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1. Introduction

This paper examines a game plaved bv a single large player and a number ot small
opponents.  Qur interest is in finding conditions under which the small plavers are
negligible. in the sense that the actions of any individual small player have little or no
effect on the subsequent play of others. In contrast to previous work (discussed below)
on this “negligibility” question, we do not wish to impose the condition that the small but
non-infinitesimal players are anonvmous. Instead. we will suppose that each small plaver's
action influences the distribution of a distinct signal. which may be thought of as a noisy
signal of that plaver’s action. Thus, even when there are many players. the large player
mayv be able to make a fairly precise inference about the actions of any small opponent.
Nevertheless. we will argue that the large plaver will not be able to exploit this
information. and that the outcome of the game is as if the actions of individual small
plavers could not be observed.

The key assumption we use is that the number of actions the large plaver has
available is bounded independently of the number of small players. Under this assumption.
the large plaver is not able to implement separate rewards and punishments for each
individual small player. As we show. this implies that the small players (to a good
approximation) ignore the effect their actions might have on the large player's play.
Consequently. in- the one-shot case the large player can do no better than to commit to an
uncontingent choice of action (as in a Stackleberg equilibrium) even if commitments to

contingent “threat” strategies are allowed. In the case of a repeated game, a similar



argument shows that the small plavers to a good approximation behave myopically. that is.
thev ignore the effect of their current actions on the future play of their opponents. This
provides a rationale for using reputation models with myopic opponents in situations
where the opponents are actually long-lived but small.

To see whv the negligibilitv of small plavers requires a proof. recall that in general
dynamic games, equilibria can be radically different in a model with a finite number of
agents than in the standard model used to describe the continuum-of-agents limit. In the
standard model it is assumed that the play of any measure-O set (and hence of any single
agent) is ignored. The problem is that in anv finite game each agent has positive measure.
and so in principle his actions can be observed, but in the continuum limt this information
“vanishes”' Consequently the games with finite agents may have equilibria where the
small plavers are induced to plav non-mvopically by the consideration of future rewards or
punishments that can be triggered by their current action. yet such equilibria are ruled out
by the "negligibility” assumption of the continuum model.

Green (1980). Sabourian (1990), and Levine and Pesendorter (1994) develop a
justification of the negligibility assumption in the setting of “anonymous™ games, where
the observed signals depend only on an aggregate statistic (typically the sum) of the smail
players’ actions.® Note that this anonymity condition on its own does not explain why the

small agents are negligible, since. with a finite number of players, there is a change in the

The assumption that measure-0 scts cannot be observed is usual in this conlext. but 1S not necessary.
See Fudenberg and Levine (1988) for a model of non-anonvmous players and observed actions in which
information is prescrved in passing to the continuum of players limit.

- Dubey and Kancko (1983) assume that small deviations are unobscrvable. but large deviations are
obscrved perfectly.
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aguregate play whenever any plaver deviates Consequently. a slight deviation of
aggrevate plav from the equilibrium outcome indicates that someone must have deviated.
and so the large plaver can design a strategy that deters deviations regardless of the size of
the smali plavers. Yet in the continuum of plavers limit. a deviation by a single small plaver
deviation will not change the aggregate statistic. and so there cannot be equilibra that rely
on punishments. Intuitively. we would expect if we drop the assumption that individual
play is perfectly observable, this discontinuity would go away, so that the equilibria in the
finite plaver case would be similar to that in the limit. We show that this is indeed the case.

Why does the lack of anonymity matter? If the large player knows the small
plavers by name, he may pick on a particular player or players, and punish and reward
them to manipulate their behavior. For example if you know that the government will only
build a large public project if vou volunteer to pay for it your behavior will be quite
different than if you are one of many anonymous voters. If the number of large player's
actions is proportional to the number of small players, so that the large player can reward
or punish each one individually, then relaxing the anonymity condition overturns the
negligibility result The essential point of this paper is that non-anonymous small players
do remain negligible if the large player is limited in his number of actions. so that most
small players must necessarily be treated as if they are anonymous.

To get a rough intuition for this, consider a game where each small player chooses
whether to work or shirk. and the large plaver only has two possible actions, “reward” and
~punish:” the small players prefer working to shirking but they would rather work and be

rewarded than shirk and be punished If the large player observes the small players’
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actions without noise, he can induce them all to work by threatening to punish if even one
player shirks. Next suppose that each small player’s action is observed with noise. so that
with some small probability € the large player thinks a small plaver has shirked when that
plaver reallv worked The noise wouldn’t matter if the large player had the ability to give
separate rewards and punishments to cach plaver. for then the strategy “punish small
plaver 1 if it fooks as though that plaver shirked” will still induce every plaver to work.
However. when the large plaver only has two actions available. he is unable to implement
this sort of personalized punishments.

If the large player uses a strategy where the probability of punishment depends
only on the number of observations of the outcome “shirk™. and not on the identities of the
apparent shirkers, then the situation is as in the anonymous case where the large player
does not observe individual signals: since there will be fraction about € that appear to have
shirked even if they did not. it is difficult (and in the limit as N -» x impossible) for any
anonvmous policy of the large player to induce a different distribution of responses if all
small players work than if one small plaver shirks while the others work.

Of course the large player has the option of basing its action solely or largely on
the outcomes of a small number of players, and doing so will induce those agents to work.
However, the number of agents who can be induced to work in this way is bounded
independently of the total number of small payers, so that the fraction of players who can
be induced to work converges to 0.

The more general statement of this conclusion is that as the number of small

players grows to infinity. all but a vanishing fraction of them must play as if they are



negligible  We use this conclusion to extend some results that have alreadv been obtained
for the anonymous case.

Our results follow trom a basic mathematical lemma that has an independently
interesting interpretation. Roughly. what this lemma says is that the average etfect that an
individual can have on a future variable is bounded by a number that 1s small if there are
many decision makers and the probability of individual decisions is relatively random. Ths
is of greatest interest where the future variable is an aggregate that is of equal interest to
all the decision makers: per capita GNP or something of that sort. It individual decision
determining this variable are relatively uncertain then at most a small number of individuals
will be able to predict the effect that their individual decisions will have on this variable.
[n a sense this lemma implies that there is a limit on the number of “important™ decision
makers.

We first consider a one-shot game in which a single large plaver may choose a
precommitment strategy against a number of small players. The essential point we make
is similar to that in Levine and Pesendorfer (1994): without noise the large player can
appropriate all the surplus. but with noisy observation of the small players. he can only get
the Stackleberg payofl.

The second part of the paper extends the results on one-shot games to demonstrate

that when the play of patient small players is observed with noise, to a good

‘While such a structure may seem very special. a recent theoretical literature shows that such a
precommitment equilibrium is a consequence of reputation building in a repeated sctting even when
precommitment is impossible. This was implicit in the work of Kreps and Wilson (1982) and Milgrom
and Roberts (1982). and made explicit in the work of Fudenberg and Levine (1989, 1992). Schmudt
{1993). Celentani {1991). Celentani and Pesendorfer (1992) and others have extended the scope of this
result in a varicety of ways.
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approximation theyv play “mvopically™ in the sense of not trving to influence the tuture
actions of other piavers. This result is of particular interest when coupled with the
literature on maintaining a reputation against myopic opponents. as it provides an

alternative interpretation for the assumption of myopic play

2. An Example

Before developing the model. we will use an example to illustrate the content of
our results. From a game-theoretic viewpoint, this example is simply a more complex
interesting version of the “reward” and “punish” game described in the introduction: the
additional complexity makes the game more economically interesting.

In this example. the large plaver is a government who seeks to maximize its tax

revenue. It can set a tax rate b =!0.1!. Since the government can randomize. let [
denote the probability that » =1. Small players must decide whether to be unproductive
or productive, that is. thev choose a, {010}/ =1 1.

First we consider a game with perfectly observable actions. The game 1s played in
the following way. First the government commits to a strategy , then small players decide
whether to be productive or unproductive and finally the government observes the small
players actions and executes its policy. The payoffs of the small players are given by

(1-B)-(1+2a})-a

The pavoff of the government is given by

ﬁ%i{l*Za;)
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In the game in which the government can observe precisely whether a small plaver
is productive or unproductive the following policy is optimal’
e Ifall small plavers choose a =1 set f = #
e Ifartleast | small plaver chooses «u, =0 set § =1.
A best response to this policy is for all small plavers to choose « =1 and hence the per
capita tax revenue of the government is 2.

Suppose now that as a result of small plaver i's action the individual
output 3 =10.1} results. The probability of each individual output is p (3. -a,). where

ply.a =y)=l-gplyja =)y )=¢.

The pavoff of a small player is his expected output minus his tax payment and the cost of

effort.

wa . f)=(1+2a ~ea - D) -F.)-a.

The tax revenue of the government depends on the output and tax rate

w(yv. )= {72:‘(1 =2V 01 =)

Clearly. for a fixed number of small players » and for sufficiently small & the policy
described above for the case of perfect observability vields a tax revenue of 2-2& per
small player and hence the tax revenue of the government is almost as in the perfect
information case. However, as we show in Proposition 2 for a fixed ¢ in the limit as
n —» = the average tax revenue is at most 15— 2¢ for any policy of the government.
Hence the government cannot improve its pavoff over the case where it simply announces

a tax rate of  that is independent of the observed outcome of the small players’ actions.



The intuition for this is much the same as that in the earlier example: Suppose first
that the government uses an “anonvmous’  strategy that depends only on the number of
apparent deviations and not on the identities of the deviators. If the number of agents is
very large. then there is alwavs some fraction of agents that look as if they had deviated
even if every agent actuallv choose the productive action. This makes it difficult {and in
the limit as .V — = impossible) for any anonymous policy of the government to induce a
different distribution of responses in the situation in which all small players choose the
productive action than in a situation in which one small player deviates and chooses the
unproductive action. Hence such a policy will be ineffective in deterring small plavers from
choosing «, = 0.

The government can of course use a strategy which singles out certain players that
will be punished for deviations. However. the fraction of players that the government is
able to coerce into choosing @ =1 even if the tax rate is above # goes to zero as the
population size goes to infinity.

It is also of interest to consider the repeated version of this taxation game
Suppose that each period the tax rate is chosen at the same time as the effort decision
(that is. a simultaneous move version of the sequential move a game above). In the case
of perfect observabilitv of the small players action the folk theorem applies, and so for
sufficiently large discount factors the best equilibrium outcome for the government again
gives the government a tax revenue of 2 per small plaver. However, our Proposition 4
shows that if we introduce imperfect observability of the small players actions then a

tvpical small player will play a myopic best response to the tax rate chosen in the current
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period. and so the highest per capita per period tax revenue that the government can
achieve 1s 1.3

3. The “One-Shot” Model

This section develops a “one-shot ™ model in which each plaver acts onlv once.
There are N small plavers i = 1......V . and one large player 0. In the first stage of the
game, the small plavers simultaneously choose one of a finite number of actions a, =4 .
following this the large plaver chooses an action », € B. There are m, actions for each
small plaver. and m, for the large plaver. We let ¢ =(a..a...... a.) be a profile of
actions for the small plavers only, and a , =(a,..... a,..a .....a. ). We denote mixed

actions by @ As a result of small player /s action one of finitely many individual
outcomes ), =, results. There are m_ outcomes for each plaver. with the probability of
individual outcome 3 denoted p, (. ia ). We also write p(yja) for the joint probability
of all individual outcomes given all the mixed actions. Somewhat loosely we use @ for
both the profile of mixed actions. and for the joint probability this profile induces over

pure action profiles.

The large player moves after observing the outcomes of the small players. but not
their actions, so that a strategy for the large player is a mapo, <. ¥ — B. We assume
that the utility of each small players depends only on that player’s actions and the action of
the long-run plaver: this utility 1s denoted # (& .b) .

This assumption is more restrictive than necessary, as our main results also hold 1f

each small player's pavotfs depends on some aggregates of the play of all small players. so



10
long as the support of these aggregates is bounded independently of the number of
players However. the results do not apply to games where small players interact directly
with one another in subsets ot small groups.
Qur first set of definitions holds fixed the strategy of the large plaver The

standard game theoretic equilibrium concept is that of Nash equilibrium.
Definition 1 (Nash Equilibrium): A Nash equilibrium given o, is a mixed small plaver

profile ¢ such that for all small plavers /. and all o'

ZI _ula Mo (byp(ya)a(a) =

Zd ‘“Lu_,(c'r"_b)G A(bynplyal.a Ya (a)a (a),)

We wish to compare this to the situation where the small players take the distribution of

the large plaver's actions as given.
Definition 2 (Naive Equilibrium): A naive equilibrium given o 1s a mixed small player

profile ¢ such that tor all small playversiand all o' .

ZJ Lula o (byplra)la) 2
Za,\,.‘h S (a:b)c (bl))p(}|a)a(a)

In other words. the small players “naively” ignore the fact that their actions influence the

observed outcomes and hence the play of the large player.
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We will show that under certain circumstances Nash equilibrium is fike a naive
equilibrium  Because we are considering finite games. there will alwavs be some loss to
naive play. we will show that this loss must be small when there are many plavers. Notice
that it is possibie tor the large plaver to choose his action based on the outcome of just
one single small plaver. Such a small plaver will have a strong incentive not to play
naivelv. However, we will show that it is onlv possible for the large player to target a
small number of small plavers this way' specifically we will show that the loss from naive

play averaged over the small plavers is small. This motivates the following definition.
Definition 3 (¢ -Naive Equilibrium): An e -nanve equilibrium is a mixed profile o such
that there are individual losses € with Z 5:/N <€,

and such that for all small plavers i and all o'

S ula.b)o (BypQraja)re, >
Zniﬂ. ol “7 (a-"‘b)o- -(b'."")p(}"a)a((l)

We will also make use of the analogous notion of approximate Nash equilibrium.

Definition 4 (¢ -Nush Equilibrium): An ¢ -Nash equilibrium given o is a mixed small

plaver profile o such that there are individual losses €, with Z\l f;;/N <¢
and such that for all small plaversiand all o' .

Z“_.,ﬁ ula byo (b:yp(yiayala)y—e =
ZJ ula by (hypp(yia’.a Yo (aH)a (a )
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4. Nash Equilibria are Approximate Naive Equilibria
Our goal is to give a theorem showing that Nash equilibria are approximate naive.
This proposition. as are all the following propositions, is based on the following
mathematical fact that is proven in the appendix.

Lemma A: Let v be N independent random variables taking on values in a common

finite set. and let p be another random variable with finite support. which may be

correlated with the 3 Forany 3", A =01

Z pripelly, = v -pripelly =3")
'

4

<

——

vN min_ Jpriy, =)

Roughly. what this lemma says is that the average effect that an individual can have on a
future variable is bounded by a number that is small if there are many decision makers and
the probability of individual decisions is relatively random. To understand why this lemma
is true. it is useful to think of the y’s as binary (yes, no) decisions that determine p, a
binary outcome that may be positive or negative. One simple case is majority rule: if
more than half the decisions are ves then the binary outcome is positive. Obviously in
such a setting with many people no one is likely to be decisive. so the lemma is not
surprising. On the other hand. take the case where the rule is that the outcome is positive
if there are an even number of yes's and negative if there is an odd number. F£x anre, that

is. conditional on the all the other decisions. everyone is completely decisive: each
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individual decision completelv determines the outcome. How can our Lemma possibly
hold in this setting”  The answer is that the lemma is about ex post decisiveness: it is
about the predictability of outcomes. It decision makers do not know in advance each
other’s decision. but have a common prior that every other individual has a 50-30 chance
of saving ves. then no individual has any effect on the probability that the outcome is
positive provided there are two or more player. Notice that in this 50-50 case we do not
need laree numbers of plavers However if the odds of ves are not 50-50, say they are 75-
25. then with an even number of players the chance of a positive outcome is greater if an
individual plaver says ves (and conversely with an odd number of players). but according
to the lemma. this chance must get smaller as the number of players gets large.

We can now state and prove our main proposition about naive equilibria.

Proposition 1: If o is an & -Nash equilibrium. then it is an € + €’ -naive equilibnum with

| | 4mom max . u(a.b)i

Vi min_\/p (3 o)

Discussion.  The key fact to note is that the ¢’ of this proposition shrinks to 0 as

N — = . provided that the p, have uniformly full support. and that payoffs are uniformly
bounded. We should emphasize the importance of holding the number m, of large
plaver’s actions fixed for this conclusion. If instead m, increases rapidly with the number
of small plavers. then £’ need not go to zero. For example, if . the large player can punish

each small plaver individually (so m, = 2" ). it is clear that a Nash equilibrium need not
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be even approximatelv naive. as each small plaver can correctly anticipate a personal
punishment for deviating from the equilibrium profile. One question of interest is exactly

how rapidly we can let the number of actions grow with the number of small players.

A , . :
According to the bounds above —— must go to zero. There is a substantial gap between
A

. . . o .
—— —>0 and m, > 2" . but the bound we develop here does not provide any insight into

vV
what might happen in this range. nor do we have good examples.
Proof:
Fix an e£-Nash equilibriuma . Let o', be a best response for player 1 to a under

the “naive” assumption that deviations won't change the play of the large plaver Then

plaver i's loss at ¢ under naive expectations is
n, = Z Lulalbo (Biyip(yajoda)— Zu ula,bo, (Byp(ya)eda)
Sincea is an g -Nash equilibrium.

2. la b)o (Bly)p(ia)ala) 2

>, @b (piyIpGiala e (@) (@ )¢
from which we see that
n, sZ“.L_ul{a;b)6,4(bij»');:)(_wa)cx(a)—Z‘u Lu (a' by biviptyal.a o (a)a (a )-g .

In words. the loss under naive expectations is bounded by the sum of the loss under Nash

expectations and the approximation error.



From this we may now compute 17 = : n.

n< i—i S wta P (hvply a Npty a)y-ply,a)l-e
- %Z S il b (hyv)—a (b Dy a Dty a)=ply adl e
< { N max |, Lule MY o (hy)-o thy ey e )¢
i T o omax, ui(a;_b)z:_} ]S o vty ;}—Zj o thy aply a )l-¢€
Smas | Luda.hy —V 1Y, o ety a )= o hy Vply, a )e

<mom o max, L la by max_[%,\:ﬂxl[z‘ olthyiply o ‘)—Ey othy avhply a _,J|j|+£

The desired result now follows from Lemma A in the Appendix, which bounds the term in
square brackets. Intuitively. this expression measures the average effect any one small
plaver can have on the play of large player. Since the number of actions the large player
has available is fixed. the extent of this average reaction shrinks as the number N of small

plavers grows.

5. Contingent and Uncontingent Commitments

To illustrate the importance of the small players playing naively. we consider the
best payoff the large player can obtain if he 1s able to publicly commit himself to a strategy
o . before the small plavers act. If the large player were able to observe the actions of the
small players. she could use this commitment power by threatening that any individual

who deviates from the desired action profile will be held to his minmax level. However.
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when actions are obsersed with noise and there are many smail plavers. the best pavoll the
large plaver can obtain from this commitment 1o a contingent strategy ts the payotl the
plaver could obtain from an uncontingent commitment to always play a fixed action Thus
in the limit the large player cannot do better than her Stackelberg pavoft of the stage
game. even though the ability to make contingent commitments leads to higher pavofls in
many other settings.
We now specialize to the case where the small players are all identical. so that

ulu . b)y=wa. by, and the distribution over individual outcomes has full  support

ply a)y=p(y a)=0

For a fixed distribution B over large plaver’s actions, we say that o« s a best
response to B if it maximizes the small player's expected pavofl u (o’ .f) over all
choices «' . We sav that o is individually rational with respect to (3 if w (o, P}is at

least the minmax payoff, which is

min. max, # (c,' .p').

The Stuckelberg payoff for the large player. denoted " is the highest payoff the large

plaver can get from publicly committing to a fixed action (or equivalently from a perfect
equilibrium of the Stackelberg game where the large player moves first and chooses an

action which the small players observe before they act.) Formally. this payoff is given by

w? = max,[u,(a, . B)c is abest response to B].

The hest feasible pavoff, denoted i, | equals
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max.[u (e By is individually rational with respectto 3]

This is clearlv at least as large as the Stackleberg pavoff. and in general is larger.
If the large-plaver can directly observe the mixed strategies of the small-plavers.
then there is a precommitment strategy and best-response for the small players such that in
the limit as the number of small plavers grows without bound. the large plaver indeed gets

i To see this. choose a pair that gives the long-run player the desired pavoff. The

equilibrium consists of all small plavers following the given mixed strategy and. provided
the small players do so. the large plaver doing likewise. If any small-player deviates. the
large plaver minmaxes all small players. Obviously no small player has any incentive to
deviate Moreover. by the law of large numbers the average small player outcome
converges to the expected outcome, so as the number of small players becomes infinite.
the payofY to the large player approaches the desired quantity.

Our key result is that because of the naive behavior of the small players. it the
large-player observes only the small-player outcomes. he can do no better in the limit than
the Stackleberg pavoff  This is analogous to a similar result in Levine and
Pesendorfer(1994). who restrict the large player to play strategies that depend only on the

average play of the small players.

Proposition 2: Let | be a sequence of strategies for the large player, and suppose that

o are a Nash equilibrium with respect to o' . If the distribution of small plaver

outcomes has tull support. then

limsup.. . Z“ u(a.h)a) (A y)pGrjo Yot (@) < uf .
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Proof: From proposition | it tollows that ¢ form an ¢ -naive equilibrium where

¢’ —»0_ By definition this means that > —\— — 0. and implies that there is a sequence
. . : . wf" o
of sets of plavers / and numbers € with the property that ~ —landific/

> Lula.ho “hvplyia)a (a) -

max, > wla.b)o" (hy)p(yaj’ (@) <€

This in turn implies that there is €~ -0 and '’ -’ <&" where ¢ is a best

response 1o the mixed action §* =3 © “(hyv)pyae” (¢) that the large player uses on

the equilibrium path.  Since an increasing fraction of the population is playing a best
response an increasing fraction of the time. applying the weak law of large numbers to

the large plaver's payoft yields the desired result.

6. Finitely Repeated Games

Reputation effects are often analyzed in models with a singie patient player who
facing many myopic opponents. One justification for the myopia assumption is that the
myopic players are really small players who play “as if” they were myopic because they are
too small to have a significant effect on other players™ future play. In the next two
sections we give a precise interpretation of this.

We begin by considering the finitely repeated case: in the next section we examine
an infinite horizon model in which the smalil plavers discount. Every period. each small

plaver and the large player simultaneously take an action. (Note that this differentiates the
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model trom that of previous sections. where the large plaver moves after the small ones.)

Actions of the small plavers continue to be denoted by « =4 actions of the large plaver
are denoted by x = .Y Let m, denote the number of actions of the large player. Periods
are denoted bv ¢ = 1.....7 < x As before. as the result ot a small player’s action one of
finitelv many individual outcomes y <=} occurs. The probability of each individual
outcome is o v, a. ) All plavers. when taking an action in period ¢ observe these outcomes
and the play of the large player in all previous periods. For a sequence of actions of a small
plaver and the large player and outcomes (a!.3'.x") the payoff of the small player is
given by:

Y. ud{alx)

Let v =(3.. .y, ) bea profile of outcomes for all small players. The payoffs of the large

player are not relevant for the time being as the strategy of the large player is held fixed.
We denote by /' the private history of small player 7 and by A4 the public history

up to but not including period r. Pure strategies are maps from private and public histories

to actions  Let (7.....7,.0,) denote a mxed strategy profile for the small players and

the large plaver respectively. The assumption that the small players play myopically is

captured in the next definition.

Definition 5: Small player profile (z...... r..) isan & myopic best response to o, if for

cach plaver i there is an &' >0 such that for every history A’ that has positive probability
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> u{a ) U R R)a]o (h)[x]-¢ =
Yl x)s (h)[x]

forall ¢’ =AdandY & "N <&,

Our goal is to show that approximate best-responses are approximatelv myopic,

Proposition 3: [f (7......7. ) isan ¢ bestresponseto ¢, then (r.. .7, )isang g’

mvopic best response to o . where

| |47 m.m, max_,  u/(a.x)
& === ; —
N v min, \/p,{),14,)

Remark: The crucial point is that ¢” — 0 as N —» =, provided that the p, have

uniformly full support, and that payoffs are uniformly bounded.

Proof:  We compute €'(¢) recursively from the end of the game. First, in period 7 it is
obvious that £(7)=0. Now we suppose we are given &'(z +1) in a subgame that is
reached with positive probability starting in period 7- 1.

In period ¢ every small player 1 chooses action a,. Conditional on a, being realized
equilibrium strategies induce a probability distribution over actions of the large player in
each period and over public outcomes. Let b' = (x"". ..x") be the actions for the large

player from period /- / on and let }7 " '(#") be the payoff of the small player / if he

chooses a myopic best response in every period and if the large player playsé’ By
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inductive hvpothesis. the actual pavott of the small plaver in the conunuation game

starting in period £/ is inthe interval (777 (A') 0 (h) & —£/(1~1)] Define
(*) Ua. hy= wla.x)o (B)x]-17 (b))

Since (T.. .T.) is an €-best response it follows that (T;(A".A7)....T (A A7) is an
& —g'(r — 1) Nash equilibrium in the game (with only small players) defined by the payoffs
in (*). Proposition 1 then implies that (T’ (A" A" ).....T, (A" ') is an & ~&'(¢) price taking

equilibrium where

1| 4(Im ym max, | (Tu'(u . X))
e'(t)y=e'(1 1)+ = : - — ,
WA min, \/p,{},'q, )

7. Infinitely Repeated Games with Discounting
We now specialize the model of the previous section to discounted payoffs. but

consider the case in which the horizon is infinite. We assume
uila . x)=(1-98)0"u(a.x),

and 7' = x.

Proposition 4: If (r......7. ) isabest response to o,

then (7., ... r.) 1s an & -myopic best response to o, where



ole]

i A .m, .
= _f; f_ . _‘; max: d.XL ”:. (a: N 'Y)
~vN | min, yp.(voa) ‘

Remark: Again this implies that € — 0 as .V — x_ provided that the p, have uniformly

full support. and that pavofts are uniformly bounded.

Proof: Since (7.,.... r.) is a best response to &, for every history (#',h/,... A ) that

is reached with strictly positive probability (r....., 7. ) is an £’ -best response to ¢ in the

I'-period game beginning with that history. where

g’ =8 max,

X.

cu(a,. x).

We now apply Proposition 3 to find that (7,..... 7.) is an £ myopic best response where

eolst 1 47 m m, o W )
= T e axia x. li ai’x
VN | min, p(y.ia) o

Choosing

o[ am m, o
VN min, Jp,(31a)

gives the desired result.0



8. Implication for Reputation Effects Models

Propositions 3 and 4 give conditions under which myopic play is approximatelv
optimal for fixed beliefs about the targe plaver's strategy.  All that matters for these
results is the expected distribution of the large plaver's actions contingent on various
observations. so the propositions apply to models where the large players has several
possible “tvpes™. as in the reputation effects literature. If we consider such a reputation
effects model. and let the number of smalil players grow as in propositions 3 and 4. then a
limiting argument analogous to that of proposition 2 would show that the limiting value
of the worst Nash equilibrium payoff for the large plaver equals the lower bound on this
pavoff in the “limit model” where the small players are exactly myopic. Consequently. the
pavoff bounds obtained in Fudenberg and Levine (1989.1992) for exactly myopic
opponents are also the limiting value of the payoffs when facing many small opponents
whose actions are observed with noise. Thus, as in the one-shot case. our model
provides a justification for results derived under the assumption that small players act as if

they are negligible.



Appendix A

Lemma A: Let v be .V independent random variables taking on values in a common

finite set. and let p be another random variable with finite support, which mav be

correlated with the y . Forany »'. & =0l

S pr(pelly = y)-pr(p My =)

N

I

vN min

Proof:

SU opripelly = y)-pripelly, = 3))
N
s priplly ¥y _pripelly =)
e priy =) priy, =)

D)=

N Zi -.]‘:' pr(p € I—I _V) Z{y }}:yi‘}pr(p EI—L .J’)
pr(}f: = }‘) pr(yi — }:J)

= pripell MY A= — V=¥




12
)

Consequently. setting

Iy

I Mo ;
=yl pripe > (13- )

! wx Y N i
< TZ‘ Pr(p =30 }')IZ[ 1.:"‘(_L') — ZH :I"(}.)!

: | S N,
< FZ_‘.Pr(}'EZ; (0= Zl z (}.)}

Pl N =1: . 11 N . n .
<2l P LR LA
{ 3;\;2:.‘; ; ‘ } { }I,\,VZ#—'L ! ":

v = pr(y, =) - s1-priy, =) -
= 2{2;:1 N: i : +32 Z ;

) N:pr(yl = _},’, )

<
VN min, y/pr(y, = y/)

which proves the claim.
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