there are any other unmatched pairs on tier 1, they are initally
eligible (in A1), and remain eligible in stage 2 of the matching process and hence are also
elements of Az. If any of them is a (b,b)-pair then the first such pair would be matched
with the (r,r)-pair (1#j, 1#(j+1)), contradicting the hypothesis that 1ej is not matched. It
follows that all unmatched nodes on tier 1 are r-nodes. Hence, since W is a minimal
coloring the descendants of unmatched nodes on tier 1 are also r-nodes on tier 2.

Next observe that there can be no (b,b)-pairs among descendants on tier 2 of the
matched nodes on tier 1. For if there were any such pairs, they would be eligible for

matching at stage 2 (i.e. elements of Az) and, according to the scheduling algorithm, the
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1 o(j+2) 1 w(j+2) 1e(j+3)

2o(k+l)

FIGURE AII-3

Node 2e(k+1) is eligible at stage 2, i.c. 2¢k+1 € Ap. We have already shown that
all nodes on tier 2 form (r,b) or (r,r)-pairs. Hence node iej, which being unmaiched
remains eligible at stage 2 (i.e., i*j € Ap), cannot be paired with any node before 2e(k+1)
in the ordering of nodes. Moreover node 2ek is not eligible at stage 2, because it is the
descendant of a node that is not already matched by stage 2, i.e. 2¢k € Aj. Hence 2ek
and 2ek+1 are not an eligible (r,b)-pair at stage 2. Therefore the matching algorithm would
require that nodes iej and 2ek+1 be matched, contradicting the hypothesis that 1ej is
unmatched. Therefore, it cannot be the case that the parents of node 2e(k+1) are an (r,b)-
pair.

So suppose that (nodes 1e(j+2) and 1(j+3) form a (b,b)-pair. Since 1ej is the first
r-node, 1#j+2 and 1j+3 cannot be matched with any (r,r)-pair before Lej in the ordering of

nodes. But all nodes on tier 1 are eligible at Stage 1.
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of T. The eligible nodes at the stage including step s can contain no r-node that is not part
of an (r,b)-pair. Otherwise it would be paired with psq. Furthermore, the eligible nodes
can contain no (r,b)-pair, otherwise node peq would not be schdeuled at step s, but would
be carried forward to the new set of eligible nodes at the next stage. Therefore at the stage
including step s at which node peq is assigned, the eligible set can include only b-nodes,
and moreover node peq must be the first of those, otherwise, since only the first such node
would be scheduled, peq would not be scheduled at step s. The eligible set at step s
includes all the nodes peq’ on tier p with q' > g, because all nodes on tier p-1 have been
assigned before stage s. Hence, these nodes (excluding for the moment the mating node to
peq) must all be b-nodes. Consequently their descendants on tier p + 1 must be b-nodes.
Furthermore, the nodes peq' on tier p with g’ < g have been scheduled before stage s,
hence their descendants on tier p + 1 are eligible at stage s and hence must all be b-nodes.
Consider next the pair peq and its mate, either pe(g-1) or pe(q+1). If the mate is a
b-node, then with peq, it forms a (b,b)-pair whose common descendant is a b-node. It
would then follow trom the minimal coloring property of W that all nodes on tier p+1 and
above are b-nodes. If the mate is pe(g+1), then, it is the eligible set at stage s and has been
shown to be a b-node. The remaining possibility is that the mating node is pe(q-1) and is
an r-node, (already matched to a b-node other then peq). Then one of the following two

possibilities obtains.
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Therefore the hypothesis that the k® r-node is unmatched is false. This establishes the
Lemma.

The proof of Lemma A also establishes the following: The scheduling algorithm
assigns matched r and b nodes to levels until all minority nodes (r-nodes) have been
assigned; then it assigns the remaining b-nodes, one to a level, until all nodes have been

assigned.

Lemma B: Let A be the schedule defined by applying the scheduling algorithm to the given
colored tree (T, ) where W is a minimal coloring. Then, there
exists an integer I * such that if 1 <7 ¥, then A-1(1) contains 2 nodes, and if / > 1* AL

contains at most one node.

Lemma B tells us that the schedule A, defined by the scheduling algorithm has the matching
property, M. Itis evident that such a schedule has no gaps, since the range of Ais an
interval in the integers. Therefore, the schedule A as defined by the scheduling algorithm
attains the lower bound IN Pl + 1, Therefore it is a minimal schedule, i.e.,

Ty, STy .forall schedules A’ of (T,y). This assures us that property M and the "no
gaps" property are necessary and, by Theorem 1, sufficient for an assignment A of (T}
to be minimal. When the coloring function y is the unique minimal coloring of T, then the
pair (A ) where A is a minimal schedule and (y,A) satisfy the parallel constraint, are
together efficient in the sense that the pair (VW(T) (T < (V‘I"(T) , Ty(T) ) for all
colorings ' of T and assignments A' of (T,y"), satisfying the paraliel constraint. (The

inequality is, of course, the usual vectorial inequality.)
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or

20421 4224 4201 N 1f=0 b+ 1.

Therefore,

21 4224 4201 2N 11=0 b,

Therefore U b =2p, where p= | + 2 + 22 +...+ 2t-2 - IN 7, which is an integer; therefore

U biseven.

It follows that there is a point in (v,T)-space obtained by recoloring half of the
"excess" b-nodes to r-nodes, and reassigning them to levels matched with b-nodes. The
point so obtained is efficient.

To see this, note that if the (even) number of excess b-nodes is 2p, for some integer
p. then this process reduces the length of the network by p levels. This is the minimum
length that can be attained by recoloring, because at that point there are equally many r-
nodes as b-nodes. Hence recoloring any node increases the number of minority color
nodes by one, and decreases the number of majority color nodes by one, and hence
increases the lower bound on the length of the network by one.

The efficient point corresponding to recoloring of p b-nodes is obtained by proper

choice of the set of b-nodes to be recolored from b to r. An example:
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This is the only etficient recoloring of 4 b-nodes to r-nodes, when all 1st tier b-nodes have
(b,b) inputs.
The following table shows the possibilities for 4-tier regular trees. Such a tree has

15 nodes = 20 + 21 + 22 4 23

Nb | Nt | ED | EPI=1
2
4| ol 14 7
13 1| 12 6
12 2 | 10 5
£ 11 3 8 4
] 41 s 3
9 5 4 2
8 6 | 2 1
7 71 0 0

FIGURE AII-7

For the Example, the changes can involve 1,2,3 or 4 b-nodes. Consequently, the whole
efficient frontier can be generated as follows.
To change 1 b-node efficiently, if there is a 15t tier b-node with an (r,b) input, change it to
an r-node. This results in an increase of 1 crosslink (the output connection of such a node
must be a b-node if the original coloring was a minimal one). If there is no such b-node,
then change a b-node with (b,b) inputs and an r-node as the output connection. This
results in an increase of | crosslink.

If there is no such node, change a first tier b-node with (b,b) inputs and output

connection to a b-node. This results in an increase of 3 crosslinks.
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This results in an increase of 1 crosslink. Changing 3 b-nodes that do not form a tree, but
have (r,b) inputs results in an increase of 1 crosslink per node or 3 crosslinks.
If it is possible by changing 3 b-nodes to r-nodes to create a subtree whose output

connection is an r-node, then do that. E.g.

FIGURE AII-10

This results in an increase of 3 crosslinks.

If it is possible by changing 3 b-nodes to r-nodes to create a subtree whose output

connection is an r-node, then do that. E.g.
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FIGURE AII-12

The point (v*,1*) is the point obtained by applying the scheduling algorithm to the
minimally colored tree (T,y) where W is an efficient minimal coloring.

All points shown in Figure 53 have the property that each coordinate is minimal
given the other. However, only the circled points in the graph are efficient. At the 2
uncircled points, v is minimal given T, and T is minimal given v, but they are both
dominated by the point (t* - 3, v* + 2). This shows that trading oft time for crosslinks one
unit at a time does not generate the lower boundary of a convex set, (viewed as consisting

of the line segments between integer pairs corresponding to T * 11,12, etc)



