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Abstract

We analvze two-candidate electious in which voters are uncertain about the realization
ol a state variable that affects the utilitv of all voters. Each voter has noisv privale
iformation about the state variable. We show that the [raction of voters whose vote
Jdepeuds on their private information voes to zero as the size of the electorate goes
to indiuity. Nevertheless cleclions fullv aggregate wwlormation in the seuse that the
chosen candidate would not change if all private information were common knowledge
among voters. We also show that tlie equilibrium voting behavior is to a large extent
determined by the electoral rule. 1.e.. il a candidate is required to get at least r
percent of the vote in order Lo win the election then in equilibrim this candidate gets
very close to r percent of the vote with probability close to one.



1 Introduction

It is a central tenet of the formal literature on elections that information is critical

Y As least since Condorcet

in determining voting behavier and election outcomes.
scholors have appreciated the role of elections as information aggregation devices.
This paper analvzes the information aggregation properties of electoral mechanisms
and the effects of strategic voting behavior in an environment of private information.
As such it builds on our earlier paper (Feddersen and Pesendorfer 1994). In that
paper we demonstrated that there is an analog to the winner's curse in elections-
the “swing voter's curse”.® Like bidder's in a common value auction, voter’s must
condition their candidate choice and their decision to participate not only on their
private information but also on the event that their vote matters.

In this paper we analyze two-candidate elections under a variety of quota rules
and information environments. The focus is on voting behavior and information ag-
gregation rather than participation. We consider a population of voters. Each voter’s
pavoff depends on his preference type, on a state of nature, and on the elected can-
didate. Preference types are drawn independently from a given distribution whereas
the state of nature is common for all voters. Voters know their preference type but
are uncertain about the state of nature. Every voter receives a signal that provides
information about the realization of the state of nature. Voting is costless and voters
can either vote for the status quo or for the alternative. The alternative is imple-
mented if the fraction of voters voting for it is at least 1 — g. We analvze symmetric
Nash equilibria of this voting game.

As an example consider an election between a candidate who represents the status
quo and a candidate who represents an alternative policy. Voters are uncertain about
the cost of implementing the alternative policv. If costs are high then a majority
of the voters prefers the status quo whereas if these costs are low then a majonty
prefers the alternative. Newspapers print a series of articles concerning the cost of the
alternative. Each newspaper article is a nolsv signal about the cost of the alternative:
the higher the costs the more negative articles about the alternative apear. Every

voter reads one newspaper article. Since voters read different articies they have

'Downs 1957; Palfrey and Rosenthal 1985; Austen-Smith and Banks 1994: Calvert 1986.
“Milgrom and Roberts (1982) for an analysis of auctions with common values



different private information.

There are three central results in our paper. First we show that the fraction of
the voters whose vote depends on their private signal goes to zero as the size of the
electorate goes to infinitv. Thus in a large election most voters ignore their private
information when thev cast their vote. We show this under the assumption that the
probability of receiving a particular signal conditional on the state of nature is a
continuous function of the state of nature.

To provide an intuition for our first result suppose that by sampling the private
signals of many voters the true state can be determined with arbitrary accuracy.
Further. suppose that the fraction of voters whose vote depends on their private signal
stavs bounded away from zero. Then as the population size increases the probability
distribution over states of nature conditional on being pivotal will converge to a
distribution whose mass is concentrated around one particular state. As long as
each voter's private information is noisy, i.e.. it does not allow him to infer the true
state of nature with certainty. voter's beliefs about the state of nature conditional
on being pivotal will be essentially independent of his private signal. Hence, for a
tvpical preference tvpe, the optimal vote choice will be independent of the realization
of the private signal. Therefore it cannot be the case that the fraction of voters whose
vote depends on their private signal stavs bounded awav from zero as the size of the
electorate goes to infinity.

Nevertheless, we demonstrate that in a large electorate information is fully ag-
gregated in equilibrium, i.e., with probability arbitrarily close to one the elected
candidate is the candidate that would have been elected if all the private signals were
common knowledge. Thus large elections fully aggregate private information. The
crucial assumption for this result is that bv sampling the private signals of many
voters the true state can be determined with arbitrary accuracy. This result may
appear paradoxical in light of our first result that the fraction of voters who reveal
their private signal through their vote choice goes 1o zero. While the fraction of the
population’s signals that are actually revealed in equilibrium goes to zero. the number
of voters who reveal their signal goes to infinity so that in the limit all information
1s revealed.

We also show that the equilibrium voting behavior is to a large extent determined



bv the electoral rule. The electoral rule is given by the fraction ¢ of the votes that
the status quo (@} must obtain to win. Suppose that the expected fraction of voters
who prefer candidate @ in every state s 1s smaller than g and similarly the fraction of
voters who prefer the alternative (4} in every state s 1s smaller than 1—g¢. Under this
condition we show that the fraction of voters who choose the status quo independent
of the realization of their private signal must be close to 1 — ¢ and the fraction of
voters who choose the alternative independent of their private signal must be close
to ¢. If. for example, ¢ = 1/3 then ¢} wins the election whenever the number of votes
for () is larger than or equal to 1;3 - n, where n is the number of voters. For large
n our model predicts that in this case ¢ will receive very close to 1/3 of the votes
irrespective of the realization of s. Note that this is independent of the distribution
of voter preference types as long as the above condition is satisfied and independent
of the prior distribution over states.

To provide an intuition for this result note that (by our first result) in a large
electorate almost all voters ignore their private information. If the fraction of voters
who choose the status quo independent of their private information is unequal to g
then in a large electorate the election outcome is essentiaily independent of the state
of nature. However. full information revelation implies that the elected candidate
must depend on the realized state of nature and hence the fraction of voters who
support the status quo irrespective of their private information must be very close to
q.

A central assumption for the described results is that the voter's uncertainty is
about a one-dimensional state variable. Suppose. e.g.. that there is uncertainty both
about the state variable that influences voters’ pavoff and about the distribution from
which nature selects the electorate. Assume further that voters receive informative
signals about both sources of uncertainty. In this case information cannot be aggre-
gated fullv by an election. Moreover. the fraction of voters whose vote depends on
their private signal does not converge to zero.

We illustrate our results with a series of examples intended both to demonstrate
the manner in which our assumptions affect the results and to show the relevance of

our model to the previous literature on two candidate elections.



1.1 Related Literature

The effects of imperfect information on vote choice have been widely explored in the
formai literature on elections (Grofman 1993: Grofman and Whithers 1993}, The
central contribution of the literature on the Condorcet Jury Theorem (Ladha 1992:
Miller 1986: Young 19%8,1994) is the exploration of the information aggregation prop-
erties of electoral rules. This literature assumes that agents vote "naively’. 1.e.. each
agent behaves as if his choice alone determines the outcome. Since in elections no
single voter's decision determines the outcome. naive voting is not generally an equi-
librium of the corresponding voting game.® We illustrate in section 5.3. how naive
voting tvpically fails to aggregate all private information while strategic voting leads
to full information aggregation. Thus our results show that elections are much better
information aggregation devices than the Condorcet Jury Theorem suggests.

Another avenue taken in the literature may be labeled the rational expectations
approach. McKelvey and Ordeshook {1985) have argued that the process of infor-
mation revelation through polls will cause all voters to ultimately behave as if they
were perfectly informed. While we find that elections aggregate information fully our
model predicts significantly different voter behavior from the rational expectations
approach. In our model it is the small fraction of voters whose vote depends on their
private information who determine the final outcomein equilibrium.

QOur approach is related in some respects to the approach taken by Lohmann (1993)
and Austen-Smith (1989). Lohmann analvzed the effects of private information on
costly participation in political protest movements while Austen-Smith examined
the incentives for strategic voting in two-alternative elections. Neither Lohmann or
Austen-Smith considered the asymptotic properties of their models.

Our results are also related to the literature on information aggregation in auctions
with common values (Milgrom (1979)., Wilson (1977)). The result in the auction
literature is that the winning bid converges (in probabilitv) to the true value of
the object as the number of bidders goes to infinitv. Full information revelation in
auctions requires that for everyv possible value " of the object, bidders may receive a
signal that allows them to exclude the possibility that the value of the object is below

1" {see Milgrom (1979), Theorem 1). For full information aggregation in elections

3See Austen-Smith and Banks 1994: Myerson 1994b: and Klevorick et. al. 1985 for exceptions.



much weaker assumptions on a single voter's information suffice. Full information
aggregation in elections may be achieved even if each individual signal provides very
little information. In a related paper Palfrev {1985) shows how in a Cournot model
with demand uncertainty private information gets aggregated fullv as the number of
firms goes to infinity and hence the aggregate outcome is equivalent to the outcome

in a world of perfect competition and full information.

2 Description of the Model

We analyze a two candidate election. Candidates are denoted by 7 € {Q, A}. There
are n + | voters. Voters have different preferences. The payoff of a voter with

preference parameter z € X = [—1.1] if candidate j is chosen is
u(j. s. ) (1)
where s € (0. 1] is a state variable. Let
vis.r)=u{d s, z) —ul@.s. 1) {2}
We assume that v{s. r) is continuous and strictly increasing in (s. z).

Assumption 1 v(z, s} is continuous and v(z.s) > v{z’. s") if {s.2) > (s, 2"). (5" 21 #

(5.1} Furthermore v{—=1.5) < 0 for all s and v(1.5) > O for all s.

Assumption 1 savs that the utility difference between candidate 4 and candidate Q
increases in s and r. Furthermore, voters with preference parameters at the boundary
of X prefer one of two candidates irrespective of the state s. As an example, suppose
that voters are uncertain about the cost of implementing the policies of candidate
A whereas the cost of implementing the policy of candidate @ (the status quo) is
zero. Let ¢{s) be the cost of implementing 4's policv. where c(s} is strictly decreasing
in 5. and continuous. Suppose that 0 < ) < 4 < 1. Furtherlet w : R — R
he a single peaked continuous function that reaches a maximum at 0. If v(s. x) =
wid —rl —w(@ — ) — c(s) then Assumption 1 is satisfied if 2(1} = 0.

Bv gls) we denote the density that describes the prior beliefs about the state s.

Assumption 2 g is continuous and g(s: > 0 for all s £:0.1].



Each voter is characterized by his ideal point r and by an information service
k which provides a signal to the voter that may give him information about the
realization of the state s. We assume that there is a finite number of such information
services k = 1. .. K. Hence T = {—1.1{ x {1..... K'} denotes the tvpe space. Let F

be a probability distribution over T and let Fx denote the marginal of F over [—1.1].
Assumption 3 Fy allows a density function fy. where fx > 0.

Nature selects the electorate by choosing n voters independently according to the
probability distribution F. For G C T we will write F(G) to denote the probability
that a voter is of a type {z. k) € G, ie. F(G) = [;dF.

Information Services

Each voter has access to one information service k € {1..... K'}. An information
service might be thought of, for example. as a newspaper or a TV channel. Each voter
takes a random sample of articles or TV programs and updates his beliefs about the
state of the world according to this sample. We assume that the samples taken by
different voters are independent, that is, conditional on state s being realized, the
information that voter i receives from an information service is independent from the
information that voter j receives from the same information service.

More precisely we assume that each information service maps the true state s
into a (possibly infinite} sequence of zeros and ones. Each voter takes a random
sample from his information service. For simplicity. we assume that the sample size
1s one for each voter. An extension of our model and the resuits to arbitrary sample
sizes is straightforward but complicates the notation and the exposition of the results
without adding new insights.

Each information service provides the voter with a signal o € {0.1}. By p(k, s) we
denote the probability that a random sample from the information service k resuits
in signal 0 if s € [0.1] is realized.

3(s|7. k) denotes the posterior probability density function over states s of a voter
who recelves signal o from information service k. Therefore.

(st -ztk. s
.g_o £ ° (3

3s10.k) = =
Jigls prk s ds
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and )
glsi {1 —plk. st

sl k)= — — :
Jyglst (1~ plk.siids

(4)

We assume that receiving a signal 7 = 1 implies that higher values of s are more

likelv, whereas receiving a signal 7 = 0 implies that lower values of = are more likelv.
Assumption 4 p{k. s 25 (weakly) decreasing in s for all k.

Note that this assumption implies that 3(s|0. ki, 3{s|1.k} is (weakly) decreasing
in s. Moreover. note that J3(-10. k) is first order stochastically dominated by J(-[1.k)
for all k. If p(k.s) is constant for all s then 3(s/0.%k) = 3(s]1. k) = g(s). More
generally. if p(k. s} is constant over some interval [s;. sz] then if we condition on this
interval. the posterior is equal to the prior for both signals, i.e., J(s{0, k, {s1. 50|} =

Isil k. [si s01) = g(sl[s1. s2])

Strategies and Equilibrium

Each voter can choose ¢ or 4. Let 0 < ¢ < 1 be a fixed parameter. If the number
of voters who choose ) is larger than or equal to (n + 1) - ¢ then Q is the outcome.
Otherwise. A is the outcome. For simplicity we assume in the foliowing that ng is an
integer.*

A svmmietric pure strategy for a voter is a measurable function 7 : T x {0. 1} —
{@.4} and a symmetric mixed strategy is a pair of distributions #{z).c = 0.1 on
theset T x {@. 4}.

Bv 17 we denote the expected pavofl of a tvpe (r k} as a function of his private

information o, his action 7 € {0, 1} and the strategv 7 used by all other plavers. Let

H

Viz. koo 7.3

denote this expected payoff.

A voting equilibrium is a distribution 7” such that

{17 For a.e. {z. k. 7} in the support of *(7. Vir k o v 7" > V(z. k. o.7". 7" for

all 7€ 0.1, 0 =0, L.

*The only change in the analvsis when nq is not an integer is that the expression ng must be
replaced with ~largest integer that is smaller or equal ta nq".



ii1n Forae. (r.k.7'in the support of #*. Vir. k.7 7.5y < Vi(r. k.o 7' 71 implies

—

that there exists a 7' such that Vir. k. o 7.7 > Vi k.o 703

Condition (i) implies that a voting equilibrium is a symmetric Nash equilibrium.
Condition (117 implies that no voter uses a weakly dominated strategy. We make the
assumption of symmetry both because it simplifies our analysis and because we con-
sider large electorates. As Mverson (1994a) points out. in elections and other large
cames, it is frequently unreasonable to assume that the identity of every player is
common knowledge. Rather we can imagine that plavers know that certain types are
possible and might know the probability of each type but do not know the identity
or the exact number of plavers of each tvpe. Such a model of population uncertainty
leads us naturally to the assumption of symmetry, i.e., rather than specifying the
behavior of an individual plaver we can only specify how a typical type of plaver
1s expected to plav. In this model we take the shortcut of assuming symmetry in-
stead of introducing population uncertainty as in Myverson (1994a). Introducing such
uncertainty will not affect our results. |

[n the following, we show that voting equilibria are always pure strategy equilibria
that can be characterized by a partition of the set of types into three subsets: those
tvpes who vote for @ irrespective of their private information, those types who vote
for 4 irrespective of their private information and the tvpes who vote for A4 if they
receive signal 1 and vote for @ if they receive signal 0. We refer to these latter
tvpes as voters who take informative action®. The second part of Proposition |
shows that for each information service there is a pair of cutpoints (z{,, 1}, such
that voters with preference parameters below r}, who receive a signal from k will
vote for @ independent of the signal. Voters with preference parameters larger than
%, will vote for candidate 4 independent of their signal and voters with preference
parameters in the interval (z7,, z},) will vote for candidate @ if they receive signal {

and for candidate A if they receive signal 1. The proof is in the appendix.

Proposition 1 Suppose Assumptions 1-3 hold. Every voting equilibrium can be de-

scribed by a pure strategy ©*. Furthermore equilibrium strategies can be characterized

3[f voters sample more than one signal from their information service then the definition of
informative action is more complicated: a voter takes informative action if there exists a pair of
signals ¢. ¢ such that o;. 05 are received with strictly positive probability and the voter chooses 4
if he receives ¢; and @ if he receives ¢o. With this definition the following resuits can be extended
to the case of arbitrary sample size.



by a partition (Tg, Ta. Ty} of T where
i Ttz koY =Q for (x. k)€ Tg and 7 = 0.1
‘g stirkooy=A for(r.k)eTg ando =0.1
v 7k =@ and (. k.l = A for (s k1 €T,
Moreover, for each k there is a pair of cutpoints (], rl.), ], € 1, such that
() irkieTgfr<al,
fu) (r.kye T, f x], <z <1,

(i) {(x. k)Y e Ty tf T > 1)

3 Equilibrium Behavior in Large Populations

In this section we characterize equilibrium behavior for large population sizes. In
Theorem 1 we show that F(T*) converges to zero as the number of voters goes to
infinitv. In other words. the fraction of voters who take informative action converges

Lo zZero as n — <.
Assumption 5 p(k.s) s continuous on [0.1] for all k.

Theorem 1 Suppose Assumptions (1)-(5) hold. Let {{T5, T}, T")}. be a voting equi-
libria. Then F{(TT') - 0 asn — .

To give an intuition for Theorem 1 suppose that there is exactly one information
service, p(s). Fix a strategy 7 and suppose that contrary to Theorem 1 a strictly
positive fraction of voters takes informative action for all n. For large n the actual
vote shares of the two candidates will {with high probability) be very close to the
expected vote shares. The probability that a voter is pivotal i1s maximized in the states
=* for which ‘g — expected vote share of Q! is minimized. Since p(s) is continuous the
expected vote share is a continuous function of s and hence the set $* is non-empty.
If piv(s) is the probability that a voter is pivotal in state s then pzuv(s)/piv(s*) — 0
asn — o if s* € §* and s € S*. As a consequence, the distribution over states

conditional on the event that a voter is pivotal converges to a distribution that has



all its mass concentrated on the states in &*. Furthermore. we show that continuity of
p(s implies that p{s} = p(s") for all s € 5*. This in turn implies that the probability
distribution over states conditional on being pivotal and conditional on a voter's
private information converges to the prior over states conditional on being in the set
S*. This distribution is independent of a voter's private information. Thus in the
limit as n — > the fraction of voters who take informative action must shrink to
zero contradicting the assumption that a (uniformly) positive fraction of voters takes

informative action.

Proof: The probability that a voter is pivotal in state s is given by:

piUn(S) — ( :’n ) ,tn(sj}qn, (1 _ tn(sj}nfqﬂ

where t"(s} = jTE dF + fT;‘ plk, s)dF is the probability that an agent votes for @
given the pure strategy equilibrium (75 T7. T7).

Suppose. contrary to the theorem. F(T") > ¢ > 0 along any subsequence. Since
p(k. s} is continuous there exists a set of states S™ such that piv™(s) is maximized for
any s € 5™

First we claim that S™ is an interval and that for all s,5" € S™ ("(s) = t"™(s).
Note that by Assumption 4 t™(s) is {weakly) decreasing in s. Thus it is sufficient to
show that t7(s) = t™(s’) for all s.s’ € S. Suppose to the contrary that s.s" € S
and t"(s) =t > t™"(s'} = t’. Since t7 - (1 — )" = t'T . (1 - )™ ¥ and since
1. {1 — ¢ " 9 is a single peaked function of ¢ this implies that for t* = At + (1 — A)t".
0< i<l (1=thm ™ > 27 (1 — ¢'}""9", Since pg is continuous for all k. t*
is attained for some value of s” € (s, s') and hence we have a contradiction.

Second, for any k, if there is a positive measure of types (-, k} in the set T for
all n (along some subsequence) then pi(s) = pi(s’) for all s,s" € S™. This directly

follows from the fact that t"(s) = t"(s’). Conversely. if s € S™ then there is a k such

that there is a positive measure of types (-. k| in the set T]* and p{k.s} # p(k.s"i for

] -
o
e a

Third. we claim that as n — 2¢ the probability distribution over states conditional
on one voter being pivotal coverges (weaklyvi to a probability distribution which has

all the mass concentrated on points in S, the set for which piv™{s} is maximized.
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Suppose S™ = [sP. s7l. Since the measure of T is bounded below by e. for every

1

n > 0 (small enongh) we can find a ¢ (independent of nj such that [f* (s} —t"(si] < 4,2

r g .

for s € [sp —n.sp+njand t7(sf) — 17se

L

s> & forsel0. s =2niUlst +2n.1]. But
{ L 8k 7

t
this implies that for any ¢ and any 7 there is an n such that
wris)
LY

ptv™(s’)

for all s € (s} —n.s} +n] and s € {0. 8] — 2n] U [s; + 27.1]. But this in turn implies

that .
f:s?—’ln,s:—’.’.r}i pw (5 J

Jo pon(s)

where ¢ can be chosen arbitrarily small (for a given 7} if n is chosen sufficiently large.

> 2n/(2n +<(1 — 27))

In particular. setting ¢ so that 27/(2n + ¢(1 — 27}) > 1 — 27 implies that if a voter is
pivotal then

Prise s} —2n.s,+ 20} >1-29

for n sufficiently large. Since n was arbitrary we have established the third claim.

To summarize, we have shown that {along an appropriate subsequence! piv™(s}
converges to a distribution that has all the mass concentrated in an interval [s;, spl.
Consider an information service k and a subsequence such that there is a positive
measure of tvpes (- k) in the set T?'. We also know that p(k,s) = p(k.s) if s. s’ ¢
(5;.55). Such a set of types exists by the hvpothesis vhat the theorem is violated. In
the final step of the proof we show that a positive measure of the types (- kyeIlis
not behaving optimally and thereby obtain the desired contradiction.

To prove this final step it is sufficient to show that for any type who receives the
information service k the probability distribution over states conditional on being
pivotal and receiving signal o = 1 converges (weaklyi to the probability distribution
over states conditional on being pivotal and receiving the signal ¢ = 0. Clearly.
since voters preferences are strictly ordered by preference parameters and since the
distribution Fy is absolutely continuous (i.e.. has no mass points) this implies that
the measure of voters who have access to information service k and are in the set T
has to converge to zero.

To see the final step let A™(slpiv. k. 7} be the probability distribution over states
conditional on a voter being pivotal and conditional on receiving signal o from infor-
")

mation service k. Let sx. s; be a limit point of the sequence (s7. s1). By the argument

11



above we know that

prwtisi - sk o)
[y pivnis) - 3(sk. )

— sk 7 s g (5" '

R slpiv. k. o) =

i e . the probabilitv distribution over states conditional on being pivotal converges to
the posterior of the voter receiving signal o from information service k conditional

Yy This follows since the prior distribution does

on the state being in the set {s" s
not have a mass point (Assumption 2). But note that p(k.s) = p(k.s") for all 5. 5" €

(sh. 5 by the above argument. Hence we have that
3(slk.o.s € (s" s')) = g(s]s € (5" 1))

which is independent of & and hence proves the claim and the theorem.O

In the following we analvze the expected vote share of candidate @ as a function of
the electorale rule. Theorem 2 savs that the expected vote share of candidate ¢ will
be very close to g. i.e.. the observed voting behavior is to a large extent determined by
the electoral rule. If, for example, the electoral rule states that @ will be implemented
whenever the number of votes for @ is larger than or equal to 1/3 - n then in a large
electorate ) will receive very close to 1;3 of the votes wrrespective of the realization
of s. On the other hand. if for the same electorate and the same candidates the rule
states that @ will be implemented if 2/3 of the electorate vote for @ then Q will
receive veryv close to 2/3 of the votes. Note that this does not say that the chances
of @ actually winning the election are unaffected by the electoral rule. In fact, we
will also show {Theorem 3) that even though the vote shares of both candidates are

alwavs close to ¢ and 1 - ¢ the chances of winning will differ substantiaily for different

q.
Assumption 6 p(k.s) ts strictly decreasing in s for all k.

Assumption 6 ensures that in everv voting equilibrium some voters take informa-
tive action and implies that if we sample the signals of manv voters we can determine
the true value of s with arbitrary accuracy. More precisely. the predicted state con-
ditional on observing n private signals converges in probabilitv to the true state of

nature as n — <.



Remark: If Assumption 6 holds then every preference type has access to an infor-
mation service that discriminates between anv pair of states with probability 1. For
the following results it is sufficient that every preference tvpe has access to an in-
formation service that discriminates between anv pair of states with strictly positive
probabilitv. Thus we could weaken Assumption 6 somewhat without affecting the
following results.

Let P7 denotes the set of tvpes who prefer candidate j irrespective of the state
5. Then P9 denote the set of tvpes that prefer candidate @ to 4 in state s = 1 and
let P denote the set of types that prefer 4 to @ in state s = (. F(P%) is a lower
bound on the expected fraction of voters who will vote for @ and F(P#) is a lower

hound on the fraction of voters who vote for A.

Theorem 2 Suppose Assumptions (1)-(6) hold and suppose that F(PQ) < q. F(P4) <
1 — q. Consider a sequence of symmetric voting equilibria (T3, T3. T*). Then for all

n there is an i such that forn > n
q € [F(TQ) —n. F(T5) + ]

In the following we give an intuition for Theorem 2. Assumption 6 implies that
every information service discriminates between any pair of states. For large n this
implies that. conditional on being pivotal voter beliefs put almost all mass on the
neighborhood of one state. If the uncertainty conditional on being pivotal does not
vanish as n goes to infinity then the private signal provides useful information for a
whole interval of preference parameters. But then the fraction of voters who ignore
rheir signal cannot go to 1 as is implied by Theorem 1.

Let s* be the state that is most likelv to occur if a voter is pivotal. Now we only
have to show that at s* a g-fraction of voters prefers ¢ and a 1 — g fraction of voters
prefers A. If ¢ > expected vote share of 7 at 5* then it must be the case that s* = 1.

since by Assumption (6} this will be the unique state in which
lg — expected vote share of ¢/

is minimized. But then all voters should behave as if state s* = 1 occured and
hence the fraction of voters voting for ¢ should be 1 — F(T*) > ¢ by the assump-
tion that F{PY) < g F(P*) < 1 —q. This contradicts the hvpothesis that ¢ >

expected vote share of Q. A similar argument can be made for 1—¢ > expected vote share of 1

13



Proof: Consider 2™ which is defined as the preference parameter for which

/I v(s,i”_}Mds =0

o fo 9lsipivn(s)

i.e. the preference parameter for which a voter prior to receiving the private signal is
indifferent between @ and 4. {Note that since at £ = —1 the voter alwayvs prefers ¢
and at z = 1 the voter always prefers 4 continuity implies the existence of ™. ; By
Assumption 6 (2™ k) € T} for all k. Moreover, continuity of u implies that there is
an open set around £™ such that all voters with preference parameters in that open
set take informative action.

Since T7' has strictly positive measure piv™(s) is strictly increasing if t"(s) > ¢
and strictly decreasing if this inequality is reversed by Assumption 6. Let 5™ be such
that piv™(s) is maximized at s*®. Note that s*" is unique {by Assumption 6}.

Let ¢™(s} = ;m'wu”‘(s)/fol piv™(s). Consider a convergent subsequence s*™ — s5*.
First we claim that for all » > 0. ¢™(s) — 0 for all s such that |s — s*| > 7,
l.e.. " converges to a point mass at s*. Suppose to the contrary that ¢™(s) stays
bounded awayv from zero for some s with |s — 5*] > n > 0. Since by Assumption
6 o"(s) 1s monotonically decreasing in the distance from s*" this implies that for
every n there is an interval of states [§" 5" + 4] (§ > 0 independent of n) such that
0<e<o™s)< R< o forall s g 5" 5"+ 6] Let

o™(s)- 3(slk. o}
Jy on(s) - 3(slk. o)

Hence A™(s|k. 0) = M and h”(5|k, 1) = o™(s)g(si(l—p{k.s))

f, on(s)g(s)p(k.s) [, o™ (sig(s)(1-plk,s))
By Assumption (6), h™(-|k, 1) strictly first order stochastically dominates A™(-|k. 0}.
s)

W™ (s|k. o) =

Moreover, € < ¢™{s) < R < oo for s € [§". 5" + §| for all n implies that there is an

¢’ > 0 such that
Ry
f (h(slpiv. k.0) — h(s'ipiv. k. 1}1ds > ¢’ > 0
0

for all n and for all k. Since v(s. z) is strictly increasing in s this in turn implies that
for everv (z. k)

1
/ (s, 2 (RMslk. 1)~ A7(slk.0)ds > 7
0

for some n° > 0. for all n. But then by continuity of v there is a neighborhood of

preference parameters X" around 1" such that r € T for all x € X7 Moreover.

14



since ¢ is independent of n the size of this neighborhood can be chosen independent
of n and hence F{T[*) stays bounded awayv from zero for all n contradicting Theorem
1. Thus we have shown that for all n > 0. o™(s) — 0 for all s such that [s — 5| > 7.
i.e.. ¢ converges to a point mass at s*. Clearly this implies that also A" converges
to a point mass at s° for all (o. k}.

Now suppose that ¢ > F(Tj) + 1 for all n along some subsequence. Then g >
t"{s1 ¥s and hence for n sufficiently large piv™{s) is maximized at s = 0. By the
argument above this implies that A" converges to a point mass at s* = 0 for all (s k1.

But then ¢ > F(T§) + n contradicts the Assumption that F(PY < 1 —gq. (For

q < F(T%}—n an analogous contradiction can be obtained.) U

4 Full Information Revelation

In this section we ask under what conditions elections fully aggregate private infor-
mation. Consider the hypothetical situation in which the state is common knowledge
among voters. The resulting election outcome will serve as a benchmark for our def-
inition of full information revelation. An election outcome is fully revealing if the
election under private information leads to the same outcome as the election outcome

when the state is common knowledge among voters.®

Definition 1 4 chowej € {Q, A} is called a mistake for s and a population (), ... 1,
of (i) for j = @ fewer than qn voters prefer Q to A or of (1) j = A more than qn
agents prefer {J fo A.

Theorem 3 Suppose Assumptions 1-6 hold. Then for all € > 0 there s an it such
that for n > fi the probability that a mistake occurs in any voting equilibrium with n

roters 15 less than €.

From the proof of Theorem 2 we know that conditional on being pivotal a voters
beliefs put almost all the weight on the neighborhood of one state. i.e.. with probabil-

itv 1 — ¢ the voter believes that s € [s* — . 5" + <'. But {since t"(s) is monotonically

6 Alternatively, we could use as a benchmark the situation in which all the pnivate signals are
common knowledge among voters. Note, however. that Assurnption 6 and the law of large numbers
imply that in a large electorate knowing all signals is almost equivalent to actually knowing the true
state of nature.



decreasing) this can only be the case if for s < s* — 2¢ candidate @ gets chosen with
probability close to one and for s > s* + 2¢ candidate 4 gets chosen with probability
close to one. From Theorem 2 we know that at s* with probability close to one a the
fraction of voters who prefer @ is very close to q. Therefore. for s > s* — 2¢ the prob-
ahilitv of a mistake being made is arbitrarily close to zero for large n. An analogous
argument shows that for s < s* + 2¢ the probability of a mistake is arbitrarily small
for large n. Hence mistakes can only occur (with large probability) if the state is in

the interval {s* + 2e. s* — 2¢|. But for small ¢ this does not occur too often.

Proof: If F(P9) > g then since all voters whose type is in F(P%) will vote for Q.
candidate ) will be chosen with probability close to one for large n. Moreover. this
choice satisfies full information revelation because voters in P9 prefer candidate @ in
every state s. A similar argument shows that the Theorem is satisfied if F (P#) > 1—q.

If F{PY) < ¢q, F{P*) < 1 — ¢ then from Theorem 2 and the proof of Theorem 2

we know that for all ¢ > 0 there is an n such that forn > n
(it If a voter is pivotal then Pr{s € [s" — <. s +¢]} > 1 — ¢
(i} g € [F(TQ) — e F(TG) + ¢l

Burt this implies that for every @ > 0 there is an 7 such that if n > "and s < s™ —a
then the probabilitv that the number of voters who prefer candidate @ to candidate
4 is larger than g -n with probability 1 — . Similarlv. if § > s"* + a then the number
of voters who prefer candidate @ to candidate 4 is smaller than gn with probability
l —a.

Next we show that {for large n) for s > 5™ + o the probability that 4 is chosen is
larger than 1 — a and for s < 5™ — o the probability that 4 is chosen is smaller than
«. Let w™(m, s) denote the probability that in a voting equilibrium with n voters m

voters choose candidate @ if the state is s. Note that by item (i) above it follows that

whgn. ' - o

u‘n(qn. s
for n sufficiently large. Since t"(s) is increasing in 5 this implies that for all m < gn

whim. s + a!

wh{m. s*

<



for n sufficiently large. And hence for all s > 5* + o

This implies that 4 will be chosen with probability larger than 1 — «. An analog
argument shows that or s < s*™ — o the probability that 1 is chosen 1s smaller than
.

Thus the only time when there is a probability larger than 3« that a mistake

»

is made is if s € [s* — @, s* + «|. But since the probability distribution over s is
continuous the probability that s is in this interval can be made arbitrarily small for

small a and hence the Theorem follows. O

5 An Example

[n this section we present an example both to illustrate how our model works and
to link our results to the literature on elections and information aggregation. The
example refates our work to a model analyzed by Lohmann {1993). Lohmann analyzes
a model that is similar to this example although she assumes perfect information
about the location of voter preference parameters, Our Proposition 1 applied to this
example replicates her results. In addition we illustrate the asymptotic properties of
the model and the consequences of differentially informed voters. Second. we show
that if the function p(k. s) is not continuous our convergence result (Theorem 1} may
fail. Finallv. we demonstrate, how Theorems 2 and 3 fail if Assumption 6 does not
hold.

Suppose that candidates correspond to positions in a one-dimensional policy space.
Furhter. let 0 <« @ < 4 < 1, @ + 4 =1 (candidates are located symmetrically around
1 2y and ulj. s, z) = —(§ —s—z)° In this example the state acts as a shift parameter
that shifts both candidate’'s policies by a factor s. Voter preference parameters are

distributed uniformly. Hence fy{(x) = 1/2. In this example
plros) = (@ - A1 +204 - Q1+ 204 - Qs

Thus if W is the payoff difference of voting for 4 and voting for @ given the strategy

of all other players and E denotes the expectation operator then

Wirk 777 0A-Q = -1 -2r~2FE{sk 7 pu)

(W1}
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5.1 TIllustration of the results

Suppose that there is one information service and p{s} satisfies Assumption 6. Since
Assumptions 1-6 are satsified an equilibrium can be characterized by a pair of cut-
points (r-. r.+ such that only the voters with preference parameters in the interval
{r.. 1~ make their vote dependent on their signal. All voters with preference param-
eters below r, vote for candidate @ irrespective of their signal and all voters with
preference parameters above z, vote for candidate 4 irrespective of their signal
Furthermore. as n — . z; — Iy — 0. i.e.. the two cutpoints converge to one
point. In particular, by Theorem 2 and the fact that fy is the uniform distribution
r, — 29 — 1 for ¢ € {0.1}. Hence in the limit both cutpoints coincide at the point
2qg — 1 which 1s the preference parameter of the expected median voter. Finally,
Theorem 3 shows that if s > 3/2 — 2¢.¢ € 3/4 then candidate A will be chosen with
probability close to one and if s < 3/2 — 2¢g.¢ > 1/4 then candidate @ will be chosen

with probability close to one.

5.2 More and less informed voters

Suppose that there are two information services, & = 1.2 and that service 1 pro-
vides voters with better information than information service 2. More precisely. sup-
pose that J(s|1.0) is first order stochastically dominated by 3{s]2.0) and conversely

3(s]1.1) first order stochastically dominates J(s

2.1). In this case our Proposition 1
shows that there are two pairs of cutpoints (r};. r},} and (z3,. z%y) where the set of
voters who receive information from service 1 and whose vote depends on their signal
are in the interval (z},, z7,) and voters who receive information from service 2 and
whose vote depends on their signal are in the interval {zJ;, %)

Bv Equation 5 zj, satisfies
1+2z; ,+2E(skk g pivy =0 (6)

Bv construction E{s!1.0.piv) < E(s]2.0.piv) and E{s|1.1.piv) > E(s|1.2. ptv) and
hence rj, < r3, and 1}, > r3;. Thus voters who receive information {rom service 1
are more willing to use their information than voters who receive information from

service 2.



5.3 An Example where Theorem 1 does not hold.

[n this section we give an example that demonstrates how Theorem 1 fails when
Assumption 5 is violated. Suppose that p(s) = 1 —¢if s < 1/2 and p(s) = ¢ if
s > 12, Thus p is not continuous at 1.2 and. even if all available information is
aggregated. voters can only learn if the state is above or below 12 Furthermore
suppose that ¢ = 1.2. The (unique) equilibrium is for all voters who receive signal
0 and have preference parameter smaller than 1/4 — ¢/2 to vote for candidate Q.
Similarly, if a voter receives signal 1 and has a preference parameter larger than
~1/4 + ¢/4 he votes for candidate .. The equilibrium strategies in this example
are independent of n. To see why the prescribed strategies are an equilibrium note
that since the situation is symmetric it is equally likely to be pivotal if s < 1/2 asif
s > 1/2. The distribution over states conditional on being pivotal is uniform over all
states. Thus, conditional on being pivotal and receiving signal 0, the expected state
is 1/4 + ¢/2. and conditional on being pivotal and recieving signal 1, the expected
state is 3/4 — ¢/2. Moreover, this is independent of n. A simple calculation using
Equation {5) then shows that the described strategies actually form an equilibrium.

Note that for this information service it is not the case that p(s} = p(s’) for all
s € S since p(s) is not continuous. As a consequence, the signal is informative
conditional on being pivotal and private information remains valuable for all n. This

example shows how in the absence of Assumption 5. Theorem 1 may fail.

5.4 An Example where Theorem 1 holds but Theorem 3
does not.

In the following example Theorem 1 holds while Theoremn 3 is violated. i.e., the voting
equilibrium does not aggregate information fullv. Suppose there are two information
services: Suppose p(1l,5) = 1 — s and p(2.s) = 1;2. 1.e.. information service 2 is not
informative. Further suppose that ¢ = 1/2. The distribution F is such that all voters
with preference parameters r € [~1. —¢] U le. 1] have access to information service 1
with probability 1. while all voters with preference parameters z € (—¢. ¢} have access
to information service 2 with probability 1. We can distinguish two cases:

Case 1. ¢ > 1/6. In this case the equilibrium all voters with positive preference

parameters vote for candidate 4 and all voters with negative preference parameters
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vote for candidate Q.
To see that this is an equilibrium note that E{sjg = 1) = 2/3 and E(slg =
i = 1.3 for all voters who get an informative signal. Since 1 — 2z — 2E(s|1. piv} =
1—2r—-2(23V > Ofor r < —1/6 no voter takes informative action whenever ¢ > 1,6
In case 1. irrespective of the state. each candidate has a 30% chance of winning the
election. Therefore, with probability 1/2 a mistake is made.

Observe also that the same equilibrium strategies are an equilibrium for anv g
as long as ¢ + 1/6 € 1/2 +¢ and ¢ — 1,6 > 1,2 ~ ¢. Therefore, if ¢ # 1,2 then
FTZ = 1/2#q
Case 2. ¢ < 1/6. In this case there are two intervals of voter preference parameters
for which the equilibrium strategies prescribe a vote according to the signal received.
These intervals are [—z(n), —¢} and [e. z(n)] with z(n} > ¢. Theorem 1 implies that
r(n) —easn — x.

In Case 2 some private information will be revealed. But the probability that a
mistake is made is bounded away from zero for all n. Intuitively, as n — >0 the two
intervals of voters who take informative action shrinks too quickly to provide sufficient

ght” choice. Note that due to the symmetry of the

(=}

aggregate information for the “ri
situation the probability distribution over states conditional on a voter being pivotal
has s = 1/2 as a modal point. On the other hand if this distribution puts all the mass
on a very small neighborhood around 1/2 then no voter who has an informative signal
is willing to take informative action, since voters with preference parameters below
—c will vote for £} irrespective of their signal and voters with preference parameters
above ¢ will vote for A4 irrespective of their signal. Hence the limit distribution over
states conditional on a voter being pivotal cannot be the Dirac measure at the point
1/2 but rather is a nondegenerate distribution with modal point 1/2. But this implies
that for states around 1/2 there is a positive probability of making a mistake for all
n. Moreover, this neighborhood of states for which a mistake is possible does not
shrink as the number of voters goes to infinitv.

The hvpothesis of Theorem 1 is satisfied in this example and hence the set of
voters who take informative action converges to zero in measure (in case 1 it is
identically zero). However. the assumptions for Theorem 3 are not satisfied since one

of the information services does not provide an informative signal. Note, that in this



example the true state of nature could be inferred in a large electorate if all voters

revealed their private information.

5.5 Strategic versus Naive Voting

In Theorem 1 we show that as the number of voters goes to infinity, the fraction
of voters who take informative action goes to zero. Thus only a very small fraction
of voters reveal their private information. On the other hand we show that if the
information services are perfectly informative, 1.e.. if with large samples the true state
of nature can be determined with arbitrary accuracy, then as Theorem 3 shows, the
election outcome will typically be the same as if all voters were perfectly informed. In
this section we want to compare the election outcome when voters behave strategically
to the election outcome when voters behave “naively.” A voter behaves naively if he
hehaves as if his choice alone determines the outcome. More precisely, a voter of type
(z.k) with signal o votes naively if he votes for Q if fv(z.s)3(s|o. k)ds < 0 and if he
votes for A if [v(z. s}3(slo, kids > 0. Clearly, if voters behave naively, then more of
their private information will be revealed and hence there is the potential that under
naive behavior the probability that a mistake is made is smaller.

In the following example we show that under naive voting the probability of a
mistake is bounded away from zero while {bv Theorem 3) under strategic voting
the probability of a mistake converges to zero as n — >c. Thus if the electorate is
sufficiently large then under strategic voting the probability of a mistake is smaller
than under naive voting. Our model thus gives results that are in the spirit of the
results found in Austen-Smith and Banks {1994 in the context of pure common

values.

Proposition 2 Suppose the electorate is as described in the example in section 6.
Suppose further there is one information sertice and p(s) = (1 — s). The prior 1s
such that [, sglsids # 1/2 and ¢ = 1,2. Then there emsts an ¢ such that under

/

natve voting the probabulity that a mistake is made s bounded below by ¢.

Proof: We can use Equation (5) to show that under nalve voting a voter with

preference parameter r will vote for candidate ¢ if

=1

—l+2r+2E(507. >0 {
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Let r” be such that 1—2z”—2F (si0) = 0 and let z* be such that 1 -2r!=2E(s|1} = 0.
Note that full information revelation requires that the expected vote share of either
candidate in state s = 1.2 1s equal to 1. 2. If the expected vote share of candidate
) 1n state 1.2 were. for example. strictlv bigger than 1.2 then for large n and for
5 € 11,2.1,2 + ¢ (for small €) the election outcome would be such that candidate
 1s chosen with large probability if s € [1,2.1/2 + €]. This clearly violates full
information revelation since a majority of voters would tvpically prefer candidate 4
if s > 1/2. Moreover, since p(s) is strictly decreasing, voters could infer from the
individual signals that the state s is indeed above 1/2. In order for the expected vote
share of @ to be 1,2 if s = 1/2 it must be the case that z° + z! = 0, i.e.. z° and
r' must be symmetric around 0. But this implies that E(s}0) + E{s|1) = 1. Let

E(fisi) = Jy f{s)1g(s)ds denote the {unconditional) expectation of f(s). Then

E(s|0) = F{s{1 = s11; E{(l — g)

ana
E(s]1) = E(sY1/E{s)
Hence
E(s)— E{s*) E(s%
{s]0} + E(si1) 1= Els) +E(s) 1

Note that this implies that
E(s)(1 —2E(s)) = Ei{s":{1 = 2E{s})

But since E(s°) < E(s) for any prior s with full support it follows that % + z! = 0
if and onlv if E(s) = 1/2. Thus in this example naive voting will lead to a fully

revealing election outcome if and onlv if E{s? = 1:2. 3

6 Uncertainty about the Distribution of Voters’
Preferences

[n the previous section the distribution from which voter tvpes are drawn is common
knowledge. This assumption ensures that for anv sequence of strategy profiles the
expected vote share of a candidate converges in probability to the actual vote share. In

this section we relax this assumption and introduce uncertainty about the distribution

S
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of preferences. We assume that nature not only chooses a state s but also chooses the
distribution according to which the electorate gets selected. In such a world voters
cannot predict the empirical distribution of preferences accurately even in a very large
electorate.

We show that by introducing this second source of uncertainty both Theorems |
and 3 are no longer valid. i.e.. the fraction of voters who use their private signal stayvs
bounded awav from zero and the election outcome is not equivalent to the outcome
if private signals are common knowledge.

Let @ € (0. 1] be a parameter that characterizes the distribution according to
which nature selects the electorate. To simplify the analysis we assume that the
uncertainty about the distribution takes a very simple form. Voters are uncertain
about the expected fraction of partisans. i.e., voters who choose either candidate ¢
or candidate A irrespective of the state. Let §, be a Dirac measure on the point
r € [—1.1]. Let F be a measure that satisfies Assumption 3. The distribution H, is
given by

Ho={1-6F +e(ad; + (1 —alb_y)

Thus H, has ¢(1 — @) mass at —1 and e mass at +1. Note that by Assumption 1
voters with preference parameters at —1 alwayvs vote for candidate ¢ and voters with
preference parameter 1 always vote for candidate 4.

In the first stage of the game, nature chooses both s and « independently. By

bia; we denote the density that describes the prior beliefs about the state «.
Assumption 7 b s continuous and b{a) > O for all « € [0.1].

After choosing the state (s, o) nature selects an electorate by taking n independent
draws from the distribution H,. Finally, in addition to the signal . every voter
receives a signal p € {0. 1} that provides information about the realization of a. Bv
riai we denote the probability that the signal 1s 0 if o is realized. Again, we assume
that conditional on o being realized the signal voters' receive are independent. We
assume that receiving a signal p = 1 implies that higher values of o are more likely.

whereas receiving a signal p = 0 implies that lower values of o are more likely.

Assumption 8 r{a) is strictly decreasing and continuously differentiable. Moreover,

K =1 andp(l 5. = plsi is strictly decreasing and continuously differentiable.
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The assumption that there is exactly one information service is made to simplify the
proof of Theorem 4 but is not necessarv for the result. Assumption 8 implies that
if we sample the private signals of many voters then we can predict the state (s. o]
with arbitrary accuracy.

Note that if a voter learns his preference parameter r and if —1 < 1 < 1 then
this does not provide the voter with information about the realization of a. This
is the case since the likelihood of observing z.—1 < z < 1 is independent of «.
The only voters who get information about the realization of « by observing their
preference parameter are voters with £ = —1 and z = +1. However, these voters are
partisans and will always vote for A (in the case of £ = 1) or Q (in the case of —1) by
Assumption 1. Therefore we do not need to consider the inference problem of these
voters.

A pure strategy is now also a functionof p, 1e., 7*: T x {0, 1} x {0, 1} — {Q. A}
Again. we define a voting equilibrium to be a Nash equilibrium of the game in which no
voter chooses a weakly dominated strategy. Proposition 2 is the analog of Proposition

1 for the model in with aggregate uncertainty about the distribution.

Proposition 3 Suppose Assumptions 1.2.3.7,8 hold. FEvery voting equilibrium can
be described by a pure strategy n°. Furthermore equilibrium strategies can be charac-

terized by a pair of partitions (Tgy, Tap. Tip).p = 0.1 of T where
(i) e koo pl =Q for{z, k)€ Ty, and o = 0.1
(v #°(z. k.o p) = A for (z,k) € T4y ando =0, 1

(ur) 7°(z,k.0,p) = Q, and n*(z, k, 1.p) = A for (. k) € Ty,

Proof : The proof is analog to the proof of Proposition 1.

The following Theorem shows that the set of voters who use their private signal
g stays bounded awav from zero in measure and furthermore that equilibrium out-
comes are not equivalent to the outcomes that would be achieved if all the private
information were common knowledge. This latter result will be shown to hold for a
tvpical utility function v(z. s). To make this precise. consider the set of decreasing

real valued functions on 0. 1] x {—1. 1] denoted bv P and endow it with the topology



of uniform convergence. We say that a property holds for a generic utility function

if it holds for all v € O — P where O is open and dense.

Theorem 4 Suppose Assumptions 1.2.3.7.8 hold and HAP < g Hi(PY < 1—gq

for all . Consider a sequence of voting equalibria (T3, T3, T p=0.1. Then

ii) There s an > 0 such that Ha (T,

> forp=0.1 for alln and all a.

(ii} There erists an O C P. where O 15 open and dense, such that for everyv € O
there erists an n > 0 such that for all n the probability that a mistake is made

1s bounded below by n.

Proof: see Appendix.

To provide an intuition for the proof of part (1) of Theorem 4 suppose for (s.a) the
expected vote share of candidate @ is ¢. Then we can decrease s and simultaneously
increase o so that the expected vote share stays unchanged. Conditional on being
pivotal a voter believes that one of the states has occured for which the expected
vote share of candidate Q is ¢. Since now there is a whole interval of s for which
{for the appropriate choice of o) this is true. the beliefs over states conditional on
being pivotal do not converge to a degenerate distribution. But then the private
information of voters provides useful information and hence the set of voters who
rake informative action does not converge to zZero in measure.

To provide an intuition for part (i} note that there is a function s : [0. 1] — [0. 1!
with the following property: full information revelation requires that for s < s(a;
the @ is chosen with probability close to one in state (s.«) and for 5 > s(a) A 1s
chosen with probability close to one in state {s.a}. Thus for states (s{c).a) the
expected vote share of @ must be close to q for a large electorate if fult information
revelation is to hold since otherwise close to (s(a}. a) (but uniformly bounded away
form (s{a). @)} a mistake is made with high probability. This follows from the fact
that the derivative of the expected vote share of 4 with respect to s is uniformly
bounded above for all n. We show that equilibrium strategies allow too few degrees
of freedom to achieve the required vote share for all states (s(a) a) for a generic
choice of v.

Note that as an alternative to the introduction of uncertainty about the dis-

tribution of voter preference parameters we could allow s to be a two dimensional

(R
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variable. As long as there does not exist a function als;. 2} such that v(r. 5,.352) =
v'(r.a(sy.52)) a result similar to the one given in Theorem 4 will hold. Thus fuil
information revelation cruciallv depends on the fact that uncertainty is about a one

dimensicnal state variable.

7 Conclusion

In this paper we present three principal results. First. we show that voters have an
incentive to behave strategically in two candidate elections and that, in contrast to
the assumption made in the literature on the Condorcet Jury Theorem, the fraction of
voters who take informative action decreases to zero as the size of the electorate goes
to infinity. Perhaps surprisingly, we find that elections nevertheless aggregate almost
all of the private information and choose the correct candidate from the perspective
of a fully informed decisive coalition of voters. In fact, we show that in a model
with strategic voters information aggregation works better than in a model with
naive voters. In contrast to earlier models voters no longer have a weakly dominant
strategy to vote for their favorite candidate and voting behavior is to a large extent
determined by the electoral rule.

This model has focused on the incentives of voters. A more general framework
would endogenize candidate position taking. In our model elections reveal more
information than simply which candidate 1s preferred by a majority. This information
may create an incentive for post-election strategic action by winning candidates.
For example, the winning candidate might claim a mandate based on the election
results and implement a policy different than his or her announced policy. If the
policy implemented by the winning candidate depends on the magnitude of his or
her electoral victory then the effect may be to change an election into something
like a signalling game between voters and winning candidates. We leave it for future
work to explore the implications of private information and common values for the

interaction between voter and candidate behavior.



8 Appendix

Proof of Proposition 1: Existence of an equilibrium follows from Milgrom and
Weber (1985]. Theorem 1 {pg. 626'. XNote, however. that Milerom and Weber's
result does not implyv existence of an equilibrium in which no voter uses a weakly
dominated strategy. However. consider the following perturbed pavoff function for a

tvpe:
Ve ko ril=(l-a)Viz ko ril+a f{ru(Q. s.ri+(l-riu(d. s .z} 3(s1k ods

i.e.. with probability @ the plaver's pavoff onlv depends on his own strategy. Note that
for every o there exists an equilibrium. Moreover. the convergence result of Milgrom
and Weber (Theorem 2. pg 627} implies that if 7* is an equilibrium for the payoff
function V'*. then #* = im 7®. @ — 01is an equilibrium for the original gzame. Suppose
7" 1s a weakly dominated strategy. Let D < suppi® be the set of tvpes such that every
ir k it e D is weakly dominated by some (z. k. 7'}, We claim that D has measure
zero. Suppose that [} has positive measure. Since £y has no mass points this implies
that for a.e. {z. k.7) € D we have [u(Q.s. z13(stk.o)ds # [u{A4. 5 1}3(s]k.c)ds.
But this implies that (r. k. 7’) results in a different pavoff than (z. k.7) against the
strategyv in which all other plavers randomize equallv between ¢J and 4. But the
construction of 7* implies that (z.k.7') must result in a lower payoff than (z. k., 7}
against this strategy for almost everv (r. k. 71 € D. Hence D cannot have strictiv
positive measure.

Given any voting equilibrium 7* consider the set of preference parameters G C T
such that for each (z, k) C T the voter tvpe (r. k) is indifferent between candidate
A4 and candidate @ for some signai o € {0.1}. Bv Assumption 1 the set & can at
most have 2 - K elements, i.e., G is a finite set. Further note that since the set G is
a finite subset of T and since Fx does not have mass points. F(G) = 0, i.e., ¢ has
measure zero. Moreover, for any {z. %) € ( there exists a neigborhood V' such that
for {z'. k) € N the plaver will vote for candidate ; with probabilitv 1. This follows
from the fact that u is continuous. Thus, if we icnore points in the set G we can
represent the voting equilibrium by a pure strategy 7* on T\ (. i.e., by a measurable
function 7% G x {0. 1} — {@. 4}. Since play on the set G does not affect any plavers

*

pavoff anv extension of 7° to all of T will constitute a voting equilibrium in pure



strategies.

Finally. we have to show that anv pure svmmetric voting equilibrium can be

described bv a partition of the set T into measurable subsets (T4.T¢g.T,) where

sig.r k' = Q for (z. k) € To. n{7.r.k} = A for (r.k) € Ty and 7(z. k. 1}

A q{r k.01 =@ for {r. k} € T,. Note that J(-|1. kj first order stochastic dominates
3(-'0. k; (Assumption 3) and v(s.z} is an increasing function of 5 (Assumption 1.
Thus any voter who chooses @ after receiving a signal of 1 must also choose @ af-
ter receiving a signal of 0 from the same information service. Conversely, a voter
who receives a signal 0 and chooses candidate A must also choose candidate 4 after
receiving signal 1.

Let piv(s. 7*) be the probability that a voter is pivotal in state s. To prove the
final part of the proposition we first show that piv{s.7*) > 0 for all 5. Note that by
Assumption 1 there is an € > 0 such that «(Q.s.z) = u(A.s.z) > 0 for all s € [0. 1]
and apy z € [—1, —1+¢]. Since fx > 0 it follows that F(Tg) > 0. A similar argument
shows that F{T4) > 0. But then there is a positive probability that gn voters choose
@) and n —gn voters choose A {ignoring one of the voters) and hence there is a positive
probability that a voter is pivotal. Now define

3slo. kipiv(s. n*)
fa 3(slo, kipiv(s.7*)

i
Wiz k o} :f v(s, I} (5
0

Clearly. for z € [=1. =1 +¢], W(z. k,0.7*) < Qand for r € [1 —¢. 1], W{z. k. o.7"} >
0. By continuity of W in r thereis an zj, € [—1.1} such that W(z k,0,7") = 0. The
point z} is unique because W strictly increasing in r {by Assumption 1). Further
note that receiving signal 1 implies higher values of s are more likely than when
receiving signal 0, ie., from Assumption 3 and the fact that 3(s|l. k) first order

stochastically dominates 3(s|0, k) it follows that r}, < zj, for all k. U

Proof of Theorem 4:

Part (i): Suppose that Co.ntrary to the Theorem HQ{TI-’:)) — 0 along some sub-
sequence. Let ~{alp) denote the posterior density over a conditional on receiving
sicnal p and let piv(s.a) denote the probability of a voter being pivotal in state
{s.a). By an argument given in the proof of Theorem 2. F(T];) — 0 implies that

conditional on a voter being pivotal the distribution over states s converges to a point



mass af some state s°. l.e.,

Ulipie™is o ‘
= _— Tt .‘d
otle) = | (fo‘on(s}) oo

converges 1o a point mass at s* for some s*. But since ~{alp) is bounded above and

below by Assumptions 7 and 8 for p = 0.1 this implies that o™(s{p’l.p" # p also
converges to a mass point at s* as n — oc. Hence the probability distribution over
states s conditional on being pivotal and receiving signal p’ converges to a distribution

that has all its mass concentrated at s*. Therefore,
F(T20) = (T3l — 0.F(TS) — 0.0' # p (9)
Now let

(s ) = (1—e)fr(a) (F(T)+p(sIF(T3) + (L=r(a){(F (T3, +p(s) F (T )] +¢(1-a)
(10)

‘T'!’ N — n ) n ‘QTL_ _ T ATl — 4
prv (s, ) = ( an ) t"(s. ) (1 —tMs. a)™ ™ (11
and

1
pi"(slp) = / piv"(s. al(alp)do
]

Clearly s* is bounded away from 0 and 1 by the hypothesis of the Theorem.
(H, (PR} < q. Ho(P* <1 —gq, hence if, e.g., s* < ¢ then the expected vote share of
) is larger than ¢ + 7 which in turn implies that s = 1 is the state for which voters
are most likelv to be pivotal). Therefore the monotonicity and continuity of t™ (s}
and the fact that conditional on being pivotal the distribution over states converges
to a point mass at s* implies that for each § > 0 there exists an n such that

w0 1w 1lp)
P (Ip}<5‘p- o) _
piv™{s*|p) piv™{s*|p}

oy

(12)

Thus the relative likelihood of being pivotal in state s* and states s = 0.1 must be

amall.

By 10 and 11

pivt(slp) fler+un(s)+e(l—ah™{1—cf —v7(s) ~efl—a™M ¥ (alpida

pie{s' o) B fol(c{‘+w"(s";+£(1—a}}”‘3(14-:'?—1:”15’3—5(1—05w”\“?-’".['a‘{p}da
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for some ¢} and some ©™ where vMs) — 0asn — . Let pf = v(s*) —v™0). T =

e —u™(s*). Clearly, 7} — 0.i = 1.2,

pruniOip) _ ppleR ru(s ™ He(l—ai (1 cf—un(s") —<f1 -} W (alp)da

petlstipl T jf;fc?+t'"f's‘”‘l+e{1—aw‘;”‘?('l—c’f~u”{'s‘}—et‘l—a";)”“ﬂ?ﬁ'n(a}p“da

But this implies that if ¢} +¢,2 < ¢ along some subsequence then pT:“((f')] is bounded

away from zero for all n. (Note that 791 — r)'~? reaches a maximum at r = ¢ and

is monotonically increasing for z < ¢ and monotonically decreasing for z > ¢}.

piv™(1|p) - ol_n?(c?i.—w”(s‘”) te(l—a)™M(1—cf—w™ (s —e(1—a) )"0 (alpida

p) T folcrur(sm)+e(l—a))M(l-cl—uwn(s™) —e(l—a) s (alp)da

piv™(s*™

But this implies that if ¢} +¢/2 > g along some subsequence then %}%)3 is bounded

away from zero for all n. Thus we have shown that along any subsequence either

piv™(0'p) o piw™(1.0)
pivt(s~ p} piv™(s*p)

be the case that Ha(T],) — 0 which completes the proof of part (i}.

stays bounded away from zero contradicting 12. Hence 1t cannot

Part (ii): Define r(a) by H,(z) = q. Note that r(a) is a continuous and strictly

inereasing function. Consider the equation
vir{a}, s) =0

Since v is strictly increasing there exists a strictly decreasing and continuous function
s(a} such that
v{z{a).s{a)) =0

for all o € [0.1]. (This follows from Ho(P®) < g Ho(P?) < 1 =g for all a.} Full
information revelation requires that for s < s(a) @ is chosen with probability close
to one in state (s, a) and for s > s(a) A is chosen with probability close to one m
state (s, a). Let P’ denote the set of strictly decreasing functions s and endow it with
the topology of uniform confergence. Note that any strictly increasing continuous
function s : 0. 1] — [0, 1] can be generated by some v. Moreover any open set O . F

senerates an open set O’ C P'. Now observe that

t"(s.a) = By + Bor{a) + Byr(a pls) ~ Byp(s) + Bsa (13
for some constants By....B;. For each choice of B = (B,. ... Bs} we can define
a map . : 0.1] — [0.1] such that t"(Jglat. ol = g for all @ € 0.11. In other
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words ([g(a), @) is the pair such that if the behavior of the electorate is given by the
constants (B1. ... Bg) then if the state is ({g(a). @) the expected vote share of @ is ¢
and the expected vote share of 4 is 1 —g.

To prove the second part of the Theorem we will show that for a generic choice

of s (i1 either [g does not exist or (i1} there exists an  and an «a such that

sla) = Jalajf > 7

for all B € R® Suppose for the moment that this claim is true. Then there exists
a combination of (s.c) such that a g fraction of the voters prefers ¢ in a typical
electorate. On the other hand, the equilibrium vote share of @ is bounded away from
g for all n. Hence there is a neighborhood of {s. «} such that a mistake is made with
probabilty close to one. Moreover, since p(s) is continuously differentiable also t"(s)
is continuously differentiable and the derivative of t"(s} is uniformly bounded for all
n. Hence we can find an ¢ neighborhood (where ¢ is independent of n) of (s, a) such
hat a mistake is made with probability close to one for all n if the state is in this
neigborhood. Hence the second part of the Theorem follows.

To prove the claim consider six points (. ... as). Define the set S as follows.
S ={(sy, .. s¢): 3B € R® with [g(a;,) = s;.i=1.....6}

Since [g is a continuous function of the parameters (B, ..., Bs) it follows that 5
is contained in a 3-dimensional manifold. Now consider the set of functions s that
satisfv

(s{ay),....slag)) € clS

Let Z denote this set. We claim that (i) Z is dense and (i1) Z is open. To see (ij
suppose that s € Z. Consider the ball |{s" — s|| < <. Clearly the set

T ={(s1,....86) : s = s'{a;) for some s" with {|s' — s|| < €}

is an open subset of R®. Since S is a 3-dimensional manifold there exists an s’ with
ls—s'|| < «and s’ € Z which proves (i). Z is open since ¢IS is a closed set and hence
also (i1} follows. Note that for s € Z we have that max; Jg(o;) — s{a;}| > n for some
n > 0 uniformly over all choices of parameters (5., .. B:] and hence the Theorem

follows. =
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