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INFORMATIONAL EFFICIENCY OF ITERATIVE PROCESSES
AND THE SIZE OF MESSAGE SPACES

ABSTRACT

The concept of informational size of messages, a measure of
the information carrying capacity of messages introduced in [5] is
used to study the relationship between iterative and one-step communica-
tion processes., One aspect of the advantage of iteration, namely the
possibility of using "simpler' messages is studied, Informational
efficiency, a concept introduced in [ 2 }, has been used to compare
different communication processes according to the fineness of perception
of incoming messages needed by an agent as a basis for his response.
This concept is shown to be closely related to the informational size

of incoming messages and of the message responses.



INFORMATIONAL EFFICIENCY OF ITERATIVE PROCESSES

AND THE SIZE OF MESSAGE SPACES
by

Stanley Reiter 1/

The informational requirements iﬁposed on a resource allocation process
by the necessity of meeting a given pexf..munce standard have been studied in
[3] and [5] and the broader motivations for undertaking such a study was dis-
cussed in the introduction to [5]. 1In [5] attention was directed to the equi-’
librium messages. Communication was represented by a correspondence from the
space of environments to the joint message space, characterizing equilibrium
messages. One interpretation of such a (privacy preserving) message ¢orrespon-
dence is that it models a one-step communication process in which each agent
sends the set of all joint messages that are acceptable to him, given his
environmental component. In such a process the message consists in effect of
the entire (equilibrium) message strategy of each ageut for the environment in
which he finds himself, i.e., he sends what he would respond to any message
received from the other agents.

It is natural to consider processes in which communication takes place
by an iterative exchange of messages, each round based on the messages received
in the preceeding one. Hurwicz's original formulation of adjustment processes
was of this type {2]. Iterative communication opens the possibility of reaching
the equilibrium set via a sequence of messages, each consisting of a single point

2/

of the message space rather than s set., —



-2-

Thus, iteration may trade-off an increase in the number of messages for a
decrease of the complexity of messages. A long, possibly infinite, sequence
of point-messages may substitute for a single set-message. In this paper

we study the possible advantages in terms of informational size opened up

by the use of iteration. We may consider this to be a step in the direction
of a full analysis of the trade-off just referred to.

The possible informational advantages of iteration seem to be of
two kinds. First, suppose that the message space is of minimal informational
size sufficient for a given performance by a (one-step) process using a
message correspondence. Can the size of the message space be further reduced by
using an iterative process? 1In Section 3 below it is shown that no such reduction
is possible. Thus, an iterative process must use points of a space having no
less information thanthe minimal space sufficient for the given performance
using a message correspondence.

Second, it may be possible to calculate the nevt message at each
iteration on the basis of less information tham is contained in the message
space of minimal size sufficient for the given performance, even though the
message calculated is itself a point of tqat space. Such reduction of the
information used is indeed possible, but ghere is, as might be expected, a
lower bound on the information needed. Lesma 2, which is an application of
Lemma 10 cf [5] to the case of iteration, characterizes the bound on the
possible reduction of irformation needed to calculate the next message. Theorem
4 gives a bound for the Euclidean case.

The concept of informational efficiency was proposed by RHurwicz [2,p.44]
to study the "fineacss of perception” (an indicator of information)
necded to calculate the next messége according to a given response or iteration

rule.  HUore we study the relationship betweer the concept of informational



efficiency proposed by Hurwicz and that of the informational size of message
spaces given by Mount and Reiter [5].

Hurwicz's definition of informational efficiency is stated in terms of
partitions and is set-theoretic, while the concept of informational size is
stated in terms of continuous mappings and is topological. It is therefore
necessary to augment the set-theoretic definition with a topological condition
(see Definitions 4 and 5) which has the effect of restricting the scope of the

definition somewhat. We refer to the concept so augmented as R-efficiency

(R for regular). The formalization of an iteration process involves two
message spaces, one in which the incoming messages lie and another in which

the messages emitted lie. The concepts of informational efficiency (Definition 3)

and of R-efficiency (Definition 5) relate to the dependence of the message

emitted on the message received. These concepts are stated in terms of
properties of the first of those two message spaces, It is also desirable
to be zkle to state relationships of refinemzat among regular partitiows in
terms of information decreasing maps. Lemma 1 states such a result. Using
the ecuivalence relation on messages implied by the response rule of a process,
a familiar construction permits the given process to be replaced by one whose
message space (referred to as the quotient message space) is a quotient of
the given one. Theorem 1 shows that if an iteration rule 7 1is more
R-cfficient than another, &, then the gquctient message space corresponding
to & has more iaformation than that correspouding to ).

YU §s interesting to kncw whether comparison of informational size of
message spaces is sufficiont to ensure comparison accovding to R-efficiency.
Such a proposition would, if true, be thc converse of theorem 1. An example

is given to show that this is not in gen=aral the case. Thus, the (partial)
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ordering of iteration procedures according to informational size of the space
of perceived messages is a proper extension of that according to R-efficiency.
However, in the case of finite sets such a converse holds, as is stated in
Theorem 2. Theorem 3, a partial converse of Theorem 1, shows that comparison
of informational size of quotient message spaces implies comparison according

to R-efficiency of certain iteration rules which have those quotient spaces.

These results lend further support to the view that the concept of
informational size introduced in {5] is capable of unifying apparently

diverse informational properties of resource allocation processes.

2. The following notations and structure will be used, except where

alternatives are explicitly given.
no n

Let E = LEY, X = T
i=1 i

Xl, Z, U, and V be topological spaces. We shall

1

.

use the same no:tation feor the set X and the topological space X except

where explicit reference to the tcpelogy is necessary. Let £f: E=+ Z be a

locally sectioned contiunuvous function. Letn = (u,f) be a privacy-preserving

-

allocation process with message space X realizing £ on E; i.e., p: E2 X is
a locally sliced <coordinate correspondence and f: X #+ Z a continuous
function such that yof = f. Since = is privacy preserving, p is a coordinate
1 ¢ . . L) i i
correspondence. I.e., there exist locally sliced corresponcences 1. : ET
i

such that uw = 0 ul.
i=1

v ey



1 n i i i
Definiticn l:éj A function 7): E x X2 X, | = (0 50N ), T E- x X+ X

15 an iteration rule on (the product space) X if and only if

(i) ﬂl is a locally sectioned continuous function for i=1,...,n,
and,

(1i) {xe X | x =T(e,x)} # ¢ for all e ¢ E.

We say T is an iteration rule for u: E+ X if

(iii) p(e) = {x e X|x = N(e,x)} for all e € E.

The message space of an allocation process, especially a minimal space, is
not necessarily a product; however, in what follows, wherever the space X is
assumed to be minimal, it is to be understood as minimal in the class

of product spaces.”

(1) Let M = (ﬂl,...,nn) be an iteratioco rule on X. Let Kﬂ denote the
equivalence relation: x = X (mod T) if and only if ﬂl(el,x) = ﬂi(el,f)for
i i ) - ;
all e ¢ E" and i=1,...,n. (Let LQH denote the partition of X determined
by Kﬂ' We refer tojgzn as the partition of X determined by T.
(ii) If a: X+ W is a function, we write KCL for the equivalence kernel

X(mod «) if and enly if

i

of «w; i.e., K, is the equivalcnce relation x

a(x) = a(x). Ve write Fa for the partition of X determined by Ka'



If c: X* W is a function then its equivalence kermal Ka determines a
quotient set X/a and a mapping p,: X # X/a which associates to each x in X
its equivalence class in X/a. We shall say that Pa represents a. There is
also a unique mapping ;: X/a » W such that o = gopCL (See (4] pp. 20-23).

When X and X/a are topological spaces the so-called natural map
Py X X/a may or may not be continuous, depending on the topology of X/a;
Pq is continuous in the quotient topplogy for X/c.. 1In situations of interest,
the space X/a cones with its own topology, not necessarily related to the

quotient topology. However, even with the quotient topology for X/a, the

function p is not necessarily locally sectioned.

Example

Let P: [0,1] =+ {0,1] x [0,1] be the Peanoc function. Then Kp is the
equivalence relation cn [0,1] given by r & r' (mod Kpj iff P(xr) = P(r'). We.
see that {0,1] x {0,1] is {0,1]/P and hence that Pp = P. Hence oy is
continuous (in the usual topology for [0,1] x {0,1]) but not locally sectioned.

(sec [5] p. 13 for a proof that P is not locally sectioned.)

e s 1 n 1 n
Definition 3: (2] p. 44.) et =0 ,...,) and 8 = 6 ,...,8 )
be iteration rules on X. The iteration rule 7 is informationally more
efficient than 0 if (?é is a refinement of Q)n.
e ; 1 n . .
Definition &: Let T = (§ ,...,7 ) be an iteration rule on X and let

(;)ﬂ deaote the partition of X determined by 7.

Let p=c iU+ X/T be the natural map of X oato X/, and let U = (X/N,7) be

a tupolopicel spoce with set X/ end topelegy J. We say that p represents 1i in U,



We say Q?n is regular with respect to U if p is continuous and locally
sectioned.

We now introduce the concept of regular informational efficiency in place

of informational efficiency, and refer to it as R-efficiency.

Definition 5: Let T and 6 be iteration rules on X. The iteration rule

T_is (at least) as R-efficient as 6 if é?n and 1;% are regular with respect to
X/ and X/9, respectively and 12% is a refinement of Lﬁn. (It is understood

that the topologies on X/T and X/8 are given.)

Remark:

When E, X, U and V have the discrete topology, all functions are continuous

and lecal’ly sectionmed, so that R-eificiency and informational efficiency coincide

Lerm2 1. Let N: Ex X+ X and 8: E x X 4 X be iteration rules on X and let

5:X + U represent N,and 7:X 2 V represent §. 7(x)=7(x) implies p(x)=p(x) for all

x and x in X, if and only if there exists a mapping ¢ of V onto U such

that ¢ = corT.

-1
Proof: We show 'necessity"first. Construct o: V- U by ¢ = poT . For
_ -1

any v ¢ V, and for x, x ¢ 7 (v) it fcllows fxzcm the hypothesis that p(x) = p(x)

Fh

— - - . -1
since x.X € 17 1(r) implies 7(x) = 7{x). Thus ¢ is constart on T "(v); hence

G = pgoar 1s single-valued. Further ¢ is onto, since s is ontc U and the domain



We now show sufficiency.

Suppose there exists o: V- U such that cor = p. Let x, ; ¢ X such that
T(x) = T(X). Then o(1(x)) = o(r(x)) since o is single-valued. It follows
that p-l(G (T(x)))= p'l(O(T(i)))- But, p = goT implies that y e p-l(U(T(y))) for
all y ¢ X. Hence, x ¢ 0 1o (1(x))) and X ¢ o o (r®)). Since

e = p e @), it follows that p(x) = p(®. 1

Theorem 1. Let T and © be iteration rules on X and let o: X+ U
and T7: X # V represent T} and 6 respectively. If T} is as R-efficient as

®, then V has as much information as U.

Procof: Defineg: V- U byag = poT-l. By Lemma 1, o 1is single-valued
and maps V onte U. Further, g is continuous, since 7 is continuous and
-1, -1,
continuity of T implies that the graph of 7 = is closed. Hence T =~ is an

upper semi-continuous correspondence and, since p is continuous, poT is
. . . -1 . . L .
upper semi-ceontinuouvs., Since g = poT is a function, it is continuous.
Finally, we show that ¢ is locally sectioned. Since p is locally sectioned,
given u ¢ U, there exists N(u), an open neighborhood of u in U and a function
. ; ; -1 .
ru:N(u) -+ X such that poru is the identity on N{u). Hence poT "oTor 1is the
u
identity on N(u); i.e., s, = Tory is a local section for o.

To surrnarize, 0: V- U is a lecally sectioned continuous map of V onto U.

. . . 3
Hcnce V has as much information as U. o

The concept of informational cfficiency registers every '"aggregation" of
the informztion nceded to calculate the next message according to one iteration
I T 03 3 g - - i f 1 ¢ T~ l fi o1 h m 9h
rule as compared to another., Thus, if g 1¢ strictly finer than Say anywhere

ire the space X, and as fine evervwhere, T is classified as strictly wore
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efficient than 8. On the other hand, the comparison of X/T and X/8 according
to informational size recognizes only certain sufficiently large "aggregations'

of the information needed to calculate the next message. Thus, according to

Theorem 1, é;% could be strictly coarser than‘c;; (for regular partitions

‘OT[

not have strictly less information than V when Qge is coarser thanlﬁPn.

and_j?e) while U and V have the same information size. However U could

Theorem 1 tells us that the partial ordering of (regular) iteration rules
according to informational size of the space of perceived messages does
not contradict the partial ordering of (regular) iteration rules according to
R-efficiency. The converse of Theorem 1 would, 1if true, tell us that the
partial ordering according to R-efficiency includes that according to
informational size. 1In particular, this would say that the same comparisons
are made according to either concept. However, the converse of Theorem 1 is

in general false, as the following example shows.

Example:
2
lLet V=1U =R, X =R
. X, X
Let T(xys%X)) = 12 2

p(xps%y) = %y

Note that 7: X+ V and, p: X+ U arc continuous and locally sectioned,and onto.

Then c: V= U is the identity, i.e., o(v) = v, for v € R.
+ 3 %, + X
. X, T X, i X "%
bBut T(X) = 'T(.)?/ = 2 - p) ’
vhile o(x) = g(x) o Xy T X
- . s 141 15+
For o= (L,1) . % o= (08.2) satisfies == = 1 = S



-10-

V has as much information as U, but 7(x) = 7(x) does not imply o(x) = p(X).

Hence T is not more R-efficienct than 6.

Theorem 1 is also related to a comment made by Balassa in his discussion
of Hurwicz's paper ({1] p. 533). From Balassa's comments, he would find the
concept of informational efficiency a more appealing basis of comparison than
the dimension of the (Euclidean) message space, which Hurwicz used in the
paper Balassa's comments refer to for the definition of informatiomal
decentralization. If the class of spaces eligible to be message spaces
is Euclidean, then informational size and dimension agree, (Lemma 2). In
that case the contra—ﬁositive form of Theorem 1 assures us that comparison

according to dimension cannot contradict comparison according to R-efficiency.

While the converse of Theorem ! is not in general true, it is true
when the message spaces are finite sets (with the discrete topology).

Theorem 2 states this result.

Theorem 2: Let T and & be iteration Fules on X, let p: X+ U and
7: X V represent 7 and 6, respectively, ;nd let X, U and V be finite sets
with the discrete topology. If V has as much information as U, then 6 1is not
strictly more R-efficient than T.

Proof: We have alrezdy noted that when X, U end V have the discrete
tepology, o and T are continuous and locally sccticned. Hence in the
present case g}n and (?6 are regular. 1f 9 is not more R-cfficient than T,

then it is not strictly more R-efficient than 7.
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If 5 is as R-efficient as T then, by Theorem 1, U has as much information

as V. Therefore it suffices to consider the case in which U and V have the
same information. In that case there exist functions c: V= U, and

*
g : U-+ V, which map V onto U and U onto V, respectively. Since U and V are finite,

it follows that 1‘U \\= ‘\V‘\, where ]\ {! denotes cardinaltty of the enclosed set.
I£f 8 is as R-efficient as T, . then_ﬁ?n is a refinement ofl;)g. Applying

Lemma 1, there exists a function § mapping U onto V such that 17 = 6op. Since

\\U}\ = \}Vi\, & is 1-1. Hence 6-1: V-2 U is a function mapping V onto U.

Further, § 0T 6-1060p = p. Hence, applying the other half of Lemma 1, it

it

follows that Q?G is a refinement of f? and hence that T is as R-efficient

'ﬂ’
as 6. It follows that € is not strictly more R-efficient than T|. Thus the

theorem is established. E

A second result, in the nature of a partial converse for Theorem 1,
is given in  Theorem 3, which states that if the quotient
message space U of an iteration Tule N has no more information
* - y .
than that, V, of 6, then there is an iteration rule 7} with the same quotient

message space as T and with the same responses as T to quotient messages, but

which is as R-efficient as 8.

Theorem 3: Let 7) and © b iterative rules on X. Suppose p: X+ U

and 7v: X =+ V represcnt 1| and 9 respectively, and that ﬁ: Ex U~ X and

;; Eox Vo X osatisfy 7 = %o(l x p) end ¢ = 50(1 X 7). I1f V has as much information
as U, then thero exists en iteration rule ﬂ* on X, and a locally sectioned
continuous functicn ~: ¥ 4 U, onto U, svch that (i) T* = %o(l ¥ @) and

{(1i) ™ 1% as R-efficient as 5.
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Proof: Since V has as much information as U, there exists a locally
sectioned continuous function c: V -+ U mapping V onto U, Let p = coTt. Then
¢ is locally sectioned continuous and onto, since T and ¢ have those
properties.

* * = . . r * 3

Define I : E x X X by | = TMo(Ix ¢). It is immediate that T 1is an
iteration rule on X since ¢ is locally sectioned and continuous.

By Lemma 1 it follows from ¢ = coT that i(x) = 7(x) implies @{x) = @(E).

Y
Hence Q?T is finer than.Q?w. By definition of T , é?@ is finer than.C?n*.
Hence Q)T is finer than_Q?p*. Since T and ¢ are locally sectioned continuous
|

%*
and onto, both E?T and C}h* are regular. Hence | is as R-efficient as 8. !3

Remark:

We have noted above that when X, E, U and V have the discrete topology,
all functions are continuous and locally sectioned, so that R-efficiency and
informational efficiency coincide. In that casc Theorem 1 tells us that
if T} is informationally as efficient as @&, then X/0 has as much information
as X/T. Similarly, in Theorcm 3 the conclusion may be stéted in terms of

informational efficiency as well as R-efficiency.

3. Consider a privacy preserving allocation process g = (u,E) wirtich is
sufficient for the function f£: E- Z .nd whose messzge space X has
minial infermational size in the class of (product) spaces sufficient for g,
While no allocation process with message space smaller than X is available,
the use of an iteration rule for ¢ offers other informational advantages
viich we shall pow study, An iteration rule ™ on ¥ for p permits each agent

ro rocoive a point ¢f the message space X oznd to calculate and cmit a point

o1l X repeaicdly, rather thon to calculate and emit a subset of X once.
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Thus, the message correspondence ¢ might require an agent to calculate and
wit his excecs damand function (or cerrespondence), while an iteration
rule T for o might require him to receive a point of the "price-trade"

space and to emit a "price-trade'" offer several (perhaps infinitely many)

times.

Cince ¥ is of wizmima! sior ‘cioon tor I, it is not possible to use
spaces informationzily crmalles whor I; i*.,...,n, for the messages of an
iteration rule without i: o Tsr.wmee.  (The correspondence v defined

by the sctationary messages of such an iteration rule would lie in an informa-
ticnally smaller mzssage space than X, resulting in a contradiction.) While
the use of a sequence of single points of ¥, rather than a subset, may in it-
self k2 an advantzge in some cases, the use of an iteration rule 7 offers
the further possibpility of reducing the space of messages perceived by the
individual agents. As we have shown, this may be expressed in terms of
inforanatioral size of the space U in which the partition Q?n is represented.
A natural question coucerns the possible reduction in size of U as compared

.

to that of X and Xl. We consider each agent separately and examine the.
intersal computation involved in calculating his "next" message on .the basis
l
of his information. Alternatively, Lemaa 2( the main result used to characterize
the possible recuction of the space of perceived messages used to compute iteration

- i i, i .
rule 7 on ¥ Yalsc fellows from the assumption that X~ =T (E° x X) i=1,...,n,

i . -
i.e., thzt T i¢ onto X, rather than that X is minimal. The following diagram
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tm1
[y
x®
>
=
N

e

W

Figure 1,

As shown in Figure 1, agent 1 can "process' his information, a point

of El x X,via a locally sliced correspondence Vl to a topological space

i , . . i i i,
w  and then,via the continuous function g1 to X*. The space W 1is

. i . , 1 1y L, 1 i i .
sufficicnt for M~ via the process (v ,8 Yy if T = gov . From Lemma 1C of

[ 5 1,which is applicable to (vl,gl), we see that;

: i, . . i i, . .
Lemma 2. 1If W~ is sufficient for || ,then W' has as much information

|
as ¥, (= 1RE x X)),

The significauce of Lemma 2 emerges more clearly in the special case

in vhich th . — i
in vhich the space of envircnments andé the wessage space X arc Luclidcan

spaces and in which enviconmental information is carried fully to wl. We

s
%)

irst show that for Euclidean spaces dimensicn measurcs informational size,

f
q
)
£
re
(1]
X
'
[ad

wles of real numbers
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and the correspondence vi factors into the identity and a representation

of M in U, as is shown in the diagram in Figure 2.

Lemma 3: Let X and Y be Euclidean spaces. X has as much information
as Y if and only if dim X 2 dim Y, with equality if and only if Y also
has as much information as X.

Proof: 1If dim X = dim Y, then X and Y are homeomorphic. 1In that case
X has as much information as Y and Y has as much information as X.

If dim X > dim Y, the projection of X onto Y is onto, continuous
and locally sectioﬁed. That it is locally sectioned is established as
fgllows. X is homeomorphic by h: X - X to a space X vhose dimension is
that of X and which contains Y as a subspace. Ve may define a local section
sy for the projection p of X onto Y by taking an arbitrary element X of
X - Y and defining sy(?) = (3,x) ¢ X. Thus, poh: X = Y is onto, continuous
and has local section h_losy: N(y) + X at y, when N(y) is an open set
containing y. This establishes that X has as much information as Y.

Y does not have as much informatiow as X, since 1if it did,
there would be a function a«:Y = X,. which 1is onto X, continuous
and locally sectioned, Let Bx be a local section for a at x ¢ X.

Thea  there is an open set N(x) = ¥ such that BX(N(X)) Y
is homeomcrphic to N{(x), since Sx is continuous on N(x) willh continuous
inverse o. But, this is impossible, cince N({x) is open in X and dim Y <
dim X,
Suppose X has as puch inforwation as Y. Then the argumeut just given
shows that Uim NodimY., Tf in addition Y has as much information as X, then
= 3

the same arvesent ¢hows that dim Yy o dim X, and hkence that dim Y = dim X, ¥
’ «

LS A
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e
-

Figure 2.

i . \
. ; i i . .
Here E~ X X has as much information as E~ x U, which in turn has as much

i .. .
information as X . Let dim A denote the dimension of the Euclidezan

. . . . n .
space A. Since dim (E- x U') = dim E* + dim U, and dim X = I dim X",
i=1

it follows that
dim U" = dim X' - dim E*

Thus, the saving of informational size a%hieved by using the space Ui instead
of X.is bounded by the difference in dimension between Xi and Ei, i.e.,

Ui can have smailer dimension than Xi by at most the dimension of Ei.

If it is reguired that Ui = U for i=1,...,n, it follows that

dim U > 12X [dim xt - dim Ei]
= {1,...,n}

—
i
o

X 9 U is continuous, onto, and locally sectioned, then

i . . .
I x p is coutinuous,cnto and locelly secticned, with local section given

S S i, . i
cv Texw vhere ¥~ is a local scction for p, Hence, E~ x X

, , . i
has as much infeormation a2as E ox U, Thus.
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dim (E- x X) = dim E" + din X » dim E" + dim U = dim &t x v,
or

dim X > dim U ,

Thus, Theorem 4 below is established.

1
Theoremy4 . Let T} = () ,...,ﬂn) be an iteration rule on X, where
i i
X and E are Euclidean spaces for i=1,...,n. Let U be a Euclidean space;

let p: X+ U be a continuous locally sectioned mapping of X onto U, and let

i i . . .
g + U= X" be a continucus function such that the process (I1 X p,gl)

realizes ﬂl on E' x X, for i=1,...,n. Then,

Max  [diw X" - dim E'] < dim U % dim X.
{1,...,n} -

The message space X of an allocation process,especially the minimal
space sufficient for a given performance, ls not necessarily a product. We
now give a definition of a (generalized) iteration rule for a process with
@ general message space X.

1
Definition 1': A function | = (T ,...,Hn) is called a generalized itera-

tion rule on X if:

i i , .. , . .
(i) T :E xY-2 Xisa locally sectionced continuous funct1on,
for i=1,...,n, wvhere Y = Xx...,.xX, (u times).
(i)Y Lor overy o oe B otheve exists v o2 Y osuch that V(e.v) =y,

GiinY i v o= T (ely) then v = (H....ox) fov osome xog M.



We say M is a generalized iteration rule for u, if,

(iv) 1f x ¢ p(e), then N(e, (¥peeerx)) = (X,.0.,%)

and,
(v) if T(e,y) = y,then y = (x,...,x) for some x ¢ p(e).

n

. ) . 3 . l
To relate this to the case in which X is a product, i.e.,X = Il X ,we note
i=1

i
that the generalized iteration rule component T may depend on proposals

of the jth aéent referring to other agents. Thus,
i, i i i1 = 2,2 = n, nc
ntety = ntehntehy, ey, ontEn )

where y is the array of messages at a preceeding stage. In the formulation
given above we restricted attention to iteration rules in which each agent's
i
message is a point of his own component space X' . In that case the array
1 n . 5 . 1 n, .
T ..+, 1s a point of X. More forwally, if M = (0 ,...,1) is a

L

generalized iteration rule, we consider the derived rule ﬁ = (ﬁ
=—1i i i, . . i

where | = PioT] , and Pi: X+ X~ is the projection on X, Thus

Sl i i -

p1 : ET x X2 X', I.e., at stage t,for yt =y€e¥,

i - — i, i 1 n,,__1
P, ﬂl(el,-PiO“.l(elE))Pz(ﬂz(ezyy)),---,Pn(ﬂn(en;y))) =P (el,(xt,...,xt))—xt+1

for i=1,...,n.

We note that if X is not a product space and if the iteration rule
" ois replaced in the statement ¢f Theerem % by a generalized iteration

rule on X , then the conclusion of Theorem 4 beconmes;
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FOOTNOTES
1/ 1 am indebted to Leonid Hurwicz for helpful discussions of this
paper. This research was partly supported by The National Science

Foundation (GS 31346X) and a grant from the General Electric Company.

2/ 1In Hurwicz's formulation the message space (language) was arbitrary,

so that the restriction to point messages was not a consideration.
2/ The relevant definitions from [5} are reproduced here for convenience of
the reader. Footnote and Lemma Numbers are as shown in [5].

Definition 1. Suppose that X, M, and Z are topological spaces, and

suppose that f: X2 Z is a function. A pair which consists of a corres-

pondence p: X - M and a function {: M7 Z is said to be compatible with f if and onl,

i{f for each x ¢ X, f is constant on p(x) and has value f(x). Thus if

u € p(x), then f(u) = f(x). We shall say that M has sufficient information

-~

for the function f if there is a pair (u,f) such that p: X+ M, £: M2 Z, @,0) is

rrespondence (see Definition 6

-~

cocpatible with f, and o is a locally sectioned co

-~

below). We shall say then that (p,f) realizes £. We call the pair (u,f) a—Fesource

-~

allocation process, (briefly, process) with message space M, and choice function £.

1 T . .
Definition 2. Supposc that X ,...,X 1is a set of topological spaces

n
.« Y ‘ -4 <
and suppose thot M is & topological space. A correspondence p: X X...xX Mis

i i . are 5 d .
said to be a coordinate correspondence if and only if therce are corrcsponcences

i 1 n 1 n 1 n, _
by %3 4 M such that for each (x ,...,x ) € X x..00X 5 p(x ,eeepx ) =

n

;11(x1) Moo (s ).
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. ~
Definition 3. Let X =Tl Xi, M and Z be topological spaces and let (u,f).

i=1

where p: X+ M and £: M Z,be a resource allocation process (with message

space M and choice function f). We say that (u,f) preserves privacy if

and only if p is a coordinate correspondence.

Lemaa 5: Suppose that Xl,...,Xn, M are topological spaces and

1 n :
suppose that p = X'x...xXX * M is a correspondence. A necessary and
sufficient condition (which we shall call the 'trossing condition) that
M be a coordinate correspondence is that for each pair of points

x = (xl,...,xn) and x' = (xi,...;x;) in X1 x... xX" and each integer
*) p(x) Np (x') = p('9,0 N R OS:x").

Definiticn 6. Suppose the X and Y are topological spaces. 1If

p: X Y is a correspondence from X to Y, then we shall say that p 1is

locally sliced 1if the following condition is satisfied:

for each p ¢ X, there exists an open set U(p) which
contains p and a function s:U(p) = Y such that for

each u ¢ U(p), s(u) € u(u).

The function s will be called a local slice or slice of .,

Definition 7. 1f X @ud Y arce topolegical spaces, then an onto function

. -1
£:X 2 Y is said to be lecally sectioned if the correspendence f from Y to X

is locally sliced.
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Definition 9. Suppose that X and Y are topological spaces. We shall

say that Y has as much informatica as X if and omly if there exists a3 locally

sectioned function from Y to X. We shall say that Y has strictly more

{nformation than X, if Y has as much information as X, but X does not have

as much information as Y.

4/  We use the term "iteration rule" rather than ''response rule" to

emphasize the restriction to point message.

5/ See Definition 1' below for the case in which X 1is not assumed to be
a product. The results obtained using Definition 1 apply with suitable

reinterpretations when Definition 1' is used.

T ear
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