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1. Introduction

In a mediated talk (see Lehrer (1994)) players are allowed to communicate
through a mediator. Each one of them transmits a private signal to the mediator. The
latter, in turn, produces a public announcement which depends (deterministically) on
the individual private signals. Then, each player may take an action relying on his
private signal as well as on the public announcement. It is shown in Lehrer (1994) that
if such a talk is not bounded in time then any correlated distribution (with rational
coefficients) can be generated by a mediated public-deterministic talk. Here we
improve the result and show that a one-shot communication suffices to generate any
correlated distribution.

The main idea of the construction is to use different types of a jointly controlled
lottery. All of them but one remain latent. The active device is selected by the realized
set of the private inputs. Thus, the encoding made by the mechanism depends on the
private inputs. Moreover, the decoding of the public announcement by each individual

depends also on the private input.

2. Information Structure

Inspired by Aumann (1987), we adopt the following definition:

Definition 1: A (finite) information structure (or a correlation device) for n players is a

list of n random variables Xi’ i = 1,...,n, defined on the same probability space and
ranged to finite action sets A;, i = 1,...,n.

One may think of the probability space as the state space. The knowledge of
each agent is modeled by a (finite) partition. A policy (or a strategy) of an agent is a
function from states to action which is compatible with his knowledge.

In simple words, an information structure is a distribution Q over A = x?zl A



An element a € A is chosen with probability Q(a) and a, is informed to 1.

Definition 2: A public mediated talk is defined by (finite) private signal sets, S;,

i =1,..,n, and an announcement map f from S = x Si to some finite set X (the set of

public announcements). Each player i chooses a private signal s; to be sent to a
mediator who makes the public announcement x = f(sq,...,8,).
The goal of the paper is to describe a mechanism that mimics the information

structure by independent random variables o; (call mixed messages) which take values in

S; and then by decoding maps 6; from §; x X to A,;. The map 6, allows player i to
interpret the public announcement x according to his private signal s;. The maps 6; are
sometimes called strategies.

Let ¢ = (oy,..,0,) and 6 = (81,---,0,) and denote by P 4 the distribution

induced on A by ¢ and 8. Now we are ready to state the main result of the paper.

Theorem: Assume Q is a distribution over A that assumes only rational values. Then

there exist a public mediated talk, ¢ and 0, that satisfy the following.

(1) P_(als;)) = Q(a) for every a € A and s; € S;.

(2) P_(a|s;x) = Q(a|ay),

where a; = Bi(si,x), for every a_;,s;

Remark 1: Notice that for any random variable t; ranged to §;, and for every s;,

P‘:i,u_i(.|si) = Pq(-ISi) and



Pt.,q_.('

s.X) = P _([s,,%).
Therefore, any unilateral deviation may not affect the distribution over A given s;, and

the distribution over A_; given (s;,X); both match the corresponding distributions

defined by Q.

Example 1: Consider the following 2 x 2 game:

¢ I
t 7,7 3.8
b 8.3 0,0

where A; = {tb} and A, = {f,r}, and the following correlated equilibrium

] I
t 12 1/4
Q =
b 1/4 0

The payoff associated with the correlated equilibrium cannot be sustained by any
Nash equilibrium nor by any combination of Nash equilibria. Thus, the players might
want to resort to some external mediating device that will generate the distribution Q.

They can do it obeying the following procedure. Each player selects privately a number



in {1,...,4} with probability 1/4 each and then transmits it to a deterministic machine
which produces a public message according to the following matrix:

1 2 3 4

1 c c ¢ b

Player I

Figure 1: The Signaling Matrix

The machine publicly announces x if players I and II selections were i, respectively,
and if the (i,)) cell of the matrix is x, x = c,b. In other words, S; = {1,....4} and o;
assigns each symbol a probability of 1/4. After receiving the public announcement, the

players play the following strategies.



The private selected signal . .and the public . . .then play
was. . . announcement is. . .
1 c t
1 b b
2 c t
2 b b
3 c b
3 b t
4 c b
4 b t
Figure 2: The Strategy of Player I (8)
The private selected signal . .and the public . . .then play
was. . . announcement 1s. . .
1 c ¢
1 b r
2 c ¢
2 b r
3 c r
3 b 4
4 c r
4 b 4

Figure 3: The Strategy of Player II (6;)




One can check that if the players play the strategies just defined, then indeed Q
is generated. Moreover, given these strategies, and the uniform selection of player II,
all the rows of the signaling matrix (Figure 1) are equivalent in the sense that all induce
the same distribution over joint actions. The same observation holds for player IL
Therefore, no player has an incentive to deviate neither in the communication phase
nor in the play phase.

To see that this example satisfies (1) and (2) of the theorem, notice that, given 0,
and 62, the conditional distribution, given any s;, induced by o4 and G, over Als Q.
Moreover, given s; and x, the probability of any a_; is exactly Q(a_,|a,;), where
a; = ei(si,xi). For instance, suppose that §y = 1 and x = c. Here, 91(1,0) =1,
Q(¢|t) = 2/3, and Q(r[t) = 1/3. And, indeed, given s; = 1 and x = c, the probability
that player 2 will play ¢ is 2/3, while the probability of r being played is 1/3.

Example 2: In generating Q we used public mediation that used only two symbols, a
/3 13

3 0
actions we must use three symbols. One way to do it is to use the following signaling

and b. In order to generate the distribution Q' = [ over the set of joint

matrix:

Figure 4



Here each player chooses one of the numbers 1, 2 and 3 with equal probability. The

strategies that induce Q' over the 2 x 2 game are easy to construct.

3. The Mediated Talk Extension of a Game

Let G be an n-player game. We will extend the game G to G* by adding a pre-
play communication phase. In this phase player i selects (possibly randomly) a signal, s;,
from a finite set S;. Then a deterministic mediator publicly announces f(s;,....s,). In
the play phase each player chooses an action which may depend on the signal s; and on

f(s{,...s,). G* is called a mediated talk extension of G.

Obviously, any joint strategy in such extension induces a correlated joint strategy
in G. We are concerned here with the inverse question--whether any correlated

equilibrium of G can be generated as a Nash equilibrium of a mediated talk extension

of G. We answer this question in the affirmative.

Corollary: Let C be a correlated equilibrium of G. Assume that all the probabilities of
C are rational numbers. Then there exists a mediated talk extension of G having a

Nash equilibrium that induces the distribution C over the set of joint actions of G.
Remark 2: The mechanism described here defines only Nash equilibrium of the

extended game and not a strong equilibrium. Thus, it is immunized only against

unilateral deviations.

4. The Proof of the Theorem

We will show the proof in the two player case. This proof extends easily to the n
player case. Suppose that the Q is a distribution over A. Q = (cij/d)O::iSn—l,O <jem—1°

. and d are integers. The signaling matrix to be constructed is of the size dn

where all ciJ



x dm. Actually, it will be described as a n x m matrix where each cell is a d x d matrix.
Let ay,....ay be a string of y symbols. The latin square corresponding to this

string is the following matrix

a, a,
a, aa,
a, 4,3,
a,a, a,

For a vector b0,0’bO,l""’bn—l,m—l of nm symbols we denote by
K(bg g:bp 1P —1.m 1) the latin square corresponding to the string which consists of
€00 times b0,0 and then 0.1 times bO,l’ and so forth. Thus, K(bO,O’""bn—l,m_l) s a

d x d matrix (because } ¢ = d).

Example 3: As in Example 1, let Q - (2/4 1’4]_ In this case
1/4 0
a b ¢
a b ¢ a
K(a,b,c,d) =
b c a a
¢ a a

This is so because 0 = 2, o1 = €10 = 1 and €11 = 0. Therefore, in every row and

column, a appears twice, b and ¢ appear once, and d does not appear at all.  //

Now fix n x m different symbols (bij)OSiSn—l O<j<m - 1° In what follows, for any

integers x and y, x(n) and y(m) will stand for the numbers x modulo n and y modulo m,



respectively. Before we get to the announcement map defined by the signaling matrix
we need one more convention. When (bij)i,j is referred to a string, rather than a matrix,
the string is defined in a natural way: the first row first then the second row and so
forth.

The signaling matrix consists of an n x m grand matrix where for every

O<k<n—land0<¢<m — 1in the (k) cell of it stands the matrix

K(b; 1 kn),j+e(m)o<isn—1,0gj<m-1

Let now §; = {0,...n - 1} x {1,....d} and §, = {0,...m — 1} x {1,...,d}. For every
(k,d;) € S; and (¢,d;) € S, define f{(k,d;),(£,d;)) to be the (d;,d,) entry of the matrix

standing in the cell (k,#) of the grand matrix.

Example 3 (Continued): With the distribution of Example 1, the grand matrix is 2 x 2

(the size of the original game) consisting of cells which are 4 x 4 matrices. Let
b0,0’bO,l’bl,O’bl,l be four different symbols. According to the construction in the (0,0)

cell of the grand matrix stands the matrix

bOO bOO bOl blO
bOO bOl blO bOO
Kby} = K(bgy,bg1,b10:011) = e b b b
01 10 00 00
blO bOO bOO bOl

Recall that K(*) is a latin square where bij is replicated S times in each row and

column. In the (0,1) cell of the grand matrix stands the matrix



10 bUl bOl b()(} bll
bOl bOO bll bOl
K®ij+1ei = KCorboo1i:bio) = | -
00 11 01 01
bll bOl bU] bOO

To facilitate the reading set bpy = x, by; =y, bjg = W, by; = z The signaling matrix is

therefore

X X y wW Yy X z
X y w X y x z Y
y w X X X Z y
w X X y Z Y X
w W Z X zZ Z W

w zZ X W Z W Y

Z X W W W Yy Z Z
X W Wz y z 2z W

For instance, if d1 =2, d2 =3,k = 1and ¢ = 0, then f equals x. One can see that any
symbol appears in any row and column only once or exactly three times. Moreover, if,
for instance, x appears only once in a certain column, then it appears two more times in
its row. Such an x, that appears once in its column will later be associated with the
right action of player II. Since it appears only once player II knows what player I is
going to do; player I will play top because according to the distribution Q the
probability of top given right is 1. Furthermore, when player I is prescribed to play top
he should assign probability 2/3 on left and 1/3 on right (these are the conditional
probabilities), and therefore in the same row there appear two more x’s which

correspond to the left column. //

Now that S;, S, and f are defined, in order to complete the description of the
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mediated talk it remains to define o; and 0, 1 = 1,2. o;is uniform over §; and 0, 1s
defined as follows. If the public announcement is bij then 6, is a; = (i — k)(n) and 6,
isa, = (j — £)(n), where k and f are the respective signals sent. Notice that 0, does
not depend on the second index of the public announcement and 6, does not depend
on the first.

We first show that if both players follow the decoding maps, 6;, just described
then the distribution over A given any s; is exactly Q. For any cell (k,f) the
corresponding matrix 1s K (bi+k(n),j+£’(m))’ where in each row there are G times the
symbol b; +k(n),j+£(m)’ Moreover, each symbol in any row is assigned the same
probability. In the case where b; +k(n),j+£(m) is the public announcement then by the
above decoding map, player I's action is a; = ((i + k)(n) - k)(n) = i and player II's
action is a, = ((j + £)(m) — ¢£)(m) = j. Therefore, the joint action (i,j) is prescribed S
times out of a total of d. In other words, the joint action (i,j) is prescribed with
probability Cij/d' Since this is true for any cell, (i,j) is assigned the probability Cij/d for
any row (namely, for any s;). This shows (1).

Next we show (2). In other words, for every signal s; and public announcement
x, we show that the probability ofa_; € A_, is Q(a_j |a1), where a; = 64(s1,%).
Suppose that indeed player II abides by o,. Thus the choice of players II is uniformly
distributed over the columns of the signaling matrix. Fix an arbitrary (k,d;). We now
take a look at the d1 row of the matrices that stand in the cells (k,0),(k,1),....,(k,m — 1)
of the grand matrix. In the (k,0) matrix there are S times bi+k(n),j(m); in the (k,1)
matrix there are S times bi+k(n),j+1(m)’ and so on. Thus, the symbol bi+k(n),j appears
Lo ¢ j—f(m) times, out of which (recall o,) €ij— £(m) times are associated with the
action of choosing j — ¢(m) column.

Rearranging the parameter we obtain that the symbol b; +k(n),j+¢(m) 3PPeArs

¥, ¢;, times. So all the symbols with the first index i + k(n) appear }, _c;, times.
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Moreover, out of these ¥ c;, appearances c;; are associated with the j—th column. For
cach one of these symbols 6, obtains the value i (i.e., 0y(s;.x) = i, where s; = (k,dy)
and x = bi+k(n),j+1’(m))' Therefore, given (s,x), the probability of (i,j) being
prescribed by (04,6,) is cij/E : i Which is Q(ji). Since the same argument holds for

player II, it proves (2). //

Proof of the Corollary: Let C be a correlated equilibrium in G. The theorem states

that there exists a mediated talk which induces the distribution C over A (this is a
consequence of (1)). In order to show that this mediated talk defines a Nash
equilibrium of the extension we show that no player can gain by adopting another mix
message G; or by adopting another decoding map éi‘ By (2), for every s; and x which
satisfy 0i(s;,x) = a;, P(a_;ls;x) = Q(a_jla;) given o_; and 0. Since C is a correlated
equilibrium, a; is a best response against Q(a_;|a;). Therefore, given o;, 6 _; and 0 _;,
0, (which prescribes a;) is a best response. By Remark 1, any alternative t; does not
change properties (1) and (2) and therefore whatever the alternative:

L. the probability of playing a is the one assigned by C for any a € A, and

2. whenever a; is prescribed it is indeed an optimal response.

We have proved that (,,6,) is a best response (o _;,6 _;) and therefore it is a

Nash equilibrium.  //

Remark 3: In the construction of the signaling matrix we introduce the grand matrix
which consists of the submatrices K(®). The first components of the private messages
(sent by the players to the mediator) select the specific K(®) that becomes active. The
second components (d; and d,) determine the public announcement from the K(*)
already chosen.

One may consider all the K’s as jointly controlled devices. The active device is
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jointly chosen by the players. Then, the players jointly control the lottery by d; and d,.

5. From Correlated to Communication Equilibrium

Forges (1986) introduced the concept of communication equilibrium. In a game
where players have different types, the correlation applied may depend on the specific
types of the players. Thus, before the mediator correlates between the players, he
should receive some information from the players that reveals (or at least partially

reveals) their types.

Example 4: Suppose that player I may be of two types: 1 and 2, which are equally
likely. Player I knows his realized type while player 1I knows only the prior distribution

over player ['s type: (1/2,1/2). Let the payoffs be

c r Probability

t 6.6 38
type 1 172
b 8.3 0,0

type 2: . 1/2
b 38 6,6

Figure 5

Consider now the following mediation. If player I tells the mediator that he is of type
1, the latter chooses one of the joint actions (1,£), (t,r), and (b,¢) with probability 1/3

each. However, if player I reports that he is of the second type, then the mediator
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chooses each of (r,b), (r,t) and ({,b) with probability 1/3 each. Whatever the choice of
the mediator, he informs player I of the row chosen and player II of the column chosen.

One can see that, given the mediator just described, player I has the incentive to
reveal his true type. Notice that, once player II receives some information from the
mediator, his prior over player I's type changes. For instance, if { is sent, then the
posterior ascribes type 1 the probability 2/3 while type 2 is ascribed only 1/3 (as opposed
to the prior 1/2).

Notice that, if the players play the action sent by the mediator, then the process
describes an equilibrium and no player has an incentive to deviate. This conclusion
depends strongly on the specific posteriors. Therefore, any mechanism should always
generate the same posteriors.

In order to generate this communication equilibrium by a mediated talk we adopt

the matrix of Example 2 and define two signaling matrices, one for each type:

ddb
d ¢ c|
dcb

as in Figure 4 for type 1, and

d dc
b ¢ ¢
bdb

for type 2. The private messages of player IT are as in Example 2: {1,2,3}. However,
player I has also to inform the mediator of his type. If the type is 1, then the active
signaling matrix is the first. Otherwise, it is the second matrix. One can confirm that
the posteriors of player II are either (2/3,1/3) or (1/3,2/3), as needed.
Notice that, if instead of ( 0 1/ 3], the distribution on the second type’s matrix
0 1 /4] Y3 1/3

would have been ( for instance, then the matrix of Figure 4 could have not
14 12
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been used for the first type’s matrix. //

Our construction enables one to design a mediated talk that applies to any
communication equilibrium. The idea is to find a common denominator to all
probabilities involved in all matrices and then to define for each correlated distribution
(attached to each configuration of types) a mediated talk described in Section 4. Each
player sends a private message (possibly a stochastic signal which depends on his type)
and then the mechanism selects accordingly a mediated talk and chooses from it a

public announcement.
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An element a € A is chosen with probability Q(a) and a is informed to 1.

Definition 2: A public mediated talk is defined by (finite) private signal sets, S,
i = 1,...,n, and an announcement map f from S = x Si to some finite set X (the set of
public announcements). Each player i chooses a private signal s; to be sent to a
mediator who makes the public announcement x = f(sl,...,sn).

The goal of the paper is to describe a mechanism that mimics the information

structure by independent random variables o; (call mixed messages) which take values in

S; and then by decoding maps 6 from S; x X to A;. The map 6; allows player i to
interpret the public announcement x according to his private signal s;. The maps 0; are
sometimes called strategies.

Let o = (5¢,....0,) and 6 = (04,...,.8,) and denote by PC‘B the distribution

induced on A by ¢ and 6. Now we are ready to state the main result of the paper.

Theorem: Assume Q is a distribution over A that assumes only rational values. Then

there exist a public mediated talk, o and 6, that satisfy the following.

(1 P.(als;) = Q(a) foreverya € Aands; € S;,

(2) P_(a|spx) = Q(a |3y,

where a, = 8(s;.X), for every a ;.

Remark 1: Notice that for any random variable t; ranged to S;, and for every s;,

P, , (ls) = P,(ls) and



in {1,..,4} with probability 1/4 each and then transmits it to a deterministic machine

which produces a public message according to the following matrix:

Player I

Figure 1: The Signaling Matrix

The machine publicly announces x if players [ and II selections were i,j, respectively,
and if the (i,j) cell of the matrix is x, x = c,b. In other words, Si = {1,...,4} and of
assigns each symbol a probability of 1/4. After receiving the public announcement, the

players play the following strategies.



One can check that if the players play the strategies just defined, then indeed Q
is generated. Moreover, given these strategies, and the uniform selection of player II,
all the rows of the signaling matrix (Figure 1) are equivalent in the sense that all induce
the same distribution over joint actions. The same observation holds for player II.
Therefore, no player has an incentive to deviate neither in the communication phase
nor in the play phase.

To see that this example satisfies (1) and (2) of the theorem, notice that, given 6,
and 6,, the conditional distribution, given any s;, induced by oy and o, over A is Q.
Moreover, given s; and X, the probability of any a_, is exactly Q(a_;la;), where
a; = Bi(si,g). For instance, suppose that 51 = 1 and x = ¢c. Here, 61(1,c) = t,
Q(f|t) = 2/3, and Q(r|t) = 1/3. And, indeed, given s; = 1 and x = c, the probability
that player 2 will play ¢ is 2/3, while the probability of r being played is 1/3.

Example 2: In generating Q we used public mediation that used only two symbols, a
13 173

/3 0
actions we must use three symbols. One way to do it is to use the following signaling

and b. In order to generate the distribution Q' - ( over the set of joint

matrix:

1 2 3
l/ddb

\‘
21 d ¢ ¢ |
31 b ¢ b |

. Figure 4



« dm. Actually, it will be described as a n x m matrix where each cell is a d x d matrix.
Let ag,y be a string of y symbols. The latin square corresponding to this

string is the following matrix

al ay

a?, ayal

a, 4,3,
aa, a,_,

For a vector by ,bq 110y _1 —1 of nm symbols we denote by

K(bO,O’bO,l’-"’b ) the latin square corresponding to the string which consists of

n—1,m-1
0.0 times b0,0 and then €01 times bO,l’ and so forth. Thus, K(bO,O""’bn—l,m—l) Is a

d x d matrix (because Y cjj = d).

24 174

Example 3: As in Example 1, let Q = (
1/4 0

]. In this case

a
K(ab,c,d) =
b
This is so because cyy = 2,¢51 =¢; o = land ey = 0. Therefore, in every row and
column, a appears twice, b and ¢ appear once, and d does not appear at all.  //

Now fix n x m different symbols (bij)OSiSnAI Ojsm—1° In what follows, for any

integers x and y, x(n) and y(m) will stand for the numbers x modulo n and y modulo m.



10 bOl bO] b(l) bll

bOl bm bll bOl

K(bij+12))j = K®o1:booL11:P10) = by b, by b
1

bll bOl bf]l bOO

To facilitate the reading set bgg = X, byy =y, by = w, byy =z The signaling matrix 1s

therefore

X X y wW ¥y X z
X y w X z y
y w X X X Z y
w X X Yy z Y X

£
£
N
>
N
N
£
<

£
N
™

w w
Z X W W 2wy z Z
z

For instance, if d1 =2, d2 =3,k = 1and ¢ = 0, then f equals x. One can see that any
symbol appears in any row and column only once or exactly three times. Moreover, if,
for instance, x appears only once in a certain column, then it appears two more times in
its row. Such an x, that appears once in its column will later be associated with the
right action of player II. Since it appears only once player 11 knows what player I 1s
going to do; player I will play top because according to the distribution Q the
probability of top given right is 1. Furthermore, when player [ is prescribed to play top
he should assign probability 2/3 on left and 1/3 on right (these are the conditional
probabilities), and therefore in the same row there appear two more x’s which

correspond to the left column.  //

Now that Sy, S, and f are defined, in order to complete the description of the
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j are associated with the j—th column. For

each one of these symbols 64 obtains the value i (i.e., Bl(sl,x) = I, where s; = (k,dl)

Moreover, out of these Y ; €j; appearances c;
and x = bi+k(n),j+€(m))' Therefore, given (sq,x), the probability of (i,j) being
prescribed by (6,,9,) is cij/z ; Cip» which is Q(jli). Since the same argument holds for

player IL it proves (2). //

Proof of the Corollary: Let C be a correlated equilibrium in G. The theorem states

that there exists a mediated talk which induces the distribution C over A (this is a
consequence of (1)). In order to show that this mediated talk defines a Nash
equilibrium of the extension we show that no player can gain by adopting another mix
message G; or by adopting another decoding map éi' By (2), for every s; and x which
satisfy 0,(s;,x) = a;, P(a_;[s;x) = Q(a_j|a;) given o_; and 8. Since C is a correlated
equilibrium, a; is a best response against Q(a_;|a;). Therefore, given o}, o_; and 0_,
6; (which prescribes ;) is a best response. By Remark 1, any alternative 1, does not
change properties (1) and (2) and therefore whatever the alternative:

L. the probability of playing a is the one assigned by C for any a € A, and

2. whenever a, is prescribed it is indeed an optimal response.

We have proved that (5,,6;) is a best response (o _;,0_;) and therefore it is a

Nash equilibrium.  //

Remark 3: In the construction of the signaling matrix we introduce the grand matrix
which consists of the submatrices K(#). The first components of the private messages
(sent by the players to the mediator) select the specific K(#) that becomes active. The
second components (d; and d,) determine the public announcement from the K()
already chosen.

One may consider all the K’s as jointly controlled devices. The active device is
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chooses each of (1,b), (r,t) and ({,b) with probability 1/3 each. Whatever the choice of
the mediator, he informs player I of the row chosen and player II of the column chosen.

One can see that, given the mediator just described, player I has the mcentive to
reveal his true type. Notice that, once player II receives some information from the
mediator, his prior over player I's type changes. For instance, if ¢ is sent, then the
posterior ascribes type 1 the probability 2/3 while type 2 is ascribed only 1/3 (as opposed
to the prior 1/2).

Notice that, if the players play the action sent by the mediator, then the process
describes an equilibrium and no player has an incentive to deviate. This conclusion
depends strongly on the specific posteriors. Therefore, any mechanism should always
generate the same posteriors.

In order to generate this communication equilibrium by a mediated talk we adopt
the matrix of Example 2 and define two signaling matrices, one for each type:

ddb

d ¢ cf,
d cb

as in Figure 4 for type 1, and

ddec

b ¢ ¢,

bdb
for type 2. The private messages of player II are as in Example 2: {1,2,3}. However,
player I has also to inform the mediator of his type. If the type is 1, then the active
signaling matrix is the first. Otherwise, it is the second matrix. One can confirm that
the posteriors of player II are either (2/3,1/3) or (1/3,2/3), as needed.

Notice that, if instead of [ 0 1/3], the distribution on the second type's matrix

, for instance, then the matrix of Figure 4 could have not
1/4 1/2

would have been [
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