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ABSTRACT. A g-rule is where, for n-volers, a winning coalition consists of ¢ or more
voters. An important question is 1o determine when, generically. core points exist:
that 15, when the core exists in other than highly contrived settings. As known. the
answer depends upon the dimension of issue space. Mcekelvey and Schofield found
bounds on these dimensions. but Banks found a subtle. but critical error in their
proofs. The sharp dimensional values along with results about the structure of the

core are derived.

A “g-rule” is where a winning coalition consists of at least ¢ of the 7 vorers.
So. if [r] denotes the greatest inreger function.” rthe “majority rule” is where
¢ =[5, + 1. A standard assumption. which asserts that if €' is a winuing coalition
then the remaining voters (the complementary set C°) cannor form another winning
coalition. restricts the g values o range between the majority and unanimisy (g = n )
rules.

A central issue in the application of these rules to cconomies and spatial voting
is to understand when they can be stable, To illustrare with an Listorical example.
several times when the seleetion of a pope for the Catholie Charel veguired only a
simple majority of the eligible Cardinals (so ¢ =[5 4 1). the precarious instabiliry
of the system was manifested by the chureh erupting inro dissension and conflict
complete wirh a pope and anti-pope vying for power. Stability hecame rhe issue.
so in 1179 the Third Lateran Council changed the selection procedure to the ¢ =

28]+ 1 rule that remains in use {Saari. [S1. p 15-16 ).

The core is one accepred way to examine “stability,” Recall. x 1s a core point
with a g-rule if. for all other proposals y. it s lmpossible to find ¢ vorers who
prefer y to x: the core 1s the set of all core points. Again using the pope selection
example. the flavor of this definition is caprured by R. Kieckhiefer's (a nored expert
on the history of religion) explanarion for the rwo-rhirds procedure. As Lie argues.
for a candidate (¥) to replace a pope (x). the pope would have 1o bungle affairs
sificiently badly on cnongh issues to alienate at least Lialf of his original supporters.
Eventually this happened ([S1. p. 16°).

When there are new concerns. we have to expect. as the church example suggesrs.
that the stability of a g-rule might diminish or even vauish. Each issue defines a
direcrion in “issue space.” so the introduction of new ropies is measured by an
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inerease in the dimension, k. of issue space. Should the new concerns be sufficiently
atrractive to enough agents, we should expect stability ro be jeopardized. This is
the general situation.

To see what can happen. let x, be the ideal poinr for the jrh agent where her
urility funerion is w,{y) = — ||y — x;[|. In words. wirli Euclidean distance preferences.
thie closer a point is to her ideal point. the more she likes 1t Now. for n odd.
q =41+ 1. and & = 1. the only core point is the ideal point for the median voter.
To prdow this standard conclusion. place the ideal points along a line and observe
that the median point divides all remaining ideal points into two sets: half are on
cach side. Thns the median voter’s bliss point {the global maximumn for her urility
function) is the core point. Morcover, this deseription is robust: the assertion and
argument hold even if the voters” ideal points are slightly alrered.

¥ i

Figure 1. Plott’s consrruction.

Even for I = 2. where » is odd and ¢ = [+ 1. core points that are bliss points
exist, A trivial example 1s unanimity where all ideal points have the samne posirion.
This situation is highly unlikely. so, to justify thie core. robust examples are needed.
One approach is to use the Plott [P, construction of pairing voters™ ideal points,
Start by placing the first agent’s ideal point. x;. somewhere in B* and rhen pass
(5 lines through x;. Each line is divided by x; into two sides: place a voter’s ideal
point on cach segmenrt. (This 1s depieted m Fig. 1 for & = 2.) The proof rthar x; 1s
a core point is a minor modification of the “median vorer proof.” Morcover. notice
that if x is a core point for a g-rule. it 1s a core point for a ¢;-rule where ¢, > ¢.
(If ¢ voters cannot be found to vote against x, then it is impossible to find even
more that are willing to do so.) Consequently. Plott’s construction establishies the
existence of a core point for all g-rules for odd values of n and £ < %

While this pairing of ideal points makes x; a core point for the majority rule. the
example is not robust. To sce this. in Fig. 1 slightly vary voter five's preferences
as denoted by the dagger on the dashed line. With this new configuration. y is
preferred by a majority (voters two through five) to x;. To prove this assertion.
draw the convex hull defined by the new ideal points of vorers two through five.
Draw a line perpendicular to an cdge of this hull. It follows from clementary
trigononietry thar when this coalition compares two points on this line, cach vorer
prefers the point closer to the edge. As y and x; are on such a line. the conclusion
follows.

Acrually. the core is cmpty for this alignmenr. To prove this. draw rhie convex
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Lulls defined for all four voter coalitions aud observe that no point 1s common to
all hulls. So. for any proposal x. there is a y preferred by a decisive coalition, In
other words. while this construction establishes the existence of a core point for all
g-rules for odd values of n and & < % this conclusion may fail to survive evew
the slightest changes in these preferences. As this fickle behavior is due o larger ©
valies. we need to find the dimensions of issue space which do. or do not. permit
existence assertions to be robust. In mathematical rerms. for a given n and g-rule.
we seek those & values whereby. generically, the core is empry. Similarly. we seek
those & vahies whereby core points exist for an open set of preferences (i.e.. it exists
when preferences ave slightly perturbed in any manner.) T solve this problem for
all r. ¢ rules.

Tlhe problem of determining the & values where the core is generically cmpry has
received considerable rescarch attention. Using a singularity theory argument (that
I found to be insightful with its careful embedding of various classes of singularities
within other classes). Schofield [Sel and MceKelvey and Schofield [MS1 publishied
assertions stating that the core is generically empty for certain b values. While
the embedding approach simplifies their analysis. the lssue space dimension they
compute is for an object that differs from rhe core. Thercfore. these conclusions
may describe only a subset of the relevant L values. Nevertheless. the assertions
were correctly and widely treared as a major advance.

Recently. after a particularly careful analysis of these papers, Banks [B° found
a subtle error in their argument. which. nnfortunarely., invalidated the conclusions,
By correcting their argument. Banks found thar the correcr estimates may differ
from whar was previously believed. (Banks also used the embedding approach.)
Thus. with Banks™ paper. the core problem briefly was reopened: in particular. the
isstie became to determine the appropriate & values. In this current paper. we close
this aspect of the problem by finding correcr. sharp values.

It is interesting to note that the values obrained here differ significantly from
the originally speculated values and that they are sharp rather than approximare
bounds. The mathemartical source of my improvements is that, instead of using the
cmbedding argument. I characterize the behavior of the “core-singularities™ (Prop.
1 is key to my approach) so that singularity theory can be applied ro this specific
SCOLLOTTY.

As for ereating examples. there probably exist several papers in addinon to
MeKelvey and Schofield [MS2). However. 1T am unaware of any previous paper
proposing general assertions abourt robust existence. Therefore. the assertions given
below. and the approach developed in Sect. 5. appear to be the first general resules
of this kind where we know that the assertions are hest possible.

2. DIMENSIONS FOR THE EXISTENCE OF THE CORE
Assume that each agent has €7 smooth. strictly convex preferences. Namely.
for each x € R¥, the set
(2.1} Mixi={y e R"|uly) > uix)}
is strictly convex. In the following theorem. “generically” means a residual set (a
set that can be expressed as a countable intersection of open-dense sets) of uril-
ity functions where the topology on the space of these funetions is the Whitney
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C'™ topology (sce (Golubitsky and Guillemin [GGI and Saari and Simon [SS). {By
using the [SS) arguments. when issues are restricted to a compact subset of R*.
“generic” can be extended 1o “open-dense.” | For a first reading. when “generie”
refers to nonexistence, interpret it as meaning “evervtling except improbable, care-
fully concocted examples where the conclusion changes with an arbitrarnily slight
change in the preferences.” When “generie” describes existence. it means that ex-
amples exist where the conclusion remains true even afrer an example 1s slightly
modified. Namely, they hold for a “C? open set”™ tn the Whirtney ropology. (The
utility functions can be slightly perturbed along wirh irs first and second deriva-
tives and the conclusions remain.) Also. while the “smoothness™ conditions can be
relaxed, rather than developing the attendant technicalities T prefer to concentrate
on the strucrure of the core conditions.

To simplify notation. a core point that is a bliss poiur for some agent is called
a “bliss-core point.” Orher core points are called “nonbliss-core points.” While
these results are directed toward strictly convex preferences. with minor changes.
they hold for all smooth preferences. An interpreration and deseription follows the
statement of the theorem.

Theorem 1. a. Generically. for a g-rule where 5 < ¢ < n. bliss-core points exiat

if and only 1f
(2.1) ko< 2¢ — n.

b. For any k and n. there exisis a g-rule where core points exist generically,
Indeed. if n = g (that 15, for an wnanimous decision). then. for eny dimension
k> 1. there exist open scts of preferences grmng rise to bliss and nonbliss core
o1 Es.

¢. Let the “excess size of wssue space dvmension” be 3 =k —[2¢—n . Generically.
there exists nonbliss core pornis for o g-rule if and only if g sotisfics

1 1
12.3) - - Y <,
= 2j+4+”( 2314/ 1

In terms of the dimension of policy spuce. generically. o groen g-rule with n
voters has a nonblbiss-core point if and only of 3 < 320 ghat 1, off

2ipp-—-g)
dg—3n—1
(2.4] <oy n+ T2
2n — g}
d. Consider the ratio o = L where o condidate must rvecerve af least o of the

wote to be sclected, For a given o rule, 3 < o <1, and o dimension for issue space,
k. there erists a positroe integer ng so that for all v = ny. generically, the core 1s
nonempty.

To see what this theorem means, stare wich the simple majority rule ¢ = {5141
where n is even. As ¢ = § + 1. we have that 2¢ — n = 2. According to Eq. 2.2. this
means that robust, simple majorty examples wirh a bliss point exist only up to a
rwo-dimensional issue space. For nonbliss core points. the value of the right-hand
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side of Eqg. 2.4 18 2 — H < 2. so. for even values of n. nonbliss simple majority
core points exist (generically) only for a one-dimensional issue space,

Compare these outcomes with what happens when n has an odd value so ¢ =
2il or 2 — n = 1. As this gives the value for Eq. 2.2, we have rhat with an odd
mumber of vorers. robust bliss-core points exist only for a single-dimensional issue
space. For nonbliss core points. the dimensional bound is given by Eq. 2.4, or by

1 - :::: = 0. Therefore. for odd values of n. generically. simple majority nonbliss
core Poiits never exist.

To better understand this behavior. notice from Egs. 2.2. 2.4 that a weasure of
stability 1s the 2¢ - n value: the larger the value. the more we can expect from core

points. (This is further developed in Theorem 2.) This measure has its smallest
value when » is odd and ¢ = {5 4 1. so we should expect. and 3t is 1rue. that with
odd munbers of voters. simple majority core points have a precarious existence.

It secems reasonable to expeet someone who voted for an accepted proposal will
defect only when presented an offer thar cannot be refused. If cach defecting voter
needs a particular issue. then the bound on the dimension of issue space allowing
stability should roughly agree with the number of voters that need to detect to
change the ourcome. To relate this intuition to the 2g — » measure. observe that if
b is the maximal admissible dimension of issue space. Eq. 2.2 becomes

Lo
<t

q_

N =
o | m

which indicates that the limiting dinension of 1ssue space ensuring that a core exists
is given by rthe difference between ¢ and the stimple majority rule.

Applying this argument to the pope-selection problem. we find that stability of an
outcome can be expected for & = 3—;' — 5 or k< 2. In other words. as long as there
are not enouglt isstes  one issue per defeering Cardinal — to alicnare a third of the
voting Cardinals. then the original choiee should remain srable. As the defeering
Cardinals are those who vored for the sitting pope. half of the pope’s original
supporters defeet. Observe how this mathiematical argument parallels Kieckhefer's
insightful explanartion reporred in the introducrory paragraphs.

Extending this argument to o rules (as defined in tlie theorem), we find that
the issue space dimension always roughly correlates with the munber of voters
that need ro be alicnated, or allured. away from x to support another proposal.
First. observe for any a rule thar the same analysis allows stability as long as
b < (2a — 1in. Compare this dimensional limitation with the number of vorers, r.
a losing coalition of (1 — a)n voters must lure away from a winning coalition of an
vorers 1o form a new winning coalition: i.e. {1 —ajn+r =an. or o = (200 — 1)1,
The assertion follows from the equality of these numbers. To illustrate with o = —:—
the munber of defecting voters must constirute half of all vorers,

The % rule arises i a different conrexr. As computed below. if a g-rule requires
less than a % vore, the nonbliss core points generically exist only up ro dimension
< 2¢ —n — 1. Thus. the “excess dimension” assertion is operative only for ¢-
rules starting with the i; rule. Notice thar the “excess dimension of issue space.”
3. 1s defined in terms of the weasure 2¢ — n. This choice cmphasizes {see the
proof) that as soon as 3 > 0. the coalition action always mwust rely upon specialized
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configurations that are restricted to lower dimensional subspaces of issue space. For
nonbliss points. this is true for 3 = 0.

These last comments have important implications for Euclidean preferences. To
explain. by specifving a voter’s ideal point x;. we know that the gradient evaluated
at X points in the x; — x direction and we know all second derivarive terms. Comnse-
quently. Euclidean preferences belong to the excluded set of “non-generie behavior.”
so Theorern 1 is not applicable. But. because of their wide use. a parallel theory is
needed for them. As the “ideal points™ are the only relevant paranerers, “robust-
ness” has to mean that their positions are not highly restricted. So. when using
Euclidean preferences, interpret “generic™ as referring 1o conelusions which include
an open set of locations for cach voter’s ideal point. To illustrare. conclusions about
median voter where k& = 1 are robust: the example of Fig. 1 is not. In particular.
as the discussion of the previous paragraph clains that when 7 > 0. most gradient
veetors must be in a lower dimensional subspace. this forces the ideal points 1o be
restricted to a lower dimensional setting. In turn, this violates the robustness of
the couclusions.

Corollary 1. For Euclidean preferences. bliss-core points cuist generically off b <
2¢ — n. Nonbliss core points exrst generwcally off < 2¢ —n — 1.

Addirional consequences of Theorem 1 follow,

Examples: a. Part b follows immediarely from ¢. To see why, we only need to
determine whether ¢ = n (which is an admissible choiee) satisfies Eq. 2.3, Bur, this
only involves determining whether the equivalent inequality

1 1
e
23447 2344

is satisfied. This is trivially true for n > 1. (Even casier. use Eq. 2.4 and note that
n = q forces the denominator on the right hand side to vauish.

b. By converting the n(l — ﬁ'IIE) rerm from Eq. 2.3 to the mixed number
@+ 5y it follows that ¢ = ¢ + 1. Therefore. dropping the equality and the first

termy on the left side of Eq. 2.3, we obtain the equivalent

23143 ¢

(2.6) — < —.
25+4  m
To illustrate Eq. 2.6. the ¢g-rules where issue space exceeds the 2¢ — n dimension by
3 = 100. are those satisfving
203
¢ > .
204
This suggests using n values that are integer multiples of 2040 say. = 4(204) = 816.
The minimal ¢ value is 1+ 4(203) = 813. so the 813-rule generically admits core
points where & < 2¢ — n + 3 = 1626 — 816 + 100 = 910,
c. If ¢ is the smallest value solving these inequalities for n = +{23 + 4). then
g =1n — = + 1, so the restriction on the dimension of issuce space 1is

(2.7) F<n+(3-2v+2y=(3+ 12+ 1)+ 1.
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This inequality provides a sense of the b growth rates relative to the g-rule.

d. With Eq. 2.6. we discover the 4-bifurcation roles played by different rules.
For instance. with 3 = 0. we have from Eq. 2.6 that the 11 rule is the bifurcation
point. (More precisely. “one more than a three-fourths vore™). Wit 3 = 1. the
bifureation oceurs at the 2 rule. Continuing. we see that the bifurcarions arise at

6
3 50T ld intcge DY
rhe (one more than) % N P % ... of the votes. From rhis. it follows

that for any 3. there are supporting n and ¢ values where ¢ < n. Bur by specifying
n and ¢. Eq. 2.4 bounds k. To illustrate with ¢ = 30 and n = 335, it follows from
Eq. 2.2 that bliss core points exist. generically. up to dimension

B<B0—35=25

and nonbliss core points exist. generically. up ro dimension

120 — 106 14
f < (60 — 35 —_— =25+ —.
=1 RT) R
or b = 26, This example where the nonbliss points exist longer than the bliss points

suggests examining when (4g — 3n — 1)/2(n — ¢) is negative {to force the bliss poiut
to persist longer than the nonbliss core points). Again. with simple arithmetic. we
recover the ecarlier assertion that this is when the deeision rule is bounded above
by the —:’ rule.

A related issue is to determine whether. generically. the nonbliss points could
vanish ar a dimension two or three before the bliss points. If possible. i would
require ¢ and 1 values where

1g—3n—1
P a—— < —1.

20 —q)
or, by solving. where 2¢ < n 4 1. As such a plicnomenon requires using less than a
majority vote. it is not relevant.

c. To prove part d of the theorem. notice that Eq. 2.4 can be represented as

I 09 ] +-L(.1—3—T—l] q
< n{2a — _ = -,
= ) 201 — o) “ il

For fixed & and a. we can ignore the 1 term. so whart is lefr on the right-hand side
defines a linear equation in n. The conclusion now follows. This assertion means
that even rules close to majority rule (e o = %} can be supporred in, sav. a 100
dimensional issnue space with enough voters. To illustrate with o = 0.5001, & core
point can be supported in a hundred dimensional issue space with around a half
million voters. So. for a city about the size of Minneapolis. as long as the number

of issues doesn't exceed a hundred. stability could exist. O

3. COMMENTS ON THLE STRUCTURE OF THE CORE

Theorem 1 tells us when the core exits, but 1t does not address the structure
of this set. For instance can the core be the union of disjoint sets? (It can when
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convexity is dropped, but not with striet convexity.) Of the many lmportant issues.
the ones T describe provide added support for the theme that the stability of a core
improves with larger values of ¢. These results describe how the core changes when
the values of ¢, n and b vary.

For intuition about what kinds of conelusions to expect, start with a R example
of eleven voters. where the jth voter’s ideal point is located ar the integer ;. ;) =
1..... 11. For the simple majority rule (¢ = 6). +¢ = 6 is the only core point,
With ¢ = 7. the core is the interval [5.7] where the endpoints are bliss core points.
Indeed. for any ¢ value. the core is [11 — ¢.¢ . This suggests that the starcment
where a ¢ core point also is a ¢ > ¢ core point probably extends to require the ¢,
core to strictly contain the ¢ core. This is rhe general case.

Another measure of stability is the dimension of the core. For instance. in the
cleven vorer example with ¢ = 8, the fact the core includes interval (3. 8) introduces
a strong sense of stability - near any core point is another one. Similarly. in the
seven voter example of Fig. 2. the core is the shaded region. so. near any core
point in the interior is another core point. This underscores the importance of the
assertions in Theorem 2 speeifving the dimension of the core.

Figure 2. Corcforn =5, ¢=4. k=2

In Fig. 2. the core is any point in the shaded region and its boundary. (So.
there are no bliss-core poinrs.) For instance. a boundary line conneers the bliss
points of two agents. and a verrex is where two bliss-connecting lines interseer. By
using singularity theory, it follows that this picture deseribes the general situation.
Namely. singularities form a stratified structure where a restricted serring s in the
closure of the previous serring. Thus. in general the boundary of a core consists of
core points of restricted types. The boundarics may not be straight lines. bur they
are points where preferences line up as indicated.

Implicit in these comments is that when the core exists for dimensions & —1 and k.
then. in some manner. the core for dimension b is a subser of the core for dimension
% — 1. This requires comparing cores by deleting. rather than adding. issues. So. for
a £ dimensional issue space with a by-dimension subspace. & > &y > 0. let Py, be
the natural projection mapping. (For instance, if & = 3 and &) = 2 represents the
x-y plane. then Py o{{r.y.2)) = (.. y) where the = component is dropped.) The k-
dimensional preferences are assumed to be the k-dimensional preferences restricted
to the lower dimensional plane. If this lower dimensional plane is obramned by
dropping & — Ky issues. then it is a coordinate plane of the A-dimensional space,
Otherwise. the plane represents where certain issues are combined into a single issue.
(With minor technical changes. this holds for a &y dimensional smooth manifold. )
The following tells us that a core point persists when issues are restricted.

Theorem 2. «. Suppose n and b are such that non-bliss core points ecxist gener-
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really for o g-rule: ¢ < n. The core for the ¢ + 1 rule always contarns the g-rule
core. It 1s generically unllely that the two cores are the same.

b, Generically, bliss-core points are isoloted points. Gencerically for those g, n.
and k values that satisfy Eq. 2.3 for 3 = —1 . the set of nonbliss core points hos a
nonempty interior.

¢. Suppose 3 > 0 is needed to satisfy Eq. 2.3 for specified k.on. g volucs. Gener-
ically. the core is a union of submanifolds with dimension b — (3 + 1)(2¢ —n +1).

d. If x is a core point for a g-rule i a k dimensional space and of there 15 o
by dimensional plane pussing through x. then Py, (x) ts a core pownt for the k
dimmensional 13sue space.

We now cncounter an interesting conflict. This discussion demonstrares that
larger ¢ values provide a wider sclection of core points with added stability. The
message scetns to be that larger g-vahies are better. So, why don't we insist on
alwavs using unanimiry as the deciding rule? The reason. of course, is obvious:
very lirtle can be accomplished with an unanimous rule becanse it is so difficnlr ro
design anything that makes everyone happy.

This instinet is supported by the technical statements. With unanimity and
Euclidean preferences. the core consists of the convex hull defined by rhe voter's
ideal points. (To see this. let y be outside of this hull and x thie nearest point on
this hmll. As the line y — x is orthogonal to this edge. it follows from trigonomerry
that all voters prefer x to y. With minor modifications. the same argument Lolds
when x is a vertex. Burt, if y is in the hull. then. as any other x is farther from
soute vorer's ideal point than y. that voter wili veto the move ro x.) Generally. as
asserted by Thin, 2a. the unanimity core strictly conrains the core for any other
g-rule. Thus, it is casier for the status quo to be in the unanimity core than in
the core for any other grule. But. once the status quo is in the core. change is
impossible, So. rather than being a desirable feature, maybe we should avold core
stability because it retards progress.

Restating this concern. why should we care abour core-stability”? To examine
tliis issue. start with any x; and notice that if the core 1s enapry. there must exist
a xp thar is supported by a winning coalition over x,. Similarly. rhere is a x3 that
is supported by a decisive coalition over x». The argument continues - forever.
So. without core stability. we incur the “chaos™ beliavior of spatial voring carefully
deseribed by Kramer [K]. McKelvey A and others. (Richards [R] provides a new
explanation.) In fact. as McKelvey showed. there are situations where wirh sincere
voting. we can start with any initial proposal. pass through any other specified
proposal. and then return to the original one. Without stability, we cannot trust
that the outcome truly reflects the views of the vorers.

What we need is a compromise between enjoying the stability of the core while
preventing gridlock which arises whenever the core contains the status quo. With
g-rules. this means we need to choose a ¢ value allowing a robust core that 1s not
“too large.” If we know the number of issues typically involved in a deeision process.
this & value determines minimal g-rules with core srability but withour gridlock.
But. perhaps the real problem is the tacit assumption that we should be restricred
to binary comparisons and g-rules. Elsewhere this question is explored in more
detail.
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4, A CHARACTERIZATION OF CORE POINTS

To motivate the basie technical tool of this paper. start with Euclidean prefer-
ences. As shown in the Seet. 3. the core for the unanimity rule is the convex hull
defined by the voters™ ideal poinrs. A similar argument shows that with a g-rule
and a specified coalition of g-voters. “their core” consists of the convex hull of their
q ideal points. So, the core for a g-rule is the intersection of the convex Lulls defined
by all possible g-voter coalitions. If this interseetion is empty. the core Is empry.,

This geomerry explains why the core vanishes with larger & values. For instance.
with # = 7 and ¢ = &, if k¥ = 1, all points must lic on a straight line. so the core
exists, However. oven for £ = 2. we cannot expeet three or more ideal points to
be on any line. Conscquently. the extra freedom provided to position ideal points
makes it difficulr for all convex hulls to have a conunon intersection point. One
remedy is to require the hulls to have more vertices: this is equivalent to increasing
the ¢ value.

This intuition extends to deseribe what happens with strictly convex smooth
preferences. (“Smoothness™ ensures that the curved urility surfaces can be approx-
imated by the planes defined by the derivative conditions: strict convexity requires
all preferred points to be on one side of this plane.) Thus. basic 1o onr arguments
is Prop. 1 which characterizes core points for g-rules in terms the derivative prop-
erties the unility functions must have in order for this mrersection to be noncmpty.
In this description. Cox({v,},ec') denotes the convex hull of the (vertices of the)
vectors {x 4 v, }jec and Coxl({v,};ec) is this convex hull minus the vertices. For
this proposition. “smooth™ cau be relaxed to €4 smootliness.

Proposition 1. Assume the voters hove smooth, strictly conver preferences. A
necessary and sufficient condition for x to be a core point 1s if for any set of ¢
agents. C, eather

(4.1) x € Cox{V,(x)}ec)

or x is both a verter of Cox({v;}jec) and o bliss pont for some voter in O

This assertion makes sense: if ¢ or more voters prefer alternatives that are in
the same general direction from x. then they can block the selection of x. The
m{f;\fx’ = (Vuix). vi. so
the sense of “the same general direction” is caprured by passing a plane rhrough x

directional derivative is determined by a secalar product,

where, for all agents in this coalition. the Vu {x) vectors are strietly on the same
side of the plane. Indeed. choosing v as the normal for this plane where v is on rhe
same side as the gradients. it follows from the positive value of (Vi jix). v) that all
utilities are improved by moving in this direction. Conditions that ensure x is a
core point are those that prevent this scenario from oceuring. This is the content
of the proposition: the proof is a formal expression of this mruirion.

The proof uses an important relationship berween local and global comparisons
of alternatives, Call x an “infinitesimal core point™ if it is a core point when
the admissible choices are restricted to a sufficiently small open neigliborhood of x.
While a core point always mnst be an infinitesimal core point. 1t is casy to construct
examples where an infinitesimal core point is not a core point. { The idea is similar
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to constructing examples where a local maxinnun is not a global maximumm: jusc use
urility functions where the level sets have many “wiggles.” ) Ou the orhier hand. just
as appropriate convexity assumptions force a local maximum of a function to be a
global maximum. the following lemma asserts that our strier convexity assuption
on urility functions forces infinitesimal core points to be core points,

Lemma 1. If all agents have swooth, strictly conver preferences. then an mfine-
tesvrnal core point 18 0 core point.

Proof of Lemna 1. Assume that x is an infinitesimal core poinr. bur not a core
point beecause a decisive coalition € prefers y. This means that y € Nee M;(x).
Bur. by being the intersection of convex sets. Mg, (x) 1s convex. Consequently.
any point y; = #x + {1 — #}y on the straight line connecting y and x 1s 111 this ser.
Thus. for any ¢ sufficienutly close to unity (so ¥, 1s sufficiently close to xj. this sawe
coalition wonld prefer y; to x. This means that X is not an infinitesimal core poinr.
The contradiction compleres the proof. O

Proof of the proposition. To prove that the stated condition 1s necessary, it
suffices to show that if Eq. 4.1 does not hold. then x 1s not an infiniresunal core
point. If Eg. 4.1 fails to hold. there exists a coalition of ¢ vorers. €. where x s
not in its convex hull. This geomerry permits the construction of plane passing
though x with the convex hull strictly on one side. If v is the normal vecror for
this plane that points toward the side with the convex hudl. then Li{}‘(f—x) is positive
for all voters in the decisive coalition €. Consceguently. x cannot be a core point.

If x is a vertex of the hull for some g-voter coalition €. then. by construction,
Vui(x) = 0 for some voter in this coalinion, Since x is a verrex. a plane can be
passed through x which does not meet any other pomnt of the convex hnlil. Now,
if x is not the bliss point for agent j. then. by the asswinption of striet convexiry.
Mj(x) contalns an open set. { This open condition 1s not necessary: all we need is
that A ;(x) conrains a point other than x.; By a rotation of the preferences of this
agent. if necessary. the ser M(x) ean be made to interseer the convex hull. (That
is, let € be a roration matrix, Construct a new set of preferences thar are defined
by uj[x'} = u;{Qx)). According to the chain rule, an{xj = 0 =0 the condirions
of the proposition continue to apply.) This means there are alternarives that are
preferable to x for all members of the decisive coalitton ¢, Consequently, if x 1s
not a bliss powr. it 1s possible to find preferences satisfyving the conditions of the
proposition where x 1s not a core point. This completes the proof of necessity.

The proof of sufficiency involves three cases: the first one has x as an interior
point of Cox({NVu;(x]};ec) for all possible decistve coalitions. and the other two
are the two possible wavs X can be a houndary point of this hull for some decisive
coalition. For rhe interior point situation. any plane passing though x must have
vertices of Cox({N o (x)}jec) strictly on eaclt side of the plane  these verrices
are defined by gradient veetors of the agents from this coalition. Now. if x is not
a core point. there exists an alternarive y thar is preferred by this coalition to
x. Let v = ¥y — x be a normal veeror for a plane passing though x. For those
gradient vectors on the side of the plane opposite of v. the directional derivative
du

T = (Vu.v) is negative. As these agents have a lower urility for any such change.

they will not vote for such a move. Thus, x s an infinitesimal core point.,
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The analysis is essentially the same when x is o boundary pomr. If x 1s a
voertex of Cox({Nu;ix)},ec) for a g-voter coalition €' then. by assumption in the
Proposition. x must be a “bliss point”™ for some agent in this coalition, Clearly,
wlienever x is a bliss point for some vorer. this voter does not wish to change.
Consequently. this coalition cannor change rhe ourcome.

For the remaining case. if x 1s on the boundary of ?Bx(_{\‘-u_,(_x;.}_,e(.) bur not
a vertex (but. it could be a bliss point). then x could belong to several boundary
components, (For instance. if x is on the intersection of rwo boundary faces. it 1s
on both faces and on the defined edge.} Choose the lowest dimensional boundary
component, Beeause X 15 not a vertex, it st be i the nrerior of the convex
Lull defined by the gradient vecrors i this componenr. The gradient vectors (and
;1g(*nrs) on this component are the ones we anzll_\"/:t'.

Note thar a slight modification of the above argiunent (where x 15 an interior
point) proves that a change v* in this boundary component. or a change with
a nonzero component in this component. is unacceprable to some voter. This ix
because. as x 1s 11 the irerior of the hull defined by veerors on the boundary com-
ponent. for some voter with a gradient in this component. the directional derivative
tion must be orthogonal ro the boundary component. i.e.. the changes must be in

is negative. Consequently. the only potential admissible changes for this coali-

a dircerion v that is orthogonal to all of the gradienr vecrors on this component.
Now., by strier convexity. for any of these voters with gradient in the plane. the ouly
point of the ser Mi{x) that is in the raugent plane passing though x wirth normal
Vur(x) s x. In other words. afrer poinr x. the level set wgix) 1s strictly on the
Vg (x) side of the tangent plane. So. for eacli vorer with a gradienr veetor in the
boundary plane, any change i the v direction constitutes a change of lower urility,
This means that x is an infinitesimal corve point. O

Proposition 1. which is eritical for what follows. should be viewed as providing an
higher order exrension of an applicarion of Stale’s {Sm) characterization of Pareto
points to core points. The connection with Parero poinrs is that a core point is a
Pareto point for every decisive coalition. The higher order derivarive conditions are
snuck in with the strict convexity arguments, As it will become clear. these striet
convexity properties are critical for our analysis (when 7 > 0§ because it involves
analyzing whar happens when x is on the boundary of this hull. (Indeed. this
insight is what permits me to avoid the embedding arguinent of Bauks, MeRelver,
and Schofield.) For this ro occur. we need strict convexiry, Tt is lmportant 1o stress
that this assumption does not restrict our conclusions because level sets with flat
spots belong to the nongeneric setring.

Proof of Thm. 2d. The projection of a convex set ro a lower dimension subspace
is a convex set. As the projection of Vi (x) is rhe gradient of o restricted to the
lower dimensional submanifold. the proof follows divectly from Prop. 1. O

3. CONSTRUCTING EXAMPLES

In this scetion I show how to construer examples with bliss-core points where
l < 2¢ — i and nonbliss core points where & < 2¢ — n — 1. Examples for the “excess
dimension setting” are discussed in Seer. 6.



THE GENFRIC EXNISTENCE OF A CORE FOR ¢-RULES 13

Observe thar, with the exception of a bliss-core point. Prop. 1 emphasizes the
dirveetions, rather than the lengths, of the gradient vectors { Vo, (x)},e¢ evaluared
at a core point. Thus. examples can be constructed by first finding appropriare
eradient directions and then choosing the lengrhs in any desived non-zero manuner.
As “directions” are identified with unit vectors. they can be treated as points on
a unit sphere. S8~ with conter x. When constructing bliss-core point examples.
tlie bliss point is positioned at x.

Alrcady. additional insighrs are available. For instance. while Theorem 1 ensures
that open sets of preferences support a bliss core point for the simple majority rule.
fo= 2, and n = 1000. it 15 clear from Prop. 1 and this gradient direction descriprion
that. ar best. the gradient directions are approximately 27 /999 radians apart. This
does not provide much room: to vary. Therefore. while Theorem 1 correctly asserts
that these direcrions can be slightly changed. ir also 1s clear thiey cannor be altered
very much withour foreing rhe core ro vanish. More generally, it 1s not diffienlr to
extend the sense of this argument to show rhar for fixed maximal value of L. when
noand the corresponding ¢ value become arbirrarily large. then the permissible
amount of variation in preferences becomes arbirrarily small. Namely, while the
core exisrs for an open set of preferences. the size of this open ser approachies zero:
while the core is generically possible. it approachies hecoming unlikely.

Before finding gradient divectrions. I show Lhow to use them to construet agent's
preferences, An easy way 1s to use Euclidean preferences thar are defined by spee-
ifving an agent’s ideal point. As a gradient direction defines a ray emanating from
x. place on a ray an agent’s ideal point. According to the theorem. even if these
preferences are slightly varied. so level sets no longer are spheres. the conclusion
holds. An easy way ro construer examples without Euclidean preferences 1s to use
Taylor series. To illustrare with x = (1.2} and the abbreviated Taylor expansion

vl = (L) + Nu(l.2) tr) — 1oy — 294
1,

SD-“{LQ)[(.I'] — 1..1"_) - 2).(.1'1 — 1..1'2 - 2|‘|

construct examples by choosing Viu(1.2) and D'["’l‘_“u consistent with the seriet
convexity assumption. For instance, for the direction %(—4.3). we could choose
Ve =(—+3) and D%u 10 be the diagonal matrix with entries —1. —1 1o define the
utility function wiwy. o) = —Hr; = 1)+ 3w —2)— () =112 — (o —23%. A similar
construction holds for any dimension.

Gradient directions. To identify all decisive coalitions thar prefer another al-
ternative {in A-dimensional issue space) ro x. pass a (& — 1-dimensional ~dividing
plane” throngh x. If ¢ or more poinrs are on one side of this dividing plane. then
these g-voters define a decisive coalition that denies x the honor of being an 1n-
finitesimal or core point. The basic tool for the proof of the theorem and the
construction of examples. then, is to analyze all dividing plaunes that pass through
x. and count the munber of points on ecitlier side. This is the first conditjon.
[1; If none of the Vujix) vecrors are on the (& — 1)-dimensional dividing plane
passing through x. then. according to Prop. 1. there can be no more than
¢ — 1 such vecrors on either side.
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For the next condition. observe thar any & — 1 of these vecrors thar are linearly
independent define a dividing plane. Bur. an arbitrarily small change in the orien-
tation of this dividing plane can force all & — 1 of the vecrors onto one side or the
other (of its new position). To satisfy [1 . only a limired number of polnrs can be
on cither side of its original orientation.

[2° A dividing plane thar contains £ — 1 lincarly independent gradient veerors can
have no more than

(5.1) .H*:(qfl)*[]x‘*l):g—]{

sradicnt veetors on either side.

These two conditions are used repearedly to construct examples and prove rhe
theorems. Indeed. becanse the only way the number of points on cither side can
cliange is when a dividing plane 1s rorated through a pomr. it follows from Prop. 1
that a suflicient condition for an example ro hiave x as a core point in a A-dimensional
space is if it satisfies [1 for one dividing plane without gradient veetors and [2 for
all (& - 1)-dimensional dividing planes where o dividing plane has. other than a
bliss point, just & — 1 of these gradient vecrors,

An underlying theme i this construcenion 1s that if x 1s a core point for a g-rule.
then it 1s a core point for a ¢;-rule where ¢ > ¢. So. it suflices to ereare examples
supporting the minimal ¢ value. To do so. T design examples that come as close as
possible ro satisfving the majority rule: nawmely. the goal is to allow no more than
half of the remaining points to be on each side of any dividing plane.

From conditions {1 and [2.. 1o create "majority rule” examples. the points must
be spread as far apart as possible. (This makes inruitive sense because a clustering
of poinrs indicares a commonality of wnterest thar forms the basis of a decisive coali-
rion.) Beeause a maximum separation of polnts is associared with their svmanetric
distribution. a narural approach is ro symretrically position the n points on S5~7.
Bur. while it is rrivial to symunetrically locate n poinrs on a civele (place them 27 /0
radians aparr). it is not clear how to do this for higher dimensional spheres. For
instance. for $* {in R') and n = 3, a symuetric configuration is a five-gon with ren
cqual edges. and for n = 2" it is a (four-dinensional) cube. Bur. what is the sym-
metric configuration on 57 for = 30. or even n = 107 Actually. the complexity of
this problem plagues other mathematical concerns such as. for instance, the study

of thie Newtonian V-hody problem. or the vortex formartion of evelones. {Here the
syinmetry issue is identified with “central configurations.” [S2. X'} To avoid these
complexities. a simpler merhod is devised to capture this geometry. Specifie cases
are deseribed before the general argument is given.

One-dimensional issue space. Although we know the answer for I = 1. I show
Low tonse [17 and [2) to create examples with x as a core point. Start by positioning
e points according ro the “alternating rule”™ where the first point is placed to the
right of x. the second to the lefr. the third to the right. ere. until all points are
positioned and no two poinuts occupy the same position,

If m is an even integer. there are % points on cach side of x. Thus. according

to [1. this choice supports ¢ = [3£7 4 1 rules. For & = 1. a ~dividing plane”™ is the
poiur X. so [20 15 not applicable. Now. choosing 1 = m as the number of vorers.

the example supports x as a nonbliss core point for all ¢ > [2: 4+ 1 rules wich
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an oven number of voters. (The example is robust as the points can be slightly
altered withour changing the argument., In fact. the nonbliss core points consist of
the inrerval between the first points on either side of x.) If n = m 4+ 1, s0o x 15 a
bliss-core point for an odd number of voters where one voter's gradient is assumed

to be zero. this construction supports the ¢ > [22+ 1 = [2 4+ 1 rules. {This is

because 1 is an odd integer. so [5: = [t

If 11 Lias an odd value. rhere are at most [51 41 points on one side of x. so this
construction supports all ¢ = ([57 4+ 1)+ 1 =[5 + 2 1ulcs Ifn = soxisa
nonbliss core point. this example supports all ¢ 2[5+ 2 rudes. When o — 1 =m.
50 X is to be a bliss core point for an even uumber of vorers. the example supports
all ¢ > [217 42 = [4" 41 rules. This conelusion uses the fact that when n is even.
[ =0 -1

To complere the construction by finding preferences. assign cach vorer a utiliry

preference by using oune of the carlier deseribed methods. Observe thar these ex-
amples support all 4. n rdes allowed by Theorem 1 for b = 1. (The computation is
trivial: particularly by starting with Eq. 2.5.}

Two dimensions. For all k. rhe goal is to modify the “alternate side” construction
used for & = 1 ro make it applicable. For b = 2. this requires positioning e points
on S', the circle with eenter x. in an alternating fashion. Whatever the positions
of these i points. there is a line throngh x that misses all of theny Ler this line be
the y-axis and its orthogonal complement the y-axis. (See Fig, 3.7 To simplify
the argument. identify each point on the cirele with a point on either the “lefr line”
(the line r; = —1) or the “right line™ (. = 1). This is done by drawing a ray from
x through the point on the circle and determining where and on which line this ray
interseets, Conversely, a point on either the right or lefr lines uniquely identifies a
point on the cirele.

N
/ 4 !
) T’l ulh
®

Figure 3. The rwo-dimensional case.

To further simplify the construction. define for cach point on the lefr its dual
point on the right line: it is where the line chrough this point and x mrerseers
the »y = 1 line. Denote cach sucl point by star. (See Fig. 3.1 Conversely. for a
specified dual point. the original point on the left side can be uniquely reconsrruered,
Therefore. all points and dual points can be placed on the right line. In doing so.
observe thar a point and irs dual lic on opposite sides of a dividing plane. For
instance. in the figure. 2 and 2" are on opposite stdes of the 117 line. Also notice
that if a point is on a dividing plane. then so is its dual.
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For a rwo-dimensional example, the gradients must span o two-dimensional

space. So. to satisfy [1]. this requires m > 3 points. Arbirrarily place half of
m+1

1

them (2 if m 15 evew. if in is odd) as regular pc)inm |’ dots) on the righr line,

I is odd this placeme cnt defines the same number { 2525 of bounded intervals
as poinrs that have yet to be assigned. Place cach 1(*111(1111111;@ point in a unique
bounded interval and denote it with a star: this is to be the dual of the acral
point. (This construction is indicated on the vertical line on the right-hand side
of Fig. 3.3 When m is even. there are 4 remaining points and 4 — 1 bounded
intervals. So. place the dual of all but one of the remaining pcnnts in a bounded
intervals and denote this position with a star {to indicare it is the dual of the actual
point). Place the last star (dual point) in an imbounded inrerval: assume it is the
top one. Observe by symuietry that this construction conld start by first position-
ing the dual points. This is a cousequences of the “alternating sclection” process
of assigning dual and regular points.

To analyze these positions. start with e odd and the = 0 dividing plane. One
side has [Z17 4 1 points so. according to [17. ar this stage the construction suppores
g— 1208 +1orall g > [F 4 2rules. If & dividing plane passes through the top

-

dot on the right line (see Fig. 3). then. by construction. precisely [— dots and [’"

1

stars are below this line. Consequently, there are precisely {2 right poinrs below

e

and [ loft points above the dividing plane. Aceording o |27 and Eq. 3.1 where

=2 and &% = = [ so far this example supports all ¢ = (% + 2 rules.

Next. pass a dividing plane through the jth point down the line. Witli rhe
alternaring assignmuent of dual and regular points, if j is even. then the jth point
is a dual point with £ — 1 dual points and [%, + 1 = 4 regular poinrs below ir.
Cousequently. there are [3 points both above and below this dividing planc. As
the same couclusion holds for odd values of 7. this consrruetion provides examples
for k=2 core points for any ¢ > [5; + 2 when e is odd,

To summarize. when m is odd. B = 2. this construerion supports ¢ >[5 +2 rules,
If v = (s0 s odd and x is a nonbliss core point . this construetion supports all
q = [2 + 2 rules. If 1 is even where x 1s to be a bliss core point (so n = m+ 1)
this construetion supports all ¢ > [ 4+ 2 = [% +2=(5 -1 +2=[5+1
rules. )

It remains to analyze even values of . By using the dividing plane .« = 0 (where
2 points ou cach side} we have from {1 the ¢ > [ 41 constraint. When
the di\'idlno plane passes through a point. then there arve [%

! pomra on the other. According ro Eq. 3.1 and [: the associared bounds

m-
2.

is even and rhe core is nor a bliss point (so n = ). this cousrruction supports all

g 2[5+ 2 rules. When » is odd and the core is a bliss point (so v = m+1) then,

neLt = (20 this construction supports all ¢ = [% 42 = [§ + 2

3 ;

thiere are
poinuts on one side and

arc ¢ = 8" = [ + 2. To trauslare these bounds into terws of o, notice thar when v

because [5 = [
rules,

As above. for all I the four cases are when mois odd or even. and when x 1s
or 1s not a bliss point (corresponding. respectively. to n = m + 1l.n = m). A
factor always changing the ourcome i1s that [% =[5, — 1 when i is even: this
always arises with an even number of voters and a bliss-core point. Finally, a
simple computation (starting with Eq. 2.3) shows this construerion provides b =
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supporting examples for all of the no ¢ rules admirted by Theorem 1.

Three dimensions. The construction of 4 = 3 examples proceeds in the same
manner. Start with x at the origin of an axis system where no points are on rhe
v = 0 plane. Skip the step of placing points on the sphere §2 by immediately
placing them on lefr and right planes defined. respectively, by oy = =1, 0y = 1. A
rrue b = 3 exawmple requires enough points so that rheir convex hindl hias a positive
three-dimensional volume: i.e.. i > 4. The alternating assignment approach is to
place half of the points on cach plane. and then represent then. in appropriate
positions. as points and dual poinrs on the righe plane,

Withiour a natural ordering on . it is not obvious how to position poiuts in an
alternating mauner. To resolve the problem. use rhe nnit cirele i the right plane
with center [1.0. 01, As indicated in Fig. 4. stare with e 2 4 points and place 5 of
them as regular points in an arbitrary fashion on this eirele. As their convex lull
has rhe same number of edges as vertices. the alternaring assignment procedure
now is ecasy: place eachh dual point in an are of the cirele defined by an edge. I
m 1s even, rthere are as many ares as dual points. so cach are has a dual poinr.
If v is odd. there is one more are than dual points. so (as in Fig. 1) one are has
no dual point. Observe thar even after shightly perturbing these points (even oft
the cirele). this same construction holds where dual and regular points alternate
as determined by the connecting cords. Also notice that if e = 4. when the four
points are converted inro regular points. their convex hinll is a terraliedron. Finally,
observe that the alternating assignment symmerry (indicated in the figure wirh the
dashied and solid lines and imposed by the alternaring assigniment process) allows
this construction to start with either the dual (the starred) or the regular points.

PN

——

Figure 4. Points and dual points,

Start with i 2 4 even and pass a dividing plane through two points of the same
(2 — 2 other dual points remain, If j of them are on

kind. say. dual poms: so [Z2
one side of rthis dividing plane, then the “alternaring point”™ construction requires
7 + 1 regular points to be on the same side. After the dual points are converted to
regular points on the left side. we have [2 — 1 poiuts on cach side of this dividing
plane. Similarly, if the points defining the dividing plane are of opposire types.
then if 7 dual points are on one side of this plane, there also are j regular points.

In any case. there ave [5 — 1 poiuts on either side of the dividing plane.
According to Eq. 3.1, this construction supports ¢ > ({2 — 174+ 3 = 2L + 2,
Therefore. if 17 = m (50 x is not a bliss poinr it supports ¢ 2[5 + 2 rules in a

three-dimnensional issue space. If 1 1s odd. so x 1s to be a bliss point. and because

[0 = ["71" the construction supports all ¢ = [27+ 2 rules. Again. by starting with



L& DONALD G. SAARI

E¢. 2.5. it is casy to sce that this construction supports all values of ¢ and . which.

according to the theorem. admit a three-dimensional issue space without .3 = (1
The only change i the argument for odd values of 1 = 5 is to consider the effect

of the sector wirthout a dual point. By choosing the dividing plane to pass through

il

these two regular points. all [87 dual points and the rest of the regular points are

on one side, Consequently. one side of this dividing plance has [ poiuts (and the

1

other side has [55 - 1), Using the alrernaring point construction. it follows that
this is true for any dividing plane defined by two points. Therefore. ¢ > [343. So.
if e = n (that is. when x 1s not a bliss poinr ). this (\dlll})l(‘ supports all ¢ = [5]+ 3
rules. Where X is to be a bliss-core point. » is even. and m = n — 1. the re lclfl()llhhi]')
(5 = (274 = (%) — 1 shows that this construction supports all ¢ > [§ 4 2 rules.
Again. wirh a simple computation. it follows that these (*\ampl(‘a support all rules

deseribed in Theorem 1 that do not uvolve “excess dimension” argnenrts.

Higher dimensions. New problems arise with b > 4 because the simplification
of choosing the points and dual poiuts 1n the unit sphere in the right plane fails
to reduce the problem to a one-dimensional setting where “alternate positions™ is
well-defined. Tnstead. the sphere $¥72 has dimension & — 2 2> 2. Therefore. the new
approach is to iteratively choose “alternate” locations with respect 1o cach of rhe
F— 2 differenr directions.

i, 1.

Figure 5. Rorations to define directions.

The basic idea comes from modifving spherical coordinates as indicated in Fig.

. Start with the plane defined by the origin (the “base point™) and the poinrs x
and z on. respectively. the positive » and z axes. A way to deseribe the position
of a point on the splhere is to speeify how to rotate this plane abour the rwo axes.
x — 0 and z — 0. to meet the point. First rotate this plane about the z-axis until
it hits the specified point: this angular distance defines the angular difference from
the . axis which. for this example. corresponds to the longitude of the point. To
complete the specification of the point. rotate the plane abour the r-axis to discover
the angular change of this point from the z-axis, The intersection of the two rotated
planes defines the directional line defining the point so the corresponding two angles
completely specify the point. (This 1s not spherical coordinares hecause a point in
the original plane cannot be identified o this manner.) In a higher dimensional
sphere. the same argument is used except that a b-dimensional plane has b poinrs
for each axis of rotation. Notice. the axes of rotation need nor be orrhogonal. only
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linearly independent.

A similar construction is used to define gradient directions excepr that the base
point is a point on the sphere. To capture the alrernaring assignientr process.
points and dual points are assigned. i an alternating fashion. different orientations
of the plane when rotated abourt different axes. This is indicared in Fig. 3b.

To create k-dimensional examples. the hull defined by the poiurs must have o
positive A-dimensional volume. so s > L 4 1 points are positioned on the unit
sphere in the right hyperplane. Start wirlh an even value for e and an odd value
for k where the satne number of poiuts and dual points are ou rhe unir sphere. Place
i — 1 lincarly independent points on this sphere where half are regular aud half are
dual and designate one regular point. denoted by x;. as the base point. Label the
rest of the points as x;. 1= 2..... ko —1. where the odd aud even subseripts denore,
respectively. a regular and a dual point.

The plane defined by {x_,}f;ll divides §* 72 inro two parts: choose one of these
halves to place rh(‘ remaining points. The placement involves & — 2 steps. First.
the points {x ,} _]‘ define an axis of rotation for a (4 — 1j-dimensional plane where
the roration is 11111(11101\' determined by specifyving another point on the sphere. For
instance. the removed point x4 defines the starting orientation. Rorate tlus plane
away from xg_( into the designated half of %72 by specifving m — (° — 1) different
orientations strictly within the designared half of §%72. Designate eachi position
as a plane for either a dual or a regular point according to the alternating rule.
Namely. because xg_ 18 a dual point. the first orienration of the plane belongs to
a regular point. denoted by xg. the next ro a dual point, denored by xg4,. ere.
Because there are an even mumnber of remaining terms. the last orientation belongs
to Q du;ll point denoted by x,,,. So far. only one x; component has bheen specified:

b — 2 more remain.

The second stage of the argument requires dropping Xg—» {from the ser {x_,}f:_ll
to define another axis of roration for a differene & — 1 dimwensional plane, Starting
at rg_o. rorate this plane inro the designared Lalf of S57% and scleet e — (& — 1)

orientations. As Xg_y 1s a regular poinr. the first orientation is designated for a
dual point. Therefore, choose the plane from step one assigned to dual point x,,.
The mtersection of these two planes determine the first two “coordinares™ for this
dual point. Because both planes are & — 1 dimensional and because they meet
transversely {(e.g., the vectors Xy — X and X2 — Xy are linearly independent,
they are. respectively, not in the first and second planes, bur. respeerively. in rhe
second and first planes) their intersection defines a b — 2 dimensional “ray.” (This
construction 1s illustrated m Fig. 5b for regular poinrs, )

As the next orientation is reserved for a regular point. chioose the plane from rhe
first stage assigned to X, —1: the intersection of these two planes define the first two
coordinates for this regular point. The argument conrinues in the same alternating
fashion while preserving rhie order established ot stage one. As the numbers of
regular and dual points to be determined agree and as cach plane from the firse
step must mtersect each plane from the second i a b -- 2 dimensional plane. the
necessary intersections arguments are inunediate. Ir is iimportant that the ordering
for both steps are related.

The induction argument is obvious. Assume this construction holds up ro the
(= — 1)th stage of the construction, = < I — 1. Thus, eacl point to be assigned
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is specified up to the particular & — (s — 11 dimensional ray. Use the axis defined
by dropping the point x4 _,. and rotate this plane starting ar Xg_,. Again. choose
in —(k — 17 orientations for this plane that ave strictly within the designated half of
S4=2 Each orientation is designated as either a dual or a regular point according
to the alternating assigniment approach where the assignnent stares cither with the
k — i~ — 1) dimensional ray containing x,, (if rhe first poine is to be a dual point;
or the ray for x; (if the first point is to be a regular point). Because the vectors
Xpeg — Xievnos Xip_o — X are linearly independent where the ith veetor is not
the /th plane bur in all others. this intersection defines a (& — <)- dimensional ray.
Clearly, with the fexibility of choosing the position for cach plane. we can assume
that a plane defined by any & — 1 points conrains only these poinrs,

It remains to show rhat any dividing plane defined by £ — 1 poiurs (and x) has
half of the remaining points on each side. To do this, assign cach regular and dual
point. respeetively, the value vix,) = +1 and —1. It is easy to sce thar if the
sums of point values on cach side of a dividing plaue agree. then there are an equal
number of points on each side of this plane after the dual poinrs are converred into
regular points. With the original plane. the sums for botl sides as well as for che
points on the plane) equal zero. {(The sumn for one side is wivially zero as it has no
points. )

Choose & — 1 points {x, taepn where D is the set of & — 1 subscriprs. When
the first plane is rotared. 1t passes through a first and a last point from this set;
denote them by X, - Xo,: 0 < ay. (If the indices in D are greaver than & -- 2. then.
from rhe construction. all of rhem must be between o) aud a:t The orlentations
of the plane defined by these extreme values defines a sector. 5. We must show
that a3 = Z;’;;:M e(x; ). the sum of point values inside this sector. agrees with
the sum of those from ourside. Positioning rhis rotating plane on x4 means thar
the sum of points on cither side is zero. Rotate it unril it reaches the regular poinr
Xk . s0 this regular point replaces the dual point x¢—; on the rorating plane. Thus.
the sum of values of points on the xg. ) side is —1. the sum is +1 for poinrs on the
plane. so the stun on the other side of the plane also equals —1. When tlus plane
reaches the second pomt. this dual peint replaces the previous regular point so the
sum of points on each side returns to zero. Clearly, beeause of the alternaring form
of this construction, when rhis plane is on x,, or x,,. the sun of points on each
side of this orientarion of the plane is the same.

o k=2 ) . vnl——l o - . L. v
If o, = ZFI clxghe oy = 30000 eixg) 0y = ang vix; ). the above argu-
wents for the two endpoints x,,, and x,,, and the facr that the sum of all values 1s

2010 (.'()1']'.'(‘:-?1.)()11(1 To Tll(‘ (.‘(lll?lri()llﬁ

oy = (Iy + f‘(xng ) + 0y

’

ay =ty + (X )+ 0y

ty F aor(Xa, b+ 0y F 0 Xa, ) F oy =0

o
i

The desived conclusion ay = a + s + ay follows by elimzinaring the U X, ) terms
from Eq. 5.2, That is. the suun of values of points in S agrees with the sum for
points outside of this sector. This value can be 1. 1. or 0 depending on whether
the endpoints are bhoth regular. both dual. or one of cach kind.
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The argument continues by using the second plane. Fiud the extreme poiuts
Xa.-Xa, for orientations of this plane. {By construction. one or botly of these
points could agree with the extreme points from the fivst stage. If nor. then oy <
as. 0, < a,.) The roration of the second plane defined by these two points define a
sector. denote the interseetion of this sector with Sy by Sy, Because of the manuer
in which points are defined. all of the points between {in the sense of the change
of the orientation of the sccond plane) x,, and x,, are in S;. Therefore. the same
counting argnment applies showing that the sum of values of points in 5, agrees
with thie st of values of points ourside of this sector. {This statement need nor be
frue if. when choosing the second coordinate for cach point. we selecred any regular
point from step one. Wirhout the imposed ordering. the poinrs in Se can lose the
alternating structure critical for our construction.

The same argument now is applied to cach plane. Because of the ordering im-
posed on the choice of the points. the conclusion follows, All that remains to show
that the final seetor contains all poinrs on one side of a dividing plane and ounly
these points. But. this follows from the ordering imposed in the construetion. No-
tice thar the sum of the valiues of the points in the final secror can vary between
+{k —13/2 where the precise value is determined by the the number of regular aud
dual points on the dividing plane. { Notice. this argument is just an iterated version
of the one used with Figs, 3 and 4.)

To summarize. for even m and odd & the construction defines gradient directions
where. for any dividing plane defined by & — 1 points. there ave s* = (m =+ 1)1/2
i — k41

2

points on either side. From [2. this exawple supports all ¢ = b +
& R . . . . . . .
e b 21 pales. When mo = # (50 x is to be a noubliss core point for

an even number of vorers). this example supports all ¢ > [27 4 20 rules. When

m+ 1 = 1 (80 x is to be a bliss core point for an odd mumber of voters). this
example supports all ¢ >[5+ l‘i}—)' ritles.

For the remaining casces. the distribution of poinrs and the supporting argiunents
are essentially as deseribed above. When m and kb are both even, use & regular
andd i‘; — 1 dual points to define the original plane. Here. in rhe distribution of
points in the designated half of $*72, the alrernaring assiguruent requires oue more
dual than regular point as botl x; and x,,, represent dual poinrs. (For b = 4. this
construction is partially indicated in Fig, 3b.) As the st of values of points on
the original dividing point is unity. the sum of points on one side s =1 and on the
other (where there are no points) is zero. In fact. in this siruation. that goal is ro
show that the magnitude of the difference bhetween the sum of the values of points
on either side of a dividing plane defined by & — 1 poinrs differs by no more than
unity: this indicates that no more than [1'-1_;&&1 + 1 points { the rounding upwards
of the fraction W) points are on cither side. This proof is essentially the same
as above with Eq. 5.2 once the modification is made that when a plane rorares. the
Aifference between summed values on cachi side differs from unity. {In carryving our
the compurations. I found it is casier to consider separately the three cases where
the two ¢(X,;) values are positive. negative. or differ in sign.) Thus. afrer dual

i

points are translated into regular points., this example has ar most 2

— X 11 points
on either side. As % = [™7 — &£ 4+ 1 we have from [2] that this example supports

all ¢ > [2 4+ % + 1 rules. When o= m. 50 X is to be a nonbliss point with an even
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munber of voters. this supports all ¢ 2 {7+ 3 5 + 1 rules. Where x 1s to be a bliss
core point with an odd number of voters (n — 1 = m ), this example supports the
g2 5 -+#+l riles.

If both m and b are odd. start witl &

—L regular aud dual points ou the original

plance. Of the ne — & +1 points left ro distribute. let [2—=%= htl
kvl

+ 1 be regular points

]
and the rest {[=-= ) dual poiuts where the assignme m is in the usual alternarting
order. (Stmilar to rhe previous case, two regular points are next in the rotarion.
but never three. As indicated in Fig, 4. we encountered this situarion already for
b = 3.) Again. an obvious wodification of the proof represented in Eq. 3.2 shows
that the difference in sums of values of points on eithier side differs in magnirude by
at wost unity, Thus. after the same conversion of dual to regular point construction.,
a dividing plance can have no more than [2=2T2 =E+1® 4 1 points on cither side. Thus.
=[5+ + &L 1 When = 0 (X 15 a noubliss eore point for an odd number of
voters) this (‘\ampl(* supports all ¢ = [27 4+ 2L 4 1 rules. When n =+ 1 (x is
to be a bliss core point for an even number ()f voters). this example supports all
q>["_]_ H" +1= ["1—%;‘%1‘111(%

The final ‘-:(‘Hlllf’ s \\h(‘u* m is odd aud & is even. Here. the starting plane has
[ + 1 regular and (%5

are 1o be distributed. in the usual alternating fdshlou arce evenly divided into dual
k+l

" dual points. The remaining even number of poinrs that
and regular points. This construction allows = points one each side of any
dividing planc. Thus. according ro [2. it Hll})p()l[H q > ['” + % + 1 rules. With
nonbliss settings for X and an odd number of vorers. n = m. the example supports
all g = [+ ““ + 1 rules. For the nonbliss settings of n-- 1 = . 1t supports all
g > [+ A+' +1 =13+ H—,' rules. Again. in all cases, it follows by simple
compirarions T}.ldt these (\Amplvs support all rules allowed by Theoren 1 thar are
not supplemented by “excess dimensions”

G. UPPLER BOUNDS

In Scct. 5. examwples are constructed to support the assertions of Thm. 1 where
3 = —1. Tt remains to construer 4 > 0 examples. to show thar the bounds of Th,
1 are tight (i.e.. that one cannot do betteri. and to prove Thni 2a. All are done
with singularity theory.

The reader unfamiliar with this inportant tool can view singularity theory (e.g
[GG: or [SS) as a sophisticated implicit funetion theoreny. Let f @+ B" — R™.
be a smooth mapping and ¥ be a smooth b dimensional manifold m R™ (so. the
codimension of ¥ 1s m — b, According to the implicit funenon rtheorem. it f sansties
appropriate conditions. then. at least locally. f71 ) is a codimension m — b [or
dimension n — (e — b)) submanifold of B, The needed transversality condition
requires for x where f(x) € T that the span of the tangent spaces Dy fi B™) and
TS 1s R, (The usual inverse funerion rheorem where ¥is a point only requires
thie Dy f{R™) to span R™  to have rank . as the tangent space of a poiut is the
#OTO VCCTOL

To use this tool to analvze first and second derivative conditions iimposed upon a
function f. use the “jet™ map. This is the mapping j? f(x) = (x. fix). Dfx. D310
The domain of this mapping is B". and the range is J° = R” x R™ < L(R".R™) %
B(R".R™) where L{R™. R™) are the lincar maps fron: B 1o B and B(R". R") =
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LIR".L(R". B™)) arc the bilinear symmetric maps. If the derivative conditions de-
fine a manifold ¥ in J? for f = (uy..... i) where 72 f meets ¥ rransversely. then
the implicit function theorem ensures that the set of poinrs satisfying these condi-
tions 1s (locally) smooth submanifold with codimension equal o the codimension
of ©. The difficulty is to verify the rransversality condirion.

This problen: 1s resolved by extending the notion of & transverse mrersection
to allow 7°f 1o miss . Here. the Thom Transversality Theorem ensures that for
a generie set of funetions. the intersection is transverse. (When issue space is ve-
stricted 1o a compact subset. this assertion holds for an open-dense ser of functions,
[SS]) In words. the general situation is that the preferences either fail or satisfy the
core conditions robustly. Thanks to this iportant assertion. the proof of the the-
orem reduces to {1) representing the core derivative conditions of Prop. 1 i terns
of a manifold ¥ in J7. (2) finding the codimension of . and (31 showing that we
arc not discussing the empty ser.

Y. Tlis s inportaur
they correspond ro

Task (3} requires showing that there exists a f where j2f €
because there are many examples where j2f never meets T
settings where the alternatives force the vorers™ preferenices ro eluster in ways thar
do not satisty Prop. 1. In other words, rathier than asserting rhint the core always
exists, Theorem 1 only ensures that there exist robust examples in the mdicared
issie spaces. [t is important to note that we do not need ro verify that 72 f meets
Y transversely, The assertion thar there exist funetions thar do so. henee robust
examples exist {not necessarily this particular f) is a gift from Thom. The idea
is that if j°f € ¥ is a boundary point. then. as Thom's result hias the conclusion
holding for an open set about f. near-by functions satisfy thie transversality con-
dition. To illustrate with Plott’s construetion. choose the [£ lines so their span is
a [5 -dimensional space. Even if this example is not robust. it demonsrrates that
sonte f satisfies the core condition. so. from singularity theory. we know there is
an open set of preferences with this property for the specified dimensions of issue
space where 1 i odd and the ¢ rules are bounded above by the —: rule. {From Eq.

n—1 An—1
5 .

_ D o . _ 5
=2¢—norg=-——.]

2.5. the equation is

Proof of Thin. 1. Suppose n and ¢ are specified. To consrruct a manifold
in L(RY.R™) (the space of lincar maps from R¥ ro R") corresponding 1o the core
conditions specified in Prop. 1. use the identification

LIR*. R"y~ (A ={A.As.....A,}|A; = R*}.

Namely, think of A; as a dummy variable where its range of BY represents all
possible chotces for Vugix). An advanrage of using this identification. rather than
discussing properties of matrices. is that it is a simple paramerrie representation of
a manifold in Z{R*. B" ) in terms of the A veerors. Sinee A is meanr 1o caprure

Y manmifold definition follows directly from the core

conditions on Vi, (x). these
conditions on the gradients. ( This representation is another way my method differs

significantly from the approach used in [B. Sc. N[S1 )

Bliss-core points. To start wirh bliss-core points. assume thar the core point is
the bliss point for the fivst agent. This means we must examine all poinrs x where
Vi (x) = 0. All such situations arve captured by the manifold ©; = {A| A, = 0}.
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Beceause there are no restrictions on any other J? coordinates, if there is any x € R*
where Vi (x) =0, then j2(u... .. tn) € 3. The codimension of ¥y is I (reflecring
that all & components of A are completely specified ). so. generically. the ser of x's
satisfving this condition is & — k. or zero-dimensional: it is a ser of isolated points.

Imposing any other condition on ¥ which increases the codinension. so 1t 1s
larger than k. corresponds to where the set of points satisfying the conditions is
eenerically empty. For instance. if the core poinr is the bliss point for two or more
agents where one is the jth. j # 1. then the manifold capruring this sination is
T, ={A|A; = A, = 0} with codimension 2h. Thus. the set of points satisfying
this condition generically form a nnion of » — 2k dimensional manifolds. As this
dimension is negarive, this behavior s generically nnpossible. Generieally, a point
is a bliss point for at most one agent.

A condition motivated by Plott’s construction is to suppose that at rhe bliss-
core point the gradients of two other agents lie along the same line. If these agents
arc. say, 2 and 3. then the manifold in Z{R". B™) capruring these condirions is
Vi = {A]A =0.A, = Ay A ¢ R} with codimension 2k — 1. (A codimensions
come by specifving A = 0 and & — 1 from the fact that the direction of A, 1s
specified. ] As the codimension of ¥y is larger than the dimension of issue space
when & > 2. such behavior is generically impossible ourside of a one-dimensional
issue gpace.

To generalize ©,. Uy, consider where Vu(x) = 0 and there are 1 < b < L agenes,
with index set I, so that {an(x]}.,-e;) is in a b — 1 dimensional subspace. To see
thar this is generically impossible, consider the manifold ¥, ;) = {A A, = 0. there
exists scalars A, not all zero. so that Z‘jef
one A is determined by the others. another value is added to the codimension: as

yA;A, =0}, As the st cnsures that

Y. p has codimension & + 1. this defines a generically empry siruation.

To use ¥y p to prove Theorem 1. recall from 2 and Prop. 1 that a plane defined
by k=1 lincarly independent vecrors can have no more than (g —11—{k=1) =q¢— &
gradient vectors on either side. If no other gradienr vectors are on this plane. then
by counting the maximum number of vecrors that can be on botl sides. the number
on the dividing plane and the bliss point, we have 2ig — k) + & - 1+1 > n or
b <2¢ —mn. That is. if > 2¢ — . there is another gradient vecror on this plane.
Such a sirnation requires these core points to be in ¥y for some D with b indices.

All possible situations are given by the (”;l) distinet sers of & indices from
{2.3..... n}. If D denotes such a set. 77 f must be in some ;). Thus, the set of
poluts satisfving such siruarions 1s generically empry. This condition ineludes the
bliss-core points for £ > 24 — 1. As all bliss core points are obrained by changing
the choice of D and the identity of the voter whose bliss poinr is the core point.
this 1s a finite condition. Nainely. it corresponds 1o a finite union of submanifolds.
all with the same codimension. Each submanifold is obrained fromy the first by a
permuration of the indices. Thus. the assertion follows. O

Nonbliss core points. The argument showing that Egs. 2.3, 2.4 derermine upper

bounds for the generie existence of nonbliss core poiuts resembles the bliss-core
& 1

point setting but the counting argument 1s more difficulr. To help the reader. the

ideas are introduced with a special case.

The ¢ = 4.n = 5 rule. The first choice allowing 3 > O 15 the ¢ = 4.0 = 3 rule:
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St

Theorem 1 asserts that issue space can have dimension up to & = 3. To show this
is an upper bound. let x be a nonbliss ideal point and consider the plane defined
by two gradient vectors Y (x). Using the arguments leading to (2°. no wore than
one gradient veetor can be on either side of this dividing plane. Counting oue for
cach side. and the two that define the plane. we have accounted for four of the
five gradient veetors. Thus the dividing plane also nust contain the last gradient
vector. Moreover. x is in the convex hull defined by these three gradient veetors.
If not. then there 1s a line passing through x where all three gradienr vectors ave
on the same side. If the dividing plane is rotated about this line, all three gradient
vectors will end up on the same side as one of the remaining gradient veerors: this
violates the assumption rhat x s a core point.

Figure 6. Ncw planes

This condition. where a plane defined by two gradient vectors Las a third and
their convex hull contains x. imposes strict conditions on all five points! To see

why. suppose {x;}?_, are ou the plane. x is in rhe inrerior of this hull. and x; 15

j=1
off of the plane. (See Fig. 6.) The pairs of points {x;.x5}. {x,. x5}, and {x3.%5}
(along with x) define three more planes whieh interseet along the line counecering
x and x;. With this condition. anothier poinr st be on cach plane, This exera
point. Xy. cannot be x as X 1s not a bliss point. B xy is nor on rthe x x5 line. then
x4 1s on one of the three planes. so we need rwo more points. With = 5. this is
impossible. Consequently. x4 is on the X x5 line. Whatever the orientation of the
X X; line. there is a plane though x with two of {x; }jzl and x; on the sawe side.
If x; were berween x; and X, four points would be on the same side of a dividing
plane: this violares [1. Thus, x4 is on the other side of the plane.

In .72, these condirions are caprured by - = {A | {A })_] are linearly dependenr:
there exists A < 0 so that Ay = A5} To find the codimension. notice that & —
dimensions are imposed by the dependeney condition on the first three veerors. zlnd
% —1 dimensions are obtained from the second. Thus. as the codimension s 20 — 3.
sich examples are generically possible only when 28 —3 < b or b < 3. If x 15 on
the boundary of the hull. same argument holds exeepr that an extra codimension
is added to reflect that two veetors are along the same line, This sitwaton. then.
holds generically only for & < 2. As the construction requires & = 3.1t 1s generically
crpty.

The final possibility is if all five veerors are on the plane. Here. © = {AJA,.j =
3.4.3. 15 a lincar combination of A; and Az}, There are no restrietions on the
choice of A Ay, but a codimension A — 2 imposed on the choice of all remaining
veetors. Thus. the total codimension 1s 3k — 6. Such behavior is generically possible
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only i 3k —6 < A orif b < 3.

To obrain all possible cases. use all possible permutations of the indices. As
this munber is finite. the conclusion holds. To creare examples. use the gradienr
directions defined by the construction. Notice. for Euclidean preferences. botl cases
restrict the positioning of ideal points so. here, the conclusion is not generie,

General case. The proof for the general case extends the above construerion. Let

x be a nonbliss core point. and choose any b — 1 linearly independent gradient

vectors. If no other gradient vectors are on this plane. then. according ro Prop. 1
and [21. no more than ¢ — &k gradienr veetors can be on either side of this plane.
Using this maximum as the number on cach side and counting all gradient vectors
on the plane. we have that 2(¢g — &)+ (k=10 =2 v, av 2g —n — 1 2 k. Thus.
if > 2¢ —n — 1. another gradient vecror must be on this dividing plane. To
wnderscore this assertion. denote the dimension of issue space as b = 3+ (2¢ — n)
where the admissible values for rhe “excess dimension” ave f = —1.0... .. First
we consider what happens shonld all points be on this hyperplane. then we analyze
what happens when some points are off of ir.

If all eradients are in the same 2¢ — 1 — 1 dimensional space. then this space
is defined by a basis: assume it is given by the first 2¢ — n - 1 vectors, As all

other veerors are in this linear space. the J? representation is © = {A|A; €
: 2g—n—1y - , .
Sp(m(_{A‘,}jil" ) ¥i > 2¢ — n. the plane defined by any & — 1 vecrors from

({A_,};”:i_l"_] ) has no more than ¢ — & vecrors on either side}. The dependencey
condirion imposes a 3 + 1 dimensional constraint on the choiee of Aj. ;7 = 2¢ —
n — 1. (The dividing plane condition is an open one that. from Seet. 5 can occur.
so 1t does not contribute 1o the codimension.) Thus. the codimension of ¥ s
(1+ 3)2n — 2¢+1). Consequently, such a condition exists generically only if the
inequality

(34+1)2n ~2¢g+ 11 <b=2g—n+ 4

15 satisfied. Collecting terms and solving for ¢ we obtain Eq. 2.3: solving for I leads
to Eq. 2.4, Considering all possible permmurations of indices completes the proof.

{ This construction does not explicitly consider where no set of 2¢ —n — 1 vecrors
arc lincarly independenr. Bur. rhis condition increases the codimension for cach
A so the toral codimension of the new version of ¥ s larger. Therefore. such
situations become generically unlikely with smaller & values,)

Vectors out of the plane. [t remains to consider where not all veerors are in the
same 29 — 1 — 1 dimensional subspace. This analysis uses the nexr sratement.

Lemma 2. Suppose x 25 a nonbliss core point and a set of 29 — n — 1 lincarly
mmdependent gradient vectors define o plane £ passing through x. The conver hull
of the gradient vectors on L contains x but not as a verter. If x 15 a boundary point
of this conver hull. and of there are 2¢ —n — 1 4+ ¢ vectors m L, then at least ¢ +1
of the wectors bie on the same boundary surfoce of this hull and the hull they define
fins X as an nferior point.

Proof. Replace gradients wirh points x; where directions are x, —x. As n is
finite. we can extend £ to a codimension one plane £, which conrains no poinr oft
of £. If x is not in the convex hull, then. because it is separated from rhis huall.
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b}

a hyperplane H passes through x where all poinrs from £ are strictly on one side,
With 2¢ - n — 1 + ¢ points on £. and. henee. on £,. ¢ > 1. A slight change in
the orientation of £. using H N Ly as as an axis of rotation. can foree all points
on £, to one side of the new dividing plane. As x s & core polnt. no more than
(g — 11— (2 —n —1+4c¢) =n-—qg—c points arc on cither side of £, so. at
most. 2(n — ¢ — ¢) points can be off of £, The munber of points not on £ s
n—=1(2g—n-1+c1=2n-2g+1-c.502n—qg}=2n-2¢g—c+1lor—-12c
This contradiction proves the asserrion.

If x were a vertex. it would be a bliss point which violates the assumption. I x is
a bonndary point of the hull. it may be ou one or several boundary components of
thie hull: choose the one. B, with minimal dimension 5. Beeause p 1s not a verrex.
the number of points. 7. on B satisfies r 2 5 + 1 where (hecause B Lias minimal
dimension) x is in the interior of the hull defined by these points, To find a bound
on r in terms of €. notice that (n is finite) there is a plane P passing throngh x and
intersecting B < £y so that at least [ of the B points are on the sawe side as the
29 —n — 1+ ¢ — r remaining points of £;. By using rhe dividiug plane argument.
where the plane comes from rotatiug £, about the PN Ly axis. and the facr that
one side of £, has at least half. v — ¢ — “5'. of the remaining points. it must be
that {n — ¢ — ';']+(‘2q—n -1 4 —r')—i—('%) <g—lore+1<r O

While there exist configurations allowing core poinrs where all poiurs are not on
the 2¢ — n — 1 dimensional space. we show how the rapid growth of the binomial
coetficient forces the codimension to grow so fast that this is generically possible only
in very special cases. Assume that x,, (representing Yo, (x)) 1s not in £ and that x
is in the interior of the hull of the 2¢ — n poinrs {x, }ji_l” on £. Because {x, }';‘-L’”
defines a convex hull with interior. auy of x; is removed. the remaining directions

{i.e.. x; —x) are lincarly independent. Moreover. because x,, € L. when x,, replaces
2g—n

any two points from {x; 71,

. the new set defines a 2g —n —1 dimensional plane. As
o :
there are (29,7} ways ro choose pairs from {x;}

Qg—in

) 220" there are [2'*; ") plancs, From
the linear independence starement. each plane does ot include the pair dropped
1o define the basis and these plaes meet only along the x %, line.

This dimension requires cach plane to have one more point. Oue possibility is to
place a point. x,, ;. on the x-x, line to simultancously sarisfy rhis condition for all
planes. (Again. x must be between x, - and x,,.1 The J? manifold containing this

condition is ¥ = {A |vectors AL ) =2¢ — n..... no— 2 arc in the space spauned
2g-n—1 - ;

by {A_,}]-(":ln o there exists a scalar A < 0 so that AA, = A, }. Each A ) =

20— N ... n — 2 vector adds (1 4 3) to the codimension and only the length of

A, can be chiosen. so the codimension of ¥ s (14 3420 —2¢ — 1+ (kF —1). To
be generically possible. this value must be bounded above by & which means that
(14+D(2(n—g)—1) < 1. In turn. this inequality is satisfied only for n = ¢+1. 4 = 0.
or ¢ = n. Notice. a larger J value is obtained when all poinrs remain on the plane.

When the extra point for cach plane is nor chosen ro satisfy all planes simulta-
neously, the codimension increases more rapidly. To minimize the munber of extra
points is to chioose points that satisfy as many planes as possible. As~ = 2¢—n = 3.
this ocenrs by choosing a point that is in the iurtersection of ~ — 2 planes: m L.
this interseetion is the x;  x line for some j. As there are () planes. we need ar

least & = [(1)

/(v — 200 > 3 points chosen in this way, First assume that all these

r
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points are in £. The J? manifold including rhis sitnation is & = {A| any 7 — 1

- &
vectors from T = {A;} 4 J
sealar multiple of a veetor from T}, The codimension of ¥ is bounded above by
(14 )+ &k — 15 As e 2 3.k >+ 2 3. this value always 1s larger than . so this
serting never is generically possible.

are linearly independent. cach veerors {A- 4} 15 @

\ore generally. if points are chosen to be on 7 — s planes. where b=~ + 3 2

4 = =+ 1. then. as there are ( wayvs ro choose these plawes. there must be at

.s-+‘-1)
least &, = “.«;1)!/[ ~ — (x4 1)) points. Thus. the J? ser containing this condition

s U, = {A] any 7 — 1 vectors from Ty = {A_I};!zl are lincarly independent. each
; :

i=1
The codimension of . is bounded above by (14 31+ &,k — 5). Therefore. to be

veetors {Ao 4} can be expressed as a linear combination of s veetors from Iy }.
generically possible. this number must be bounded above by k. which. by using
L=~ + 3, requires satisfyving 1 + (&, — 1)y + Sod < by As 0. > 204 > s this
never is satisfied. (I leave it as a simple exercise to show that if points are chosen o
be on different number of planes, then the same couclusion holds. This is beeause
the more planes a point is on. the ligher its codimension. The other exrreme. of
choosing more points with Jower codimension reguires so many more points tiar
the codimension grows faster.)

The remaining possibility is 1o choose extra points off of £. This modifies T by
allowing the A, points to include A, its representation. Thus the new codimension
is (14 3) 4 o,k — s — 1. To be generically possible. this number must be less than
Loor 14 (ée — 1)y + 043 < 8,0~ + 1) Again. beeause ¢, 2 3 and 5 > « + 1. this
never can be satisfied.

Finally. if x is on the boundary of the convex hull of the poinrs on £. then the
same argument applies. but the codimension escalates more rapidly because. as
Lemima 2 asserts, most of the points are on a lower dimensional subser of £ and
all added points also are on rhis set. Thus. the same computarions show thar this
setting is not generically possible.

Constructing examples. The construcrion of examples s simple. Chioose any
point x. Using the construcrion of Sect. 5. find gradient directions for poinrs where
these gradient directions define a 2¢ — » = 1 dimensional space and where they
satisfy the alrernating rules for the specified n. ¢ values. Now. use these directions
to define gradients. The only difference in choosing second derivarive rerms is rhat
they must include all variables.

To illustrarte with n = 4.9 = 3 and & = 3. use Fig. 2. Translare and rotate the
figure in R? so that a specified x from the shaded region is ar the desived location of
a nonbliss core point, and the orientation of the plane is consistent with the desired
plane of gradient vectors. Define the gradienr direetions by the directions from x
to the vertices of the star. This construction may suggest that a two-dimensional
core results: this would be in conflier with Theorem 2¢ which asserts it should
be zero-dimensional  isolated points. The explanation is that in R, the chosen
gradient directions have only one degree of freedom when the hase point is varied.
Consequently. the same general star figure is defined by the gradients at neighboring
points. With the added degrees of freedom from R*. when the base point is varied.
the gradient need not lie in the same plane. Once this happens, [1] and {2 are
violated. so a core does not exist. Therefore. this construction does. in fact. define
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the core to be a collection of isolated. zero-dimensional points.

Dimensions. The dimensional statements follow directly from the codimension
statements carlier in this section. This is because. generically. the sers are the union
of 1solated smooth submanifolds with the indicated codimension of appropriace T,
Another approach is to note that the construction developed in Seer. 3 allows for
freedon: in the choice of the gradient directions {an open set abour each direerion).
so the construction is robust. The same comment applies 1o when the construerion
of Sect. 5 applies to the 3 = 0 serrings.

I stated that. generally. the core has a srratified strucrure. As this staremenr is
a direct consequences of singularity theory. ir is not formally asserred nor proved.
Yer. related ideas are in the proof of Thin. Za. Firse. however. T need thar the core
is closed. This is a consequence of continuity of the gradients and the fact thar
Prop. 1 defines a closed condition. The only difference in the J2 representation is
that some of the A, veetors are on the same plane. This adds ro the codimension
which. in turn. reflects that the bhoundary is a lower dimensional object.

Theorem 2a. Only the proof of Theorem 2a remains. To show that if x is a
¢ core point then it is a ¢ + 1 core point. notice that the convex hull defined by
¢ + 1 gradient vectors includes the convex hall defined by a subser of them. The
conclusion follows from Prop, 1.

Next. consider 1, &, g values where. generieally. the core for the ¢ rule must be in
a lower dimensional submanifold. If the generie situation for the ¢ + 1 rule allows
the core to have a nonempty interior ie.g.. ¢ = n— 1 or where ¢4+ 1 adinits 3 = —1).
then, generically. rhe two cores cannot agree as they have different dimensions.

Suppose the core for the ¢+ 1 rule 1s. generically, in a lower dimensional set, The
dimension for the g rule is dy, = A — (3, +11(2¢ —n + 1) where 3, =k —(2¢ —n — 1.
The excess dimension for the g+ 1 ruleis 3 =741 —(2(¢+1i—n —1)= 3 — 2 The
above argumnent handles 3, < 2, so let ) = 2. The core dimension for the ¢ + 1
raleis dypy = b —( 3+ 112 —n+3) =k --(F -1} (2¢ - n+ 1)+ 2). To see thar
dys1 > dy. so the conclusion will follow beeanse the dimensions disagree. compute
dys1 —~dy = 20(2¢ —n+1)— % )+2. As ¢ < n —2. the value of 3 is bounded above
by q — %n. {(see the expression for 7 found berween Eqs. 2,30 2,40 so dyqy — d, > 0.

The remaining case is where the core for the ¢ rule has a nonewpty interior.
Assume that the cove for the ¢ and ¢ + 1 rules are the same, Generieally, the core
is a closed set where if x 15 a houndary point. then x satisfies Eq. 4.1 by being on
the boundary of the convex hull for some coalition. Suppose not: suppose X is in
the interior of cach Coxl( {NVu;ix)};cc for each decisive coalition C and that v is
sucht that x 4+ #v is not a core point for any ¢ > 0. By conrinuiry and the fact thart
X 1s an nterior point. there is an open neighborhood of x so thar any poinr in this
neighborhood also is in rhe convex hull of the gradients defined ar that poine. Any
such point 18 a core pont. This contradiction proves the assertion.

So. assue both cores agree and they have a nonempry interior. We consider
points on the & — 1-dimensional boundary,  This corresponds 1o a ¢-rule core
point X and a coalition €. say € = {1.2.....¢}. where x is on rthe bhoundary
of Cox({Vu(x)},cc. This bonndary 1s & — 1 dimensional and it conrains £ of the
eradicnt veetors. (If 1t contained more. then this would add ro the codimension
violating the fact rhat x 1s on a b — 1 dimensional component. ) To represent this as
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a J* condition. let S, = {A|k veetors from {A 1}

this has codimension one. the set of points satisfving this condition 1s. generically,

; are linearly dependent }. As

a collection of B — 1 dimensional manifolds. Indeed. it includes the boundary of the
core. { To make it explicitly the boundary of the core. add the convexity conditions
of Prop. 1.)

Because the cores agree. x s on the & — 1 dimensional boundary of the ¢ + 1
rule core. In particular. this means thar there is some ageut 7 so that when €
is augmented to C; by adding agent 7. 7 > g. then. x is a boundary poinr of
Cox({Vu,(x)},er,. From Ci. g + 1 different coalitions of ¢ vorers can be con-
structed: ¢ of them are formed by replacing an agent from C with 7. When Virix)
replaces one of the gradient vectors from C. then cither there are b — 1 gradient
veetors on this plane, or Vi(x) is on this plane. The first case means thar a plane
cai be passed through x using this new ¢ vorer coalition where X 1s nor in its convex
Lull. As this means x 1s 110t a core point. it must be that YV, (x) 15 1 this plane,
In J2. this is captured by the manifold &, ; = {A € 1A, is in the span of the
I lincarly dependent veetors }. This adds anothier codimension. so. generically. x
belongs to a b — 2 dimensional manifold. The dimension contradiction proves the
theorem. Indeed. with slight extra care. we have that. in general, the g-core is i
the mrerior of the ¢ + 1 core.

Removing strict convexity. If the convexity assumption is removed. the por-
tions of Prop. 1 where x is on the boundary of the convex Iimll need nor hold. These
conditions are needed primarily for the 7 > 0 analysis. Second. an mfiniresimal
core point need not be a core point. So. in the more general setring. all infiniresimal
core points that are not core points must be removed. The main change i the con-
clusion is that the core may be the union of several submanifolds of rhe wdicated
dimensions.

REFERENCLES

B Bauks, J. S Singularity theory and core eristence tn the spatial model Jour Mat Eeon
(1991} (1o appear).

[§1¢3 Golubitsky, AL and V. Guillemmin. Stafle Mappings and their Stugulertities. Springer-
Verlag, 1973,

[K Kramer. GH. A dynanueal model of polilical equtlilrinm. ) lcon Theory 16 (1977).
J10-331.

[A0 MeKelvey, R. ... General condttions for glohal tntransitivilies e formal voling models.

Feonometrica 47 (1979). 10185 - 112,

[ANS1T AMeKelvey. R and N. Schofield. Structurial wstability of the core. Jour Mat licon 15
(1986), [T9-19%.

[A1S2] Mekelvev, R and N Schofield. Generalized symanelry conditions at a core pound. Feono-
metrica 55 (1937). 923-931.

[Pi Plott, C.R.. A notion of equiltbrium and s possiblity wnder majority rule. Awmerican
Feonomie Review 5T {(1967), T37-306.

R Richards. 1).. [ntranstfivies i multidirmensional spabiel voling: period three wmplies
chaos, Soc Choice & Welfare 11 (1991). 109-119.

[S1 Saari. D. G.. Geomelry of Voling. Springer-Verlag. 1994,

82 Saari. . G.. On the role and properiies of cenlral configurations i the n-body probilem,

Clelestial NMechames 21 (1930). 9-20.
(88 Saari. D. G amdd C. P, Simon. Siegularity theory of whility mappings - 1. Jour Math Econ
4 (1977). 217-251.



THE GENERIC EXISTENCE OF A CORLE FOR ¢-RULES 3l

Schofield. N.. Generic instelility of majoridy rule. Review of Leononie Studies 50 (1933}
693-703.

Smale. S.. Global enalysis and economecs [ Pareto eplermum and o generchzalion of
Morse Theory. Dyvnanical Systems (Piexoto. AL ed.). Academic Press. 1973

Nia. 7.. Central configurations with wany small masses. ). Differential Pguations 91

(19917, 163179,



