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Abstract: We examine equilibria in sequential auctions where a seller can post a reserve price but,
if the auction fails to result in a sale, can commit keeping the object off the market only for an
exogenously fixed period of time. We restrict attention to cnvironments where bidders have
independent private values and where the support of the bidder types lies strictly above the valuation
of the seller. In the case where the seller sells by second price auction in each period, there is a
unique perfect Baycsian cquilibrium. A form of revenue equivalence is shown. There exists a perfect
Bayesian equilibrium of repeated first pricc auctions with the feature that in every period, the seller’s
expected revenuc from the continuation is the same in cither auction mechanism. As the length of
time the seller can commit to keeping the abject off the market goes to zcro, seller expected
revenues converge to those of a static auction with no rescrve price.  As the number of bidders
becomes large, the seller expected revenue approaches the revenue from an optimal static auction.
We also characterize a parametrized auction game in which the simple cquilibrium reserve price
policy of the seller mirrors a policy commonly used by many auctioneers.
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1. Introduction

Regular participants in the now defunct Christies™ auctions of fine wines in Chicago often
experienced the sensation of deja vu. The same rare bottles of wine seemed to make an
appearance in many different auctions. Similar phenomena occurred in government auctions of
lumber tracts, oil tracts and distressed sales of real estate, though with somewhat less mystery -
- by policy, properties that failed to sell at earlier auctions were put up for bids at the following
auction. Either implicitly or by explicit policy. auctioneers were acknowledging the impossibility
of resisting the temptation to try to resell an object that failed to meet a reserve price in an
earlier auction.

it has long been recognized in the literature on bargaining that solution concepts of
dynamic bargaining games must recognize the constraints on agents imposed by sequential
rattonality. Atthough in many environments, bargainers would like to impose take-it-or-leave-it
offers, they often cannot credibly commit never to attempt to renegotiate in the event of no sale.
This 1nability often prevents a trader from extracting much surplus from the transaction.
Solutions to dynamic bargaining games. therefore, frequently impose as an additional constraint
some torm of sequential rationality. A well-known result from the literature on auctions is that
in many environments, a seller does best in the class of Bayesian incentive compatible
mechanisms by conducting a standard auction with a reserve price. Given both the formal and
tnwuitive similarities between reserve prices and take-it-or-leave-it ofters, it is curious then, that
so little attention has been paid to the question of a seller’s inability to commit to taking the
object off the market if no sale occurs.

[n this paper. we wed the literature on one-sided offer sequential bargaining with that of



optimal auctions to characterize the dynamic path of reserve prices in auctions in which a seller
can commit only to an exogenously fixed period of time. We show that if bidder types are
independently and identically distributed such that the value of the lowest possible bidder type
exceeds the seller’s use value, then in a game consisting ot repeated second price auctions with
reserve prices, there is a unique perfect Bayesian equilibrium path of reserve prices which
decline deterministically over time. We also show that there is an equilibrium in the repeated
tirst price auctions with reserve prices which generates the same expected revenue for the seller
as the sequentially optimal repeated second price auction. In both cases, as the length of time
which the seller can commit to keeping the object off the market goes to zero, her revenue
converges to her expected revenue from an auction with no reserve price. In contrast to the
dynamic monopoly case. however, as the time between auctions shrinks to zero, the reserve
price remains above the lowest possible bidder valuation. As the number of bidders becomes
large. the reserve prices converge to the static optimal reserve price. [n a recent study of auction
mechanisms by Bulow and Klemperer (1993) it is shown that an auctioneer may opt to seek
more bidders and impose no reserve price rather than attempt (0 impose an optimal reserve
price. Our results in Section 3 provide an explanation of why a seller may just as well forgo any
atternpt to post reserve prices. In Section 4, we illustrate an equilibrium path of an auction game
in the case of "no gap” with the characteristic that reserve prices fall in fixed proportion -- a
feature of sequential reserve price policies actually followed by some auctioneers.

2.. Equilibrium in Two Sequentially Optimal Auction Games

The seller of a single good for which she has zero use-value attempts to sell it to a

market ot n potential buyers. Each buyer, b. values the object in monetary units, x, which is ex



ante independently and identically distributed according to the distribution function, F(®) defined
over support [L,v,], vy < . It is assumed that F(®) has a strictly positive density f(®). The
seller can commit in any given peried to sell the good via a second price auction with a reserve
price. However, she cannot commit to never putting the object up for sale again one period later
if bids fail to meet the reserve price in the current period. A sequential auction trading game
thus emerges consisting of a potentially infinite sequence of second price auctions with reserve
prices. In any period t = 0,1,2,..., if the seller obtains prices, p,. her payoff is given by &p,
if a bidder with valuation, x, obtains the object and pays p, in period t, his payoff is §'(x, - pJ.
otherwise he receives zero. Incorporating both the demand for sequential rationality and for
sophisticated learning by the seller, the solution concept we focus on is perfect Bayesian
equitibrium.’

In the following, we introduce the notation, X,, to denote the random variable which is
the highest of the n bidders’ valuations and Y, to denote the random variable which is the

highest of n-1 bidders™ valuations. The corresponding distribution and density functions of Y,

are
Fy (YD =F" 1Y), dFy (Y))~f, (YD) =(n-DF"(Y)AY)).
Often the phrase "beliefs v," will be used as shorthand for the state of a game in which the seller

believes that all remaining bidder valuations lie in [1,v) in period t. The skimming behaviour

this terminology implies is justified by the following lemma.

Lemma 0:1) /In any pBe, if a bidder submits a bid above the posted reserve price, R, his unique

* For a definition of perfect Bayesian equilibrium, see Freixas, Guesnerie and Tirole (1983).
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weakly dominant strategv is to bid B(v) = v.

ii) (Successive skimming) In any pBe following any history h, with posted reserve price, R, for
any bidder, if it is a best response to submit a serious bid for a bidder with valuation v, then it
is a strict best response for a bidder with valuation v’ > v to submit a bid.

Proof: Proofs of Lemmas are provided in the Appendix.

We begin by iteratively defining a sequence of optimization problems. The idea (similar
to that of Fudenberg, Levine and Tirole(1986)) is to consider games which artiticially must end
after at most i periods with the imposition of a reserve price of one. It is then shown that for
some seller beliefs, in all equilibria, the game will end in at most i periods and yield outcomes
equivalent to the solution of the optimization probiem.

Fix
. v rX
Yo=to=l, L= [ "nY AX)dFy dX,, ry=l.
Define the sequences,*

(¥ 4o 1% )0 (rhies (Mo (g1

iteratively as follows:

FEWIFy ()=(1-8)XFy () +8(r,_,(w,Y,;(W)Fy W) + [ "Y,dF,),

* The optimization problem is stated in terms of choosing bidder types who submit serious
bids in a given period rather than choosing reserve prices. Since it will be shown that for each
reserve price there is a unique partition of bidder types who submit serious bids, this behaviour
will correspond to equilibrium behaviour.



8,V xw)=r(x,winfy, ()[F(v)-F(0)]
[ Fn¥ AX,)dF, dX, 8T, (),

I j(vr) =mzs.xmfpweyj_1 (x)gj(vr,x,w),

1v)= argmax, ., (g(v,x,w)| for some wey, (0},

Xsv

¥, (v)=sup{y,(v)}.

The sequence of tunctions, l'j{V.","(V)) denote the lowest reserve price which would induce
a bidder of type v to submit a serious bid. Observe that, assuming this function is increasing,
the lowest bidder type to win at the current reserve price trades off winning at the reserve price
this period against the probability weighted sum of the next period reserve price and the second
highest bid. The functions g(v,x,w) characterize the return to a seller when the lowest bidder
types who submit bids this period and the next are x and w respectively. The functions I, are
the maximized values of this function subject to what will be the sequential rationality constraint
on subsequent choices of bidder cut-offs. The sequence of correspondences +,(v) are derived
from the same seller optimization problem and determine the seiler’s sequentially optimal cutoft
bidder type when her beliefs are that the remaining types lie in the interval [1,v]. The upper
semicontinuous function +",(v) is constructed by choosing the maximum from -y(v) for every v.

For any i, assume that this sequence is defined up to i-1 and make the following
induction hypotheses for all | < 1

(H1) I, increasing and continuous.

(H2) v,(x) < xand +, is compact-valued, increasing and upper hemi-continuous



50 ¥ is increasing and upper semi-continuous.
(H3) r(x,w) is strictly increasing in both of s arguments, continuous in x and

upper semi-continuous in w and satisfies r(x,v) < x for v < x and, where

defined,

dlr (x,7,;()Fy (x)]
[r;xY,;x Y, 2+, (2. sh

Observe that (H1-H3) hold for 1-1 = 1.
Lemma One: If (HI-H3) hold for i-1, (HI-H3) also hold for i.

Define

z,= sup{v,|y (v)-1}
z.= min{sup{v,lY:(V:)S*Ti—L}’vH}

Lemma Two: z, > [ and there exists an N < o, such that 7, = v.

Observe that for any v, < z,, v,(v) = . (v), IL(v) = II,(v) and r{x,y".(x)) = .
X,y .(x)) for x < v,. Thus, by Lemma Two, we can define some -y, v, IT and r independent

of 1 over {l,v,]. Fix a v and define v, so that v, € ~{(vy)}, v. = v'(v.;) and R, so that R, =

r{v..,.v (v, ). Observe that since v'(®) is increasing, such a sequence is generically unique in

V-

Theorem One: [n the sequential second price auction game, in any perfect Bayesian

equilibrium, in any period t > 1, if the belief is v, the seller’s best response reserve price is R,



= riv,_,,y*v,.)) for v,.;, € y{v). All bidders with type x = y*{v) submit bids equal to their
own value. All other bidders do not submit serious bids. In period t = I, any reserve price R,
= riv,y*(v,)) for v. € v(v,) is an equilibrium reserve price offer. Along the equilibrium path,
fort > 2, the unique equilibrium reserve price is R, = r{v" (v),v (v*(v))).

Proof of Theorem One: The proof proceeds by defining necessary conditions of bidder and
seller strategies iteratively over the support of bidder types via two lemmas. Let R°(v,h) the
seller’s best response reserve price in some pBe, o, following a history, h, and with beliefs that
bidder types lie in [l,v] and let P°(v,h) be her expected payoft. Condition Cl(a.j} partly

characterizes the strategy of the seller.

Cl(aj):Va,¥v<a,vh, , R°(v,h) =rj(x,y;(x)), Jorxey (v).

Condition C2(j) characterizes strategies ot bidder types below z, and partially for types above

C2():Vo,Vh, W<z, if R>riv,y ;v)), No Bid
Vv, if Rtsrj(vt,minyj(vr)), Bid B(v)=v,

Lemma Three’: If CI and C2 hold for j= i-1 and a = z,,, then CI holds forj = i and a =

* Observe that the optimization problems as stated are "as if” the seller can also choose in
period t her most tavourable cutoff level (among her optimal responses) in period t+1 if the
object fails to sell. This 1s not true in general since ¥(v,,,) may not be single valued. Lemma
Three illustrates that since if there were a possibility that the tuture belief i1s unfavourable (that
is. v too low) then the upper hemicontinuity and monotonicity of the optimal choice tunction
would have allowed the seller to do better by selecting a slightly higher cutoff level this period.
This would yield only first order costs in the probability of a sale but increase the reserve price
by an amount bounded above zero. Therefore, for t > 2, the equilibrium reserve price is R(v)

= (7 (V)7 (v (v)Y).



Lemma Four: [f C2 holds for j = i-1 and CI holds forj = i and a = z, C2 holds for j = 1.

A simple adaptation of Lemmas Three and Four show that (C1) and (C2) hold for i = 1.
Therefore. we can now apply Lemmas Three and Four iteratively to specify necessary conditions
of equilibrium behaviour over the whole interval, [1,vy]. Sufficiency is not quite shown. The
result would follow simply if y(v,) was known to be single-valued. In general it is not, but the
argument given in Gul, Sonnenschein, Wilson (1986) is easily adapted to show sufficiency as
well. Suppose the seller posts an out of equilibrium reserve price R’, r{v.miny(v})) < R’ <
r{v,v"(v)), for some v. Subsequent randomization of the reserve price off the equilibrium path
is a characteristic of the equilibrium in order to convexify the correspondence, ~(®). All bidder
types v > v submit bids and all bidder types v" < v do not submit bids. In the next period,
the seller randomizes between her two best response choices of v, ,, v'(v) and min y(v) by
offering either r(min ~(v),y (min ~(v))) or r(%"(v),v (+'(v))) so as to make bidder types v and

higher willing to submirt bids in the current period. [

Corollary One: For anv seller belief, v, let {v,_.}. i =1,2,...,N, be the subsequent seller beliefs

along the (unique) equilibrium continuation. The seller’s expected equilibrium revenue can be

expressed as

if Yeei F(Vr)—F(V) n-
nEl 8 (P @

Proof of Corollary One: An adaptation ot an argument in Myerson and Satterthwaite (1983)
shows that, it U(v) ts the expected utility of a buver in any Bayesian equilibrium, then dU(v)/dv

= §""'F™!(v) almost everywhere. where t(v) is the equilibrium period of trade of a bidder of type



v. By Theorem One, this period is deterministic (up to a selection of v,.,). [ntegrating by parts

yields

af “UeIRWav=Y 6! Fr ) -Fw)ay

tele1

Using the definition of total expected surplus as the sum of seller’s expected revenue and total

expected buyer surplus and rearranging terms yields (2). [

Now consider a sequential auction game in which the seller conducts first price auctions
in every period. [t is a well-known result that in static independent private values auctions with
the same reserve price, both auctions yield the same expected seller revenue. Theorem Two
shows that a version of this result extends to the sequentially optimal auctions and also illustrates

that along the equilibrium, the reserve prices are the same in both mechanisms.

Theorem Two (Revenue Equivalence): There exists a perfect Bavesian equilibrium of the
sequential first price auction such that along the equilibrium path, for every seller belief {1,v],
the equilibrium reserve price and the seller’s expected revenue along the equilibrium is the same
as the Sequentially Optimal Second Price Auction.

Proof of Theorem Two: The proof proceeds by characterizing strategies and showing that they
comprise a pBe of the sequential first price auction. Let r{v.y"(v)) and (v) be as in the proof
of Theorem One.

Seller Strategies: For every seller belief, [1.v), If R; = r(v,y'(v)), post a reserve price R =

*

r(v (v). Y (Y (). If r. = r{v,miny(v)) < R, < r{v,y"(v)) = r post reserve price R, = 1.

with probability 8 and R, = r* with probability 1 - 3 where 3 satisfies
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R, =B +r(miny(v),y "(miny{v)))~(1-B)r(y “(v),y (v "(v)))
Seller Beliefs: For any beliefs {1.v,)) in period t-1, if r{v,,miny(v))} < R, < r(v,,¥(v)), no bid
is submitted, beliefs in period t are {1,v,]. If I > R_,. and no bids are submitted, beliefs in
period t are the same as in period t-1. If R, > r(v_;,v'(v.,)), beliefs are [1.v,,).
Buyer_Strategies: In every period. if v.., = p(R) where p is the inverse of r(v,y"(v)}, all v <

v,,; do not submit bids. All v = v, submit bids, B(v;R), where

BO;R)Fy, ()= "xdF, v, 3)
B(v, ;R)=R,

First suppose that this profile of strategies comprise a pBe. In this case, then for any
selier belief, [1,v], the sequence of bidder types who bid in all subsequent periods is the same
as in the second price equilibrium, that is, trade occurs with the same bidder type in the same
period as the second price auction. A simple adaptation of the Myerson-Satterthwaite reasoning
then implies that the expected seller revenues are the same. The definition of the seller strategies
implies that the equilibrium reserve prices are the same. Thus as long as we can show that the
strategies form a pBe. the theorem is proved.

Note that the seller beliefs satisfy Bayes’ rule given the buyers’ strategies.

To show the optimality of buyer strategies, let the seller beliefs be [1,v,) and the reserve
price be R and v, = p(R). Let r. = r(minvy(v, ).y (miny(v,_. D) and (v (v, ).y (V' (vie D)
= r". Finally suppose that buyers follow the proposed strategies in all later periods. Then, by
definition of the bidding functions next period, if the reserve price is r', bidder type v,., bids

where the constant term is determined by (3). A similar equation holds for a next period reserve

11



B, )Fy (v,.)=[ 'xdF,y ~c
=" xdFy +Fy (v

Y (vni

price of r.. Therefore, given the strategies of the other bidders, a bidder of type v, who bids

when the current reserve is R, will only bid R, and receives expected utility
(vm_R:)FYl(vm) (4)
If v,,, waits until next period, his expected utility is

8(v,,; BB, ;r )-(1-P)B(v, ir NFy (v,,))

=80y, -B([ " xdFy 1 Fy (miny(v,.,))) (5)
A=Y wdFy o Fy (0

By definition of v,,,. and 3, (4) equals (5) so bidder type v,. is just indifferent between bidding
this period and next. Since this period utility increases faster in bidder type than next period
utility, that means that all bidder types above v,,, strictly prefer bidding and those below, strictly
prefer not to bid. Finally, standard arguments trom first price auctions illustrate that the bid
function (3) is a best response for bidders who bid in period t.

Finally, to show the sequential optimality of the seller’s strategy, suppose that the seller’s
strategy is sequentially rational for all beliefs {1,v] with v < z. Then, for any beliefs satisfying
this restriction, a further application of Myerson-Satterthwaite illustrates that the expected payoff
for the seller from the pBe is the same as II(v). An argument similar to that of Lemma Three
tor Theorem One. then shows that there is an ¢ > 0, such that for all v < z + ¢, a reserve

price such that v,,, < z, is optimal and therefore. given proposed bidder behavior, expected



equilibrium payotfs are again given by II(v). The same argument then is applied to v < z, +

2¢ and so on. That the proposed seller behavior is optimal for v < z, is straightforward to

show.

3. Comparative Statics

When a single seller faces a single buyer and has the strategic power to make take-it-or-
leave-it offers in every period, Gul\Sonnenschein\Wilson (1986) prove, formally, a conjecture
of Coase that as the time costs of waiting until the next period go to zero, the expected profits
of the seller converge to the profits she would enjoy against only the buyer with the lowest
valuation. That environment, of course, is a special case of the environment analyzed here. And
a generalized version of the Coase Conjecture also holds. Theorem Three shows that as the time
costs go to zero, the expected seller revenues converge to the expected revenues from an auction
with a reserve price set at the lowest valuation. In the case of more than one bidder, this

corresponds to the revenues earned in a no-reserve price auction.

Theorem Three: (Coase Conjecture)
. v X,
lim,_,[(v,)=( " [ YnfiX )dF, dX,

That is, as 5 approaches one, the expected revenues of the seller is the same as in a game with
no reserve price.

Proof of Theorem Three: (Part of this prootf tollows Tirole (1988)) We show first that for any
e > 0 there is an N such that all equilibria of games with I > é > ¢ end with probability one

after N periods. independent of . For any 6, Theorem One shows there exists a unique

13



equilibrium in which the decision of bidders whether to participate given a current period reserve
price is time independent and the seller’s profits depends only on the current state, v,. For any
& and pBe, let v, v,.,. V..; be the equilibrium cutoff levels of participating bidders in periods
t,t+1 and t+2 respectively with v,,. = z, and define F,, = F(v,;). Note that given the
current state, v,, since bidder strategies are stationary, a seller could always have chosen a

reserve price to induce a next period state v,,, instead of v,,, so we must have

RE!nIF,F, 1+ [" [ “nY AX)dF, dX, +
Yiel™ Vi1

n-1 Vel x!
6R;+LFH2 n[Fpl _Fp?.] +6f f
Yiez ¥ Va2

2R F3'nlE,~F, ) [ " n¥ fX )dF, dX,+
Va2 ¥ ¥1e2

nY AX)dFy dX, +8°1(v, ;)

t+1

f:" .[‘vv“lnYﬂxl)dFylXm +fv"' val ﬂYﬂXl)dFYIXm "5H(vr+2)
tel” Tra2 eel” a0l

where the second integral has been broken to facilitate rearranging terms. This can be written

as

[RE"-R. F:InlF -F, ]

+17 142

2(1-0)R,. /3 nlF,.,~F, )+ (1-8) [ [ “nY X )dF, dX, ~

e + —
[ [y AX OdF, a, 51 -9, )
By definition of R and v,,,,

RrFrri_ll -R Fx’:‘zl =(1 _6)(v:+lFt’:l_Rr~lF:i;l) +6.[.v“lYldFyl
Yiez

r+1

sO substituting into the above inequality, rearranging terms (by subtracting the [ast term in the
above equation and dropping the last integral in the right side of the inequality) and dividing by

1-6 > 0 yields

14



FronlF,, F5-[" [ Y fX)dFy dX, 281(,.,)

Ye1™ Yre2

v. Fr 'nlF,-F, )-R

t+17 1+1 t+1

Rearranging once more gives
n-1 r+1
AL, 0, FL ~FLa) =Y dF )
v, R JFS nlF,-F, 2}2511(%2)

The first term is positive so the inequality can be written
n[F -F, v, (F ' -F')- f “nY,dFy +[v,,, - R.IF;1280(v,,,)

Since v, - 1 = v,,, - p.,, for any price paid by a bidder in any equilibrium, this implies

nlF-F ,llvg,- 1E" 2 Héﬂ(»t )2 F,,2
The last inequality comes from the fact that the seller can always post a reserve price of one in
any period. By Lemma 2, F(z,) > 0 for any v, > z,, (for v, < z, the game ends in two

periods) so

F>( +1DF,,

n(v,-

or

F

na2(

TDMRE(Z)
Vi~ )

for M even. Since F, = 1, this gives for N such that
the game must end before N periods. This upper bound is decreasing in 6. Combined with

Corollary One, this implies that as § approaches one, the seller’s expected revenue approaches

15



1
log(——-)
N2< Z @) ®)
i +1
og( PO )

the expected revenue in a game with no reserve price. |

The next result uses Theorem Three to provide a bound on seller revenues when she
cannot commit to keeping the object off the market in the event the reserve price is not met.
Corollary Two: Let P denote the seller’s expected revenue in a static optimal auction. Let P;
denote the expected revenue in the sequential second price auction, and let P denote the expected

revenue in an auction with no reserve price. For any 9,

P,-P p_
PP (1-s
PP

where N is defined in (6).

Proof of Corollary Two: By Myerson (1981), P and P satisfy

v FO)-FO)
Py, [ (v-—vf(v) P vay ®)

Vreia1

and

. v, Fv)-F
P=nf_'(v———-~—_—(v}){ ©

v)

YF WAV )

where v is the optimal reserve price for the static auction. By Corollary One and by definition

of v.

16



F(v)-F(v)

F(V) F( V)
Frl dv+d ————
O 8 [T ——

nFE (W av.

Py<f,e

where N is defined in (6). Rearranging terms yields the result. |

Corollary Two illustrates that information about the upper and lower end of the support
of bidder types, enough information about the distribution at the lower end to give an estimaie
of z, and & and n are enough to put some bounds on the maximum value of imposing a reserve
price when the seller cannot commit.

The next Theorem illustrates that as the number of bidders becomes large, seller revenue
approaches that achievable in an auction in which the seller can commit to a static auction with
a reserve price. More significantly, for the differentiable solution. it shows that the equilibrium

reserve price approaches the optimal reserve price in a static auction.

Theorem Four: If for all n, there is a number M such that 3" (v)/dv < M, then as n becomes
large, the sequentiallv optimal reserve prices in each period approach the static optimal reserve
price.

Proof of Theorem Four: Fix 6 and current seller beliefs, v,. From Corollary One, the expected
revenue of a seller with beliefs v, can be expressed solely as a function of her beliefs in
subsequent periods, {v.,,}. Let v, be the seller’s next period beliefs and {v,,.}. 1 = 2.3,...N,

be the subsequent beliefs determined by the unique equilibrium continuation.

17



F(v)-F
(v,,v,‘) Yy 8 %)F""(VMV)G‘V
_F0.)-F0) Fop-Fw,.)

v F( ) N-2 I~ :
=1 dF, yrros " - )dF
fvﬂ( v ) ) )+ f A " ™

Differentiating with respect to v,

og(v,v,,
B (1 3(F ) -F(v,.) v, 5, )

avh-l
. Frlw .y . v,
(1-8)0 Y1 6~ Fly, ) 221 o2
i=0 ¢ i+l Fﬂ_l 7
v,.,) teel v
+5 avz-Z ag(vvl’vz—z) 1
Ny M nFTHv)

The last term is zero for all n since v,., must be chosen optimally when the seller beliets are v,
and the second term goes to zero as n becomes large if the condition on the derivative of y 18

sausfied. The first term is the same as the necessary condition for the static optimization

problem. |

Remark: Theorem Four illustrates that at least for large n, in every period, reserve prices rise
in n and as n becomes large, r(v) approaches v. Notice also, that unlike the static auction result,
typically reserve prices in sequentially optimal auctions will vary with changes in the number
of bidders.*

Theorem Four implies a monotonicity of the reserve prices in the limits as n becomes

large. One mught expect that as § approaches one, the equilibrium reserve price falls, however,

® This feature is also present in McAfee’s (1993) analysis of a dynamic model where sellers
compete for bidders by offering auctions with reserve prices.
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analytic comparative statics in 4 do not appear to be available. Theorem Five yields some
information on the behavior of the reserve prices and cutoff bidder types for intormationally
“small” games (which end within two periods).

Theorem Five: Let v, € [1,z,). Then in the unique pBe of the sequential auction game,

i) The first period reserve price R, falls as b increases and rises as n increases.

ii) The second period reserve price R, is independent of 6 and n.

ii1) There is a number v satisfying O = Fivy) - F(v) - vf(v) such that the probability that trade
occurs in the first period is given by I- F'(v). In particular the probability trade occurs in the
first period is independent of & and depends on n only as I- F'(v) depends on n.

Proof of Theorem Five: By Theorem One, trade occurs with probability one by the second
period, for vy < z, the initial reserve price is one and trade occurs immediately. For v,; €
{z,,z,), the optimal cutoff level of the seller is a v, < w, and bidders in this range submit

serious bids only if R, is less than r,(v,1) given by
rDFy ()=(L-8)vFy ()8 'Y dF,

The expected utility for a seller who chooses cutoff level x is

8,(vpx,1)=r,(x, hnF, ()[F(v)~F(x)]
Srf f‘n YAX,)dFy dX,+8 [ *[ “nY AX,)dF, dX,
A necessary condition for x to be chosen optimally is that the derivative of this expression be
zero or that F(v;) - F(x) - xf(x} = 0 independent of & and n. |
Remark: Recall that in optimal static auctions with independent private values, the optimal

reserve price is independent of the number of bidders. Theorem Five iilustrates that this result
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does not extend to auctions in which the seller cannot commit 1o keeping the good off the
market. There is a good intuition for this difference. With the possibility of future auctions,
along any equilibrium path, the opportunity cost to a bidder of failing to trade in a given auction
is determined by the continuation value from subsequent auctions. That is, in any pertod, a
bidder’s net value of trading is an induced value determined in part by the continuation path of
the equilibrium. A bidder's expected utility from an auction is determined in part by the degree
of competition. Thus rises in n increase the opportunity of a failure to trade. In the second to
last period. this is the only effect at work since in the last period. the seller’s reserve price is.
by assumption, independent of n. In longer games, though, there is the additional effect that the
seller alters her reserve price as well in response to changes in the profile of induced bidder
valuations brought on by changes in n.

The next result illustrates that even though the seller’s revenues approach those of an
auction with no commitment, the reserve price remains bounded above the no-commitment
reserve price.

Corollary Three: For v, > z, as & approaches one, the equilibrium reserve price is bounded
above one.
Proof of Corollary Three: Let r’(v) denote the function determining the maximum reserve price

tor which a bidder with valuation v will submit a serious bid. Then
lim, r°(v)=E[Y,|Y, <V]
To see this, note that for any equilibrium corresponding to &, let {v,,,,;} denote the expected

sequence of cutoff levels along the equilibrium path when a reserve price R, = r’(v,,,) is posted.

Using the proot of Theorem One, r° satisfies
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N(S i o f V-1
PO, Fy (V) =1 8H(1-8)v,,, Fy, (v )+ [ Y, dFy)

t+2et

By Theorem Three, since the number of terms in the summation term is bounded by N, this
limit is computed by replacing N(§) with N and letting & go to one. Theorem Five (iii} illustrates
that for v, = z,. the equilibrium cutoff type of the next serious bidder is bounded above 1

independent of 5. By the above argument, the minimal reserve price needed to mduce his
participation is also bounded above 1. |

The reader acquainted with literature on mechanism design might wonder why an
assumption on distributions commonly used in the analysis of reserve price auction, the so-
called monotone likelihood ratio condition, is not needed here. There are two reasons. First, by
consiruction, we restrict attention to the smaller class of mechanisms which is the class of
reserve price auctions. Thus. in a full sequentially optimal mechanism game, where the strategy
choice of the seller may range across the whole class of implementable mechanisms, the
equilibrium path is likely to be different in the absence of this assumption. However, in a
slightly different environment where many sellers compete in mechanisms, McAtee (1993) shows
that, in fact, seller choices of reserve price auctions are a necessary teature of equilibria.
Second, the assumption of a monotone likelihood ratio condition is often used to ensure the
concavity of the seller’s static optimization problem and thus the uniqueness ot a solution. As
1s evident in the proot, we do not require the seller’s best response correspondence to be
singleton-valued in order to obtain uniqueness ot the equilibrium path. In periods where the

seller’s best response correspondence may be muitiple-valued, self-interest on the part of the

seller ensures that actions are taken in early periods to ensure that the highest element of this



set is selected. (See Lemma Three and the discussion in Footnote 5.)

4. A Linear Example

The proofs of the existence and uniqueness of equilibria in Section 2 also show how the
equilibria can be constructed by iterating from informationally "small” games (games with the
support limited to the bidders with low types) to larger games. There are no general closed form
solutions to these games and even with assumption of uniform densities, the characteristics of
the optimal solution become complicated quickly. If the assumption that a gap exists between
the seller and lowest bidder type is dropped, however. it is possible to construct an example of
an equilibrium of the sequentially optimal auction game with very simple properties.

Suppose there are n bidders each with valuations drawn independently and identically
from the Uniform [0,1] distribution. This case does not fit the class examined in the previous
section since the bottom of the support of the bidders is not positive. Thus, as in Ausubel and
Deneckere (1989), we can not be sure of the uniqueness of stationary equilibria. However, we
can examine the nature of the stationary equilibria.

Guess that seller best response cutoff function in any period with beliets v is given by
(v} = v and that the reserve price function determining the maximal reserve price for which

a bidder of type x submits a serious bid is r{x,y(x)) = kx. By definition of r:

(Y (D) () =k " =(1=8)x "B (Y @y (Y CONFy (Y + [ * ¥, dFy)

-1 a)x"+6(k(vx)"+"7‘1(1 )

which implies that



k-1-2 127" %)

Now note that

g v xv)=rxvnf, (OLF(v)-Fx)]
o [*f FnY AX,)dFy dX, +8TL, ()

and that

BD iy (09,1 (YN Ey (4 () [ *(n 1YY,
Ax 1 Yx

An optimal choice of cutoff level x given beliefs v must satisfy

_ag(;,x,v) =0=-n(r(x,y Q) F, (x) +n(v,-x)nkx""!
x 1

“n(n=1)(v,=0x" 8 (nr(y (), Y (Y ONFy, (YD) +n [ * (n-DY]™'dY,)

Using (7), this simplifies to
0=-(1-8)x+(v,~x)nk-(n-1}(v,~x)

Since we are assuming that v(v) = vy v, = x, then this implies v and k must satisfy

k=1+((1-8)——-1)/n (8)
I-y

Equations (8) and (7) together define the linear solution to the stationary equilibrium. They
combine to yield

2y-1=8y™!
Comments: These equations imply
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i) As & rises, v increases. Simulations indicate that k also increases in . The limit of these

equations as § approaches zero approaches the static solution
lim, % and lim, k-1

iiYAs n rises, -y falls and the limit as n approaches infinity also approaches the static solution

-~

. 1 .
iim vy =5 and lim__k=1

ii1) As & approaches one, v is the solution of v(2-v"*"} = 1 (For n = 1, the unique solution is
v = 1, for n> 1, the correct solution is less than one.) and k approaches (n-1)/n.

tv) Simulation of the equations indicates that + falls with n, and k increases with n and the
reserve price, kv increases with n.

The US Forest Service uses a reserve price policy of a form that very closely matches
that illustrated in the above example. [f the tract fails to sell at a current reserve price, the
property is re-auctioned at a reserve price that is ten percent below the previous reserve’. That
is, the Forest Service has adopted a policy that involves a linearly decreasing reserve price.
However, at a real interest rate of anywhere from three percent to ten percent, and assuming that
the US Forestry Service reauctions tracts every six months, such a policy would be optimal only
if the number of bidders 1s essentially one. While this is evidently counterfactual, the policy
could be interpreted as a concern about collusive behaviour by bidders, a possibility ruled out
exogenously in this analysis.

The closed form equilibrium strategies allows a more precise determination of the value

" We are grateful to Robert Marshall for drawing our attention to this fact.
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of posting reserve prices with limited commitment. Assuming an annual interest rate of 5%, if
the auctioneer can commit 1o keeping the object off the market for as long as a year each time
it fails to sell. his gain is at most 10% of the increment earned in the case of full commitment
The 10% gain is computed with 2 bidders. and falls to 4% in the case of 5 bidders. If the
auctions are spaced only six months apart, the gain falls from 5% to around 3% of the extra
revenues earned in the auction with full commitment. These results reinforce the conclusions of
Bulow and Klemperer (1994) that the very small benefits from imposing reserve prices may
often be swamped by other considerations.

5. Conclusion

The results of our analysis confirm natural conjectures about the ability of sellers to
impose reserve prices. As in the case of sequential bargaining, the ability to impose a credible
reserve price hinges on the seller’s ability to commit to either destroy the product in the event
of no sale or keep it for herself. Excess rents are derived from this commitment power. The
paper also suggests testable implications of the theory of sequentially optimal auctions. Suppose
data which tracks objects for sale at a sequence of auctions and records the number of bidders
and\or the length of time between auctions were available, Theorem Four and the example in
Section 4 provide predictions about the response of reserve prices to changes in interest rates,
auction frequency and the number of bidders. A note of caution must be voiced though. The
practice of many auctioneers may frustrate the attempt 1o gather such data. Ashentelter (1989)
remarks on the tendency of auctioneers to keep reserve prices secret. However, some auctioneers
do post explicit reserve prices sometimes as a matter of policy and in other cases. effective

reserve prices may be derivable trom other data such as suggested minimum bids. Unless
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bidders are required to apply for eligibility before bidding (as happens in many government
auctions}, it may also be extremely difficult to extract exact information on the number of
bidders. Thus, the positive applications of the theory of sequentially optimal auctions, are limited
as are many results from the theory of auctions, by the availability of the appropriate data.
Nevertheless, as the analysis of Section 4 illustrates, there remain normative applications of the
theory that may be useful either in providing guidance to policymakers or deriving information

about other, hidden, aspects of the auction environment.
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Appendix
Proof of Lemuma 0: i) Fix a reserve price R, and any bidder and tet dB, be the density of the
highest bid of the other n-1 bidders. Conditional on submitting a serious bid, trade will occur

in the current period with probability one. The expected return from any bid b is
r, b
(v-r)[aB,+ [ “(v-B,)dB,

For any bidding behavior of the other bidders, a bid of b = v maximizes this expression.

ity Observe that if a bidder bids seriously against R, then by i) he bids 3(v) = v and will never
bid if v < R,. Let dB, be the density of the highest of the other n-1 bids in the current period
and consider the expected utility from the equilibrium continuation to a bidder of type v when

the history is h,, the bidder has not submitted a bid in the current period and the game has

continued to the next period. If v submits a bid then
(v-R) [ dB, + [ "(v~B,)dB, 28V y(v,h)Prob[B,<R] )
tJo i R, 1 1= BTy 1 t
Suppose there is a type v' > v who does not submit a bid. Then

(v/-R) f:’dB: -f ‘0'-B)aB, + | v"/(v '-B)dB, <8V y(v',h)Prob[B,<R] (10)

Subtracting (9) from (10) and rearranging yields

Prob[B sR ]
VLo
Prob[B, <v]

/

5(Vy(v',B)~Ve(v,h)) (11)

Observe that a bidder of type v can always mimic the behaviour of bidder of type v'. Let

., (v'.h) be the probability a bidder who behaves as if he were v’ obtains the object in period
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t+j in the pBe following history h, (calculated from period t) and let p,,;(v . h) be the expected

price paid conditional on obtaining the good. By definition

Vo(v,h) zz;o 8a,, (v ) v-p, (v h)) (12)

while

Vo) =307 87, (v RO p, (k) (13)

Subtracting (12) from (13) and combining with (11) yields

Prob[B <R

vi-vs(v/-v)8
Prob[B <v]

Y, ¥, )

a contradiction since the sum of the a’s must be one or less.
Proof of Lemma One: (H3) r(x,w) < x for x > w since it is a convex combination of x and

values strictly less than x. To see how it changes with w,

TEWF(R) i (LD F ()

ow dw _wfy:(w))
This term is positive by (H3) for i-1. Furthermore,
ofr e w)Fy (1 or (x,w)
T F e @
=xfy () +(1-8)Fy (x)
or
arl(x,w)

Fy () =(e-r,(w))fy, () +(1-8)Fy ()

so r(x.w) is increasing in x for x = w. Since r, is also increasing in w and since ', is

increasing, equation (1) is satisfied for i.
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(H1) Since g, is continuous in v, and x and increasing and continuous in r;, since r{x,w) is
increasing and upper semi-continuous, g, is upper semi-continuous. A version of the theorem of
the maximum (exploiting the fact that w > ~.(w)} then implies that IL(v,) is continuous and ,(v,)
is upper hemi-continuous.

(H2) To see that v,(v,) Is increasing. lety < y’ and x € +.(y), x” € +(y’) and suppose that x’
< x. To save on notation, let m = r(x,w)F,,(x) for some w € +_,(x)and m™ = r{x’ . w)F,,{x")

for some w’ € «,,(x’). By the induction hypothesis, w’ < w. By definition,

v X[
g,0.x,w)+ f; [in¥ dF, fX )dX, (14)
+m n[F(y)-F]=g v x.w)

and

! Xl
gx W~ fyy [ n¥,dF, fiX )ax, 1)
+m' n[F(y)-F(»)]=g,0'x'w"

Subtracting equation (15) from (14) yields

n(F(y)-FO)(m-m'- [ 'Y dFy) 16
8,0/ xw) -8,y X' W) -8 w)-g rx W)

The right side of equation (16) is non-positive by definition of x,y, x" and y'. Since w’ < w and

we have shown that 1, is increasing in w. by definition of r;,

m=r(x,w)F. Yl(x)
2r(x,w \F y, (x)
=m'+(1-8)(xFy () -x'F, (x)) 8 [ 'Y,dF,
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We can rewrite the left side of (16) therefore as greater than

n(1-8)(FO ) -FON{(x-x )Fy (x )~

(Fy, (x)Fy (x D0e-ETY, [x /<Y, <x]))
Since x > X’ this expression is strictly positive -- a contradiction. Therefore, +y,(x) is increasing
and y*(x) 1s increasing and upper semi-continuous.

Proof of Lemma Two: Observe that

3 1
%’” =n(1-8)[F(v) ~F(x) -4fl0)1Fy, (x)

Since f{x) > O, there is an ¢ > 1 such that this expression is strictly less than zero for all v, €

[1.e). Fix i-1. By definition, for x ¢ y{v). x < z,, and therefore IL,(x) = I ,(x). Since

I (v) =8I (x) =n(E(v ) ~F))rxy, ((DFy (x)+
nf " S AX)AFy dX, +8(T, () -T )
=R(F(v)~FODr (5., ()Fy 0 =n[ [ “YAX)dF, dX,

and
v, X,
H(v) -8 (x)>(1-8)I(v)2n f ]' f Y AX)AF, dX,(1-5)

we have that for all x € ~(v), there exists an » > 0 independent of i such that x < v, - ».
Since «, 1s increasing and upper hemicontinuous and satisfies ,(x) < x - », the convex hull of

v, has an inverse which is increasing and upper hemicontinuous defined over {1,vy] and les

above the line, y - v = x. Thus z, = max{v | vy.(v) = z,_} exists and satisfies z, = z,, +v.

This procedure extends the definition of z over the interval [1,vy].
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Proof of Lemma Three: Let a denote the supremum such that C1 holds for j = 1 and a. Since

forv, < z,,r, =71 and v, = v, forv, < z.,, thena = z_,. Observe that for a > [, since
I1{v) 1s bounded above zero, and f{v) is positive, there is always an ¢ >0 such that (F(v)-
F(ay)vy, + olli(a) < IL(), for all v in [a,a+¢). Suppose a < z,. Then there exists a o and h, and
v, In (a,a+e¢) such that the seller’s best response reserve price exceeds r,(z.,.z._,) and since a

reserve price below that level generates payotfs determined by C2, the payoff from ¢ is bounded

from above and below by

) <sP(v,h)<(F(v)-Fla))v,~80(a)<I(v)
Which is a contradiction. Therefore, a = z,.
Now. suppose that R, = r{v,_,,y) for y < +'(v,, 1), ¥y € v(v..,). Since r{x,v) is strictly
increasing in v, for every v’ > v, and every y' € ~{(v’), there is an ¢ > 0 such that r{v’,y")

= r(v..¥) + €. Areserve price of r’ instead of R,, yields the seller an expected revenue of
8,V Y N2n(F(v) -F))(r,+)F, (v))+ f f Y, dF, X )dX, +8 ()

Since this function is continuous in v’

limv,,’v‘.lg(vt,v Y-8V, Y 2ne(F(v) fF(vm))FY!(vm) >0
the seller could have improved on R, by offering a slightly higher reserve price contradicting the
assumption that R, was an equilibrium reserve price.

Proof of Lemma Four: Since r(x,w) is strictly increasing in both its arguments and v is an

increasing correspondence, the correspondence, r(x,y'(x)). x € v(v), has a unique inverse, call

it p(r}. By Lemma 0, tor any reserve price, R, there is a v,,, such that only bidder types above
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V.., submit serious bids. Suppose R, > t(z;,,v'(z)) and v,,, < z. By Cl, the next period reserve

price is R,,, < r(vy..t+1),v (v’ (v..,)). By bidding in period t, v, receives
(V“l _Rr)FYl(vr*l) (17)

while by waiting until the next period. he would get no worse than
8I(V,., R, )Fy v, )+ [ '(v-YdF ] (18)
Yoz

By definition of r, equation (18) strictly exceeds equation (17) so all types in the neighbourhood
of v,,, do better not to bid when the reserve price is R,. Now suppose that R, < r(z,, miny(z))
and v,, > p(R) = v. Let 7 be the smallest number such that along the equilibrium continuation
path, z, > v,,,.,. (If the equilibrium involves mixed strategies, then the following argument can
be made using distributions over continuation paths). If v, = v, then R, > r(y"(v).y"¥y'(v))
(by C1) and bidder type v would have done better to bid when the reserve price was R,. If v,..

< v, since v,., = 7z, R, = r(z,.miny(z)} = r{z, v (z.,)) and

&

R, . =(1-0)v, _~
r 'FYl vhr—l)

Ry, Fy (e )+ [ 'Y, dF )

we must have R,, = r(z_,y'(z.,)) and v,., = z,,. But this violates the optimality of type v's

t+r — t+7

decision not to bid when the reserve price is R, since

8

(v

R=(1-8)v= = 001 OOy 0= ¥,dFy),

Y

for some y e Convexhully{v}.
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