Discussion Paper No. 1109

e-CONSISTENT EQUILIBRIUM

by
Ehud Lehrer

and

Sylvain Sorin”"

June 1994

Abstract: We dcal with the concept of e-consistent cquilibrium which corresponds to strategies
inducing an e-equilibrium in any subgame reached along the play path. Examples and cxistence
conditions are given.

* Department of Managerial Economics and Decision Sciences, J.L. Kellogg Graduate School of Management and
Department of Mathematics, Northwestern University, 2001 Sheridan Road, Evanston, Illinois 60208 and Raymond and
Beverly Sackler Faculty of Exact Sciences, Schoot of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978,
Isracl. e-mail: elechrer(@casbah.acns.nwu.edu.

** Département de Mathématiques et d’Informatique, URA CNRS 762, Ecole Normale Supérieure, 45 rue d’UIm, 75230
Paris Cedex 05, France, and SEGMI, Université Paris X, 200 Ave. de la Republique, 92001 Nanterre, France; e-mail:
sorin@dmi.ens.fr.

We thank Ehud Kalai for helpful discussions.
[7-6]



1. Introduction

In this paper we elaborate on the notion of e-Nash equilibrium, where each
player is optimizing up to an &. Instead of playing a best response to the other player’s
strategies a player is adopting a strategy that can be improved upon. However, any
improvement would guarantee an extra gain of at most .

There are three main justifications to e —equilibrium. In Radner (1986) players
have bounded computational capacity and therefore they cannot be fully rational. For
computational reasons players can find only £ —optimizing strategies, rather than perfect
best responses. In such a set up the best one can hope for is ¢—equilibrium. Radner
shows that £ —equilibrium allows for cooperation in a finitely repeated prisoners’
dilemma.

The other two justifications involve infinitely repeated games. One way to think
of infinite games is as an approximation of unspecified large finite games. Thus, an
equilibrium of the infinite game is a profile which induces & —equilibrium in any
sufficiently long truncation. Therefore, the longer the game lasts the more precise the
equilibrium gets. This is the uniform property introduced in Sorin (1990).

The game theoretical literature refers to processes that converge to equilibrium.
Far enough in each one of these learning processes only £ —equilibrium is achieved and
not full equilibrium: see, for instance, Kalai and Lehrer (1993).

Radner (1986) also mentions an elaborate definition of ¢ —equilibrium where
players, at each stage of the game, are ¢ —rational. That is, players are consistent; they
take into consideration the future payoffs they face and use & —optimizing strategies at
every period. This definition differs from the traditional definition in that in the latter
there may exist a small event where players are not rational at all. Since such an event
occurs with a small probability the overall effect on optimality is minor (i.c, £). Thus,

the traditional definition requires an g-optimality only at the beginning of the game and



not during the game. The consistency property requires that the player will remain
¢ —rational all the way through.

To be e-rational means that, whatever the history reached, as long as it is
possible (i.e., having positive probability), each player is playing a best response up to an
error of at most €. Clearly, the magnitude of error depends on the payoff function
defining the continuation game. In a discounted game, for instance, if the payoff
function is not normalized and it is just the remaining payoff, then the £ —consistency
requirement is vacuous in the long run. This is so because without normalization all
payoffs are asymptotically less than ¢ and, therefore, any strategy is e-consistent. In
order for the £ —consistency requirement to bear some content, the payoff function
should be defined in discounted games, as if at any time the game starts from the
beginning.

Here, we introduce an e-consistency requirement which may be reasonably
applied to discounted games as well as to others. There is one instance where the
g --consistency property might create problems of nonexistence. This is the case of
stochastic games. In the last section of this paper we consider stochastic games with

absorbing states and show that ¢ —consistent equilibrium does exist.

2. g-Equilibrium
We first recall the traditional definition of € —equilibrium in a strategic form

game. Let player i’s set of actions be = Set T = X =i, Player i’s payoff function is

denoted by yi; yi: Yy - R

Definition 1: A profile ¢ € T is an g—equilibrium if for every player i and for all

e 3!



yi(c_i,‘ri) < yi(c) + €.

Example 1: Consider now the following symmetric game, where ¥l = [0,1], 1 = 1,2.
The payoff functions are defined as follows:
2t - s ifs>t
i = -1 ifs=t, vy = vits).

S if s <t

In this example (1,1) is not 0—equilibrium (i.e., it is not a Nash equilibrium). However,
(1,1) can be approximated by £ —equilibria. In such games the following definition

makes sense.

Definition 2: x is an equilibrium pavoff if for every ¢ > 0 there exists an € —equilibrium

which induces a payoff within ¢ of x.

According to Definition 1 (1,1) is an equilibrium payoff of the previous example.
The payoff (1,1) cannot be sustained by an exact equilibrium but it can be approximated
up to any required accuracy by £ —equilibria. Thus, we refer to it as (ideal) equilibrium
payoff.

In stochastic games one finds the same phenomenon. Even in zero-sum
stochastic games exact equilibria may fail to exist. However, equilibrium payoffs do
exist (see the "Big Match” game in Blackwell and Ferguson (1968})).

Another use of s —equilibrium in defining an exact equilibria notion is the
following. Consider a repeated game where Y:i denotes player i's payoff in the n—fold

repeated game.

Definition 3: Fix an ¢ > 0. The profile ¢ is a uniform g—equilibrium if:




(1) the payoffs y (o) converge to, say, y(c); and
(i)  the gain from deviation is uniformly bounded by ¢. That is, 3 N such that
vn=N vVres v rie id) <ylo) + &

Now we use it in order to define uniform equilibrium.

Definition 4: o is a uniform equilibrium sustaining the payoff x if ¢ is a uniform

g —equilibrium for every ¢ and, moreover, y(c) = x.

In other words, the same profile o is adapted to any € > 0, which may

correspond to different (larger) n.

3 Consistency

3a. The Definition

Definition 1 of ¢ —equilibrium allows small probability events where players do
not act in a rational manner. In multistage games it means that there are decision
nodes, reached with positive probability, where players do not optimize. Such a
problem does not arise when dealing with exact equilibrium.

Consider an n-player multi-move strategic game G with payoff function
y = (yl,...,y“). Denote by H the set of histories. Assume that each h corresponds to a

subgame G(h) with payoff y(h) = (y!(h),....y"(h)).

Definition 5: A profile ¢ is an ¢-consistent equilibrium if there exists a set P of paths

having probability 1 according to o satisfying:



(C)  For every h compatible with P (i.e., the set of those paths in P having h as their
prefix is not empty), the induced strategy of o in G(h), o(h), is an £—equilibrium

in G(h).

In order to exemplify the role of y(h), let h be compatible with P and let h’ be a
history of G(h). Thus, hh', the concentration of h and I, is a history in G. In a
discounted game, if Al is player i's discount factor, then the natural way to define the
payoff function in G(h) is yi(h)(h‘) = (ki)— |h|yi(hh’), where |h| is the length of history
h. The traditional way to define yi(h)(h') as yi(hh') is not satisfactory because it would
make any € —equilibrium € —consistent (provided that Al is small enough).

A typical example of e-consistent equilibrium in a repeated game is the stationary

strategy which consists of playing repeatedly one-shot £ —equilibrium.

3b. Examples

We will now examine different classes of repeated games and their equilibria in
regards to properties of the induced strategies.

In undiscounted infinitely repeated games with complete information the folk
theorem can be stated as follows. For any feasible and individually rational payoft, x,
there exists an equilibrium ¢ sustaining x. Moreover, o is pure on the path it induces
and o(h) is an equilibrium sustaining x for any history having positive probability. In
other words, o induces in any subgame compatible with itself an equilibrium sustaining
x. In fact, one could even obtain similar properties for perfect equilibrium.

In undiscounted infinitely repeated games with incomplete information on one
side, for any equilibrium payoff x there exists an equilibrium sustaining it (because of
the properties of Blackwell's (1956) approachability strategy and Hart's (1985)

characterization of the set of equilibrium payoffs). Furthermore, after any history h,



having positive probability, o(h) is an equilibrium sustaining x(h), which, due to the
jointly controlled lottery conducted during the game, differs from x (x is the weighted
averages of x(h) across histories of the same length).

In contrast to the previous two models of repeated games, in undiscounted
stochastic games even in the zero-sum case an equilibrium sustaining the value generally
fails to exist. However, uniform &—equilibria that approximates the value does exist for
every . In the non zero-sum case, existence of equilibrium payoff is known for 2
players game with absorbing states (Vrieze and Thuijsman (1989)). However, the
strategies they constructed to prove this fact involve randomization and punishment on
a set of path with positive probability. Thus, there is a positive probability set of
histories along which the strategies defined are not optimal. In other words, the
strategies Vreize and Thuijsman defined are not € —consistent.

The next section is devoted to the proof of existence of &£ —consistent equilibria in

this framework.

4. Existence

The basic construction of Vrieze and Thuijsman’s proof (see also Mertens, Sorin
and Zamir (1994), pp. 406-408) is to have the players play stationary strategies and
punish (forever) if after some stage the frequency of moves is too far from the reference
strategy.

More precisely, there are two cases:

(1) Players I and IT play x and y i.i.d. where (xy) is a nonabsorbing pair and

any absorbing deviation is self punishing. If, at some stage n > N,

|x, — x| > g, player II reduces player I's payoff to its max min, say, wl
(and similarly for § and wII).

(ii)  Player I plays x i.i.d. and player II plays an i.i.d. mixture (1 — g,e) of y and



z with (x,y) nonabsorbing and (x,z) absorbing. Any absorbing deviation of
player 11 (versus x) is self punishing, as well as any absorbing deviation of
player I versus y. As above, player II punishes player 1 if after some large
stage N; the frequency is far from x, while player I punishes player II from

some stage N, on (since basically the game should be over before).

Assume that all payoffs are bounded in absolute value by one. Let us denote by
o a strategy of player 1 satisfying, given & > 0, the following conditions:
(1) 3 Ny, such that for all n > N, the expected average player II's payoff up
to stage n is less than wil 4+ & and so is the absorbing payoff at stage n, if
the total probability of absorption at stage n is more than 3.
(2)  Given any history h, there exists a move j(h) of player II such that the
conditional probability of absorption (i.e., the probability of absorption at this

stage conditionally to nonabsorption until that stage) against o(h) is less than 5.

We will now choose Ny such that the probability that by playing y i.i.d. the event
A={ly, -yl =z 62} occurs for some n > N is less than &.

Let us first consider case (1).

After Ny stages, if A occurs for the first time at stage n,, player I uses ¢ until
some stage p; which is either ny + N, (where N, is greater than N and N,/3) or the
first stage where the conditional probability of absorption since stage ny exceeds 9, if 1t
occurs before stage n; + N,. Player II uses j(h) at each stage between ny and p;. We
refer to the period before ny as the first regular block and call it short if n; = Ny and
long otherwise. Similarly, the period between n; and p; where o is used (it is the first
punishment block) is called absorbing if p; < ny + N, and long otherwise. Then player

I starts again playing x i.i.d. and computing frequency from stage p; on and similarly for



player IL

If for the second time at some stage n, 2 p; + N1 the event A occurs--namely,
the average of the moves of player II between stages p; and n, differs from y by more
than 8--player I uses again o, but taking as initial history the history h, corresponding to
the first punishment block. Again this lasts for N, stages unless the conditional
absorption probability since stage n, reaches § and then player I switches once again to
x, and so on.

One defines thus inductively punishment blocks where ¢ is used, taking as past
history at the beginning of a new block the concatenation of all past histories along all
previous punishment blocks.

We claim that this strategy and a comparable one for player II, induce an
g—equilibrium, for g = 64.

Formally we introduce similarly the event B and the strategy t and use a
lexicographic order, during the regular block to check the deviations, i.e., the occurrence
of A or B.

Define K, such that 1 - (1 - 8t > 1 - 8, let then K, > K;/3 and
K =K, + K,.

Then there exists N such that, if for some n > N, the frequency ¥, is at a distance
of at least & from y, then the event A occurred before stage n at least K times.

Now either there were at least K; absorbing punishment blocks and the game 1s
over with probability at least 1 — &, or the number of long punishment blocks is at least
K,. Obviously the average nonabsorbing payoff corresponds to a convex combination of
payoffs during punishing blocks and payoffs during regular blocks. Now either a regular
block is small or the payoff excepted for one stage (the last one) is compatible with a
frequency within 3 of y. Furthermore, the relative weight of the small blocks not

followed by a long punishment is at most &. A similar statement applies also to the



weight of the absorbing punishment blocks with the difference that, on those, the
average payoff is within 23 of y.

In both cases (whether there were at least K; absorbing punishments or less), the
expected absorbing payoff--obtained during all punishment phases--is less than the
maxmin +§ if the probability of absorption at stage n is more than 5.

The strategies just described are e-consistent. In fact on any nonabsorbing
history the expected payoff, say, after a deviation of player I, is within ¢ of the original
payoff: the expected payoff after the current punishment is exactly the initial one and
the probability of absorption is at most 25.

Finally, concerning case (ii), the behavior of player II will be the same as above,
while player I will consider regular blocks of fixed size M (such that under x and (y,z)
the probability of absorption exceeds 1 — 3) and otherwise use o for N, stages as

above.
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