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ABSTRACT

In this paper we present a linear programming game that is motivated by the assignment game of Shapley
and Shubik. This new game is a very natural generalization of many of the network optimization games
that have been well studied in the past. We first show that for this general class of games the core is
nonempty. In fact any dual optimal solution of the underlying linear programming problem gives rise to a
core allocation. We also show that for a particular subclass of games (which include the assignment, max
flow and location games) the core exactly coincides with the set of optimal dual solutions. Additionally

we study the relationship between this linear programming game and the production game of Owen.

* Department of Managerial Economics and Decision Sciences, Kellogg Graduate School of Management, Northwestern University,

Evanston, IL 60208.



1. Introduction

Cooperative games that arise from various optimization problems have been
extensively studied. Two very important works in this area are the papers by Shapley and
Shubik [1972] and Owen [1975]. Shapley and Shubik consider an assighment game based
on the matching problem in a bipartite graph. Each player controls a node of the graph
and the value of a coalition is defined to be the maximum weight of a matching on the
corresponding subset of the nodes. They show that the core is nonempty for this class of
games and further that the set of core vectors coincides with the set of optimal dual
solutions of the assignment problem. Owen introduced a production game based on a
linear programming formulation. In this case each player i controls a vector b(i) and the
value of a coalition is the value of the linear program where the right hand side is the sum
of the appropriate b(i)'s. For Owen's game, any optimal solution of the dual LP will
generate a core solution, though the two sets may not coincide. The assignment game is
one of many special cases of this linear programming game A great deal of additional
work has been done on optimization games. Many of these are based on network
optimization problems. See for example Granot [1986], Dubey and Shapley [1984], Kalai
and Zemel [1982a], Kalai and Zemel [1982b], Granot and Hojati [1990], Deng and

Papadimitiou [1994] and Tamir [1989],[1991] and [1992].

In this paper we consider a new linear programming game that is motivated by
Shapley and Shubik's assignment game. This new game seems in some ways to be a more
natural LP generalization of network based games than the Owen model. As is well
known, the assignment problem can be modeled as a linear program where the constraints
correspond to nodes and the variables correspond to edges. The assignment game has an
interesting interpretation on this linear program with the players now corresponding to the

constraints of the LP. In the assignment game the value of a coalition is obtained by



eliminating nodes not in the coalition and solving the resulting assignment problem. In the
LP this is equivalent to eliminating the constraints (nodes) not in the coalition as well as
the variables (edges) incident with any such constraint. This leads us to a generalization of

the Shapley and Shubik game that can be defined on any linear program.

In many linear programming models of network problems, the constraints
correspond to nodes of the network, so this LP game provides a very natural
generalization of many network games in which players control nodes of the network.
Other examples of such network games can be found in Kalai and Zemel [1982a] and
[1982b], Granot [1986] and Tamir [1991]. In fact the class of games that this model
generalizes is much larger as will be shown later.

In the next section we will introduce the details of this LP model. In Section 3 we
will present some results related to this model In particular, we will examine the
relationship between core vectors and optimal dual solutions. Section 4 is devoted to
cases were the core and the set of dual optimal solutions coincide. Section 5 deals with
games that arise from integer linear programs. In section 6 we look at the relationship

between this model and Owen's model.

2. The Linear Programming Game

In this section we describe the Linear Programming Game (LPG) to be considered in this
paper. We begin with some basic definitions and notation. A game ( a cooperative game
with transferable utility) is denoted by an ordered pair (N,v) where N={1,...n} is a nonempty
finite set of players and v , the characteristic function, is a real valued function defined on
the set 2N of subsets of players with v(&)=0. The value v(S) expresses the worth or
profitability of the coalition SEN.

The game is called :

¢ monotonic increasing (decreasing) if v(8) 2 (<) v(T) for every TcS.



o super additive (sub additive) if v(S) + v(T) < (2) v(SUT) for every ST such that
SHT=3.

o comvex (concave) if v(S) + v(T) < (=) v(SUT) + v(SNT) for every S.T CN.

Given a game (N.v), a feasible allocation, w e R", is a division of the worth of the
grand coalition among its members, thus it must satisfy Z,—\- w, <v(N) . An allocation is
called efficient if it satisfies the above condition with equality.

The Core of a game (N,v) is the set of efficient allocations that can not be improved upon

by any coalition i.e.
Core (N.v) = {w eRMY w =v(N), Y w2wS) VSN } .

Monotonically decreasing games are sometime referred to as cost allocation games. (One
can view the characteristic function, denoted by c(S), as the cost associated with forming

the coalition S). For those games we define the core as:
Core (N,¢c) = {w e N ZWN w, =c(N), st w <c(S) VSN }

In games with nonempty cores the players have an incentive to cooperate and form the
grand coalition N. By choosing a core allocation as a distribution of the worth v(N) (cost

c(N)) we achieve a certain stability as the formation of smaller coalitions is discouraged.

Given a game (N,v), a collection B of coalitions S of N is said to be dalanced if there

exist positive real numbers 8, for SeB, such that for each i e N, 253 =1 . The game
SeB s

(N,v) is balanced if for every balanced collection B, with balancing weights 0,
253 v(S)< v(N). The game (N,v) is fotally balanced if (S,vs) is balanced for every Sc
ScR

N. where V' is the restriction of v to subsets of S. It was proved by Bondareva[1963] and

Shapley[1971], that (N,v) is balanced iff it has a nonempty core.



The Model
Network optimization problems with independent decision makers can often be
modeled as cooperative games with side payments. In these games players control
(several) nodes and the arcs adjacent to them. The worth (cost) associated with every
coalition is the optimal value of the optimization problem restricted to nodes and arcs that
are controlled by the coalition. Some well known examples are the Shapley - Shubik
assignment game, minimum cost spanning tree games, location games and max flow
games.
In order to generalize these games, we consider the following linear optimization problem:
(P) Max { cx | Ax<b ; x20 }

Where ¢ € R, h € R and A is an m x p matrix whose elements are a;;.

Using this problem one can construct a cooperative linear programming game
(LPG) in the following way: Let N={1,...n} be a set of players (n<m). Each player
controls a set of constraints (out of Ax<b) such that every constraint is owned by one and
only one player. The value v(S) of every coalition will be determined by solving (P}
restricted to the set , mg ,of constraints that are controlled by some member of § and
using only variables which can not be found outside mg , we denote this set of variables by
Is.

Formally, let A be the | row of A and:
(Pg) v(S)= Max {cx[Aj x<b Vjiem;x,=0Vx, ¢l x2 O}

Note that if A is the incidence matrix of a graph, controlling constraints is equivalent to
controlling nodes and the restriction of using only arcs which are adjacent to members of
S requires using variables which only appear in mg . Throughout this paper we assume
that (P) has an optimal solution. Note that if a coalition S controls no variables, then

v(S)=0. We will also define v(S)=0 if (Ps) has no feasible solution.



In the case that A is non negative, v(S} will equal the value of the LP obtained by
setting b; to zero for every constraint j not controlled by S. Thus for these matrices our
formulation coincides with the controlled programming problems of Dubey and Shapley

[1984].

This framework is quite general as one can represent any totally balanced
cooperative game using a maximization problem similar to (P). Given a game (N,v) let xg

be a variable associated with the coalition S and define the following linear program:
(&) Max {zsxslf(snzmxs =1 xg2 0}

It is easy to see that (N,v) is totally balanced if and only if the game induced by (G) is

identical to it.

The above LPG possesses the following properties:

e monotonicity - every feasible solution of (Pg) must be feasible in (PT) for every SCT.

o Super additivity - Let S,T be disjoint (SNT=(J) and let x*s . x*T be the optimal
solutions to (Pg) and (PT) respectively. From the definitions of v(S) and vW(T) we

know that [j|(x:,)j > O}mlﬂ(x;)j > O} =@ hence x; , = x, +x, is feasible (but not

necessarily optimal) in (Pg_,7). In other words v(S) + v(T) < v(SUT).

In the following sections we will focus on the core which 1s one of the most
appealing and robust solution concepts used in cooperative cost allocation/surplus sharing

models.



3. The Core of LP Games

In this section we will show that the core (LPG) is nonempty. In fact we show that any
optimal dual solution to the underlying LP gives rise to an allocation in the core. Finally in
some special cases we are able to characterize the entire core.

If we could show that (LPG) is convex we would know that it has a nonempty core (The
Shapley value is a member of the core - Shapley [1971]). As the following example

will illustrate the game might not be convex:

Max x;+xatx3
St oxytx, <2
X Hx,+x; €3
Xyt+Xy €2
X1, X2, X3 2 0
There are 3 players each controls exactly one constraint. Let S={1,2} , T={2,3}
then SUT=N and S~T={2}. Clearly v(N)=3, v(S)=v(T)=2 and v({2})=0 so

4=v(SYW(T) = v(SUT) + v(ST) =3 and the game is not convex.

Therefore we will use a different approach. Assume that there are n players and for now

suppose that each controls a single constraint.
Theorem [ (LPQG) defined by (P) is balanced.

Note that every subgame of an (LPQG) is also an (LPG), so Theorem 1 will imply that
(LPG) is in fact totally balanced.
Proof: Let B be a balanced collection, with balancing weights &5 and let x(S) be the
optimal solution to (Ps), so v(.5) =i“cJ -x (S).

e

We have to show that 28, - v(S) < v(N).

Sef



P I
255 NOEDNE ch x,(8)= Zc} <X, where X, = 255 -x,(8).
Sc f Se B =1 j=1 Se8

It is enough to show that x is feasible (but not necessarily optimal) in (P),

p
for then v(N) > ZCJ X, .

=1
To show that, notice that if Ay is the k™ row of A, then clearly every coalition S that
does not control the k™ constraint can not use any variables which appear in it. In other
words Agx = 0 for every x feasible in (Pg), in particular A x(§) = 0.

Consider the following;
P

p
A 2=a, Y 8-x(S)=2.8,- > a,-x,(S)=2 6 4, x(5)=
=1 SeR

SeB SeB 7=l
= > 8, A, -x(8) (1)
ScBk-S
< 3 8-h, (2)
Schikes
= b

A
Where (1) follows from the previous remark ( 4, - x(5)=0 VS}k ¢ §) and (2) is due to
the feasibility of x(S) in (Pg) .

Hence A-X<b . X is just a positive linear combination of x(8)’s thus it is non negative

and therefore x is feasible in (P). QED.

We can view (LPG) games as non cooperative games too. Each player charges a price to
use their constraint. If all prices are compatible, i.e. they sum up to less than the worth of
the grand coalition each player will get their price. If not no one gets anything. For this
game every core allocation is a Nash equilibrium (even a strong one) and conversely every
nontrivial strong Nash equilibrium must be in the core. Thus one can view the core as a
set of stable prices in the non cooperative game. The non emptiness of the core is thus

equivalent to the existence of strong equilibria.



We have proved that (LPG) is balanced and therefore has a nonempty core. It is, however,
important to actually find allocations in the core.
To do this, we have to define the dual LP associated with (P):

(D) Min {bTy] ATy=c , y20}

We assumed the existence of an optimal solution for (P) therefore (ID) must have an

optimal solution call it y.

Theorem 2: w=(b, - yi.---.b, -y is in the core of (LPG) generated by (P).

Proof® The strong duality theorem of linear programming implies the efficiency of w. Since

Zw, =b'y" = v(N). Let S be a coalition of size k<sn. Without loss of generality, assume

=1
that S controls the first k constraints of A and that S can not use the first r (x,Xz2,....X..)-
(Note that both these conditions can be satisfied by permuting the rows and columns of
A)

u . F G
We have to show that v(S)< > 4,-y . Note that A must be of the form A= (H 0]

=
where F and G are kxr and kx(p-r) matrices respectively, H is an {(n-k)»r matrix with at
least one non zero element in every column and 0 is an (n-k)x(p-r) matrix of zeros.

Define ¢ E(Crw -,cp), b =(b.---,b,) and Sc's(x,‘k,---,xp)
to find v(S) we have to solve:

(Ps)  Max{e %G ¥ <h, 720

or its dual
Ds)  Min{b7 FIGT-F2E 520, FeR')

Let y" = (yl'y:) , the feasibility of y in (D) implies

* FT HT . ~ # —
ATy :[GT 0}-}) >c or GT-y"2¢.

Hence v’ is feasible in (Dg), by applying weak duality we get



k ) k
V(S)SB Y =3 by =W, QED
=1 =1

Some remarks:

1. In addition to showing that the core of {LPG) is not empty we are able to demonstrate
an efficient way to find core allocations, 1.e. every optimal solution of (D) induces a
core allocation. In other words in order to find a core allocation one need not solve
for the value of every coalition (Solving 2 distinct LP problems) as is necessary in
general for cooperative games, it suffices to solve just one.

2. The same cooperative game can be represented in many ways as an LP game. The
following example will show that the core allocations induced by the dual solutions are
a strict subset of the core and are very sensitive to the chosen LP.

Consider a 2 player game, each controlling just one constraint:
Max (1+o)x+(2-)x7 + x3
St 2x] t xptx3<1
X1 t 2xp+x3=1

x>0

Where O<a<f<l. Clearly vON)=1, v({1})=v({2})=0 and Core(N,v)={(w, [-w}l0<w<1}.
If we look at the Dual problem:
Min y1 + yp
St 2y1+ yp = lta
y1+2y222-p
yit+ yz221
y=0
The dual optimal solutions constitutes the interval [w, |-w] where asw<f3.

By changing o and B we can get any sub interval of the core.

10



3. The proof of Theorem 2 can be modified to show that if each player, i, controls m;
constraints, then the allocation: w, = Zb} )j fori=1,.._nisin the core.

JeEm,
4. Again the same proof holds if we introduce equality constraints:
(P Max { cx | Ajx<b; ; A;x=by; x20 }
Where c € R” b € R™ and A is an m, x p matrix. And as in remark 3, players can

control several constraints.

Many network problems have upper bounds on the capacity of the arcs, therefore we
will introduce upper bounds to our, more general, framework. Consider the following
underlying LP problem:

(P") Max { cx | Ax<b ; x=u; x>0} where w e M7

Define a game in the same manner as before where each of the n players owns only
constraints from Ax<b. For now suppose that each player owns exactly one (m=n). Again
we assume that (P") has an optimal solution. The value of a coalition will be determined as
before. Let (D") be the corresponding dual problem:

(D% Min { b'y+u'z | ATy + 1z 2c; y,220 }

and let (y‘,z') be an optimal dual solution.

*

In this case we will arbitrarily distribute the value of an upper bound dual variable (uJ - zj)

among those players whose primal constraint uses the associated variable x;. More
formally let Z,x, be an arbitrary real valued matrix satisfying: Z;>0 for every ij;

aij=0:>Z,~j=0 and ZZU :IIJ'Z; Vj:},..,p.

1=1

P
Theorem 3: w =b -y +> Z_ for i=1,.n constitutes a core allocation of the LPG
7=

generated by (P").

11



Note that the analogous statement applied to Owen’s production game would not be true

since adding upper bounds to the production game can create a game with an empty core.

Proof: The allocation w is efficient, since:

n n P I

PR =Z(b. ¥ +ZZ~J: By +Ywuz=by uz = v (N)

=1 1=l j=1 J=1

where the last equality is due to the strong duality theorem.

Again as before assume (without loss of generality) that a coalition SCN of size k

controls the first k constraints and does not use the first r variables. The matrix A must

. . F G
have the same block formation as previously shown A= .

Using the same arguments as before we can show that {y*,z*) = ((y,';--,y;),(z;],---,z'))

is a feasible solution to (D), namely it satisfies: G'y" +2" > €.

The dual objective value is:

— u s 3
BTy +u” .z =Z]b,-y,'+ i W,z :Z,b,'}',‘*i 2.2,

p=red q=r+l i=l
Since A" has a lower right block of zeros we know that
Zi=0Ofori=k+l, .. nandj=r+l, . p;

hence
k

j=rrl i=l j=r+l =l

k
z i
I

where the inequality follows from the non negativity of Zj;.

Combining the last equations we get:

k k k
WSYh Yy vz <3y +Zi2‘} =2
=l =l

=l j=1

where the first inequality is due to weak duality.
This concludes the proof as wa >v(§) VScN. QED

1S

Remarks:
. 0 . . * . -
1. Every dual solution generates a sef of core allocations as we can divide u’-z arbitrarily

between the participants of each constraint.

12



2. As before, nothing changes if we allow players to control several constraints or add

equality constraints.

Public constraints, are constraints that are not controlled by any player but must be
satisfied by any coalition . If we add public constraints we obtain similar results. The
underlying LP is:

(P™") Max { ¢x | Ax<b, ; Bx<0; x=0 }
Where Ab and c are as before and B is a ¢ x p matrix. To explicitly determine the value
of a coalition S one must solve (Ppuhs)t

V(S)=Max {ex| 4, -x < b VWjem Bx<0Wj=1.qx =0 Vx, &l x> 0}
Where A; B; are the jm rows of A and B and mg and I are defined as before. Let (y‘,e‘) be

an optimal solution to (D™").

Theorem 4: w = (b, - y* .-, b, y_) is in the core of (N,V,up)

proof. Mutatis mutandis as Theorem 2.

The statement of Theorem 4 will no longer be true if we allow the public constraints to
have a nonzero right hand side.
To illustrate this consider the following example:
Max x;+x;+ x5
St x;t+x; <2
X+ X152
X+ X+ X33

x>0

There are 2 players each controls one constraint and let the third constraint be public then,

v({11D))=v({2})=2 ; v({1,2})=3 and the game has an empty core.

13



Comment:
For games with both upper bounds and public constraints the previous results still hold
providing that every variable which has an upper bound has a nonzero entry in the

controlled constraint matrix (A).

A network game may also represent some minimization problem on graphs.
(P™  Min {cx| Ax<b, x20}

Where c e R7, b € R™ and A is an m x p matnx.

Clearly this defines a cost allocation game and the previous results and proof methods still
hold. The same is true for

(P™)  Min {cx| Ax<b, u>x>0).

The results of this section generalize several known results. For example, as mentioned in
the introduction, the Shapley and Shubik assignment game is a natural special case of
(LPG). Also, Kalai and Zemel [1982b] consider a game based on maximum flows in
networks where players control arcs of the network. The value of a coalition is the value
of the maximum weighted flow through the induced subgraph controlled by that coalition.
Kalai and Zemel show that the core of their game is nonempty and that core allocations
can be obtained from dual optimal solutions of the standard max flow linear programming

formulation.

To see that these results are special cases of the previous theorems, consider the
standard LP formulation of max flow.
Given a graph G=(N, {s,t}, E , u}, Let A be the node arc incidence matrix of G with the
rows for s and t deleted.

The Max Flow problem can be defined as :

14



(P) Max{ ch-xclesO;xsu;xEO}

Head(e)=t
Where u is a vector of upper bounds on arc flows.
By associating with each constraint of Ax<0 (i.e. each node of G) a player, we obtain the
node version of the max flow game and the core solutions follow from Theorem 3.
Similarly, if we associate each constraint of x<u (i.e. each arc of G) with a player and treat
the Ax<0 as public, we obtain the arc version of the game and the core solutions of Kalai
and Zemel follow from Theorem 4.

Even more generally, we could consider a combination of the two max flow games in
which players may own subsets of the arcs (x<u constraints) and the nodes (Ax<0
constraints) of G. The value of a coalition is the maximum flow using only arcs and nodes
owned by the coalition. Theorem 3 gives us that dual LP solutions provide core
allocations for this more general game. Furthermore, we can even allow a subset of the
nodes and arcs to be publicly owned. The comment after Theorem 4 implies that so long
as there is no public arc that joins two public nodes (s and t are considered public for these

purposes) then core allocations can be obtained from optimal dual solutions.

In a similar manner, using standard LP formulations, Theorems 3 and 4 can be used to
derive and generalize known results on other games. For example consider Minimum

Cost Spanning Tree games. Those can be formulated in the following way:

(PMCST)
Min 3 ¢, -x,
(i.g)eE
1 ifi=k
St Zfrko_ foo:{ v Wk 2Ok eN
GOTEE)  OmeE 0 if ik,
Kl
0 Efu. < ¥,
.ylj € {011}

where 0 is the root of the tree.

15



For each coalition ScN, let ¢'(S) be the optimal value of the LP relaxation of (PSMCST)‘

Clearly c.(S)gc(S) for every ScN and ¢ (N)=c(N) (Proven in Wong [1984]) thus we have
Core(N.c") cCore(N.c).
Using Theorem 4 we can find a core allocation For the MCST game by looking at the

optimal solutions to the dual of the LP relaxation of (pMST

). One can see that one of the
dual optimal solutions corresponds to allocating to every player the cost of the unique arc,
on the optimal tree, leaving his node. This allocation was the one given by Granot and

Huberman [1981] in their original proof of the non emptiness of the core.

Other examples of results that can be obtained via these theorems are Tamir [1991]
network synthesis games and Tamir [1989] Traveling salesman games. Using standard LP
formulations the nonemptiness of the core of Steiner tree games and Shortest path games

can also be proved.

4. Equivalence of the Core and Optimal Dual Solutions

In many of the games we have considered it is not difficult to show that the set of
allocations produced by optimal dual solutions is in fact a strict subset of the core. In this
section we will try to find sufficient conditions for the equivalence of the core and the set
of allocations induced by dual optimal solutions. We first show that if A is a 0-1 matrix
and the right hand side of the constraints is a vector of ones, then the core coincides with

the set of optimal dual solutions.
Theorem 5. If A is a 0-1 matrix then every core allocation of the game induced by

(Pm) Max { cx | Ax<] ; x20 },

is also a dual optimal solution.

6



Proof: Let Skz{i! ay=1} where ay is the (i,l-c)lh clement of A. Then S" is the minimal

coalition (with respect to inclusion) that can use the variable x;. Define O xf=0 for j=
k . The vector x” is feasible in the problem associated with S* (PS”,’) . Hence v(S%)z¢,.

Now let w be a core allocation then by definition Zw, >v(§*)=c, in other words w

es
satisfies the k™ dual constraint, by repeating the same argument for every k=1,...p
we show that w is dual feasible. Efficiency and strong duality imply that w is dual optimal.

QED.

Shapley and Shubik [1972] showed that for their assignment game, the core coincides
with the optimal duals. Analogous theorems have been shown for location games (Tamir
[1992]) and the path formulation of maximum flow games (Kalai and Zemel [1984]).
These games are each defined by 0-1 LP’s with a right hand side vector of ones, so the

results follow directly from Theorem 5.

Recall that every totally balanced game can be represented in our framework by using a
0-1 matrix and a vector of ones for b:
(G) Max {stslf’(b')izslésxs =1, x; 2 0}
According to the last theorem, the set of dual optimal solutions and the core must

coincide. The dual to this problemis :

(D%  Min {iy,]Zyj >1(S) VS < N}

= jes

Which is just the familiar problem used to define the core of a balanced game.

Thus we can characterize the core of every totally balanced game as the set of dual
optimal solutions to some LP, though with 2" variables.

Define exc(S,x) = v(S)- > x,

e85

17



which is just the excess of S under the allocation x, and

max exe(x) = Max {exc(S, x}0c S c N}
The Least Core (LC) of the game is the set of efficient allocations which have the lowest
maximum excess, 1.e.:

LC(N,v)= {w e R” !Z w, = v(n); maxexc(w) < maxexc(w') Vw' s.1. Z W = v(n)}

el JEN
Note that the maximum excess of every core allocation is non positive, while the
maximum excess of every efficient allocation outside the core is positive, hence

LC(N,v)cCore(N,v).

Theorem 6: 1f A is a 0-1 matrix then for the game induced by
(P’'y  Max { ox | Ax<1 ;x>0 },
LC(N,vg) = Core(N,vg)).
Prooft We will actually prove that the maximum excess of every core allocation 1s zero
and therefore the core and the least core coincide. Assume that there exists a core

allocation w, such that maxexc(w)<0 . Let S*={i| ay=1} where ay is the (i,k)" element of
A. It was proved in Theorem 5 that v(Sk)zck thus Zw,. > ¢, . By repeating the same

iest
argument for every k=1,..,p we show that w obeys all the constraints in (D°') with strict
inequalities. This is a contradiction to the efficiency of w. Thus maxexc(w)=0 for every
core allocation w.

For this game LC(N.vy;) = Core(N, vy} = set of optimal solutions to (D) . QED.

The next theorem is similar to Theorem 5 but in the situation when public constraints are
allowed. This theorem generalizes an equivalence result of Kalai and Zemel [1982b] and
the proof method is similar to Samet and Zemel [1984]

Theorem 7: Let w be a core allocation of the game induced by

™ Max { cx | Ax<1 :Bx<0 ; x>0 },

18



where A is an nxn positive matrix and B is a matrix of public constraints such that for
every objective vector ¢, there exist an optimal solution x such that Ax is integer valued.
Then there exists z s.t (w,z ) is optimal in the dual LP,

(D) Min { 1"y | ATy + BTz 2 ¢ y.z20 }.

Proof: By making the substitution y=v + w in (D) we obtain the following equivalent LP:
(D™ Min { 1'v |ATv+ BTz 2 c-A'w | vz-w; 220 }.
Let (y,z ) be an optimal solution to (D), then (v=y -w,z) is optimal for (D*). Note also
that since w is a core allocation, 17w is equal to 1'y" and thus the optimal objective value
of (D"} is zero. To prove the theorem we will show that there exists z such that (v=0, z')
is feasible for (D") which implies in turn that (y=w,z*)} is optimal for (D) completing the
proof of the theorem
In order to show the existence of a vector (v=0,z ) feasible for (D%) we will show that
the following LP,
(PY ) Max { (c-wA)x | Ax<1 :Bx<0; x>0 }
has an optimal objective value of zero.
This will be sufficient since it implies that the dual problem,
(DY) Min{1'v |ATv+B'z 2c-A"w;v20;720}.
Also has zero as an optimal objective value. Since v=0 we conclude that the optimal
solution of (D%} is (0.z) for some z_ and thus (0,z) is feasible for (D™).
It remains only to show that (D"} has an optimal objective value of zero.
Assume to the contrary that the optimal solution is strictly positive. Let x be an optimal

solution such that Ax is a 0-1 vector. Define § = {i|(Ax‘)i = 1} then x_is feasible in (P,)

(Note that A is positive) and v(S)zcx . Thus using the assumption we get:
0 < (c-WAX =cx - wAX <v(S)- D w,

s

which contradicts the fact that w is in the core of v. Q.ED.
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Kalai and Zemel [1982b] showed that for the arc version of max flow games in which all
arc bounds were set to one, every core allocation arose from some optimal dual solution.
By setting A to be the identity matrix and B to be the incidence matrix, we see that this

result is a special case of Theorem 7.

8. Integer Programming Games

To this point we have focused on games derived from linear programs. We note here,
however, that cooperative games can be similarly defined when the base optimization
problem is formulated as an integer program:

(TP) Max { ¢x | Ax<b | x20 ; x integer}
Unlike LP games, integer programming games do not necessarily have nonempty cores.
Note, however, that if (P) is the LP relaxation of (IP), then vp(S)zvip(S) for every SEN.
Thus in the case where vp(N)2v;p(N), Theorem 2 implies that the optimal solutions to the
dual of (P} are core allocations for the integer programming game. Results for IP games
can also be obtained using the concept of a k-core (Kuipers [1994]).
The k-core of a game (N,v) is defined as:

k-Core(N,v) = {w eRD w, =v(N) and k-3 w 2v(S) VS N}

el res
Given a game (N.v), let k,i,(N,v) be the minimum k for which k-Core(N,v) is nonempty.
Let kK = VLP/VIP where VIP and VLP are the values of the grand coalition in the integer

program and its LP relaxation respectively.

Proposition 8: For every (N,v;;) Game, Koin<k

Proof: Let y be an optimal solution to the dual of the LP relaxation, (D). Then by
Theorem 2, w = (b, Y, b, y;) is in the core of (N,vp) . We claim that —kl-(u) is in the
k'-Core(N,vip). To see this, note that ¥ --w, = v.(N)=v,.(N) and

1eN

20



K -Z—kl.—-w, = Zw, v (SYzv,.(5) VScN.
IeS

[y

Hence the k'-Core(N,v[p) is not empty and Kin<k .

Theorem 9: If A is a 0-1 matrix, b is a vector of ones and in the game induced by
(IPUI) Max { cx | Ax<1 ; x=20 ; x integer}

at least one coalition (other then the grand one) has a non trivial value, then kmin=k'.

Proof: Let y be a vector such that rlm:()’) is in the ky,-Core(N,vip")). Note that the LP

relaxation of this game is just (P®') and define S* as before. Using the notation of Theorem

5, x" is clearly feasible in the integer problem associated with S*. Thus vip(S¥)2c; and
Ko -Zi—_::-y, =Y ¥, 2v(§")z¢, where the first inequality is due to the definition of

res ey

the k-Core. So y is a feasible solution for (D”') and by weak duality Zy,. v, (N} .
el
Hence v,.(N)= *—,"';Zy, > L—,mlzvf,(N):Tﬁ;T-v”,(N) or kpinzk . Proposition 8 completes

1N

the proof Q.ED.

The above results generalize several known results on matching and assignment games.

In a multi dimensional assignment problem we are given r sets {Ak };:] and we need to use
an element from each and every set in order to produce a certain finished product. The
product’s value depends on the specific parts used. The objective is to maximize the value

of all finished goods produced. This can be formulated as an integer program. We can

define a cooperative game in the natural way. Let N = U A, be the set of players and let
k=1

the game be defined on the following LP,

Mar an,.,.u, ’ xu,ua,
P St YFx, , <l Vaed;j=lor

a_ e A,

xef{0l} Va,..a eN;

where each player controls one constraint.
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If we relax the integer requirements in (P®*) we know, from Theorem 5, that the core
and the set of optimal solutions to (DY) coincide. Unfortunately with the binary
constraints the core might be empty (See Kuipers [1994]). We can apply the k-core
concept to this problem and using Theorem 9 we conclude that kg, , the minimal k for
which the k-core is nonempty, must equal the ratio between the optimal values of the

relaxed (P“*) and the original one.

A different generalized assignment game is due to Curiel and Tijs [1986]. Here we have
a group, B, of buyers and a group, S, of sellers. Each seller has r different objects to sell
and each buyer needs all the objects but can decide form which buyer to purchase which

object. Let ¢, , be the total surplus from buyer i getting the first object from seller k;

the second from k, etc. Define the following cooperative game:
Max Zcr,k,,,k, "Xk,
St Zxr'kl_‘h <1 VieB

k.k,

(Pr-GA) |
> x4 <1 Vk,
Lk

xe€l0ly VYieB k.. .k €8,

As before, if we could relax the integer constraints we would conclude from Theorem 3
that the core and the set of optimal dual solutions coincide. However even if we keep the
binary constraints, we can still conclude from theorem 9 that the minimal k such that the
k-core is not empty is precisely the ratio between the optimal values of the relaxed
problem to (P4,

The following example demonstrates that the core of the game might be empty:
Assume 2 buyers {b;,b;}, 2 sellers {s,,5,} and 2 objects
=1 while all the other transaction possibilities have

let Chins = Chins, = Chuss = Coyisys

zero surplus. Then clearly v(N)=1, v({b,.5;})= v({b;.5:})= v({bz,51.52})= 1.
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The last value implies that b, must get 0 in every core allocation while the first two values
imply that s; and s; must get at least | each and we reach a contradiction. In the LP

relaxation the point (0.5,0.5,0.5,0.5) is in the core and is also an optimal dual solution.

Note that if we set r=2 in the two generalized games we get the original Shapley Subik
[1972] assignment game. By using Theorem 4, we get the equality of the core and the set
of dual optimal solutions for this simple game. Thus increasing the dimensionality of the
problem, either by increasing the number of goods or the number of sets to be matched we

can produce games possessing an empty core.

Another generalization of the assignment game is the Tamir [1994] b-Matching game.
Given a graph G=(N,E) with weights ¢, for every edge ecE and a number b, for every

node veN. Let players control nodes and define:
Max Z C, X,
peF
(P™P St Dx,<b, VveN

eeas(v}

x, >0 and integer.

Where 8(v) is the set of edges which meet v.
Note that if b=k for every veN then Theorem 5 guarantees that every core allocation is

k times some optimal solution of:

(D™ Min{z y.| Dy, ze VecE;yz 0}

veEN vieaS(v)

If b=1 for every veN then the game reduces to the Shapley Shubik assignment game.

We now restrict our attention to b-matchings with a specific objective function. Let
T=(N,E’) be an undirected tree with positive edge lengths. For every pair of nodes u,veN
let d(u,v) be the length of the path on T connecting u and v. Let G=(N,E} be a complete

match

graph and let c¢=d(u,v) for e=(u,v) and define a relaxed (P ") (i.e. eliminate the
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integrality constraints). Tamir [1994] proved that if b, is a positive integer for every veN.
Then the relaxed (P™") has an integer optimal solution. Using this fact and Theorem |
we know that the core of the restricted b-matching game is not empty and if y‘ 1S an

match

optimal solution to the dual of the relaxed (P™ ) then w\zb\.y\.‘ is a core allocation. This

1s exactly Theorem 4.1 in Tamur [1994].

6. Production Games

In this section we consider the relationship between (LPG) and the production games of
Owen and Granot. Consider the following model in which production of p different
commodities is possible with the use of m available resources. Let aj; be the amount of
resource i needed to produce one unit of commodity j. For a given resource constraint
vector b e R7 the production possibility set, Yy, = {x eRPAx < b} . If a price vector
¢ €R* is given, the maximal profit that can be made is given by the following LP:

Max {cx | xeY,}. One can define an n-person cooperative game by letting every coalition
ScN control a resource vector b® (b¢=0) thus having a value of :

v(S)y=Max {cx| Ax<b®; x>0},
Owen [1975] defined an additive resource game where 5° = Zb{J} GzSc N

18
and proved that this game is totally balanced.
Granot [1986], generalized Owen’s results to games with any balanced collection of

resource vectors.

Notice that those instances of (LPG) for which the entries of A are all non negative,

can easily be shown to be special cases of Owen’s production game. To see this, for each

player j, set b;{’} =b, and b =0 Vk = j. This transformation does not work however if

A contains negative entries as is the case in many network models. On the other hand we
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will next show that the production game results of Owen and Granot can be derived from

the results of Section 3.

Given a production game with a collection of resource vectors,(N,v,) let yN be an
optimal solution to the dual problem of the grand coalition:
(D) Min {b™’y| A’y=c , y=0}).
Define the following game w(S)=b’ y" for every ScN.
Clearly w(N)=v,(N) and w(8)=v,(8) for every ScN (yN is feasible in the dual LP for
finding the value of the coalition S, but it is not necessarily optimal). Thus if we can show

that (N,w) has a nonempty core so will (N,v,), in fact Core(N,w)cCore(N,v,).

Two games (IN,v) and (N, w) are said to be equivalent if there exist
aeR, and {8} such thai v(S)= a-w($)+ >4, VSN,
il

a well known result is that if xeCore(N,w) then (ax+p)eCore(N,v).
Now define the underlying LP:

(P) Max {cx;+ ... +exoAxisbt L,
where Ab.c are as defined in the production game and x,,---,x, € R?, Define a game

(N.v’) using our formulation where the } player controls the constraints associated with

bY Let y'eR™ be the optimal solution of Min{b%y| A’y=c , y=0}).
And we have v'(§) = me'-y“} .

JES

For the Owen game let a=1 and Bj:(yN - ym)-bm then
o V'(S)‘f'Zﬂ} — Zb{j} 'y{f} +Zb{1} ‘()/'N _ y{j}) - zbm _yN — bS '_}’N - H'(S)
jes jes Jje8 Jes
hence v’ and w are equivalent.
Theorem 2 asserts that uz(b“}’ym,...,b{“}’y‘"’) is in the core of (N,v’) which implies
that {(au+p)eCore (N,w)cCore{N,v;). But (ou+p)= (b“}’yN,...,b{"}’yN) which is exactly

the allocation given by Owen [1975].
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For the Granot generalized production game with balanced resource vectors, let
1iy=(1,(),---t,(iYyeCore(N,b) fori=1..m: and let yN be as before optimal dual

for the grand coalitions problem (P)  Granot [1986] showed that the allocation

Let o=1 and §, = Z(ij(i)-y,‘“')— pYM. 3t define w’=arv’+B. Then we have

1=t

W(S)=vV(S)+ S B, =3 by +Z( > 1 (i)Y + B .ym) SN NIOY

18 JjesS Jjes JES

1=

Since t(i) is a core allocation, it follows that ZIJ (/)2 b°. Also w’(S)=w(S) for every
Jes

SN and w(N)=w(N). In other words Core(N,w’)cCore(N,w). Using Theorem 2 we
know that (cut+p)eCore(N,w’)cCore(N,w)cCore(N.v,).

But since (a-u+8), = 1,(i)-y" , Granot’s result follows.
=]
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