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I. INTRODUCTION

Collusion is a balancing act. Each colluding firm balances the short-term temptation to
cut its price against the expected long-term cost of the price war that such an act might instigate.
When the level of demand grows and fluctuates through time, as along a business cycle, the
relationship between the short-term temptation to cheat on a collusive agreement and the
expected long-term cost from doing so need not be constant, and maintaining a balance between
the two may require periodic adjustments in the collusive price. In this way, it is possible to
forge a link between the state of the business cycle and the price level of colluding firms.

In a pioneering paper, Rotemberg and Saloner (1986) offer one such theory. Taking a
simple but illustrative view of the business cycle, they assume that the level of market demand is
determined in an iid fashion each period, so that the expected level of future demand - and thus
the expected long-term cost from cheating - is independent of the current demand level.
Today's demand level, however, does affect the short-term incentive to cheat, since a price cut
is more attractive when many consumers are in the market. Associating a business-cycle boom
(recession) with a period of high- (low-) demand realization, Rotemberg and Saloner then argue
that collusion is most difficult in booms, when the incentive to cheat is greatest. Expanding on
this insight, they conclude that for moderate values of the discount factor, collusive pricing is
countercyclical, i.e., firms set a lower price in periods in which the level of demand is higher.!

Unfortunately, while analytically attractive, the iid assumption maintained by Rotemberg
and Saloner rules out the possibility that a relatively high-demand realization today might signal
an "upturn” in business conditions that leads firms to expect further growth in future demand.
This lack of persistence, or indeed of any notion whatsoever of an "expansionary phase,”
compromises the interpretation of their paper as a theory of collusion over the business cycle.

Aware of this problem, Haltiwanger and Harrington (1991) and Kandori (1991) explore

the robustness of Rotemberg and Saloner's conclusions to alternative assumptions about the

IGreen and Porter (1983) consider an alternative theory of collusion, in which firms are unable to perfectly
observe current demand conditions; in this case. low prices may be required during downturns, Staiger and Wolak
(1992) reach an analogous conclusion by introducing capacity constraints into the Rotemberg-Saloner set-up.
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pattern of demand fluctuations. Haltiwanger and Harrington relax the 1id assumption by
assuming instead that the level of demand follows a deterministic cycle.2 Thus, in their
framework. both the temporary incentive to cheat and the expected long-term cost of a price war
change as the business cycle is traversed. Defining a boom (recession) as a sequence of periods
over which demand is rising (falling), they show that collusion is now most difficult in
recessions, since in such periods the cost of a future price war are smallest, and they
demonstrate that collusive prices will thus be higher in booms, holding all else equal.

The general relationship between the collusive price and the level of current market
demand is less clear, and Haltiwanger and Harrington are unable to provide complete analytic
results on this matter. Simulations reveal that collusive prices are often procyclical; however, as
the discount factor drops relative to the number of firms, collusive prices become increasingly
countercyclical, much as Rotemberg and Saloner originally predicted. Further support for this
conclusion is found in Kandori's work. He shows that the prediction of countercyclical pricing
is robust to a class of correlated shocks to demand levels provided that the discount factor falls
close to a specific value that is determined by the number of firms.

The Haltiwanger-Harrington and Kandori papers are provocative and instructive;
however, neither paper offers a complete characterization of the collusive prices in terms of the
stochastic parameters that are commonly understood to describe the business cycle.3 This
limitation might be ignored if the models' central predictions were nevertheless strongly
confirmed by empirical studies, but in fact empirical evidence supporting both pro- and
countercyclical pricing exists, and on the whole the evidence appears to be somewhat mixed and

inconclusive.* This suggests that scope may still exist for sharpening the predictions of the

2See also Montgomery (1988), who explores a similar model.

3See also Rotemberg and Woodford (1992). who provide further support for the prediction of countercyclical
pricing. Working with a dynamic general-equilibrium model. their approach is to linearize around a steady state,
and they are only able to establish results for small shocks.

4The empirical literature includes the cross-sectional work of Domowitz. Hubbard and Petersen (1986} and
Rotemberg and Woodford (1992). as well as the industry studies of Borenstein and Shephard (1993). Chevalier
and Scharfstein (1994), Ellison (1994). Porter (1983) and Rotemberg and Saloner (1986) . See also Susiow
(1988) for evidence that cartels are most likely to break down during recessions.



collusive theory and raises the possibility that the omitted stochastic features of the business
cycle - the correlation of demand growth rates through time, the expected duration of booms and
recessions, et¢ - may be impertant and not yet well-understood determinants of collusive
prices.

Our goal in this paper is thus to offer a complete characterization of collusive pricing
within an empirically attractive stochastic model of the business cycle. Our approach shares
with Haltiwanger and Harrington an emphasis on persistent movements in demand and the
critical role of cyclical turning points, but we depart from Haltiwanger and Harrington in
assuming that turning points are unpredictable. Instead, we follow Hamilton (1989) in
modeling the business cycle as the outcome of a Markov process that switches between two
distinct states, one representing expansions and the other contractions. While the
unpredictability of ¢yclical turning points enhances the empirical plausibility of the business
cycle model,? it also greatly simplifies the analysis of the collusive prices, and we are able to
completely characterize in a simple and intuitive way their cyclical propertes.

In particular, we adopt a model of the business cycle in which the level of market
demand alternates stochastically between slow- and fast-growth states, where the transition
from one state to the other is determined by a Markov process. Thus, in contrast to Rotemberg
and Saloner and Haltiwanger and Harrington, who define booms in terms of high and
increasing levels of market demand, respectively, we refer to a boom phase as a sequence of
periods of fasr growth in the level of market demand. A recession phase then corresponds to
periods of slower growth, and we allow - but do not insist - that recessions entail negative
growth. Given this representation of the business cycle, a definition of cyclical pricing in terms

of the level of market demand would be misguided, and we therefore instead say that collusive

SSee. for example, Zamowitz (1992) on the ample evidence the business-cycle turning points are difficult to
predict. While Haltiwanger and Harrington's deterministic approach is thus not ideal for analyzing collusive
pricing over the business cycle, it should be noted that the assumption of a deterministic cycle is much more
appealing for collusive markets that are subjected 1o seasonal demand fluctuations. Borenstein and Shephard, for
example, provide evidence in support of the Haltiwanger-Harrington model in the context of the retail gasoline
market, where demand fluctuations are primarily seasonal and broadly predictable.



prices are procyclical (countercyclical) when they are higher in fast-growth (slow-growth)
periods, i.e.. in boom (recession) phases.

Within this context, we provide a complete characterization of the collusive prices as
functions of a rich set of parameters, and establish a new role for the parameters that determine
the extent of correlation in demand growth rates through time and the expected duration of boom
and recession phases, respectively. Our main results are two: (1), collusive pricing may be
procyclical (countercyclical) when market demand growth rates are positively (negatively)
correlated through time, and (2). the amplitude of the collusive pricing cycle is larger when the
expected duration of boom phases decreases and when the expected duration of recession
phases increases. These predictions are in principle testable, and especially so given the
methods that Hamilton and others have devised for estimating the underlying parameters.

With these basic results in place, we next consider more sophisticated business-cycle
models; specifically, we maintain the assumption that the market demand level switches
stochastically between fast- and slow-growth phases, but we expand the basic model to allow
for random fluctuations in demand within given phases. By broadening our analysis in this
way, we are able to assess the robustness of our main predictions regarding collusive pricing in
boom and recession phases, identify new predictions, and integrate our research more closely
with the previous "single-phase” models of collusion described above.

In our first formulation, within-phase shocks to the level of demand are fully embedded
into the base from which demand growth occurs in subsequent periods, and so we refer to these
shocks as permanent. When within-phase demand fluctuations are of this form, we show that
collusive prices are completely unresponsive to within-phase demand shocks; in fact, collusive
pricing is exactly the same as in the basic mode] in which within-phase fluctuations are absent.

A second formulation entails a combination of our medeling approach with that of
Rotemberg and Saloner. In particular, we assume that an iid process generates shocks to the
level of market demand in each period, and that such shocks occur outside of the Markov-

growth process for demand, in that a shock to current-period demand has no affect on future-



period demand levels. We thus refer to shocks of this form as being transitory. We then show
that a higher transitory shock to demand results in a (weakly) lower collusive price, regardless
of whether the market is in a boom or a recession phase. In this extended model, therefore,
Rotemberg and Saloner's theory of collusive pricing can be interpreted in terms of the response
of collusive prices to transitory demand shocks that occur within broader business cycle phases.
We also demonstrate that our predicted association between procyclical (countercyclical)
collusive prices and positively (negatively) correlated demand growth rates is robust to - and in
fact strengthened by - the inclusion of transitory demand shocks.

A final remark concerns the significance of the relationship between the discount factor
and the number of firms. This relationship emerged as a central determinant of the cyclical
nature of collusive pricing in the literature reviewed above. In the present paper, however,
demand follows a stochastic trend, sometimes growing fast and other times growing slow, and
the relationship between the discount factor and the number of firms plays no role in
determining whether collusive pricing will be pro- or countercyclical with respect to these
distinct growth phases. Instead, the key determinants of the cyclical properties of collusive
prices are the parameters defining the correlation of growth rates through time and the expected
durations of boom and recession phases.

The paper is organized as follows. Section 2 lays out the basic assumptions of the
oligopoly setting and considers the benchmark case of a market demand level that grows at a
stationary rate. In Section 3, the basic growth model is developed and the incentive constraints
for collusion are derived. The most-collusive prices are fully characterized in Section 4, while
Section 5 extends our analysis of collusive pricing to business-cycle models that include within-

phase shocks. Concluding remarks are offered in Section 6.



II. THE STATIONARY BENCHMARK

A Basic Assumptions

We analvze a Bertrand-pricing supergame, in which a fixed set of n 2 2 firms sells the
same nondurable good in each period t € { 1,.... e=}. The total mass or number of consumers in
any period t is Gy, which is also called the level of market demand in period t. Within any period
t, the firms select their respective prices simultaneously, and consumers observe these prices
and divide up evenly over the lowest-priced firms. A firm earns zero profit for the peried if it is
not a lowest-priced firm, and it earns a profit of 7(P) = (P-¢)D(P) per consumer when its price
P is among the lowest, where ¢ 2 0 is a cost parameter and D(P) is the consumers’ common
demand function. We assume 7 has a unique maximizer, Pm, and that = is strictly increasing
and differentiable over P € [0,Piy]. Note that n(Pm) > n(¢c) = 0 and that the monopoly price
P is acyclic, since its value is independent of the number of consumers to whom the firm
sells. It is convenient to assume that firms select prices from the set [0,Ppl.

As is well known, in any Nash equilibrium of the Bertrand stage game all sales occur at
the competitive price. P = ¢. Firms may be able to earn positive equilibrium profit in a dynamic
model, however, as the short-term temptation to undercut rivals is then balanced against the
long-term price war that such "cheating” might trigger. To model this idea, we assume that each
firm observes all past prices, so that a firm's period-t price is a function of the prices charged by

other firms in periods T€ {1....,t-1}. We also introduce a common discount factor parameter,
d e (0,1), as a measure of firms' patience with regard to future profit.

Finally, the tradeoff between short- and long-term profit is also affected by the current
and the projected future levels of market demand. In other words, business cycle conditions
can influence a firm's decision about whether or not to cheat on a collusive agreement. We do
not develop an endogenous business cycle model here; rather, we assess the implications of

exogenously-imposed business cycles for collusive pricing. In particular, we allow the state of



the business cycle to determine the level of market demand, Gy. We assume further that each
firm knows the current and all past levels of market demand when selecting current prices.

Formally. firm i's period-t strategy, G, is a function that maps from the set of all
possible past prices. all possible past market demand levels and the current period-t market
demand level into the set of possible current prices, [0.Pm]. Firm i's objective is to select its
strategy, O; = { G}t = 1., 10 Maximize its expected discounted profit, given the described
consumer behavior, the process through which Gy evolves, and the strategies of opponent
firms. Specifically, we require that firms select their strategies in a manner that generates a
subgame perfect equilibrium.

We select among the set of such equilibria with two additional requirements. First, we
assume that firms adopt symmetric strategies, so that g; = G; for all t # . Second, we
characterize the most-collusive prices, which we define as the highest prices that can be
supported in a symmetric subgame perfect equilibrium.® Following the arguments of Abreu

(1986), we find such prices by supposing that a deviation induces 2 maximal punishment: if
any firm i in any period t selects a deviant price P # oy, then in all future periods t 2 t+1 the

firms' symmetric strategy specifies that pricing be competitive with Cjg=¢ forall j=1,..,n.

B. The Stationary-Growth Game

We begin with a very simple game, in which the level of market demand grows
according to a stationary growth rate. Specifically, in the stationary-growth game, Go >0 and
Gi+1 = g6y, where 0 < 8g < 1. Thus, the level of market demand expands (contracts) over
time if ¢ > 1 {g < 1), and the stationary-growth game includes the familiar case of stationary
demand as a special case when g = 1. The assumption that 8g < 1 ensures that the discounted

growth is finite.

6Such prices always exist and are easy to characterize. because a higher equilibrium price in any one state raises
the cost of a price war and thus makes possible higher equilibrium prices in other states as well.



A firm now faces a tradeoff between cheating today and sacrificing future profits in a
market that grows at rate g. Since the growth rate is stationary, this tradeoff is the same at every
date, and so a single most-collusive price, P*, will be charged in all periods of a most-collusive

equilibrium. To characterize this price, let
Q(P) = n(P) - n(P)/n = n(P)(n-1)/n

denote a firm's per-consumer incentive to cheat from a collusive agreement specifying that all
firms select the price P. Note that a firm captures the entire market if it deviates and selects a

price just below P. Next, let

(P} = n(P)/n - n(c)/n = x(P)/n

give the per-period and per-consumer cost of a price war. When a firm defects, it sacrifices
future profit as the subsequent price war forces the collusive price P to be abandoned and
replaced with the competitive price ¢.

With these definitions in place, the central incentive constraint that each firm faces in

any period t may be represented as:

o
GiQ(P) < Gt Q61" tu(P),

T=t+1

which may be written in the simpler form, Q(P) < [dg/(1-8g)]w(P). Since €) and ® are both
proportional to 7t(P), it is easily verified that the incentive constraint holds for any P >¢ if and
only if 8 = (n-1)/n. By contrast, when this inequality fails, the incentive constraint is violated
for all P > ¢c. We may summarize as follows: for the stationary-growth game, P¢ = Pm when

dg > (n-1)/n and P¢ = ¢ otherwise.



The stationary-growth model is simple and instructive. It reveals that collusion is easier
when firms are more patient (higher 3), the number of firms is smaller (lower n), and the
growth rate of the market level of demand is higher (higher g); furthermore, the ability to
collude is a discontinuous function of the model’s parameters, with the key relationship being
the sign of 8g - (n-1)/n. With these points in mind, we turn next to a more complicated
nonstationary model and explore the relationship between the most-collusive prices and the state

of the business cycle.

III. THE MARKOV-GROWTH MODEL
A, Basic Assumptions

We now assume that the growth rate of the level of market demand is stochastic and
determined by a Markov process. The purpose of this section is to formally define this Markov
process and to derive and interpret the corresponding incentive constraints for collusion. A
characterization of the most-collusive prices is deferred until the next secton.

The level of market demand is assumed to grow at one of two possible rates. We say
that period t is a boom period if Gy=DbGt-] and that period t is a recession period if Gy = rGy-1,
where 1 > 8b > 8r > 0. In other words, if g; denotes the period-t growth rate, then period tis a

boom (recession) period if gy = b (g¢ = r). The transition between boom and recession periods

is assumed to be governed by a Markov process, in which:

p =Prob(ge=rl gr-1 =b) e [0.1]
A =Prob(gt =bl gr-1 =1} e [0,1]
1 = Prob(g] =b) € [0.1]

Thus, p is the transition probability associated with moving from a boom to a recession, while
A is the transition probability corresponding to moves from recessions to booms. The

parameter | describes how the system begins. Assume further that Go > 0.
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The parameters p and A also may be interpreted in terms of the expected duration of
boom and recession phases, respectively. Suppose that g.] =1 and g¢ = b, so thata switch to a
boom period occurs at period t, and define t* = min{t > tigy = r}. We then define a boom
phase as a sequence of boom periods, {1, ...,t*-1}, and the expected duration of a boom phase

1s given by

Y zp(1-pyzl = 1/p

=1

In the same manner, we may define a recession phase and derive that the expected duration of a
recession phase is 1/A.

With the Markov-growth process now fully specified, we define the Markov-growth
game as the Bertrand supergame for the case in which Gg evolves in the implied manner.
Observe that the Markov-growth game includes the stationary-growth game as a special case

(eg.g=b.u=1,p=0)

B.  The Incentive Constraints
The key task now is to find a tractable representation of the incentive constraints for
collusion. The Markov structure is especially helpful here, since it implies that the incentives

for collusion are the same in any boom period regardless of the specific date, and similariy for

any recession period. The most-collusive prices thus now emerge as a pair, with P{ denoting
the most-collusive price in boom periods and PS representing the most-collusive price during
recessions. An additional benefit of the Markov structure is that it admits a simple recursive
structure, once the appropriate definitons are put forth. We now exploit these advantages and
provide a simple representation for the incentive constraints associated with collusion in boom

and recession periods. respectively.
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Let Pp be the price that firms charge in boom periods and let Py be the price that firms
charge in recession periods. We are interested in whether this pair of prices can be supported as
part of a collusive agreement. To this end, we define @h(Pp.Pr) as the expected discounted
profit per market consumer to a firm in period t+1 and thereafter, if period t+1 is a boom period
and the prices Pp and Pr are charged in the future. Analogously, we may define ®@r(Pb,Pr)
when period t+1 is a recession period. Observe that @p(Pb,Pr) and Gr(Pp,Pr) also provide a
measure of the cost of a price war, since firms earn zero profit once such a war commences.

With these definitions in place, the incentive constraint for collusion when period tis a

boom period appears as

Gilx(Pp) < ¥{p(rtGp@r(Pb,Pr) + (1-p)(bG@b(Pb.Pr) },

since G+ = rGy with probability p and Gi+1 = bGy with probability 1-p, given that period t is
a boom period. Observe now that the current-period level of market demand, Gy, cancels,

enabling us to write the incentive constraint in the simpler form:

Q(Pp) < d{prix(Pb.Pr) + (1-p)bidb(Pb,Pr) }.

Intuitively, the future level of market demand is always proportional to the current level, and so

the current demand level is simply a scaling factor that is irrelevant for the incentive to coliude.
The incentive constraint given above is clearly incomplete, both because the counterpart

incentive constraint for recession periods is not presented and because explicit representations

for the terms ®H(Ph.Pr) and G(Pp,Pr) are not given. Suppressing notation slightly, a complete

system of incentive constraints is given in the following four inequalities:

(). Q(Pp) s dfpray + (1-p)b&p}
(2).  Q(Pp) < 3{Abap + (1-Ayrédx},



where

(3). b= w(Pp)+ d{prédy + (1-p)bdp}
(4). Q= (Pp+ d{Abdy + (1-AMrdy}.

Notice that (1) and (2) reflect the tension between the current incentive to cheat and the expected
discounted future profit that cheating would sacrifice, while through (3) and (4) the recursive

nature of the model may be exploited so as to explicitly calculate the cost of a price war.

Formally, solving (3) and (4) for ®p and @r, one obtains:

(5). @b = {0PplI-(1-Mrl/d + w(PrprjA
(6). = {o(Pp[1-(1-p)8b}/d + w(Pp)AblA

where

(7). A=8/{[1-(1-0)8r][1-(1-p)8b] - 82Abpr}.

It is easy to show that A > 0 and that A increases strictly in 8 for 8 € (0,1/b).7 Substituting (5),

(6) and (7) back into (1) and (2), we are now able to write the two incentive constraints in terms

of the known functions, 2 and m:

(8).  Q(Pp) £ {w(Pppr+ o(Pp)bl1-p-dr(1-A-p)]}A
(9).  Q(Pp) £ {w(Pp)Ab + w(Ppr[1-A-8b(1-A-p)] }A.

TLet A = 8/D(8). where D is the denominator of the expression in (7). Simple calculations reveal that D(0) = 1.
D'(0) < 0. D(1/b} 2 0 and sign{D"(8)} = sign{1-A-p}. Thus, if 1-A-p <0, then D"(8) < 0 over (0.1/b) and so
D(8} > 0 follows necessarily. Consider next the case in which 1-A-p > 0. implying that D"(8) > 0. Observe that
D(1/r) <0, where 1/r > 1/b. Given the convexity of D(8) and the fact that D(1/b) = 0. it follows that D'(3) < 0
for 8 € [0.1/b]. This in tum implies that D(3) > O over (0.1/b).
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Intuitively, inequality (8) indicates that the incentive to cheat in a boomn period must be no
greater than the expected discounted loss in future profit that would occur once a price war
commenced: moreover. this loss is a weighted average of the profit lost in future boom and
recession periods, with the associated weights reflecting the expected duration in each of the
respective types of periods. Inequality (9) may be interpreted similarly for recession periods.
As it will sometimes be more convenient to express these incentive constraints in terms

of the underlying profit function, we note finally that (8) and (9) may be rewritten as:

(10). m(Pp)B < n(Pppra
(11). m(Pp)AbA 2 n(Pr)R

where A is defined in (7) and

(12). B =n-1 - bA[1-p-8r(1-A-p)]
(13). R=n-1-rA[1-A-3b(1-A-p)].

C. Correlation

While we now have the incentive constraints represented in a manageable form, the
mode! still embodies several parameters (n, &, b, r, A and p), and it is not clear how best to
organize the space of parameters. Before proceeding 10 a characterization of the most-collusive
prices, we therefore first offer and interpret a partial organizational scheme.

An important ingredient in the stationary-growth game is the growth rate, g, of the level
of market demand. Reasoning by analogy for the Markov-growth game, we might expect that
the ability to collude in a given period would be influenced by the expected growth in the level
of market demand in the following period. Since this expectation may be in turn sensitive to

whether the current period is a boom or a recession, we perform the following calculation:
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E(Gi+1! 1= -EG1! gr=1)
= [E(g+1] gr=1b) - E(gr+1 1 2 =01Gy
= (1-A-p)(b-1)Cy.

Thus, the expected rate of growth in period t+1, and hence the expected level of market demand
in period t+1, is higher (lower) when period t is a boom as opposed to recession period if and
only if 1-A-p >0 (1-A-p <0). Inuwitively, when A and p are small, the current rate of growth
1s likely to persist into the next period, and thus the expected rate of growth for the subsequent
period is higher if current growth 1s at the boom rate.

These calculations are drawn from the comparison of the current market demand
conditions with their expected values in the next period. For firms attempting to collude, a more
fundamental consideration is the relationship between the current demand conditions and the
expected discounted level of market demand in all future periods. To better understand this
relationship, let us set Gy = 1 for simplicity and define Gy, as the expected discounted level of
market demand in period t and all subsequent periods when period t is a boom period. With Gr

defined analogously for the situation in which period t is a recession period, we have that

Gb =1+ 8[prGr + (1-p)bGp]
G =1 + 8[AbGp + (1-M)rGy].

Solving these equations, one finds that

(14). Gp - Gr = A(b-r}(1-A-p),

from which it follows that the expected discounted levet of market demand in future periods is

higher when the current period is a boom if and only if 1-A-p > 0.



The relation of the current period demand conditions to those expected in the next
period, and to those expected in the discounted future, is thus entirely governed by the sign of
1-A-p. We therefore organize the sequel around the following three cases: 1-A-p >0, 1-A-p <
0 and 1-A-p = 0. When 1-A-p > 0, a higher value for the growth rate at period t leads to a
higher expected growth rate in period t+1, and so we say that growth rates exhibit positive
correlation. Likewise, growth rates exhibit negative correlation when 1-A-p < 0, and finally

there is zero correlation between the growth rates if 1-A-p =0.

1V. THE MOST-COLLUSIVE PRICES

A. Extreme Cases

Before exploring the implications of correlation for collusion, we first examine a pair of
extreme cases for which the form of most-collusive pricing is clear. The identification of these
cases will in turn indicate the interesting range for the parameters n, 8, b and r.

In the Markov-growth game, the growth rate is sometimes at the boom rate b and other
times at the recession rate r. As faster growth rates have been linked to better collusion, it might
be expected that, if perfect collusion is possible even in a stationary-growth game with the slow
growth rate r, then perfect collusion should also occur in the Markov-growth game. Likewise,
if the most-collusive price is the competitive price in a stationary-growth game with the fast rate
of growth b, then competitive pricing would also be expected in the Markov-growth game. This

intuition is confirmed in the following theorem:
Theorem 1: Inthe Markov-growth game,
(1). If 8r 2 (n-1)/n, then P§ = P = Pm.

(ii).  Ifdb < (n-1)/n, then P{ = P¢ =c.

A proof of this theorem is found in the Appendix.
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In a similar way. it can be demonstrated that when 8b = (n-1)/n, we have P, = P{ =¢
provided only that A < 1 and p > 0: i.e., if competitive pricing is just averted in the stationary-
growth game with growth rate b, and if booms are not certain to last indefinitely (p > 0) while
recessions do not always return immediately to booms (k < 1), then there is some chance that a
recession will be experienced in the Markov-growth game, and so competitive pricing occurs in
both boom and recession periods. [t follows that the interesting case for the Markov-growth

game is when

(15). &b > (n-1)/n> or.

Henceforth, we therefore maintain the assumption that n, 9, b and r are such that (15) holds.8
With Theorem 1 in place, we now have a complete organizational scheme for our

parameters: if n, 8. b and r fail (15) then the conclusions of Theorem 1 apply, while if as we

assume below n. 8, b and r are such that (15) is satisfied, then the three correlation cases for A

and p will be considered.

B. Zero Correlation

Among the three kinds of correlation, the case of zero correlation (1-A-p = 0) is the most
simple with which to begin, since it can be understood as representing a special case of the
already-examined stationary-growth game. The key idea here is that under zero correlation, the
expected future growth rate is independent of whether the current period is a boom or a
recession: as a consequence, it is possible to think of the zero-correlation case in terms of a

stationary rate of growth, g, that satisfies

pr+ (1-p)b=g="Ab+ (I-A)r.

8See. however. footnote 12 for a relaxation of this constraint in an extended model.
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This parallel with the stationary-growth game in turn indicates that the most-collusive prices are

the same in booms and recessions (P}, = P%) when there is zero correlation.

Drawing on the earlier analysis for the stationary-growth game, it follows that the

growth rate g will support perfect collusion if and only if 8g 2 (n-1)/n. Equivalenty, P = P{ =

Pm when correlation is zero if and only if

(16).  &{pr + (1-p)b] = (n-1)/n.

Letting p* solve (16) with equality, and putting A* = 1 - p*, we find that

(17). p*=[3b - (n-1)/n)/[8(b-r)]
(18). A* =[(n-1)/n - &r])/[6(b-1)]

where p* € (0,1) and A*e (0,1) under the maintained assumption (15). Since the lefthand side
of (16) is decreasing in p, we conclude that perfect collusion is possible when there is zero
correlation if and only if p € p*. while competitive pricing occurs otherwise.

Our results for the zero-correlation case now may be summarized as follows:

Theorem 2: In the Markov-growth game with zero correlation,
(i). If p <p*, then Py =P$ =Py .
(ii). Ifp>p* then Py=P;=c.

Intuitively, if the expected duration of a boom phase is sufficiently long, then the associated

zero-correlation growth rate is high enough to support perfect collusion.
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C. Positive Correlation

The zero-correlation case serves to illustrate a relationship between the Markov- and
stationary-growth games, but it does not deliver cyclical pricing. This possibility arises in the
more interesting case of positive correlation (1-A-p > 0). since then the expected discounted
market demand level for the future is sensitive to the current state of the business ¢ycle. In
particular, when the evolution of market demand is characterized by positive correlation, it may
be especially difficult to collude in recessions, as the expected discounted level of future market
demand is then lower, implying that there is less to lose from a price war. This suggests that
the most-collusive prices then might be procyclical (i.e., P§, > PE), as firms reduce the collusive
price in recessions so as to diminish the incentive to cheat and bring incentives back in line. We

sketch here arguments supporting this conclusion, leaving a complete proof for the Appendix.

We begin by characterizing the parameter region for which perfect collusion (P = P{ =
P ) can be supported. To this end, let ?\(p) satisfy AbA = R when 1-A-p 2 0, and observe
from (11) thatat X = ﬁ(p) perfect collusion is just consistent with the recession-period incentive

constraint. Straightforward calculations then yield
(19).  A(p) = [1-(1-p)BbI/(1/A* - 8b)

from which it is easily verified that X is a linear function of p with i(O) > 0, ﬁ'(p) > 0 and
ﬁ.(p*) = A*, as Figure 1 illustrates.

It is now easy to show that, in the case of positive correlation, A > ‘)\L(p) implies Py = P¢
= Py This result may be understood as confirming the following intuitive argument. Under
positive correlation, collusion is especially difficult to support in recession periods, and ()\L(p) is
defined so that perfect collusion is just possible during such a period. Thus, if the expected

duration of a recession phase is even lower (i.e., if A > ﬁ(p)), then perfect collusion can be

maintained in both boom and recession periods with slack.
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Suppose next that A < c)\n(p), in which case the expected duration of a recession phase 1s
large enough to preclude perfect collusion in a recession period. In this case, firms nevertheless
may be able to collude imperfectly. To understand. consider Figure 2, which depicts the boom-
and recession-period incentive constraints for a situation in which perfect collusion is
supportable only in boom periods. Incentive constraints are upward sloping in this figure, with
a higher price in one state raising the cost of a price war and thus making possible a higher price
in the other state as well, and all prices to the southeast of (10) (northwest of (11)) satisfy the
boom- (recession-) period incentive constraint.? In the case depicted, along the recession-
period incentive constraint (11), Py < Py even for Py = Py, so perfect collusion cannot be
sustained in a recession period; consequently, (11) lies left of the 45 degree line. Even so, a
region of profitable prices exists at which both incentive constraints are satisfied, provided (as
depicted) that the boom-period incentive constraint lies on or left of that of the recession-period.
Moreover, the most-collusive prices are procyclical with P = Pm > PX.

To characterize the boundary case where the incentive constraints lie atop of one another
in Figure 2, and can therefore both just be satisfied with profitable prices, we observe from (10)
and (11) that the incentive constraints are redundant when RB = (AAb){Apr), and we thus

define a function B(X) as the p value for which this equation holds. Calculations reveal that
(20). POV = [(b-r)/blp* + [p*r/(bA*)]A.

Note thatf) is a linear function of A with ?)(0) >0, B‘(X) > () and B(?L*) = p*, Further, and as
Figure 1 illustrates, P(A(p)) > p for p < p* and so P(L) lies below A(p).

With the 3 now defined, it is possible to state a second result: under positive
correlation, if A < ﬁ(p) and p < P(A), then the most-collusive prices are procyclical with P§ =

Pm > PS. Intuitively, even if firms are unable to collude perfectly in recessions, they may be

91t is possible that B < 0, in which case the boom period incentive constraint (10} does not have positive slope:
see the Appendix for this case.



able to collude imperfectly by reducing the price in recession periods to below-monopoly levels;
in this way. they reduce the incentive to cheat in recession periods and thus make credible an
imperfect collusive agreement.

The remaining possibility is that 9 >B(K). In terms of Figure 2, this case corresponds
to the situation in which the boom period incentive constraint (10) lies right of the recession
period incentive constraint (11), indicating that both incentive constraints hold only when both
prices are set at competitive levels. In fact, the following general result is easily confirmed:
under positive correlation, if p > f)(k), then P§ = P¢ = ¢. This result, too, rests on a simple
intuition: if the expected duration of a boom phase is too short relative to the expected duration
of a recession phase, then even imperfect collusion is impossible.

Our findings are summarized in Figure 1, which pinpoints the regions of monopoly,
procyclical and competitive pricing for the positive-correlation case. A remaining point of

interest concerns the behavior of the recession-period collusive price over the procyclical region.

We find that. in the procyclical region, P¢ satisfies the following properties:

(). P¢is continuous, increasing in A and decreasing in p.
(). PS¢ —PmasA— A(p)and B - cas A — 0.

(lif).  P¢isincreasing in A along B(J‘L), with P¢ = ¢ when A = 0 and P; — Pm as A — A*

With P{ = Pm holding throughout the procyclical region, it follows from (i) that the amplitude
(i.e.. |P% - P |) of the price cycle increases as the expected duration of a recession (boom)
phase lengthens (shortens). Such changes make collusion more difficult, and so a breakdown
of the collusive agreement in recession periods can be averted only if the recession-period price
is depressed further. Notice aiso from (ii) that P’f continuously climbs to the monopoly price as
the monopoly region is approached. But, when the competitive region is approached, the most-
collusive prices experience a discontinuity at the boundary. As (iii) reveals, P{ varies along this

boundary, increasing from the competitive to the monopoly price as A and p rise along 6()\.).
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The main conclusions of the positive-correlation case pertain to the predictions of

procyclical (P > PS) versus countercyclical (P§, < P%) pricing and to the determinants of the

amplitude of pricing cycles. We therefore summarize this case as follows:

Theorem 3: In the Markov-growth game with positive correlation,
(i). The most-collusive prices are sometimes procyclical but never countercyclical.
(i1).  When the most-collusive prices are procyclical, the amplitude of the price cycle is

increasing (decreasing) in the expected duration of a recession (boom) phase.

D. Negative Correlation
We turn last to the case of negative correlation (1-A-p < 0). In this case, expected future
market demand conditions are less favorable when the current period is a boom period,
suggesting that collusion is now most difficult to maintain in boom periods. The implication is
then that the most-collusive price must be depressed in boom periods, in order to reduce the
incentive to defect, and so a prediction of countercyclical pricing is anticipated. The formal
analysis of this case is sketched below, with further details again provided in the Appendix.
We begin by characterizing the parameter space over which perfect collusion is
possible. To this end, we now analyze the boom-period incentive constraint (10), and define

the function P(A) as the solution to B = Apr when 1-A-p < 0. Calculations reveal that

2D. p) = [1-(1-M)3r)/[1/p* - 8r],

from which it can be verified that  is a linear function of A with §'(x) > 0, p(A*) = p* and
pA) < (L) over the negative-correlation range, as Figure 1 illustrates. The curve f(R)
represents the combinations of parameters at which a firm is just indifferent between perfectly
colluding and cheating when currently in a boom period. When the expected duration of a

boom phase is greater, perfect collusion can be maintained over this phase with slack.



b2
3

Consistent with the 1dea that boom periods are the most difficult time to collude in the negative-
correlation case, it is in fact true for this case that p £P(A) implies P{ = P¢ = Py,

Consider next the region that lies between B(A) and 6(1). Here, the expected duration
of a boom phase is sufficiently short that perfect collusion cannot be supported over this phase.
But, as Figure 3 illustrates, the situation does not preclude imperfect collusion, if the boom-
period incentive constraint lies on or above the recession-period incentive constraint. In fact,
we establish the following: under negative correlation, if p(A) < p £ f)(k), then P¢ = Py > PY,.
Thus, imperfect collusion now takes the form of countercyclical pricing, as the collusive price is
depressed in booms in order to reduce the corresponding incentive to cheat. Finally, the last
region has p > 3(7\.), and as before prices above cost can no longer be found that satisfy both
incentive constraints; consequently, we have Pf = P{ = c when p > D(A).

QOur remaining results for the negative-correlation case concern the behavior of the

boom-period collusive price in the countercyclical region . We find that:

(1). P{ is continuous, increasing in A and decreasing in p.
(ii). P§—Pmasp—pQ).

(iii). P isdecreasinginA alongf)(l), with P{ — P as A — Ax

The amplitude of the collusive pricing cycle is again increased by a lengthening (shortening) in
the expected duration of a recession (boom) phase, since the cost of a price war is then reduced,
forcing a greater drop in the boom-period collusive price. Note aiso that collusive prices move
continuously between the monopoly and countercyclical regions, and a discontinuity remains
once the competitive region is encountered.

With these results in place, we summarize the main features of the negative-correlation

case as follows:



Theorem 4: In the Markov-growth game with negative correlation,
{1). The most-collusive prices are sometimes countercyclical but never procyclical.
(i1).  When the most-collusive prices are countercyclical, the amplitude of the price cycle is

increasing (decreasing) in the expected duration of a recession (boom) phase.

The prediction of countercyclical pricing reverses that of the positive-correlation case.

Inspecting Figure 1, it is now clear that perfect collusion is sustainable if booms are
sufficiently long and recessions are sufficiently short in expected duration, regardless of the
precise nature of correlation. Similarly, whatever the level of correlation, competitive pricing is
required whenever booms are sufficiently short and recessions are sufficiently long in expected
duration. In the intermediate situation, however, monopoly pricing is sustainable in only one
phase, and the the collusive price in the other phase must be reduced, in order to thwart the
incentive to cheat. The designation of the "weak" state then depends upon the sign of
correlation, with procyclical (countercyclical) collusive pricing occurring under positive
(negative) correlation. More generally, predictions regarding the kind and amplitude of cyclical
pricing in a collusive industry necessitate information about the expected durations of boom and
recession phases in that industry.

A final remark concerns the manner in which our predictions vary with the parameters
8, b, rand n. Using (17) and (18), it is easily verified that A* — 0 as 6r — (n-1)/n and that p*
— 0as &b — (n-1)/n. In words, the region of perfect collusion dominates as it becomes almost
feasible to perfectly collude even in a stationary-growth game with the slow rate of growth r,
and the region of competitive pricing similarly expands as it becomes almost infeasible to
perfectly collude even in a stationary-growth game with the fast rate of growth b. The predicted
most-collusive prices for the extreme parameter values described in Theorem 1 are thus

approached continuously as parameters are varied over the region for which (13) holds.
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V. COLLUSION AND WITHIN-PHASE DEMAND FLUCTUATIONS
A. Overview

In the business-cycle model adopted above, the demand growth rate is stochastic, and
whether the market is in a fast- or slow- growth phase is determined by a Markov process. The
model also specifies that, within any given phase, the level of market demand at any given
period 1s a deterministic function of its value in the preceding period. The purpose of the
present section is to analyze collusive pricing in more sophisticated models of the business
cycle, where the level of market demand also fluctuates randomly within a given phase,

There are a number of ways in which such within-phase shocks might be modeled, and
we will not examine all of the candidates here. Instead, we bracket the range of possibilities by
considering two extreme cases. In our first formulation, within-phase shocks are permanent, in
that they become fully embedded into the market demand level from which all future demand
growth derives. Our second formulation highlights the opposite extreme: within phase shocks
are transitory, as a shock in any period affects the level of market demand in that period only.i0
In either event, we continue to assume that firms observe all current-period demand conditions

prior to selecting prices.

B. Permanent Shocks
Suppose now that the process through which the level of market demand evolves is
described as Gy = g¢Gy-18t1 . where gt = b (gt = r) when period t is a boom (recession) period,
with the transition between boom and recession periods following the Markovian structure
presented in Section IIl, and where at every date t the expected value of €¢ is unity, E{g¢} = 1.
This model of the business cycle is the same as the Markov-growth process defined

above, except that we have now included the possibility of within-phase shocks through the

10The distinction can be made at a more formal level. In the first formulation, within any given phase, the log
of the market demand level follows a random walk with drift, for which the autocorrelation function is unity for
all orders. The second formulation addresses the opposite extreme. in which current-period shocks lack any
correlation with future market demand levels. Specifically. within any given phase, the log of the market demand
level is described by an ARMA (1.1} process with an autocorrelation function that is zero at all orders.
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realization of the values for g;. Note moreover that these shocks are permanent, as they become
embedded into the evolution of future demand levels and their influence on this evolution does
not decay through time.!! With the processes governing the evolution of the market demand
level now fully specified. we define Markov-growth game with permanent shocks as the
Bertrand supergame for the case in which G evolves in the described manner.

The next step is to derive the incentive constraints for this game. A key observation is
that the most-collusive prices are a function of phases but not within-phase shocks; that is, the
most-collusive price in any period t is either Py (if period t is a boom period) or Pr (if period tis
a recession period), regardless of the specific value that g takes. Intuitively, for any period t and
corresponding market demand level Gy, the levels of market demand expected in the future are
proportional to Gt, and so as before the incentive to collude is independent of Gy. But since G¢
embodies the within-phase shock €, it follows immediately that the most-collusive prices are
not influenced by within-phase shocks of this form.

To examine the incentive constraints more rigorously, we may again define @p(Pp.Pr) =
(h as the expected discounted profit per market consumer to a firm in period t+1 and all future
periods, if period t+1 is a boom period and Py (Py) is charged in all boom (recession) periods.

With @ defined analogously, the incentive constraints may be represented as:

(22). GQ(Pp) £ SE{p(rGier+1)@r + (1-p)(bGeeEr+1)0b |
(23). GQ(Pr) < SE{A(bGEr+1)Db + (1-A)rGrer+1)Or}

where

(24). b= w(Pp)+ SE{p(ret+1)@r + (1-p)(bet+ 1)Ob}
(25). &= w(Pp+ SE{A(ber+1)Dp + (1-A)(ret+1)0r}

11Tg see this more directly. observe that Gy = Goll(grer). where the product is taken from t=1 to T=t.



and all expectations are taken over €p+].
Cancelling Gt across the inequalities in (22) and (23) and imposing E{gr+1} = 1, 1t 18
apparent that the incentive constraint system given in (22) - (25) is in fact exactly that derived

for the Markov-growth game and presented in (1) - (4). We therefore have that:

Theorem 5: In the Markov-growth game with permanent shocks, collusive pricing is exactly

the same as in the Markov-growth game.

We conclude that our predictions are robust to the inclusion of within-phase permanent shocks.

C. Transitory Shocks

1. Basic Assumptions

We now investigate the opposite extreme, supposing that the process through which the
market demand level evolves is described by Gy = gi(Gy-1/€1-1)€r, where gt = b (g = r) when
period t is a boom (recession) period, with the Markovian transition probabilities as described in
Section III, and where g is iid through time with full support over [€,&€] and E{gt} = 1 € { €,E).

Once again, we have the basic Markov-growth process, except that now shocks to the
level of market demand occur in each period. Observe moreover that these shocks are
transitory, since future levels of market demand are completely independent of &.12 We thus
define the Markov-growth game with transitory shocks as the Bertrand supergame for the case
in which Gy evolves in the described way.

As in the Rotemberg-Saloner (1986) model, such temporary shocks pose interesting

problems for collusive agreements, since they affect the short-term incentive to cheat but not the

12T see this more directly, observe that Gy = Goll(g7)g,. where the product is taken from =1 to t=t.
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tong-term cost of a price war. We now combine methods presented above with those developed
by Rotemberg and Saloner (1986) and characterize the most-collusive price at any period t as a
function of the business-cycle phase (boom or recession) and the within-phase shock (g¢)
experienced in that period. In so doing, we generalize the analysis of Rotemberg and Saloner
(1986) to a business-cycle specification that allows for multiple phases (i.e., a stochastic trend),
and thereby offer a formal interpretation of their results in terms of the transitory shocks to

demand that occur within broader business-cycle phases.

2. Solution Method

Our first step is to exploit the methods developed above in order to get the incentive
constraints in a tractable form. Given that g is iid, we now drop the time subscript and let
Pn(e) and Pr{€) represent the prices charged in boom and recession periods, respectively, when
the current period within-phase demand shock is given by €. Let us next define wh(Pp(€),Pr(€))
as the expected discounted profit per market consumer to a firm in period t+1 and thereafter, if
period t+1 is a boom period, Pp(e) and Pr(g) are the pricing functions, and the value for £r+1
has not yet been determined. We define @r(Pp(€),Pr(e)) analogously when period t+1 is a
recession period.

Consider next the incentive constraint facing a firm in period t, when period t is a boom
period and the period-t within-phase shock is given by g =¢. Simplifying notation slightly,

we may represent this incentive constraint as

GiQ(Ph(e)) < 8{p(rGre)dy + (1-p)(bGye)db ),

or more simply

eQ(Pp(e)) < O{prar + (1-p)bdp}.



Thus, the current-period "base” level of demand, Gy, again cancels, since all future demand
growth will be proportional to this base, but the current-period within-phase shock, &, is not

represented in future demand growth, and its value remains in the collusive incentive constraint,

with higher values for € having the effect of raising the incentive to cheat.

Building on these insights, we now represent the complete incentive system as

(26). €Q(Pp(e)) < d{proy + (1-pibop)
(27). eQ(PKE)) € S{Abdp + (1-\)réd},

where

(28). @p=E{w(Pp(Ee)e} + &{prdy + (1-p)bdp}
(29). @r = E{o(Pr(e))e} + d{Abdp + (1-A)rdr}.

But this is the same incentive system as represented in (1) - (4), except that £€2 replaces €2 and
E{w(-)e} replaces w(-). Proceeding as before, we thus may rewrite the incentive constraints in

the more useful form,

(30). £QPp(e)) < E{w(Pre)elpra + E{w(Pu(e)e}([(n-1) - B]
(31). eQ(Pr(e)) < E{w(Pp(e))etAbA + E{w(Pr(e))e}[(n-1) - R]

Having derived the incentive constraints, we next follow Rotemberg and Saloner (1936)

and exploit a two-step solution process for the most-collusive prices, P{(€) and P¢(e). The

initial step involves viewing the right-hand sides of (30) and (31) as fixed values, defined as

(32). b

E{o(Pr(e))e}prA + E{a(Pp(e)e}(n-1) - B
(33). @ = E{w(Pp(e)e}AbA + E{o(Pr(e))e}[(n-1) - R].



Using (30) - (33), the incentive constraints now appear as eCQ(Ph(e)) < &y and eQ(Pr(e)) < O,

and so, after substtuting for €, the incentive constraints may be rewritten as

(34). m(Pb(e) < [n/(n-1)]0w/E
(35). w(Pr(e)) < [n/(n-1)]dr/e.

We may now define Pp(@®p, €) and Py({y, €) as the most-collusive prices when ®p and
©r are taken as fixed values: i.e, Pp(®p, €) is the most-profitable price satisfying (34) and

Py((®p. £) is defined analogously for (35). These prices can be represented as follows:

(36). Pp(@p. £) = P*(0p/e)

(37).  Pr(@r, &) = P*(@r/e),

where P*(@/¢) is defined by

(38). P*(@/e)= P, if m(Pm) < [n/(n-1)]6/e
(39). P*(@/e) = min{P| n(P) = [n/(n-1)]&/e}, if t(Pm) > [n/(n-1)]&/e.

In short, each price is set as close to the monopoly price as possible, while still being consistent
with the corresponding incentive constraint.

We now proceed to the next step in this process, and present a fixed point technique
through which the most-collusive values for @p and @r may be endogencusly determined.
Specifically, consistency requires that the most-collusive values for @p and @ lead through
(38) and (39) to prices which in turn generate through (32) and (33) the originally specified

values for ®p and @y . This requirement is captured by the following two fixed point equations:
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(40). Op = E{w(P*(dy/e))e}prA + E{w(P*{(@p/e))e }[(n-1) - B]
(41). @ = E{o(P*(dp/e)e}AbA + E{w(P*(dr/e))e}{(n-1) - R].

It is straightforward to see that one consistent solution has ®p = @3¢ = 0, corresponding to

competitive pricing in all states. We are interested instead in the mosi-collusive fixed point
. al Ia) . o~ —~ .

solution, (®h, W), which represents the largest values for (®dp, @) that satisfy (40) and (41).

Once these values are determined, the most-collusive prices are then defined by

(42). P§(e) = P*(Ope)
(43).  PS(e) = PX(@yle).

In this way, the problem of solving for the most-collusive price functions is reduced to the

alternative task of solving for the most-collusive fixed point values.!3

C. Results

The possibility of transitory within-phase demand shocks suggests that attempts to
collude will be frustrated by high transitory shocks. as the incentive to cheat is then high as
compared to the cost of a price war. [t thus may be anticipated that, while the comparison of
collusive prices across boom and recession phases will still hinge upon the correlation of
growth rates through time, higher transitory demand shocks should require lower collusive
prices within any given phase. We argue below that this is indeed the case and, further, that the
disruptive effect of transitory demand shocks serves to expand the region over which cyclical
pricing occurs, since perfect collusion (for both phases and all within-phase shocks) is possible

over a reduced range when large transitory demand shocks are possible.

i3The approach pursued here thus presumes that the fixed point solutions to (40) and (41} are pointwise ranked.
so that a maximal solution can be unambiguously identified. The approach also presumes that the most-
collusive prices are found by raising price as high as possible in each state, as is evident from (38) and (39) and
{42) and (43). These presumptions are appropriate in the present model. because incentive constraints are
complementary, with more collusion in any one state fostering greater collusion in the other as well.



31

Of course, perfect collusion is sure to fail if € is sufficiently big, as the temptation to

cheat is then irresistible when the within-phase shock 1s near its upper bound. To create at least

the possibility of perfect collusion. we thus restrict the size of € with the following assumption:
(44). &b >E&(n-1)/[1+E(n-1)]

This assumption ensures that even a maximal transitory shock would not disrupt perfect
collusion, if the growth rate were stationary at the boom rate .

A complete analysis of the model is found in the Appendix. We show there that, under
the assumption given in (44), the parameter space can be carved into the nonempty regions
depicted in Figure 4. We now illustrate some general themes and sketch the method of proof
for the parameter region B in the case of positive correlation. Comparing Figures 1 and 4, we
see that this region supports perfect coliusion in the Markov-growth game, whereas we will
argue that it gives procyclical collusive pricing in the Markov-growth game with transitory
shocks. After making this argument. we discuss in a more informal way the nature of collusive
pricing in other regions, before concluding the section with a final theorem.

It is useful to think of the fixed point equations (40) and (41) as defining two respective
implicit functions, with @p being a function of @r in each case. These functions are naturally
expected to have upward-sloping regions, whereby better collusion in one phase complements
collusive efforts in the other phase as well. Figure 5 depicts the two fixed point equations for
the parameter set corresponding to region B under positive correlation. The most-collusive
fixed point solution, ((?)b. (T)r), satisfies two interesting properties: (T)b exceeds (T)r under
positive correlation, and both values fall between en(Pm)(n-1)/n and En(Pm)(n-1)/n.

These properties may be interpreted in terms of the most-collusive prices as follows.
Looking to (38)-(39) and (42)-(43), it is apparent that P{(¢) and P‘;’(S) are determined by the
same monotonic pricing function, P*(®/e}, and so é\)b > c?)r implies Py(e) 2 PS(g). (Ties are

possible since both prices may sometimes rest at the monopoly level.) Thus, our earlier



prediction that positive correlation yields procyclical pricing is preserved. Observe also from
these equations that the indicated range for (&b, (’Br) implies that, in both phases, monopoly
pricing is possible when € = £ but below-monopoly prices must be charged when € =€. The
most-collusive pricing functions are illustrated in Figure 6a.

Continuing with the positive-correlation case, consider next regions A and C. In both of
these regions, it continues to be true that under positive correlation, P§(e) = P{(e) with the
inequality being strict for large shocks. A novel feature of region A not shared by Region B is
that the most-collusive fixed peint solution may entail gab > en(Pm)(n-1)/n, indicating that the
monopoly price can always be supported in the boom phase. At the border between Region A
and the region designated as the monopoly region, the monopoly price can just be supported in
the recession phase when the transitory shock is at its most disruptive level, € = €. Above this
border, therefore, perfect collusion is sustainable. Region C describes a setting in which the
prospects for collusion are less favorable, and it may be true here that (ll\)r < ex(Pm)(n-1)/n,
meaning that the monopoly price cannot be sustained for any transitory shock in the recession
phase. The lower boundary of region C is defined by the function, ?)(7\.), and along this border
monopoly pricing can be supported in the boom phase only under the smallest transitory
demand shock, € = €. Below this border, monopoly pricing is thus infeasible even in this best-
case scenario. and the most-collusive prices switch discontinuously to the competitive solution,
Pi(e) = PX(e) = .

Exactly analogous findings occur in the case of negative correlation. Consider for
example region B under negative correlation. In terms of Figure 5, the most-collusive fixed
point solution now occurs below the 45 degree line and satisfies En(Pm)(n-1)/n > c’:\)r > (?)b >
eT(Pm)(n-1)/n, so that the most-collusive prices appear as in Figure 6b. The prediction of
countercyclical pricing is thus preserved, and higher transitory shocks require (weakly) lower
most-collusive prices in both phases. Similarly, with zero correlation, the most-collusive prices
are acyclic, as the most-collusive fixed point solution then rests on the 45 degree line, and

higher transitory demand shocks necessitate lower most-collusive prices throughout region B.
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Comparing Figures 1 and 4, we see that the monopoly region under Figure 4 is strictly
smaller than that in Figure 1 while the regions with cyclical pricing are strictly larger. In
particular, in the Markov-growth game. region C has cyclical pricing but regions A and B do
not, whereas when transitory within-phase shocks are permitted, all three regions are
characterized by cyclical pricing. !4

Two main conclusions can be drawn from this analysis:

Theorem 6: In the Markov-growth game with transitory demand shocks,

(1). Under positive (negative) correlation, the most-collusive prices are sometimes
procyclical (countercyclical) but never countercyclical (procyclical), and the range of cyclical
pricing is larger than in the Markov-growth game.

(ii).  Regardless of the nature of correlation, and in both boom and recession phases, a higher

transitory demand shock results in a (weakly) lower most-collusive price.

We also note that point (ii) provides an interpretation of the Rotemberg-Saloner (1986) theory in

terms of the transitory demand shocks that occur within broader business-cycle phases.
Vi, CONCLUSION

We develop a simple theory of coliusive pricing over the business cycle. The most-
collusive prices are completely characterized as functions of business-cycle parameters, and a
variety of specific predictions are offered. The most-collusive prices can be procyclical when
growth rates are positivly correlated through time, the amplitude of the collusive pricing cycle 1s
increased when recession phases are longer and boom phases are shorter in expected duration,
and transitory demand shocks have the effect of lowering the most-coilusive price regardless of

whether the market is in a boom or a recession phase.

I4Moreover. if (44) is relaxed. the monopoly region may disappear altogether. Note also that (15) now may be
relaxed as well; e.g.. if r 2 {n-1)/n, then cyclical pricing is impossible in the Markov-growth game, but it will
be possible when transitory demand shocks are permitted. provided that sufficiently large shocks are allowed.
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An interesting direction for future empirical research would be to examine the cyclical
properties of collusive prices with industry-level data. Our theory characterizes the most-
collusive prices in an industry as functions of the business-cycle parameters that describe the
evolution of demand in that industry. Given that Hamilton (1989) has developed econometric
techniques for estimating these same business-cycle parameters, our predictions thus may be
especially well-suited for empirical analysis. Ideally, industry-specific price and sales data
could be used to estimate for each industry the expected duration of boom and recession phases,
so that the pricing predictions of our model could then be compared with industry pricing data.

As an empirical analyses of this kind for industry-level data has not yet been performed,
it is at this point premature to predict whether collusive prices in specific industries will be pro-
or countercyclical. Nevertheless, it is perhaps instructive to refer to Hamilton's (1989)
description of the aggregate data. Working with U.S. real G.N.P. data, he finds that growth
rates are positively correlated across quarters and that boom phases last longer in expectation
than do recession phases. According to our theory, if these broad features of the U.S. business
cycle are representative of the demand cycles experienced by a given industry, then the
prediction of procyclical collusive pricing appears most salient.

Our model is constructed to isolate and characterize the consequences of stochastic
demand growth cycles for collusive pricing. Interesting future work might further assess the
robustness of our conclusions. We mention here three possibilities. First, we assume
throughout that marginal costs are acyclic. While this assumption simplifies the analysis
considerably, it may be interesting to explore an extended model that also accounts for cyclical
movements in marginal costs. The related empirical literature seems somewhat inconclusive on
this matter, as evidence exists that offers some support for acyclic (Miron and Zeldes, 1988)
and also procyclical (Bils, 1987) marginal costs.1? This suggests that an extended theory may

be more useful in some industries than others.

L5Yet another possibility is that booms are caused by technology shocks, in which case marginal costs may be
countercyclical.



Second. we have also maintained the assumption that firms can distinguish between
transitory demand shocks and turning points in the business cycle. an assumption that underlies
our sharp distinction between the response of collusive prices to these different movements. If
firms cannot directly observe the state of the business cycle but instead only know the current
demand realization and the underlying demand-generating process, then they must draw
inferences about whether a given movement in current demand reflects a cyclical turning point
or simply a transitory shock.!6 In this environment, the sharp distinction we have drawn
between collusive price responses to transitory demand shocks versus cyclical turning points is
likely to be softened, and oppertunities for richer cyclical price movements may arise.

Finally, we adopt a partial-equilibrium perspective and take the business cycle as
exogenous. This modeling approach enables us to highlight a number of intuitive effects in a
simple framework, but the simplification is not without costs. Following the program set forth
by Rotemberg and Woodford (1992), future research might embed the collusion model explored
here in a dynamic general-equilibrium model. in order to explore more fully the macroeconormic
implications of our work. The broad effects identified in this paper should arise also in a
general-equilibrium framework, but new counter effects may appear there as well. For
example, the distinction between boom and recession phases may be less significant for
colluding firms, once entry and exit are allowed. Also, with endogenous interest rates, it could
be that discounting is more severe in booms, and this could partially reverse the collusion-

enhancing effect of persistent booms.

16Hamilton (1989) develops techniques with which the econometrician can draw such inferences, and these
techniques should be useful for modeling the inferences of colluding firms as well.
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APPENDIX

Before proving our theorems. we first establish the following lermmas:

Lemma 1:  In the Markov-growth game, if min{AAb - R, Apr - B} 2 0, then P = P{ = Py,

Proof: Observe first that

(Al). [Apr-B]-[AAb-R]=A(b-r)(1-4-p)

and so, e.g., the minimum value is AAb - R under positive correlation. In any event, under the
condition of the lemma, we have that AAb - R 2 0 and Apr - B 20, and thus (10) and (11) are
satisfied at P{, = P¢ = Py .

Lemma 2: Inthe Markov-growth game, if
(1). min{AAb - R, Apr- B} <0, and

(ity.  RB > (AAb)(Apr),

then Pf=Pr=c

Proof: From (i) and (ii), it follows that R > 0 and B > 0. Suppose first that A =0 or p
= 0. Then (10) and (11) require Pp < c and Py € ¢, and SOP% =P‘li =¢c. fA>0andp >0,
then under (ii) Pp > ¢ can satisfy (10) and (11) only if

n(Pb) = M(PR/(AAD) 2 n(PH)RB/[(AADY(APT)] > m(Pb),

a contradiction. Thus, P < ¢ and so (11) implies Py <c. Hence Pf =P =c.

Proof of Theorem 1: [t is easy to confirm that

(A2). Gp<1/(1-3b)
(A3). Gr21/(1-8n),
with the former inequality strict if p > 0 and the latter strict if A > 0. We also have that

(A4). bGh-1Gr = (b-n)AS >0
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(A5). AAb - R =3{r(1-0)G; + bAGp) - (n-1)
(A6). Apr-B=38{b(1-p)Gp + rpGy} - (n-1),

To prove part (i) of Theorem I, assume & > (n-1)/n (i.e., n-1 £ 8r/(1-6r)). Using (A4),
it is immediate that (A3), (A5) and (A6) then vield

min{AAb - R, Apr - B} 2 8rGy - (n-1) 2 8r/(1-8r) - (n-1) 20
and so Lemma 1 implies P{ = P{ = Py,

As for part (ii) of Theorem 1, if 8b < (n-1)/n (i.e., n-1 > &b/(1-8b)), then using (A4d), it
is direct from (A2), (AS) and (A6) that

max{AAb - R, Apr - B}< 8bGyp - (n-1) < 8b/(1-8b) - (n-1) < 0
and so AAb - R < 0 and Apr - B <0. Lemma 2 thus applies, and hence Pf = P$ = c.

Lemma 3: Inthe Markov-growth game, if
(i). l-k-p20andk25\\(p)or

(in. 1-A-p<0andp<pr),

then Py = P$ = P

Proof: Note that A > ﬁ(p) is equivalent to AAb - R 2 0 and that p S P(A) is equivalent to

Apr - B2 0. Using (A1), Lemma 3 is now an immediate consequence of Lemma 1.

Lemma 4: In the Markov-growth game, if p > ﬁ(k), then Py = Py = c.

Proof: Note that p > p(X) is equivalent to RB > (Apr)(AAb). Further, under positive
correlation, Bd(p)) > p implies A < ﬁ.(p) and so AAb - R < 0. Similarly, under negative
correlation, B(?L) > (L) implies Apr - B < 0. The proof is thus direct from (A1) and Lemma 2.
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Lemma 5:  Inthe Markov-growth game with positive correlation, if A < i(p) and p < B(?&).

then

(1). Py =Pm > P

(ii).  P¢is continuous. increasing in A and decreasing in p.

(iii). Pﬁ—)Pmaslel)\L(p)andPﬁacasl—)O.

(iv). PSisincreasing in A along ﬁ(k), with P¢ = ¢ when A =0 and P — P as A — A%,
Proof: We begin with (1). Under the conditions of the lemma, AAb <R and RB <

(AAb)(Apr); thus, R > 0 and Apr > B. When (10} and (11) hold with equality, we have

3P

(A7). ZB| = [K(Pp/m(Pp)[Apt/B]
9P;
ap

(a8). T2 = (R (PH)IR/ARD].
3P;

Since ®'(P) > 0 over the range of possible prices and since R > 0 under the conditions of the
lemma, the recession-period incentive constraint (11) binds at the price pair (c.c) and continues
to bind along an upward sloping path of prices. (The curve is vertical if A = 0.) Note also that
under the conditions of the temma (11) fails when Py = Py, except in the case of competitive
pricing, and so (11) when binding crosses the 45 degree line only at (c,c). Finally, observe
that (11) holds with slack for higher values of Py or lower values of Pr. Let Pr e [¢.Pm) denote
the value for Pp that solves (11) with equality when Py = Py, Figure 2 illustrates.

Consider now the boom-period incentive constraint (10). Clearly, if B <0, then any Pp
> cand Pr 2 c satisfy (10), and so (P§, P}) = (Pm, Pp) and (i) holds. If instead B > 0, then
the incentive constraint (10) emanates from (c,c) when binding and slopes upward, and (10)
holds with slack for higher values of Pr and lower values of Pp. Furthermore, we have from

(A7) and (A8) that at any point of intersection,
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dPp| Py,

AQ). -
(AB) ap, 10 Gp 1Ly

= [T'(Pr)/m’(Ph)][(AAD)(Apr) - RBIA(AADB),

and so under the conditions of the lemma, either RB < (AAb)(Apr) and the two incentive
constraints when binding cross one time only at the competitive price with the binding boom
constraint (10) otherwise lying left of the binding recession constraint (11), or RB =
(AAb)(Apr) and the two binding incentive constraints overlap and traverse exactly the same
prices. In either event, (P%, P‘;) = (Pm, Pp) and so (1) holds.

To prove (ii), let us assume 1-A-p >0, A < i(p) and p < B(X), and consider first small
changes in p. Since (11) holds with equality over this region when Py = Py, we may implicitly

differentiate and, using R > 0, get that

dPt
sign{—TL} = sign{rc(Pm)M)a—A - J'C(Pﬁ)a—R} .
dop ap dp
Deriving that
(A10). B_A= -AZb[1-8r) <0
ap
and using 7(Pm) > ©(PX) we then find that

n:(Pm)?ng—A - n(Pﬁ)%R < m(PSAZBA(r - b) <0,
p P

from which it follows that P{ decreases in p.

Arguing in a similar manner, we find that

sxgn{—a}:} = sign(n(PmblA + 2] - w(PE)y 7).
Deriving that
dA
AlLl). — =-A2[1-3b] <0,
(A o Arii-obl

and stmplifying, we discover that

dA dR
Pm)b[A + A-—} - m(P9—
m(Pm)b[A + ak] m( r)al

={1- (1 - p)dbJAZ{n(Prb(] - 3r) - m(Pr(1 - 3b]}/8 > 0,

where the inequality follows from b > r and r(Pr) > m(P{). Thus, P§ increases in A.
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Consider next (iii). AsA — t)\L(p). we have that AAb — R. The binding constraint (11)
then approaches the 45 degree line, and so P¢ = Py — Piyy. Next,as A = 0, P¢ = Pr — c.
since as (AS8) indicates the binding incentive constraint (11) then becomes vertical at Pﬁ =cC.

Finally, we consider (iv). Again, (11) must bind, and so we may differentiate (11)

when Pp = Pmand p = B(A) to get that

. OF¢ . dA ®
51gn{§f} |P:f>(l) = sign{R(Pm)b[A + ?La] - n(pg)a},

Notice that we use total derivatives here, since 6 depends upon A as well. After further

calculations, we find that

dA dR
Pm)blA + A—] - m(PS)—
n(Pm)b[A + dl] m( ‘)dx

=[1-38b + 8(b - Np*|AZ{n(Pm)b(1 - &r) - n(P)r(1 - 8b]}/8 > O,

where the inequality uses b > r and n(Pm) > n(P%). Thus, PX increases in A along p = f)(?\.).

Proof of Theorem 3: Follows immediately from Lemmas 3-5.

Lemma 6: In the Markov-growth game with negative correlation, if p(A) < p < ﬁ(l), then
(ii). Pt

is continuous, increasing in A and decreasing in p.

o

(iii). Pf—Pmasp— P(R).
(v). Py

is decreasing in A along D), with P{ — Pmas A — A%,

Proof: Given the conditions of the lemma, we have that B > Apr and RB <
(AAb)(Apr), and so B > 0 and R < AAb. Looking at (A7), it follows that the boom incentive
constraint {10) when binding is upward sloping. This constraint emanates from the point (¢.c)
and does not bind at any other point along the 45 degree line; furthermore, beyond the price

pairs at which the constraint binds, higher values for Py and lower values for Py continue to
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satisfy (10). Let Pp e (c.Pm) denote the value for Py that solves (10) with equality when Pr =
Pm. (Since p > 0 over the given range, Py > ¢.) Figure 3 illustrates.

Consider next the recession incentive constraint (11). If R €0, ther any Pp 2 ¢ and Py
= ¢ satisfy (11), and so (P§, P%) = (Pp, Pm). in which case (i) holds. If instead R > 0, then by
(A8) we have that (11) when binding emanates from (c.c) and slopes upward, and (11) holds
with slack for higher values of Py and lower values of Pr. Furthermore, using (A9} and under
the conditions of the lemma, the incentive constraint curve that is associated with (10) binding
lies above (when RB < (AAb)(Apr)) or on top of (when RB = (AAD)(Apr)) the incentive
constraint curve associated with (11). In either case, we have (Pf, P%) = (Ph, Pm). This
proves (1).

As for (ii), let us assume that 1-A-p <0 and P(X) < p < p(A). To determine the effect

of an increase in p on P, recall that (10) binds at the most-collusive price pair; using B >0 and

implicitly differentiating this constraint reveals that

. OPf . JA JB
sign{—2) = sign{x(PmI(A + p—] - n(PH—}.
ap op op

Using (A10) and simplifying, we find that

sign{%@} = sign{n(Pm)r(1 - 8b) - R(P{HIb(1 - dr)}.
p

But using (11) when P¢ = Pry, we have that
(A12) m(Pm)r(1 - &b) - m(PHbB(L - ar)
< A(Pm){r(l - db)AA - R(1 - 3r) }/(AN)
= n(PmMndr - (n - D}/(AR)
<,

where the final inequality derives from (15). Thus, Pf, decreases in p.
Next, suppose that A increases. Working again with (10), we find that

. OPR 9A oB
ggn{a‘l} = sign{n(Pmpr_ =~ n(PE)_ .

Using (A11) and simplifying,
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. OPf , .
Sign{g} = -sign{(Pm)r(1 - 8b) - R(PYIB(I - 3r}),

and so (A12) implies that P{ increases with A. completing the proof of (ii).

Next, for (iii), observe that as p — p(A), Apr — B, and so the binding incentive
constraint (10) then approaches the 45 degree line. It follows that Py = Pp — Pm.

Finally, we establish (iv}. If A increases and p = B(A), then both incentive constraints
bind throughout, and so the effect on P§ can be determined by totally differentiating the

recession incentive constraint (11) for the case in which p = ﬁ(l) and P = P We find that

) N dR dA
51gn{a—lb] = mgn{n(Pm)a - MPEHbIA + Aa] }.

Simplifying then reveals that
) dR dA .
agn{n(Pm)a - T(P)b[A + la]} = sign{ M(Pm)r(1 - 8b) - =(P)b(1 - dr)},

and thus (A12) implies that P§ decreases with A along p = B(A), completing the proof of (iv).

Proof of Theorem 4: Follows immediately from Lemmas 3, 4 and 6.

Section V Definitions and Facts:
Let us define E(®) = E{w(P*(®/e)e)}. Calculations and integration by parts reveals

(A13) E(®) = ®/(n-1), if ® < gx(Pm)(n—l)/n
[n/(n-1)}w/n(Pm)
(A14) E(®) = w/(n-1) - ©(Pm)/n IF(E)de, if gn(Pm)(n-l)/n < ® < én(Pm)(n-1)/n
£

(A15) E(®) = "(Pm)/n, if &2 &n(Pm)(n-1)/n,

where F(g) is the distribution function for €. It follows that E(®) is initially linear and
increasing at the rate 1/(n-1), then increasing at a lower rate and (strictly) concave, and finally
constant at the value n(Pm)/n. The fixed point equations (40) and (41) now may be rewritten as
(A16) 0= E(GpApr + E(@p)[(n-1) - B] - @b

(A17) 0 = E(®dp)Arb + E(®@p)[(n-1) - R] — .
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Observe that p = @y = 0 satisfies (A16) and (A17).
In correspondence with (A16) and (A17) when @p = G, we may define
(A18) fp(®d) = E(@)Apr+ (n-1)-B] - &
(A19) fH{®@) = E(®)[AAb + (n-1) - R] - &.
Thus, e.g., when f(®) = 0, it follows that the boom-period incentive constraint (A16) is
satisfied on the 45 degree line at ®p = & = @. Note fy(®) and f{®) are (weakly) concave.
We now differentiate the boom-period fixed point equation (A16) to get
0]

0| = E@napr/ (1 - EX@p)[(n-1) - B]} = E@pApr / [E'(@b)Apr — f5'(Gb))].

A20) —
( )amr

Similarly, the recession-period fixed point equation (A17) satisfies
a@ |, = {1- E@p((n-1) - R1} / [E(@p)AA] = {E(@r)AAD — fr'(@p)] / [E'(Gp)AAD].

Lemma 7: In the Markov-growth game with transitory shocks, if
(i). min{AAb- R, Apr-B} >0
(i) max{AAb - R, Apr - B} < (-1)(n-1),

then en(Pm)(n-1)/n < (T)b, (T)r < &n(Pm)(n-1)/n and sign{a)b - Q } =sign{1-A-p}.

Proof: Using (A13), (A18) and (A19), we have that condition (i) implies that fy' (®) > 0 and
fr'(®)>0forall ®e [0,e i{Pm)(n-1)/n]; furthermore, it is direct from (A 15), (A18) and (A19)
that condition (ii) implies that fp(®) < 0 and (@) < O for all @ 2 €n(Pm)(n-1)/n. It now
follows easily that unique positive roots, @p and @, exist at which fh(@p) = fr(wr) = 0, and
further that et(Pm)(n-1)/n < @b, @ < EN(Pm)(n-1)/n. Given the concavity of fp and fr, we
have also that fy'(®p) < 0 and fr'(®r) < 0. Finally, we have from (A1), (A18) and (A19) that
(A22) fp{@r) = fb(@r) - fr(@r) = E(@pA(b-1)(1-A-p).

so that E((y) > 0 implies

(A23) sign{®h- Or} = sign{l-A-p}.



Thus. under conditions (i) and (ii), both fixed point equations cross the 45 degree line, and the
boom-perioed fixed point equation crosses this line at a higher value under positive correlation.
Using (A20) and (A21), it is now a stmple matter to see that
ow

b1, € (0.1) at B = By = By

A24) —
( )awr

om - -
A25) 22| > 1at @y =ay = .
a(Dr

Both fixed point equations pass through the origin, and the signs of (A20) and (A21) at the
origin depend on the respective signs of B and R, but eventually the respective curves slope
upward through their respective 45 degree line crossings. In particular, there must exist values
op and wr with 0 € ®h < dh and 0 < wr < Gy such that (A16) is satisfied at (Op,®r) = (0H.0)
and slopes upward from (®b,0) through (@b,®b) and on, while (A17) holds at (Bb.&r) =
(0,wr) and slopes upward from (0,wr) through (@r,®r) and on. The boom-period fixed point
equation thus crosses the 45 degree line at (®b.®b) from above, while the recession-period
fixed point equation crosses at (@r,®p) from below. Neither equation can cross the 45 degree at
any other point, except the origin.

It may now be verified that em(Pm)(n-1)/n < min{®h,0r} < (T)b, &r < max{®p,0r} <
EN(Pm)(n-1)/n, where sign{(fx\)b - (T)r} = sign{®p - ®r}. Combining this with (A23) then proves

the lemma. Figure § illustrates the case where 1-A-p > 0.

Lemma 8: In the Markov-growth game with transitory shocks, if
(i). min{AAb- R, Apr-B} e (0, (-1)(n-1))
(i1) max{AAb - R, Apr- B} 2 (-1)(n-1),

A A _ . A A .
then €(Pm}(n-1)/n < min{wh, @r} < ER(Pm)(n-1)/n and sign{wh - @r} = sign{ 1-A-p}.

Proof: Suppose first that 1-A-p > 0. Then (A1) and conditions (i) and (ii) imply
Apr-B 2= (E-D(n-1)>AAb-R >0
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and so (A13) - (A15) and (A18) and (A19) vield that f'(®) > 0 and fr'(®) > O for all ® e
(0. m(Pm)(n-1)/n] and fh(EX(Pm)(n-1)/n) 2 0 > fr(En(Pm)(n-1)/n). It then follows that @r
exists at which fr{d@y) = 0 > fr'(dp). and further that € t(Pm)(n-1)/n < @r < ER(Pm)(n-1)/n.
There also exists a positive root at which fp{®h) = 0, and this root satisfies ®p 2 ET(Pm)(n-1)/n
and fp'(wp) < 0. Clearly, @p > @r.

The recession-period fixed point equation then takes the same form as described in the
proof of Lemma 7 (for the positive correlation case) and as presented in Figure 5. The boom-

period fixed point equation is also described as before, except that now it is flat when it crosses
the 45 degree line (since @b 2 En(Pyy)(n-1)/n and E'(@b) = 0 by (A15)). It follows that (T)b >
(/I)r > ®r > en(Pm)(n-1)/n and EX(Pm)(n-1)/n > 6}1— Related arguments apply when 1-A-p < (.

Lemma 9: In the Markov-growth game with transitory shocks, if
min{AAb - R, Apr - B} = (E-1){(n-1)

then (@p, Op) = En(Pm)(n-1)/n, Ex(Pm)(n-1)/n).

Proof: In this case, we have from (A13) - (A15) and (A18) - (A19) that fp(En(Pm)(n-1)/n) 2
0 and fr(En(Pm)(n-1)/n) 2 0. Since fy and f; always have a positive root, it follows that these
roots satisfy @p 2 EN(Pm)(n-1)/n > 0 = fp(@p) and Gr 2 EN(Pm)}(n-1)/n > 0 = fr(®r),

respectively. Now use (Al35) to see that (&b. (,l\)r) = (Op, W) satisfies (A16) and (A17).

Lemma 10; In the Markov-growth game with transitory shocks, if

(i). min{AAb- R, Apr-B} <0

(ii) max{AAb - R, Apr- B} < (€-1)(n-1)

(). p <P,

then en(Pm)(n-1)/n < max{®p. Br) < En(Prp)(n-1)/n and sign{®p - &r) = sign{ 1-A-p}.
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Proof: Suppose that 1-A-p > 0. Then (A1) and conditions (1} and (ii) imply
(A26) AAb-R <0
(A27) Apr-B < (-1)(n-1),
and so fr'(@) < 0 for all @ € [0,ex(Pm)(n-1)/n] and fp(ER(Pm)(n-1)/n) < 0. Next, condition
(iii) and 1-A-p > 0 imply that
(A28) Apr-B>0.
Otherwise, we have Apr - B €0, or equivalently p = §(A) > 0, where the definition of P(A) is
extended into the positive correlation range. Since p >0, it follows that B > 0. Using (Al), we
also have that AbA - R < 0. It then would follow that RB > (AbA)(prA), or equivalently p >
ﬁ(l), contradicting condition (iii); thus, (A28) must hold. This implies that f'(®) > 0 for all ®
€ [0.£x(Pm)(n-1)/n]. It now follows that (p exists at which fp(®b) = 0 > fp'(@b), and further
that et{Pm)(n-1)/n < @p < En(Pm)}(n-1)/n. There are two cases for fr. If (A26) holds strictly,
then f{(@) < 0 and f;'(®) < O for all @ > 0; alternatively, if (A26) holds with equality, then fr(@)
=0 forall ® e {0.en(Pm)(n-1)/n], with (&) < 0 and f;'(®) < O for all & > £ A(Pm)(n-1)/n.
Referring to (A20) and (A21), we thus have that the boom-period fixed point equation
eventually slopes upward, crossing the 45 degree line at Gp, as in Figure 5, while the recession-
period incentive constraint slopes upward and is everywhere above the 45 degree line (if (A26)
holds strictly), or runs along the 45 degree line up until @y = € 1(Pm)(n-1)/n and then slopes
upward and remains above the 45 degree line (if (A26) holds with equality). Moreover, for ®e
[0.£ "(Pm)}(n-1)/n], the former takes slope Apr/B while the latter takes slope R/(AAb) 2 1. The
boom-period fixed point equation thus departs the origin northwest of that of the recession
period if B €0, or if B > 0 and condition (iii) holds strictly. An intersection of the two curves
is then necessary, and it must be that €éx(Pm)(n-1)/n 2 @p >3)b > (?)1-; in addition, since the two
curves are intially linear out of the origin, we have an 2 en(Pm)(n-1)/n, with equality when p =
p(A) and the two curves are collinear initally.
Finally, the case of negative correlation may be solved analogously. When there is zero

correlation, the conditions of the lemma require p :B(X) and so c’?)b = 33r = en(Pm)(n-1)/n.
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Lemma 11: Inthe Markov-growth game with transitory shocks, if
(1). min{AAb - R, Apr- B} <0
(i) max{AAb - R, Apr- B} > (¢-1)(n-1)
(iii).  p <P,
A A . A A .
then en(Pm)(n-1)/n < max{wp, 0r} and sign{mp - @} = sign{1-A-p}.

Proof: Suppose 1-A-p > 0. Then (A1) and conditions (i)-(ii) imply (A26) holds while (A27)
now fails; hence, (A17) is as described in the proof of Lemma 10, but fp(En(Pm)(n-1)/n) > 0 1s
now true, whence fy'(@p) > 0 for all ¥y € [0.en(Pm)(n-1)/n]. Thus, (A16) crosses the 45
degree line with zero slope at @p > €n(Pm){n-1)/n. As in the proof of Lemma 10, 1t then
follows that @b > Gr and ®p > € T(Pm)(n-1)/n; note, though, that B > EX(Pm)n-1)/n is now

possible. Similar arguments apply when 1-A-p < 0, and conditions (i)-(ii) rule out 1-A-p = 0.

Lemma 12: In the Markov-growth game with transitory shocks, if p > f)(k), then c’a\)b = é\)r =

0

Proof: As in the proof of Lemma 4, p > ﬁ(l) is equivalent to RB > (Apr)(AAb), and implies
that min{AAb - R, Apr - B} < 0; thus, it must be that R and B are each positive, min{R,B} > 0.
Consider now the range @ € [0.en(Pm)(n-1)/n], over which (A13), (A20) and (A21) yield
o®h | dp |

o “~ 1p

——| . = RAAAb) > (Apr)/B =
ddy dWy

and so (A17) initially lies above (A16), with an intersection possible for the given range only at
the origin. A subsequent interesection can occur only if (A16) crosses (A17) from below; this
is impossible when @p 2 €x(Pm)(n-1)/n, since then (A17) takes infinite slope, as is evident
from {(A21) and {A15). Further, we have that
LI aa.j Wy o
B @papr + (28] 2[(n-1) - BIE"(@b)
320h | 3 Jr

o2 " 1 - E(@p)l(n-1) - B]
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- . d @h ~

En ( _1 'R + [—2 2E”(IJ

Py, (@p)](n-1) - R] [aa)rlf] (@b
B2 " E'(&p)Arb

But since (n-1) - B 20, (n-1) - R 20, E"(®) €0 and E'(®d) € l/(n-1) are true generally, and
noting E'((0y) > 0 for Oy < Ex(Pm){n-1)/n, we have that (A16) defines a concave function
while (A17) gives a convex function, and so (A16) can never cross (A17) from below. Hence,

. . . .. A A
the unique intersection occurs at the origin, where wp = @y = 0.

Proof of Theorem 6: The lemmas give an exhaustive characterization of the most-collusive
fixed point solutions. We now define parameter relationships that delineate the regions in
Figure 4 for which the various lemmas apply. Let A(p.£) satisfy AAb - R = (-1)(n-1) and Iet
P(A.E) satisfy Apr - B = (E-1)(n-1). Calculations reveal that

A(p.E) = [1-(1-p)SbI/(1/A*(®) - 8b) and P(AE) = [1-(1-RISrI/[1/p*(E) - dr],
where A*(€) =1 - p*(&) and

A%(€) = {&(n-1)/[1+&(n-1)] - 8r}/[8(b-1)] and p*(€) = {8 - E(n-1)/[1+E(n-1)]}/[8(b-)].
Under assumption (44), we find that A*(&) € (A*.1) and p*(€) € (0,p*), implying that X(p,é)
> ﬁ.(p) and p(A,€) < p(A), which corresponds to Figure 4. We note that p(0,€) > 0 is true, and
so p(A.£) intersects i(p); however, it may or may not occur that ﬁ.(p,é) intersects P(A).

Using (A1), and looking at Figure 4, it may now be confirmed that Lemma 7 describes
Region B, Lemma 8 corresponds to region A, Lemma 9 applies for the monopoly region,
Lemma 10 represents that part of region C for which p = p(A.€), Lemma 11 covers the
remainder of region C (including the origin), and Lemma 12 describes the competitive region.
The lemmas confirm the cyclical features of the most-collusive prices stated in the text, once the

prices are recovered from the most-collusive fixed point solutions via (36)-(39) and (42)-(43).
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