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1. INTRODUCTION

Consider a population of asexually reproducing organisms. When an
organism dies, it produces offspring. The number of offspring produced
and their life-lengths are determined by a probability law that depends
only on the population size. The death and reproduction cycle is repeated
as long as organisms are present. We will be interested in the number of
organisms, and their ages, alive at any point in time. The process thus
describing the evolution of the population through time is a generaliza-
tion of an age-dependent branching process. It is a generalization be-
cause a branching process requires the production of offspring and their
life-lengths to be independent of the size of the population; however, the
growth of most biological populations is dependent on the population size,
especially populations controlled by intraspecific competition. See
Harris (1963) for a review of branching processes.

Kesten (1971) and (1972) has results on multitype population processes
whose change from generation to generation is governed by a non-linear
transformation. This transformation determines future composition (frac-
tion of types) as a function only of current composition. In a process
involving competition where both composition and density are needed to
determine future composition, Kesten's transformation is not applicable.
Labkovski (1972) also has some results of a generalized Galton-Watson

process but he deals with a special limit theorem which is not of broad
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enough application for this paper.

Moyal (1962) formulated two equivalent probability measure spaces for
a general stochastic population process: the exponential space and the
counting measure space. A form of the latter will be used in this paper;
however, a third way to picture the state space is given below because it
is a more intuitive description.

Let E = {(x,y): x> 0, y > 0}. For ACE let |A] denote the car-
dinality of A. Let S = {A: ACE and [A] < o}, Let X(t) be a stochastic
process with state space S. If X(to) = {(xl,yl),(xz,yz)}, then we say
that X(to) is a population of two individuals whose ages are x; and x, and
whose remaining life-lengths are Y1 and Y,- Note that life-length is
assumed known immediately after birth; thus, for this process, the only
important characteristics of an individual are its lifetime since birth
and its lifetime remaining until death. To visualize the process, start
with an initial set of points in IE. Translate the origin up and to the
left along the line y = -x. Whenever the x-axis moves through a point of
the population, that point produces its offspring along the translated
y—axis. The configuration of the points on the y-axis is determined by a
probability law that depends on the size of the population. (See Figure 1.)

In the remaining sections, the set of points representing a state of
the process will be denoted by a purely atomic measure. In Section 2, the
process is formalized as a semi-regenerative process and the extinction
probabilities are shown to satisfy a system of Markov renewal equations;
in Section 3, the semi-Markovian kernel of the process is derived; in Sec-
tion 4, using certain assumptions, the existence of an invariant measure is
proved; and in Section 5, some of the limiting properties are investigated.

For a review of semi-regenerative processes see Ginlar (1969) and (1975).
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Figure 1: Points a, b, c are elements of the initial state.

Points d, e, f are offspring of a.

2. THE POPULATION PROCESS

Let R, = [0,©), E = [0,°)x(0,»), N = {0,1,2,...}, and N, =
{1,2,...}. Let R, and E be the set of all borel subsets of R _and E
respectively. Let p be a purely atomic finite measure on IE such that
u({x}) = 0 or 1 for all x ¢ E. Let IM be the set of all such measures u
and let M be the o-field generated by sets of the form {n € M:u(8,) > 1,
...,p(Bk) > 1, ]p| = k} as k varies over WN and Bl""’Bk varies over IE.

Let (Q,F¥,P) denote a probability space and let Z = {Zt; t > 0} be a

stochastic process defined over (@,%,P) with state space (M, M). For

t e B+, w € Q, and u € M, the equality Zt(w) = U indicates that U is the



state of the process at time t for realization w. If x € E where x =
(xl,xz) and if p({x}) = 1, then there is an individual in the population
at time t with age X, and remaining life-length X,

The process Z is governed by a deterministic rule as long as no deaths
occur. To express this rule, two mappings are defined. The first mapping
gives the time until the next death will occur for a given state u. The

second mapping is a translation producing the "aging" process (see Figure 2).
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Figure 2: a, b, c are the atoms of u.
a', b', ¢' are the atoms of Tt(u).

a", b" are the atoms of 6(n).
The mapping m: M » (0,®) is defined by
(2.1) m(u) = sup{y:u( R,x(0,y)) = 0}.

For each t e‘m}, the mapping Tt: M-> M is defined, for x = (xl,xz), by
[1 if w{(x;-¢, x2-+t)} =1and x,-t >0,

(2.2) T, pu(x) = 1
0 otherwise.

These mappings help define the process in the following manner: if



Zt(w) = y then for all s < m(u) we have Zt+s(w) Ts(u). As will be seen

below, a common translation will be Tt(u) for t m(y). For notational

convenience define

(2.3) o(n) = Ta(u) M

Using the vague topology defined on M, the function t-*Zt(w) is right
continuous. (With the vague topology, un-+u if ff dun-+ff du for all f:E-ﬁm¥
bounded continuous.) The first, second,... points of discontinuities, denoted
by T;(w),Ty(w),..., are the epochs at which deaths occur. Since the process is
right continuous, {Tn; n GAN+} is a sequence of stopping times. Define
To(w) = 0 and Xn(w) = ZTn(w) for all n ¢ WN. Thus, Xn denotes the popula-
tion immediately after the nth death. The assumption throughout this paper
is that the probability law governing the number of offspring and their
life-lengths depends only on the population size at the time of their birth.

For w €M, let |u] = u(E). We can now write P{X ¢ Alz, £ <T }=
P{x, € AliZTn_Ol} = P{X, € AI;ZTq_l}} = p{x, € A};xn_ll} for A € M. Thus

X = {Xj; n €N} is a Markov chain. We also have that given Xp(w), the

- . . - ) . . . 13 Fs — 'l = 1 .
value of 1n+l(d) Tn(w) is fixed since Ln+1\m) Tn(u) m(Xn(u)).

(2.4) PROPOSITION. The stochastic process (X,T) = {Xn,Tn; n € N} is a

Markov renewal process with state space ( M, EQ.

PROOF. The defining property for (X,T) to be a Markov renewal process with

€A, T - T

state space ( M, M) is that the equality P{Xn+ ] n

1

< t|x X LT, T = PIX € A, T - T th[xn} is true for all

027" n’70 n+l

AcM, t¢€ R+, and n ¢ N. From the discussion in the preceding paragraph,

this property obviously holds. [l

(2.5) PROPOSITION. The population process Z ='{Zt; t e:m+} is a semi-

regenerative process with the imbedded process (X,T).



PROOF. The proof follows immediately from the assumption that the future
is conditionally independent of the past given the population size at the
time of the last death. See Cinlar (1975) for the definition of semi-

regenerative processes. 4

Let Q and R be the semi-Markovian kernel and the Markov renewal func-

tion respectively corresponding to (X,T). That is,
(2.6) Q(u,A,t) = P{X; € A, T) < t[X, = u} = P X ena T < t},
and

(2.7) R(u,A,t)

bQM(u,A,t)
n=0

for all t ¢ R+, p €M, and A ¢ M. The term Qn(u,A,t) is the n-fold con-
volution of Q for a fixed yu evaluated at A and t. That is, Qo(u,A,t) =

lA(p)-l o")(t) and for n ¢ IN

(o,

Qn+l(U,A,t) = f f Q(u,dv,ds)Qn(v,A,t— s).
vEM s & [0,t]

In order to obtain probabilities associated with Z, a "reverse"

mapping corresponding to T must be defined. For each t Gﬁm+, the mapping

PN

T, M->M is defined by
(2.8) T, (A) = {wit () €A and t <m()}.
A similar "reverse" mapping T M > M is defined by

(2.9) T(a) = {p:rt(u) ¢ A for some t < m(u)}.

An argument similar tc that used in the proof of lLemma (3.5) can be used

to show that, for A € 1='I, ft(‘\) and ;E(A) belong to M.
(2.10) THEOREM. For u €M, t G'R+, and A ¢ IM,

P {Z_ ¢ A} = f [ R(p,dv,ds).
K sel0,t] viT __(4)



PROOF. The standard Markov renewal argument is used.

Pu{Zt € A} = pu{zt €A, T, > t}+ Pu{Zt €A T, <t}

LG G)IL-QGM O] + [ [ QG,dv,ds)P {Z__ € A)
ATt VeM s [0,t] votes

/ R(u,dv,ds)l, (t _ (v))[1 - Q(v,M,t -s)]
veM s €[0,t]

R(u,dv,ds)l, (1 )
veM s e (t-m(v),t] AT tes

= /. f R(u,dv,ds)1, (1 ___ (v))
ve 1(A) s& (e-m(v),t] Altes

= /. R(p,dv,ds).
sel0,t] ver, __(A)

The third equality comes from Markov renewal equation theory; the fourth
equality is true since Q(v,M,t) = 0 if t < m(v) and 1 if t > m(v), and the
last two equalities come from Definitions (2.8) and (2.9). 0O

It is sometimes of interest to know the size of the population. For
this purpose, let

k
(2.11) M = {u ¢ HM:|u| = k).
(2.12) COROLLARY. For p ¢ M, k ¢ N, and ¢t cR,,

Pz eM}= |

veM

R{u,dv,ds).

/
kg ¢ (t-m(v),t]

PROOF. The proof is immediate from the fifth equality in the proof of
(2.10) using the fact that Mk = %(Mk). O
Using (2.12) the extinction probabilities are obtained. Let the

measure in M with no atoms be denoted by O.
(2.13) COROLLARY. TFor p €M and t G]R+,

Pu{zt = 0} = R(u,0,t).



3. THE SEMI-MARKOVIAN KERNEL
At the time of death, new individuals are born. They are represented
by a measure in IM concentrated on {0}x{(0,»). Any state u can be decom-
posed into atoms representing new births and atoms representing older

individuals still alive. Thus we define

(3-1) MO = {U ¢ M: U((O)m)x(oxm)) = O}
and
(3.2) Ml = {y € IM: p({O}X(O,OO)) = 0}.

Note that MO N Ml = {0}. We now can uniquely represent any element of M

as y = Mg + g where My € MO and My ¢ M By an abuse of notation we

X
shall write pO(B) instead of po({O}xB) for B GIE} and uy € MO when there
can be no confusion.

Consider Zo(w) = 1 and let 'pl = n. For t < m(u), Zt(w) = Tt(p). For

for some u. € M . (The functions m and 6

0 0

=), 2 () =X () =80 +ug

are as defined by (2.1) and (2.3).) It is assumed that life-lengths are
determined by a continucus distribution function so at an epoch c¢f death
only one individual dies {almost surely). The individual that died at t =
m{u) gives birth to k new individuals for some k ¢ IN. Thus at the time of
their birth, we have k numbers Xy 3%y see s Xy which represent the newly born
individuals' lifetimes. ‘The points (O,xl),u.,(O,xk) are the atoms of Ho-

Let K(n,-) be the given probability measure associated with a popula-
tion of size n. That is, K(n,AO) is the probability that upon the death
of an individual from a population of size n, the measure Ho representing
the new offspring is in the set AO(: M0 for A0 ¢ M.

For Q(u,A,t) defined by (2.6) let

(3.3) P(u,A) = 1lim Q(u,A,t).

oo



(3.4) PROPOSITION. The transition probability function P of the Markov
chain X is given by
P(u,A) = K([u],A-0()), w €M, AN,
where A - v = {yy € My: uy + v € A} for any given v € M;.
Tor the proof we will need the following

(3.5) LEMMA. Tha function €6: M -+ M defined by (2.3) is measurable.

PROOF. Let A = {u € M : w(B)) > l,...,p(_Ek) > 1,lp] = k} where k €I aud
Bl""’By are rectangles of the form [ai2b<)x(ci’di]' As will be seen in
Section 4, the collection of subsets of B of this form is closeld under
firite intersecticns and generates Rj; therefore, by the nmonotene class

- N —l/ 1 . . -
theoren we need oaly show 6 (A) € M. For k = 0 it is easy, so assume k> 1.
Let 5 = min b.. Consider some Vv €M such that 6(v) € A. For this to

l<i<k *

hapren there musc be cne atom of v in the strip [0,=)»x(0,k) and the remaining
atoms of v must be contained in rectangles that are translatad "up and to

the left™” from the original Bi's. We now state this rigorously by parti-

tioning the strip. TFor each n £ W, define the strips €, (n) by € {n) =
: J J

[O,M)x(lifl, %J for § = 1,2,...,[ab]. (The notation [x] deaotes the largest

integer less than or equal to x%.) For each nn ¢IN, and for each i=1,2,...,k

hod

define the rectangies E

. ) _ ’ _— . ) _—
() by B, (a)={0V a, -4+==, b - Dx(, . +4, 4 +1==)
l] lj 1 n 1 4} 1 i 1 n

for j = 1,2,...,[nb]. These rectangles make sense only for n sufficiently

large. We will comsider only n > n where n is the snallest positive in-

1 . - ..
teger such that = < min {(.-a.)A(d.-c.,)}. Note that we can insist
n 1<i<k iz +t

cr this minimum being positive since rectangles of the form [a,b)x(d,d] or

—

fa,a)x{c,d] are empty and therefore can be deleted. Tor each n =n, n+1,..

and each j= 1,2,".,[nE], define Aj(n) = {u GIM:u(Ci(n)) > 1, u(BJ L(m)) >1,
i

-~ 3

-1

3 1. inkt .
NN TE ¢ 6t D l,lu{ = K+ 1. Then clearly © “ (&) C \JEH,] A (n) and
K, - =i ]
furthermore Bul(A) = (}m ~ L)[n;] A, () and thus 9_1(A) € M. |l
) n=n j=1 j =
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PROOF of (3.4). We first show that for each y €M, P(u,+) is the proba-
bility measure as in (3.3). Given that XO = 4, we have X, = 6(n) + vy

where vy € MO; therefore, for X1 to be in A we need v, to be such that
vy 6(u) € A. Thus P(y,A) = K(Ju],A-6(u)). Since K(n,-) is a proba-

bility measure for each n ¢ N and since for-Al,A .. a sequence of sets

T
in M we have L{ Ai - v = L{ (Ai - v) for any v € M, it follows that

P(u,-) is a probability measure. It is now left to show that for each

A ¢ M, P(.,A) is a measurable function. As in the proof of Lemma (3.5),

it is only necessary to consider A of the form A = {y ¢ IM: u(Bl) >1,...,
u(Bk) > 1, |u| = k} where k ¢ N and B,,-..,B are of the form
[ai,bi)x(ci,di]. It is sufficient to show that for any r ¢ ES)

{u € M: K(Ju|,A - 6(w) >r} €M. For r = 0 there is no problem, so let

r > 0. We now introduce some necessary notation. Let k, be the number of
rectangles whose boundary is on the line {0}x(0,»). Relabel the rectangles

so that Bi N {0}x(0,») # @ for i = 1,...,k, and Bj N {0}x(0,») = @ for

j= k0-+l,...,k. For i = l,...,kO let Ci = Bi N {0}x(0,x) and let

Bi = Bi\ci' For the integers l,2,...,kO let 11s1,500051) denote a combina-
tion of n of them and let jl’j2"'°’jko—n denote the remaining integers.
For any combination il""’in let Ail,...,i = {u ¢ Mo:u(Cil) > 1,...,

“(Cin) > 1,|u| = n} and let D; io= e Ml:u(le),z l,---,u(BjkO_n)i_l’

.,in such that

EARRE

) 3_1,...,U(Bk) z_l,lu] = k-n}. Consider some i

“(Bk0+1 12"

K(k- n+l,Ail i ) >r. 1If some u €IM is such that 6(n) € Dy
seeesiy

then 6(u) + v € A for any v € Ai1

Laeeesin?
._,in,and thus K(k-n+1,A - 6(w)) > r.

)

-1
Therefore, {u: K(]ul,A -e(w) >r}r=U298s (D cei ) where the union
n

i
is over all combinations such that K(k-n+1,A; , i ) >r, and if there
pocresingt =

is no such combination then the set is empty. By Lemma (3.5) we are

finished. ]



11

(3.6) PROPOSITION.
[P(u,8) if t > m(w),
Q(U’A’t) = l
0 if £ < m(u).

ROOF. . . . B _ '
PROOF. The proof is obvious since Tn+l(w) Tn(w) m(Xn(w)) 1

4, EXISTENCE OF AN INVARIANT MEASURE

In order to discuss the limiting properties of the population process
Z, we need to know if an invariant measure exists for the imbedded Markov
chain X. To prove its existence, the concept of recurrent sets or re-
current chains must be defined. The first step toward this goal is to
define a measure on the state space of X.

The procedure for defining a measure on (M, M) will be as follows:
1) define a semiring G of sets of states that will generate M, 2) define
a non-negative real valued set function ¢ with domain G, 3) show ¢ is
countably additive on G, and 4) extend ¢ to M in the manner of Kolmogorov

and Fomin (1960, ch. 7).

Let G be the set of states of the form {p ¢ M:u(B;) Z_la°'°’U(Bk) > 1,
[ul = k} as k varies over IN and Bl""’Bk (not necessarily distinct)
vary over rectangles in IE of the form [a,b)X(c,d]. Since the rectangles

generate IE it is clear that G generates IM.
(4.1) PROPOSITION. The collection of sets G is a semiring.

PROOF. To show G is a semiring, three conditions must be met: a) @ ¢

©

b) G is closed under finite intersections, and ¢) if A CB and A, B €

@

then B\A can be represented by a finite union of disjoint sets in G. From

the definition of G it is clear that § € G by letting k = 0. To show part

(b), let Al’Az € G and write Al = {u:u(Bl) Z.l’°"’“(Bm)

|v

1,|u| = m} and

A2 = {u:u(Cl) Z.l’°'°’U(Cn) Z'l,lpl =n}. Let T ST represent a

P
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permutation of the integers 1,2,...,n. For A1 N A2 # § we need m = n

and Bi n c, # @ for all i = 1,...,m for some permutation m. In that
i

case A N A = {uu(B N Cﬂl) > 1,..,u(B N C”n) > 1,|u| =n} and

since the rectangles of the form [a,b)x(c,d] are a semiring we have that

Ay N A, € G. For proving part (c) let Al,A2 € G and A1<: A2. We now

have that Bi C.CTT for all i = 1,...,m for some permutation w. Since the
i
rectangles form a semiring, we can find appropriate rectangles such that,
nj
for i = 1,...,m, we can write C,\B, = U DE. It follows that
N1 i
1 k=1
n n n k
1 2 k1
ada, = g e U o) > w0 ™ > 1, ] =

ky=1 k,=1 km=l
and thus G is a semiring. O
Let A(*) denote the Lebesgue measure defined on (IE, E). The non-
negative, real valued set function ¢ is defined, for A =

{peM:u(B) > 1,...,u(B) > 1,|u| = k}, by
(4.2) $(A) = A(BI)A(BZ)'--X(Bk).
(4.3) PROPOSITION. The function ¢ is o-additive on G.

PROOF. Let {Ai} be a countable collection of disjoint sets in G such that
L)Ai € G. 1If there are two sets Ai and A.j in the collection such that for
Hy € Ai and uj c Aj we have [uil # |uj],then UAi £ G; therefore, we can
write, for some m € N, A, = {u:u(BT) Z_l,...,u(B;) > 1,|u| = m} for all Ay
in the collection. Since Ai N A.j = @, we can relabel the rectangles so
that Bi n Bg =@ forn=1,...,m and i # j. (In other Qords, there must be
one rectangle in Ai that is disjoint with all rectangles in Aj.) Assume
this has been done for all sets in the collection. For m = 1 it is easy,
since UAi = {u:u(L)Bi) = l,lu[ = 1}. Consider m > 2 and write UAi =

{u:p(Dl) Z.l"-"U(Dm).Z l,lpl = m}. Clearly we can relabel the rectangles
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in such a manner so that UJ Blt ’C Dk for k = 1,...,m and still B} N Bi =@
i

for n = 1,...,m and i # j. We shall now show that for k = 2,...,m it must

hold that Bl = B2 = «++. Assume otherwise, that is for some k = 2,...,m

k k
there exist integers i and j such that Bi # BJ,and let x ¢ IE be such that
i
k
1,...,k-1,k+1,...,m and u({x}) = 1. Clearly u € UAi since u(Dr) > 1

X ¢ B but x ¢ BIJ<' Consider u € M such that u(B‘l) >1 forr =

for r = 1,...,m but there is no n such that u € An’ which is a contradic-
tion. This is true because u(B‘:{) > 1 implies u ¢ An for n # j, but
p{{x}) = 1 implies u ¢ Aj. Thus, B11< = B12< = ++s for k = 2,...,m. We can

now write

A, = {u=u(Bi)_z 1, u(B,) > 1,..o,u(B ) > 1,|uf = m}

i
and 5
VA, = {u su(UBD 2 1, u(By) > 1,..,u(B ) > 1, |u| = m},
and the result follows. 0
The function ¢ is extended to IM by the formula
(4.4) $(A) = inf ) (A )
ACTyA
n o

where the lower bound is taken over all coverings for which An € G. By
Kolmogorov and Fomin (1960, ch. 7), ¢ is a measure on (IM, ).

We need one more result concerning the measure ¢.
(4.5) PROPOSITION. The measure ¢ is o-finite on (IM, M).

PROOF. Let Br ¢ = [r,r+1)x(s,s+1] for any two rational numbers r and s.

3>

Let r and s denote vectors of nonnegative rational numbers of equal dimen-

Sion', that is’ r = (rl’rz’...’rs) and s = (sl’s?_’...’sk). Let A;’g =

{u GM:“(Brlasl) > l,...,u(Brk’sk) > 1,|u] = k}. Thus ¢(A;’g) = 1 and

Mo WA .
r,s

Using the terminology of Orey (1971), the Markov chain X = {Xn;n € IN}
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with state space (M, M) is called ¢-recurrent if for all A € M with
¢(A) > 0 we have P{Xn € A for some n €1N+IXO = pu}l =1 for each p € M.

In order to show X is ¢-recurrent the following will be assumed.

(4.6) CONDITIONS.

a) K@,{0}) =0 and K(n,{0}) > 0 for n Gﬁm+\{l}.

b) There exists n* GﬁN+ such that for all n > n* it follows that
K(n,{0}) = 1.

c) There exists s* G'R+ such that for A = {p € MO:u((s*,w)) > 1}

it follows that K(n,A) = 0 for all n GiN+.

d) Let Mﬁ = {p ¢ Mo:lul = k}. For each n =1,2,...,n* there exists

k; ¢ {2,3,...,n*~n+2} such that for all k > k; it follows that K(n,M%)

kx g
= 0, and thus K(n, U 2, Mé) = 1.

e) For each n = 1,2,...,n* consider some k = l,...,k; and a collection

B ,B

3By sB

i C Il * =
s K where, for each i, Bi CI:E.+ and Bi C [0,s*]. Let A
{p e Mo:u(Bl) >1,...,u(B) > 1, |u] = k}. Then K(n,A) > 0 if and only if

AO(Bi) > 0 for each i = 1,...,k where AO(-) is the Lebesgue measure on

(R, R,).

It can be seen from these conditions that many sets of states with
positive ¢ measure will never be reached. We therefore define a reduced
state space. Let E = {(x,y) €IE:x +y < s*} and let ™ =
(v eM:p(E) = w(E) and 1 E.IU! < n* + 1}. Define ﬁo, M

E in an analogous manner. We are now ready to begin proving the major

e

10 , and

result of this section, that is, X is ¢-recurrent on the state space

( H, ép. We start by proving several lemmas.

(4.7) LEMMA. The function P(-,+) as defined by (3.4) is a transition proba-

bility function on (Dﬁ,é@.
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PROOF. Considering the proof of (3.4) it is sufficient to show P(p,]ﬁ)= 1
for any 1 € M. Condition (4.6e) implies that the probability measure
governing life-lengths has no atoms other than zero; therefore with prcba-

bility one,no two deaths occur at the same epoch. Using this fact and Con-

ditions (4.6c¢c and d), we have that for n = 2,3,...,n*+1
kﬁ . k* .
K(n, |} M) =1 and K(1, Lf M) = 1.
~ 0 . 0
i=n-1 i=1

Let p G]ﬁ with lul = j. By (3.4), P(u,ﬂﬁ) = K(j,Aj) where Aj =

{uo € Mp:pup{(s*,»)) = 0 and 1 f.lpol + 3j - 1<n*+ 1}. It is clear that
n*—j+2

Aj = kggl M% and thus P(u,]ﬂ) = 1 for any u ¢ M. {J

(4.8) LEMMA. There exists a positive integer n., and a positive real number

1

n] - -
81> independent of v, such that P (v,Ml) z_Bl > 0 for all v € M,

PROOF. Let v € MX and we have PX T (v,Ml) = K(k,{0})K(k ~1,{0})+++K(2,{0}).

For any n € N it follows that Pk—l+n(v,ﬂl) 3'Pk_l(v,ﬁ1)[K(l,ﬁl)]n. Let

b(k,n) Pk_l(v,ﬂl)[K(l,ﬁl)]r1 and thus, hecauvse of Conditions (4.6a and e),

b(k,n) > 0. Since sup{]vl:v G]ﬁ} = n* + 1, the lemma is true for n1 = n%

and B, min{b(k,n):k = 1,2,...,n*+ 1 and n = n* - k + 1}. []

(4.9) LEMMA. Consider a fixed k = 1,2,...,n* + 1. Let Bl’BZ""’Bk be

rectangles in I of the form [ai,bi)x(ci,di] such that bl > a; > b2 > a, >

s> bk > a and A(Bi) >0 for i = 1,2,...,k. Then for A

| v

{u Gfﬁ:u(Bl) Z_l,...,u(Bk) z_l,]pl = k} we have Pk+l(v,A) B, > 0 for all

2
v € M! for some B, Gﬁm+,independent of v.
d, —¢ d, -c di - cx
- 4 11 -2 2 X K
PROOF. Let f, = mln{k T TR ot T3 1,
p _ . {bl - a.1 b2 —82 bk—l - ak_l bk— ak}
, = min k R PR 5 , > ,

and f = min(fl,fz). Define the following intervals of R4:
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D = (3 7 "2 5 T3 7tz £,
b, -b, +a, —a b, -b,+a, -a
' 1 "PpTa T8 1 1-PpTaTay 1
b= 3 2 £ 7 vz
o - (ak—l+'bk—l P R R R B O R S B & R )
k-1 2 2 2 5 2 2 2t

R R S S B S bkd_bk+akd_ak+l_ﬂ
2 2 b 2 2 s

Dis =

ak+ bk Ck+ dk

1 agt by  cptdp
= P § + 2
D = (53— +—3 > I 73 > + 3 ),
ak+ bk 1 ak+ bk 1
T — —_— = — *
Dy = ( 5 5 £, + 3 £).

We first note that since f is the minimum of a finite set of posi-

tive numbers, f is positive and therefore A(Di) > 0 and A(Di) > 0 for
i=1,2,...,k. Define the following sets of ﬁo. For i = 1,2,...,k let
Ci = {u € ﬁozu(Di) > 1 and u(Di) > 1, ]p] = 2}. It now follows that for
v ¢ ! we have Pk+l(v,A) > K(l,Cl)'K(Z,CZ)---K(k,Ck)K(k4-l,{0}), which is

positive by Condition (4.6e). O

(4.10) LEMMA. Let A Giﬁzsuch that ¢(A) > 0. Then there exist a positive
integer n and a positive real number R, independent of v, such that

Pn(v,A) > B> 0 for all v G]ﬁ.

PROOF. Let A

{p Gﬁﬁ:p(Bl) 2_1’---’U(Bk) > 1, ]u] = k} for some k =
1,...,n*+1 and for {Bi},rectangles in ﬁﬁ,of the form [ai,bi)x(ci,di] for
i=1,...,k. As before, it is enough to prove the lemma for A. Since

$(A) > 0,it follows that A(Bi) > 0 for each i. Relabel the rectangles so

that by > b, > «=+ > b, . If a, > b, let B) = B,. 1If a; <b, pick real
numbers a), a;, and b, such that aj <b) <a) <b, and a, 3_?§§ a, al>a,

' 1 _ 1 . . '
and b2 f_bz. Let B = [al’bl)x(cl’dl]' Recursively, if Bi—l has been
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> T - ! 1 . ] . ] .
defined, let Bi [ai,bi)X(ci,di] if ag > bi+l’ and if a; f-bi+l pick

b! such that a' < bi+ < a" < b! and a!

t
a, . > max a
i+] > i+] i+1 P ]

1"
numbers a;, 1 i i it+1 R j
" ' ' ' _ "oy v o
a;j > a;, and bi+l f~bi+l then let Bi = [ai,bi)X(ci,di]. Let A
{u Gﬁﬂ:u(Bi) Z_l,---,U(Bé) Z_l,lU] = k}. Since Bi CZBi for each i it

follows that A' C A; therefore, Pm(v,A') f»Pm(v,A) for all m €N, . Since
the set A' satisfies the hypothesis for Lemma (4.9), we are finished by

setting n = n, +k+1and g = 81.82 where n, and Bl are as in Lemma (4.8)

and 82 is as in Lemma (4.9). J

A~

(4.11) THEOREM. The Markov chain X = {Xn; n ¢ N} with state space (M, )

is ¢-recurrent.

PROOF. Consider some A Gnivﬁth $(A) > 0. Let n and B be such that
Pn(v,A) > B >0 for all v G]ﬁ (Lemma (4.10)). Define a sequence of

random variables by

(0 4f X ¢ AS,
Y, = . J

I U1 ifx. ea
Jn

for j ¢ N;. The sequence {Yj; j €IN+} forms a Markov chain with state space

{0,1}. Since P{Yj+ = l|Yj = 0} > B > 0, it follows that state 0 is not

1
absorbing and thus P{Yj = 1 for some j €IN4} = 1. We now have that X is
¢-recurrent on (ﬂh é@ by observing that

{X_ € A for somem € N,} D{X, € A for some j € IN,}
m + jn +

= {Yj =1 for some j GiN+}. O

Since X is ¢~-recurrent on ( ﬁh g@, there exists a g-finite measure 7
on (H, Ii) such that

(4.12) m(A) = f w(dv)P(v,A) for all A €M.
veM

Such a 7 is called an invariant measure for X. See Orey (1971, pp. 30-31).
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5. LIMIT THEOREMS

In this section, some expressions for lim Pu{Zt € A} are given. Since
trw

the imbedded Markov chain has an invariant measure on (D4,EQ assuming
Conditions (4.6), these conditions are again assumed throughout this sec-
tion. Let 7 be the invariant measure associated with X. By Cinlar (1974)
the existence of m defined by (4.12) for a ¢-recurrent imbedded Markov

chain is sufficient for the 1lim P {Z ¢ A} to exist for A Gﬂi.
tvo M L -

(5.1) THEOREM. Let A € ii, m(+) as defined by (2.1), and %t(-) as defined

by (2.8), then lim P {Zt € A} = ¢ f ﬂ(%t(A))dt, where ¢ =
tho M t €[0,%)

1/ [ wldomG).
veM

PROOF. From the third equality in the proof of (2.10), we have

PU{Zt € A} = f . I R(u,dv,ds)gA(v,t-—s), where gA(v,t) = lA(Tt(v))
veM s [0,t]

for t < m{(v) and gA(v,t) =0 for t > m(v). From Cinlar (1969) we know

lim | i R(y,dv,ds)g, (vt -s) = c [ m(dv) [ g, (v,t)dt.
tvo vEM s €[0,t] ve M te[0,=)

By (2.8), ¢ f 7 (dv) f gA(v,t)dt =

velM tE[O,m)
c dt Lt ()m@dv) =c it f m(dv)
t &[0,) ve{wm(p) >t} t e [0,=) v&%t(A)
=c m(1_(A))dt. O
£ef0,=) F

(5.2) COROLLARY. For any k =1,2,...,n*+1 and for ¢ defined in (5.1)

Lim P {Z, € By = ¢ [ . mdvm().

o veM

PROOF. Since M = (%),

lim F {Zt ¢ ﬁk} = ¢ f m(dv) f gAk(v,t)dt

A

St H veEM t & [O,m) M
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=e [ om@w 1 (r ())de
veT(MY) te[0,a(v)) M

=c [ w@mv). 0
‘)G.Mk

(5.3) COROLLARY. Let the initial probability measure be identical to the

invariant measure; that is, P{ZO £ A} = w{A) for A CIM. Also let ¢ be as

[4))

defined in (5.1), then
| k
E[m(ZO)|Z0 e M1 =1/c.

PROOF. Proof is immediate by (5.1) and (5.2). ad



