Discussion Paper No. 112

MANAGEMENT OF OPERATING SYSTEM SUBPROGRAMS

by
Jair M. Babad, - V. Balachandran, - and
Edward A. Stohr

October 1974

o
W

Graduate School of Business, University of Chicago

s o,

"" Graduate School of Management, Northwestern University

Not to be quoted without
the authors' permission

Abstract

This paper is concerned with the problem of optimally assigning
coperating system programs to different storage devices such as core, drum,
or disc., We assume that each program can be stored on the devices either as
one page stored complctely on one device or as a number of pages stored pos-
sibly on different devices., Given the costs of storage and accessing for
the storage devices, and a constraint set representing time and storage
requirements, a solution is found by mathematical programming techniques,
Finally, the procedures developed in the paper are demonstrated using actual
data for some of the system library routines at the Northwestern University

Computing Center.

Key Words: OPTIMIZATION, COMPUTER SCIENCE, OPERATING SYSTEMS.

I. Introduction

The management of a modern computer system is a complicated
operation, and special programs, called operating systems, have been
designed and implemented for this task. An operating system is a collection
of many subprograms, each of which is responsible for one or more specific
operations such as input-output, accounting, job scheduling, resource
management, source language translation, loading of job moduleg, and so
forth. Some of the most frequently used of these subprograms may be
maintained within the core memory of the computer. However, due to the
limited size of the computer's main memory, many of the operating system’s
subprograms are stored on auxiliary devices such as drums or discs, and
are moved into the core memory only when they are needed. The determination
of the storage device on which a subprogram is to be stored 1is based on
the frequency of use, the storage requirements and the transfer rate of
information from various storage devices into the main core. These decisions
are usually made according to some heuristic procedures, due to the lack of
appropriate analytic models. Their impact on the computer system's performance,
though, might be very noticeable, and improper declsions might degrade
performance considerably. In order to remedy this situation we present
here an appropriate model for the storage management of operating system
subprograms. In this model we take into account the various cost elements
that are related to the usage of such subprograms, and, subject to access
time and storage constraints, we seek the decisions which minimize the
total expected cost. We also provide an example of an application of our

model to a large scale operating system.

The present paper represents an application of the model found in
Babad [1] and contains an extension to the case where subroutine calls are
dependent on the prior history of jobs. The philosophy we adopt is also
similar to that in Babad, Balachandran, and Stohr [2] in that our model at-
tempts to find the most cost-effective solution for a given set of processing
requirements. This contrasts with the approach adopted, for example, in
Ramamoorthy and Chandy [9], where cost is held fixed and the objective is to
allocate programs to devices to minimize processing time. Another point of
difference with their work is that they are concerned with fixed-length
program segments or "blocks'" whereas we allow for variable-length segments.
For similar reasons, our work also contrasts with the approach of Grossman
and Silverman [6], who deal with the problem of placing records on a disc in
order to minimize the average access time.

The approach we adopted in this paper is to allocate subprograms to
various stcrage devices with the objective of minimizing the subprograms’'
access and transfer costs. This allocation results in a storage hierarchy
and is related to earlier work on memory hierarchies, e.g., Salasin [10],
Ramamoorthy and Chandy [9], Mattson et al. [8], and Gecsei and Iukes [4],
However, we concentrate on the optimal allocation of the programs to the
various storage devices rather than the selection of an optimal storage structure.

Cur discussion starts with the case where program calls are independent
of the prior history of the process {"independent subprograms"). In Section 2
we present the general model and detailed notation, Several simplified
versions of the general model are discussed in Section 3, In Section 4 the
model is extended to allow for dependent subprograms. The application of our
model to an actual operating system is described in Section 5, while in
Section 6 we discuss the possibility of future applications and enhancements

of the model,

2. Cost Analysis of Operating Systems

In the cost analysis that is presented in this section, we are
concerned with the storage and access costs of an operating system and
ignore development and fixed coéts. Specifically, the objective will be to
minimize the total expected costs of the system by a proper selection of
storage devices for storing the system's subprograms. Several other
interpretations of the model for different objectives will be discussed
later in Section 5.

Let R be the number of cubprograms in the operating system,
and let M, be the length of the ith one (L<i<R). Since an
operating system ig not subjected tc many freguent chang2s, we might
consider R and the Mi's as fixed exogerous data. These subprograms
are used and called by K different types of user jobs, such as compilers,
job accounting, statistical processing, etc. However, the subprograms

are assumed to be independent in the sense that one subprogram may not call

another one. With each job-type k we associate a value factor vk(l <k< K),
which takes into account the relative importance of the job and the
number of times it is processed per time period. In the simplest case,
vy will be the relative frequency of the job times the total number of
processed jobs during one time period. In addition, we asscciate with
each job-type k a selection set Sk’ which ig the subset of the system's
subprograms that are requested by thig Jo-type.

The operating system's subprogrenms may be stored on various storage

devices, indexed by j =0, 1, ..., J. Ue assume that this indexing is
according to the transfer rate of dats from the storage devices into the
core memory. Thus the core memory is indexed as the zero device, a drum might

be the first device, and a disc, say, might be the second device. Storage

of a unit of data on device j costs the system Cj rioney units per time
period, while the cost of accessing and reading data from device J 1into
core includes two elements: a fixed cost Aj and a transfer cost (per
storage unit transferred) of Bj' For example, in a random access disc
device Aj is the cost of the time required to calculate the address of

a needed subprogram, to move the arm to this address, and to wait for the
rotational delay of the disc. Due to our indexing order, the costs A.

J
and Bj will (usually) be nondecreasing functions of Jj, with A =B =0

Q 0
(since the information on device 0 is already in the core memory). Similarly,
the costs Cj are a nonincreasing function of j, because the fast devices
are more limited in their storage capacity and cost more to purchase and
operate than the slower devices.

As in Babad [1], we initially consider the following general storage
schemé for the operating system's subprograms: A subprogram i, say, is
broken into many nonoverlapping segments, dencted by bij(o < j<J), where
segment bij ig stered on the jth device, and Zg:g bij = Mi' Due to
the stability of the operating system, this storage scheme is static rather
than dynamic; that is, once the segments are determined, the storage
assignments are not to be changed unless a (considerable) change in the
job mix or the operating system's specifications occurs.

When a job-type k, say, is processed by the system, all
the subprograms in its selection set Sk have to be accessible in the core
memory. The operating system thus checks a directory of its subprograms,
determines where their segments are stored, and transfers these segments
from the various storage devices intc the core memory. Suppose 1 1s one
of the subprograms in Sk' If bij = 0, no segment of 1 is stored on

device Jj, and this device is not accessed for subprogram 1. On the

other hand, if bij > 0 the jth storage device has to be accessed for

subprogram 1, with access cost of Aj + ijij' Let

b, .
1)
The total access cost of subprogram i is then

Ac, =597
1

S=0 (1 - Sij)(Aj + ijij) (2)

and the total access cost of job-type k, when processed once, is

= Z‘ = Z‘ ZJ.:J -
Ty ieS, ACy ies, ~§=0 (1 Sij)(Aj +ijij) . (3)

Taking into account the value factors of the various job-types, we get as

the total expected access cogt during a time period:

k=K k=K §=J
TACQ = % T, =% +. 5. b - 5. + B.Db..). L
k=1 i = B Nlies Ty O 513)(Aj “jblj) ()

Consider now the storage costs. On storage device j(0 < j< J)
are stored the segments bij of all the subprograms 1< i < R. Thus the
total storage on device j which is devoted to the operating system's

subprograms 1s:

i=R
L, = I3 by (5)

and the total storage cost per time period is:

pepdTor =23 2R 6
TC = 2520 5%y T %520 5 Tim1 Puy (6)

The total operating cost of the operating sysfem during a time

period is thus
T = TAC + TSC (7

with TAC and TSC given by (4) and (6), respectively. This cost is
clearly a function of the specific storage scheme used, as given by the

bij's. Our aim is to minimize T, subject to the subprogram constraints:

(=]
2970 b, o= M, i<i<

=0 le My for 1i<i<R (8)
1520 for 1<i<R and 0L j<J (9)

and bij integer (since ctorage is measured in storage units). Also, from

(1) we have

bis ¥8;21 for 1<i<R and 0< j<J. (10)

Additional constraints might arise from limitations on available storage.
Specifically, suppose that the total available storage on device J 1is

Dj > 0. Thus,

1, =238y <D, for O
J i=1 "ij — 7]

IA
o
IN

oy

(11)

where, to be consistent, we set Dj to be sultably large if the available
storage on device j is not restricted; e.g., in such a case we might set
i=R

=z :
Py = 5al

Further, the requirements of the operating system might dictate a
short accegs time for some subprograms; for example, interruption handlers
and real-time communication subprograms are restricted in their access time.

So let fj be the fixed time required to access device j, and tj be

the transfer time (per storage unit transferred) from storage device
into core memory. The access time constraints are derived in a similar
way to the derivation of the access costs, and, denoting by Ti (Z 0) the

maximal allowed access time for subprogram i, we have

-
5970 (1 - 8,)(F. +t.b..) < T,
jeo (1= Byy) (£ + oypy5) <0y
or
9% (b b, -£.5..)<T -390 s for 1<i<R 12
J=0 (Jjij 3 13) - i j=0 ~j ~>1= (12)
since (1 - 6ij)bij = bij by (1). Clearly, for nonbinding time constraints

we might set I& to be very large, e.g.,

Our problem is thus to find a storage scheme--as given by the bij's--which

will minimize T as given by (7), subject to the constraints (8)-(12).

However, some simplifications can be introduced in (7). Specifically, let

1 if ie8
€.. = for 1< i<R and 1<k<K. (13)
lk . — — . -— -—

0 otherwise

Equation (7) then becomes

3=0 °3 “i=1 °15 T “k=1 Yk “i=1 °

=370 (1 -

_ sd=J ¢i=R 4 (1 - k=K 4 (1 - sk=K _
Zj=0 ey [Cjbij (1 513) A Tim1 Vi 65 T (2 Bij)bijBJ. k=1 Vi eij) .

k=K . .
- = z
But (1 8ij)bij bij by (1), and k=1 V€5 1S @ constant determined

by the data of the problem. Iet then:

k=K .
=X < i <R. 1
v, =1 Vieik for 1< i<R (15)
Ignoring the constant term Z%:g 2R 0 v, in (14) which does not affect

i=1 "j'i
the optimization, we finally get the following integer programming formu-

lation of our problem:

Mimimize T =339 2R [(¢. +B.V.)b,. - AV.5.]
i=1 J Jji’ij jii

J=0 J
N . 2j=J = 1< i<
subject to: 3=0 bij M. for <i<R
pi=R < <3<
1m1 bij < Dj for 0< §<J (16)
595 (4 b, - £8,.)<T -89 £ for 1<i<R
J=0(JlJ JlJ)—l J=0 7J - -
b.. +86..>1 for 1<i<R and 0< j<J
ij ij = - T = _d =
b,. > 0, integer, d,. = O or 1 for 1 < i <R and
ij = ij - =
0<ji<d.

Notice that in this formulation we effectively eliminated the various

job-types, which only enter the formulation implicitly via the Vi's.

3. Nonsegmented Programs

Many computing systems require that each subprogram be entirely

stored on one storage device. The main reasons for such a requirement are

the reduction in the subprogram directory size (with the associated reduction

in directory search overhead) and the resulting simplicity of maintenance

of the operating system. In this case, it seems appropriate to replace

the formulation of (16) by a simpler representation of the problem. Iet then:

1 if b, =M,
x. | = J for 1<i<R and 0< j<J. a7

oo if v, =o0

Thus in this case Xp5 = 1- Sij’ bij equals Mixij’ and from (16) we

get the following integer programming formulation:

o _ £3=T $i=R P
Minimize: T Zj=0 Zi=l Uijxij (18-1)
subject to: 97U k. =1 for 1<1i<R (18-i1)
J=0 "ij - =
s1R M.x for 0< j<J (18-iii)
i=1 "i%iy = 7 = 9J=
-
54 + < i -i
S0 (fj tjMi)xij < T for 15 i<R (18-iv)

X3 5 > 0, integer for 1< i<R and 0< j<J (18-v)

where U,, = (C, + B.V,)M. + AV, is the cost per time unit of storing

13 J J 1 1 J 1
and accessing subprogram 1 on device j.

In particular, consider the very common case in which the storage
hierarchy consists of the core memory and a drum or disc--i.e., when only
two levels of storage hilerarchy are allowed. 1In this case J =1, and
we can replace the double indexing of (18) by a single index. Specifically,
let:

V. = X, .. (19)

The objective function is then:

-
st + -
i1 (Ugovy * (1= 53)044)

i=R 5=
= + - .
Ziq Usp T3 Uy - Uiy

Ignoring the first term, which is a constant and does not affect the

optimizaticn, we have the formulation:

10

TN
. e i=R
Minimize: Z -1 (UlO Ull)yi
subject to: ZIi R My <D
) i=1l i1 0
i=R
- < 2
E M, (1-y,) <D > (20)
- - +
[(fy + tMy) - (£ + M)]y ST - (£ + 8M;)
for 1< i<R
y; =0 or 1 for 1< 1<R.
-~

In this case, though, some simple observations may considerably
reduce the size of the problem. First, we notice that if an access
constraint is binding for a particular value of i, +then subprogram i
has always to remain in core. Thus, all subprograms for which
these constraints are binding are immediately assigned to the core memory--and
deleted from the problem. The remalning constraints of this type can also

be dropped from the formulation since they are norbinding. Second, it

might be assumed, as is usually the case, that the capacity of secondary

storage (drum or disc) will not be binding, so that:

IS M <D

i=] i 1°

The problem is then reduced into a knapsack problem with R items, where

item i has value u.. - u,
10 i1’

Many algorithms (e.g., Gilmore and Gomory [5]) are available for this

length NE, and the avallable space is DO'

standard problem.

11

L, Extension to Dependent Subprograms

One of the main assumptions of the preceding development was the
dndependence of the system's subprogrém. Under this assumption, no inter-
relations exist between subprograms, and one subprogram may not call another.
This is clearly not the case for many systems, and in this section that
agssumption is relaxed. Specifically, we assume that when subprogram i is
executed for jobs of type k, it may call any other subprogram, say j.
Subprogram j, in turn, may call another subprogram, and so forth. Further,
we assume that if the called subprogram is not stored in the core memory,
it will be brought in from the storage device on which it is stored (this
assumption is justified as an approximation, since otherwise the model
must be expanded--and complicated--by the introduction of memory directories,
cost of searching such directories, the "process history,"” etc.)

Let us then denote by pin(k) the probability that subprogram n
will be called by subprogram i when a job of type k is processed, and
consider a (fixed) storage scheme as given by a set of bij's. The total
operating cost with dependencies will differ from the previously considered
cost due to the increase in accessing costs. We thus have to modify TAé
of equation (4) with modified accessing costs. But the access costs are
separable into job-types costs (ICk), and therefore it is enough to consider
here a single job-type, say k. As 1s clear from the contexts and
equation (3), if a subprogram i, say, is independent with respect to job-
type %k, then the modified cost for accessing it equals the cost earlier
considered in (3). Such a program satisfies

n=R

bX
n=l “in

(k) =0

12

and might be ignored in the following discussion. Thus, without loss of

generality, we assume that for each subprogram i ¢ Sk’ we have:

2n=IR
0<Z o) P (k<1 (21)

Notice that the probabilities in (21) do not sum up to 1, since each

subprogram in S, might be terminated without calling in any other

k
subprogram (otherwise, if i always calls j, we may combine i and
into one subprogram).

In the following discussion it will be convenient to adopt

matrix notation. Thus, let:

™~
§i = row vector with R elements, whose ith element
§g(i) equals 1 if i ¢ S, and is zero otherwise.
AC = column vector with R elements, whose ith element igs
[(22)
AC; as given by (2).
I = an identity matrix of size R X R.
P = the matrix whose (i, n) element is pin(k)'

_/
Using this notation, the total access cost for job-type k of equation (4)

is given (for independent programs) by

, =S, T AC. (23)

k

However, the programs are not independent. First, the programs

selected by §§ are called into core memory. Each of these might, in

turn, call some other programs, and the expected number of calls of
program n 1is given by:

i=R

Or.
< n<R.
I §k(1) pin(k) 1<n<R

13

Thus,

sl -g9p (2k)

is the vector whose ith element specifies the expected calls of subprogram
i by the system's programs which were initially used during the processing

of job-type k. Similarly,

specifies the expected number of subprogram selections for processing,

due to calls by programs chosen by §l Thus, the total expected number

K
of subprograms' calls for processing of job-type k 1is given by:

o 0 1, 2
§k_§k+-§k-r§k+'“ w

_ 0 02
=5 T + 5P+ 4 ... S

(25)
=§_§(I+P+P2+...)

= _S-i(I - P)-l- J

Notice that the infinite matrix sum in (25) converges because the norm
of the P matrix is less than 1 dueto (21), Themodified access cost is

then given by:

TC

]

émlAC
ko Sk - A

26
=_s_§(I - P)-lég . (26)

In view of (25) and (26) we can reinterpret € Thus,

we redefine €5 8S the expected number of calls to subprogram i during

the processing of job-type k. €51 is then 0 if 1 ¢ Sk’ 1 if i eSS
and 1s independent, and the ith elment of §; otherwise. The model, as

given by (14-(16), is then valid without any further changes.

k

14

5. Application and Results

In order to gain experience with the use of the theory presented in
the first four sections, a pilot study has been carried out using actual data
for the operating system of the CDC6LOO at the Vogelback Computing Center,
Northwestern University. The present system configuration at Vogelback con-
sists of a CDC6400 Computer and associated peripheral equipment. It provides
time sharing and batch processing services for educational and research pur-
poses. The 6400 system has a large central processor (CP) with a 65,536
60-bit word memory (CM) and ten associated peripheral processors (PP's), each
having a 4,096 12-bit word memory. The major function of the CP is to per-
form the computational tasks required by user programs. The PP's act as in-
dependent processors, are responsible for the overall management of the
system, in particular the management of user programs. They are also responsible
for the transmission of data between the various I/O devices and CM, and
between the disc and magnetic tape units and CM. The flows of information
and control in the CDC 6400 system are shown in Figure 1.

The auxilliary storage devices include "Extended Core Storage" (ECS)
with a capacity equivalent to 251,904 CM words, 3 CDC 844-21 disc pack units
with a total storage capacity equal to approximately 30 million CM words,
and a CDC 6603-II disc unit of 7.5 million CM words. The ECS is a large
ferrite core memory which communicates only with the CM. At present it con-
tains the highest priority system information (including many of the PP sub-
programs), time-sharing user jobs, and some user temporary files. The 8lk-
disc packs contain the less frequently used PP programs, the remaining
"libraries" of operating system programs, and user permanent files. The 6603

disc unit contains lower priority information and will not be discussed

further here.,

15

Peripheral
Processors

7 1 "*"“*—~—-——a—(//p.

Cp
X / ﬂ-rv
= 2 ~___~

oM |

ECS |= \R\\\
\ — :/
Discs and Other
(a) Information Flow -e—> Storage and
I/O Devices
Sy B
e - ,/
e SR
CP | ”/’#,,_4’9':\\5,_,/1
)/// } \R\\\ | o - -
ECS CM N

10 |—

(b) Flow of Control —->

Fig. 1.--CDC 6400 System--Flows of Information and Control

Requests by a user program for system programs or data files are first
referred to a PP which identifies the location of the desired information.

If the information is stored on disc, the PP will arrange for its transmission
to CM., If the desired information is stored in ECS, control is returned to
the CP, which then arranges for the transfer of the data to CM.

Ihe theory presented earlier can be used to investigate the storage
assignment of both PP programs (presently residing on ECS and disc) and other
system programs, including the libraries of compiler subroutines (presently
residing only on the disc). Data on the frequency of use of the PP programs

is not presently available, so the study was carried out for one of the

16

system program "libraries." The chosen library contained 116 subroutines
which are used by the RUN Fortran compiler. Some of these subprograms are
used for input, output, and control and are called every timg a RUN-compiled
program is executed. Other subroutines, such as SQRT and TAN, are part of
the regular F¢RTRAN library of subprograms and have less frequent usage.

The most frequently used subroutines in the library are executed an average
of once every 77 seconds. The subprogram lengths vary from 10 to 1,032 words.
Specifically, our analysis was concerned with the consequences of

allowing some of the RUN library subroutines presently stored on disc to be
stored in either CM or ECS. Since the available data concerned the frequency
of use of individual subroutines (rather than jobs as we have defined them),
the analysis in Section 4 concerning "dependent" subprograms could be by-
passed without loss. Thus,our problem was in the form of equation (18) with
J = 2. Values of D, =200 and D .

0 1
upper bounds on the amount of CM and ECS, respectively, which could be allo-

= 2,000 words were chosen as desirable

cated to the RUN subroutines without significant effects on other aspects of
system performance. An analysis was also carried out with DO = 400 and

Dl = 4,000 to test the sensitivity of the solution to these constraints. Mo
capacity limit was imposed for the disc storage. Since all the programs are
presently resident on the slowest of the three access devices, it was not
considered necessary to include any of the timing constraints for individual
programs.,

In deriving the cost data for the problem, an attempt was made to
charge the system subprograms at the same rate as user programs, In this
way, system subprograms will be allocated to higher performance storage de-

vices if, roughly speaking, the economic benefits exceed the costs. The

Vogelback Computation Center uses the following formula for computing job cost:

AN

My My

JC=P}|T7 + 3 T + 211 +—>—|T 5
MCM CP (MCM PP

where P is a priority factor (P = 1 for most jobs), M is the capacity

CM
(in words) of the CW, M.J is the total amount of CM required for the job,
and TCP and TPP are the respective amounts of CP and PP time used

(in minutes). For each device, j, access costs of hj dollars per second
and storage costs of c¢. dollars per word per second were computed which
were consistent with actual user costs (as given by the formula above) to

run a "typical" source program job and to store information in auxiliary
storage devices. The resulting values for the Aj's, Bj's, and Cj's are shown
in Table 1. Also shown in the table are the access times and transmission
rates for the various system components. The access times, fj’ allow for

an "average" amount of software overhead in addition to the hardware-related

access delays.

TABIE 1

DATA FOR CDC 6400 SYSTEMS

Device
CcM ECS 84L-Disc
J 0 1 2
-6 -6 -3
fj (seconds) 1X 10 27.1 X 10 32.3 X 10
tj (seconds per word) 0 2 X 10_6 13.85 X 10-6
Aj ($) 1.29 X 1077 2.26 X 10'6 6.07 X 1o‘lF
B, ($ per word) 0 1.67 X 10’8 2.60 x 1077
C. ($ per word 2.41 % 10’6 3.01 X 1077 3.62 X 10710
J per second)

18

Data on the frequency of use of the subprograms was collected over a
period of approximately two months. Only 100 of the 116 subprograms in the
library were used during this period, and so the analysis was carried out
for these subprograms. The resulting problem was a zero-one integer program
with 102 constraints and 300 variables.

The solution of such a large integer programming problem would nor-
mally be a formidable task. However, if we ignore constraint §et (18-iv),
the problem can be transformed to an ordinary transportation problem by de-
fining new decision variables, Yij = Mi Xij' The optimal tableau for this
problem will include a "dummy" program for the inequality constraints (18-iii)
and will have R + J cells in the basis (where, as before, R is the number
of programs and J is the number of devices). Iet the rows of the tableau
correspond to programs. Since each row, i, should have a cell in the basis,
at most J - 1 rows may have more than one cell in the basis. This shows that
at most J -« 1 programs may be assigned to two or more devices., Efficient
algorithms are available to restore the restriction that there should be only
one basic cell in each row (i.e., that programs may not be assigned to more
than one device), (see Balachandran [3]). Alternatively, an approximate
solution to problem (18) (without (18-iv)) can be obtained by neglecting the
integer restraint and solving the resulting linear program. Again, at most
J - 1 programs will be assigned to more than one device., Since the ratio
of the number of programs to the number of devices will usually be very large,
the linear programming solution should, intuitively, be very close to the
optimal integer solution. The resulting non-integer solution can be adjusted
by hand, or, if necessary, the exact integer solution can be obtained by run-
ning additional linear programming problems and employing a 'branch-and-bound"

technique (see Iand and Doig [7]). Moreover, in some cases the value of the

19

capacity limits, Dj’ may be flexible, and a feasible integer solution

might be obtained by this means.
Another property of (18) (without (18-iv)) is that if subprogram 1 1is

allocated to storage device J rather than to j + 1, the cost-saving is a

u, ., -0, ,
+
decreasing function of the ratio rij = 2ad T Ly]t . Furthermore, program
s

i should not be assigned to device J if rij > 0. This provides a con-

venient heuristic procedure for allocating subprograms to devices which is

similar to the ranking technique employed during the solution of knapsack
problems {5]. The procedure is as follows:
(O) Construct a list in which the negative rij's are ranked in increasing
order of magnitude. Iet Ij = Dj’ 0<J<Jd.
(1) 1If the list is empty, stop. Otherwise, select i and j such that
rij is at the head of the list.
(2) (a) 1If M, S.Ij, assign subprogram i to device Jj. Set Lj = Ij - M.
Delete all rij's, 0< j<J from the list. Go to (1).
(b) If M; > Ij’ remove I from the head of the list. Go to (1).
The approximate solutions obtained by linear programming methods as described
below are consistent with this heuristic method.
The fact that efficient exact (and approximate) solution procedures
are available for (18) is significant since they enable solutions to be ob-
tained for actual operating systems which may involve several thousand sub-
programs.
In our study, three different objective functions were considered.
The first objective was to minimize the expected processing times for the
subroutines (a "throughput" criterion). 1In this caée, the values of the

J

were substituted for the costs Aj and Bj’ respectively, in the computation

storage costs, Cj’ were set equal to zero, and the values of fj and t,

20

of the U, 6 coefficients in (18-i). The second objective which was studied
was that of minimizing the direct costs to the users of the system. This was
accomplished by using the costs Aj and Bj shown in Table 1 with the
storage costs, Cj’ again set to zero. Two runs were made gsing this ob-
jective, the first with capacity constraints DO = 200 and Dl = 2,000,

and the second with capacity constraints D, = 400 and D, = 4,000, The
third objective considered was that of minmizing the total costs of the
system. In this case, the U, , coefficients were calculated using the

values of Aj’ Bj’ and Cj given in Table 1.

The linear programming solutions for the four problems are summarized

in Table 2,
TABIE 2
’ LINEAR PROGRAMMING SOILUTIONS
Number of Subprograms
Constraints Allocated to Devices¥*
Problem Criterion DO Dl CM ECS Disc Total
1 Maximum
Throughput 200 2000 4 17 79 100
2 Minimum
User Costs 200 2000 b 17 79 100
3 Minimum
User Costs 400 4000 5 30 65 100
L Minimum
Total Costs 200 2000 0 1 99 100

*
Adjusted to the nearest whole number.

In this experiment, the optimal allocation of subprograms to devices
was the same for the maximum throughput (Problem 1) and minimum user costs

(Problem 2) cases. Thus, the present pricing policy of the Vogelback Center

21

is consistent with the goal of encouraging maximum throughput of jobs
through the system. As expected from the nature of the objective functions,
the constraints for CM and ECS capacity were binding for the first three
problems. This was not so when the objective was to minimize total system
costs, In this case, only one subprogram was assigned to ECS and all others
to the disc, Thus, the present policy of assigning all of these subprograms
to disc storage is very nearly optimal from the point of view of minimizing
total system costs.

The savings for the optimal solutions listed above relative to the

present allocation of subprograms are summarized in Table 3,

TABLE 3

SAVINGS REIATIVE TO PRESENT ALLOCATION
OF SUBPROGRAMS TO DEVICES

Constraints Percent Saving
: Relative to
Problem Criterion DO Dl Current Solution

1 Maximum

Throughput 200 2000 68.9
2 Minimum

User Costs 200 2000 68.5
3 Minimum

User Costs Loo 4000 92.7
4 Minimum

Total Costs 200 2000 12.3

These results show that very high relative savings may be obtained by
shifting a small number of programs to the higher performance storage de-
vices., Thus, the expected total time spent processing these subprograms can

be reduced by approximately 70% if the optimal solution to problem 1 is

22

adopted, If can be seen also that significant relative savings can be made
if the capacity constraints are relaxed (compare problems 2 and 3). Although
all relevant factors affecting system performance cannot be taken into ac-
count, it does seem reasonable to expect that substantial increases in
system efficiency might be obtained if analytical procedures such as the

above are employed in place of the current trial-and-error methods.

6. Conclusions

In this paper, we presented a model for the storage management of
operating systems subprograms and the application of the model to a large-
scale operating system, It was shown that the model objectives can be in-
terpreted in several different ways, and thus can accommodate various computing
systems, like umniversity systems and commercial systems. Interrelations
between programs were taken into account, with the simplifying assumptioﬁ
that called programs are always fetched from the storage device on which
they are stored. The removal of this assumption is a question open for
further research. The model as presented was a static model; an open question
is the determination of a storage policy for a dynamic environment, in which
demand patterns for programs' execution vary in time; this facet of the
problem is related to the pricing policy of the computer system, which has a
major effect on the demand pattern, and thus also on the storage management,
Finally, it should be noted that our model, with minor modifications, may

be applied to other process and storage control problems.

23

Acknowledgements

We wish to express our gratitude to Dr. Melvyn H. Schwartz, Manager,
Software Development at the Vogelback Computation Center, for his valuable

help and advice during the writing of this paper.

References

[1] Babad, J. M., "A Record and File Partitioning Model," Report No. 7358,
Center for Research in Business and Economics, University of
Chicago, December, 1973.

(2] Babad, J. M., Balachandran, V., and Stohr, E. A., "Cost Evaluation of
Storage Schemes," Report No. 7416, Center for Research in
Business and Economics, University of Chicago, April, 197k,

[3] Balachandran, V., "An Integer-Generalized Transportation Model for
Optimal Job Assignment in Computer Networks," Discussion Paper
No. 58, Center for Mathematical Studies in Economics and Manage-
ment Science, Northwestern University, October, 1973.

[4] Gecsei, J., and Iukes, "A Model for the Evaluation of Storage Hierarchies, "

IBM System Journal, 13, 2, pp. 163-178, 1970.

[5] Gilmore, P. C., and Gomory, R. E., "The Theory and Computation of Knap-

sack Functions," Operations Research, 14k, 1045-107k,

[6] Grossman, D, D., and Silvermen, H.F., "Placement of Records on a Secondary

Storage Device to Minimize Access Time," Journal of the Association

for Computing Machinery, 20, 3, pp. %29-439, July, 1973.

(7] Land, A. H., and Doig, A. G., "An Automatic Method for Solving Discrete

Programming Problems, " Econometrica 28, pp. 497-520, 1960.

oh

[8] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L., "Evaluation

Techniques for Storage Hierarchies," IBM System Journal, 9, 2,

pp. 78-117, 1970.
[9] Ramamoorthy, CV., and Chandy, K. M., "Optimization of Memory Hierarchies

in Multiprogrammed Systems,'" Journal of the Association for

Computing Machinery, 17, 3, pp. 426-445, July, 1970.

[10] Salasin, J., "Hierarchical Storage in Information Retrieval," Communication

of the Association for Computing Machinery, 16, 5, pp. 291-295,

May, 1973.

