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1. Introduction

Network structures play an important role in the organization of some significant eco-
nomic relationships. Informal social networks are often the means for communicating infor-
mation and for the allocation of goods and services which are not traded in markets. Among
such goods one can mention not only invitations to parties and other forms of exchanging
friendship. but also information about job openings, business opportunities and the like.
In the context of a firm. the formal network through which relevant information is shared
among the emplovees may have an important effect on the firm’s productivity. In both
contexts, the place of an agent in rhe network may affect not only his or her productivity,
but also his or her bargaining position relative to others and this might be reflected in the

design of such organizations.

The main goal of this paper is to begin to understand which networks are stable, when
self-interested individuals choose to form new links or to sever existing links. This analysis is
designed to give us some predictions concerning which networks are likely to form, and how
this depends on productive and redistributive structures. In particular, we will examine the
relationship between the set of networks which are productively efficient, and those which
are stable. The two sets do not always intersect. Our analysis begins in the context of

several stvlized models. and then continues in the context of a general model.

This work is related to a number of literatures which study networks in a social science
context. First there is an extensive literature on social networks from a sociological per-
spective {see Wellman and Berkowitz (1988} for one recent survey) covering issues ranging
from the inter-family marriage structure in 15th century Florence (e.g. Padgett (1987)) to
the communication patterns among consumers (see lacobucci and Hopkins (1992)}). Sec-
ond, occasional contributions to microeconomic theory have used network structures for
such diverse issues as the internal organization of firms (e.g.. Boorman (1975). Keren and
Levhari (1979)), employvment search (Montgomery {1989)). svstems compatibility (see Katz
and Shapiro (1994)). information transmission {Goyal (1993)), and the structure of airline
routes (Hendricks. Piccione. and Tan (1994, 1995), Starr and Stinchcombe (1992)). Third
there is a formal game theoretic literature which includes the marriage problem and its ex-
tenstions (Gale and Shapley (1962). Roth and Sotomayor (1990)). games of flow (Kalai and

Zemel (1981)). and games with communication structures (Mverson {1977). Aumann and



Mverson (1938)). Finally, the operations research literature has examined the optimization
of transportation and communications networks. One area of that research studies the allo-
cation of costs on minimal cost spanning trees. and makes explicit use of cooperative game

theory. (See Sharkey (1993) for a recent survey.)

The main contribution of this paper to these existing literatures is the modelling and
analvsis of the stability of networks when the nodes themselves (as individuals) choose to
form or maintain links. The issue of graph endogeneity has been studied in specific contexts
including cooperative games under the Shapley value (see Aumann and Myerson (1988))
and the marriage problem (see Roth and Sotomaver (1989)). The contribution here lies in
the diversity and generality of our analysis, as well as in the focus on the tension between

stability and efficiency.

Of the literatures we mentioned before. the one dealing with cooperative games that
have communcation structures is probably the closest in methodology to our analysis. This
direction was first studied by Myerson (1977). and then by Owen {1986). van der Nouweland
and Borm (1991). and others (see van der Nouweland (1993) for a detailed survey). Broadly
speaking. the contribution of that literature is to model restrictions on coalition formation
in cooperative games. Much of the analysis is devoted to some of the basic issues of coop-
erative game theory such as the characterization of value allocations with communication
structures. Our work differs from that literature in some important respects. First. in our
framework the value of a network can depend on exactly how agents are interconnected, not
just who they are directly or indirectly connected to. Unlike pames with communication,
different forms of organization might generate different levels of profit or utility, even if they
encompass (interconnect) exactly the same players. Second, we focus on network stability
and formation and its relationship to efficiency. Third, an important aspect of our work is
the application of this approach to some specific models of the organization of firms and

network allocation mechanisms of non-market goods.

The paper proceeds as follows. In section 2 we provide the definitions comprising
the general model. In section 3 we examine several specific versions of the model with
stvlized value functions. For each of these models we describe the efficient networks and the
networks which are stable. We note several instances of incompatibility between efficiency

and stability. In section 4, we return to the general model to study means of allocating the



total production or utility of a network. We examine in detail which types of allocation
rules allow for stability of efficient networks. We conclude with a result characterizing the

implications of equal bargaining power for allocation rules.

2. Definitions

Let A" = {1...... V} be the finite set of players. The network relations among these
players are formally represented by graphs whose nodes are identified with the players and

whose arcs capture the pairwise relations.

Graphs

The complete graph, denoted ¢V, is the set of all subsets of A" of size 2. The set of all
possible graphs on .\ is then {g | ¢ C gV} Let ij denote the subset of A" containing i and
J and is referred to as the link ij. The interpretation is that if ij € ¢, then nodes ¢ and j
are directly connected (sometimes referred to as adjacent), while if ij ¢ g, then nodes : and
J are not directly connected.’

Let g +1; denote the graph obtained by adding link 75 to the existing graph g and ¢ — 15
denote the graph obtained by deleting link :j from the existing graph ¢ (i.e., g+1j = gU{7j}
and g - 5 = g7 {1j}).

Let N(g) = {i | 37 s.t. ij € g} and n(g) be the cardinality of N(g). A path
in g connecting ! and i, is a set of distinct nodes {i1,i2,....in} C N(g) such that
{i1is.i2i5.. ... in-1in} C g.

The graph ¢’ C ¢ is a component of g. if for all i € N(g¢') and j € N(g'). i # j. there
exists a path in ¢’ connecting ¢ and j. and for any i € N(g') and j € N(g).ij € ¢ impliés

ijeg.

! The graphs analvzed here are nondirected. That is. it is not possible for one individual
to link to another. without having the second individual also linked to the first. (Graphs
where unidirectional links are possible are sometimes called digraphs.) Furthermore, links
are either present or not, as opposed to having connections with variable intensities (a
valued graph}. See lacobucci (1994) for a detailed set of definitions for a general analysis of
social networks. Such alternatives are important, but are bevond the scope of our analysis.
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Values and Allocations

Our interest will be in the total productivity of a graph and how this is allocated among
the individual nodes. These notions are captured by a value function and an allocation
function.

The value of a graph is represented by v : {g | g C ¢¥} — IR. The set of all such
functions is 1". In some applications the value will be an aggregate of individual utilities or
productions. v(g) = ¥, ui(g). where v, : {g | ¢ C ¢~} — IR.

A graph g C g7V is strongly efficient if v(g) > v(¢') for all ¢’ € ¢%. The term strong
efficiency indicates maximal total value. rather than a Paretian notion. Of course, these are

equivalent if value is transferable across players.

An allocation rule ¥ : {g | g C g¥} x V" — IRV describes how the value associated
with each network is distributed to the individual players. ¥;{g.%) is the pavoff to player ¢

from graph g under the value function v.

Stability

As our interest is in understanding which networks are likely to arise in various contexts,
we need to define a notion which captures the stability of a network. The definition of a
stable graph embodies the idea that plavers have the discretion to form or sever links. The
formation of a link requires the consent of both parties involved. but severance can be done
unilarerally.

The graph g is pairwise stable with respect to v and Y if

{i) for all 17 € ¢g. Yi(g.v) 2 Yi(g — tj.v) and Y;(g.v) > Y;(g — ij.v). and

(i) for all ij € g. if ¥;(g.v) < Yi(g +ij.v) then Y;(g.v) > Y;(g + ij.v).

We shall say that g is defeated by ¢’ if ¢’ = ¢ + i and (1) is violated for i, or if
g =g —1; and (ii) is violated for ij.

Condition (11) embodies the assumption that, if ¢ strictly prefers to form the link ij
and j is just indifferent about 1t, then it will be formed.

The notion of pairwise stability is not dependent on any particular formation process.
That is. we have not formally modeled the procedure through which a graph is formed.

Pairwise stability is a relatively weak notion among those which account for link formation
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and as such it admits a relatively larger set of stable allocations than might .nore restrictive
definition or an explicit formation procedure. (See section 5 for more discussion of this).
For our purposes. such a weak definition provides strong results. since in many instances it

already narrows the set of graphs substantially.

There are many obvious modivications of the above definition which one might consider.
One obvious strengthening would be to allow changes to be made by coalitions which include
more than two players. To keep the presentation uncluttered. we will go through the analysis
using only the stability notion defined above and relegate all the remarks on other variations

to Section 3.

3. Two Specific models

We begin by analvzing several stylized versions of the general model outlined in the last
section. There are innumerable versions which one can think of. The examples presented
in this section are meant to capture some basic and diverse issues arising in social and
economic networks. In particular. we illustrate what the application of pairwise stability

predicts concerning which graphs might form and whether or not these are strongly efficient.

3.1 The Connections Model

This first example models social communication among individuals.? Individuals di-
rectly communicate with those to whom they are linked. Through these links they also
benefit from indirect communication from those to whom their adjacent nodes are linked,
and so on. The value of communication obtained from other nodes depends on the distance
to those nodes. Also. communication 15 costly so that individuals must weigh the benefits

of a link against its cost.

Let wy; > 0 denote the “intrinsic value” of individual j to individual i and ¢;; denote

the cost to ¢ of of maintaining the link :j. The utility of each plaver 7 from graph ¢ is then

wlg) = wu+ Y vy - 3

J#e jujEg

4 Goval (1993) considers a related model. His is a non-cooperative game of one sided
link formation and it differs in some of the specifications as well, but it is close in terms of
its flavor and motivation.



where ¢, is the number of links in the shortest path between 7 and j (setting t;; = > if
there is no path between 7 and j}. and 0 < é < I captures the idea that the value that ¢
derives from being connected to j is proportional to the proximity of j to 7.? Less distant
connections are more valuable than more distant ones, but direct connections are costly.

Here
v(g) =Y wmlg).

1EN
3.1.1 Strong Efficiency in the Connections Model
In what follows we focus on the symmetric version of this model, where ¢;; = ¢ for all
ij and w;; = 1 for all j # ¢ and wy; = 0. The term star describes a component in which
all players are linked to one central player and there are no other links: ¢ C ¢*¥ is a star if
¢ # 0 and there exists i € \" such that if 7k € g. then either j = 7 or k = ¢. Individual : is

the center of the star.

Proposition 1. The unique strongly efficient network in the svmmetric connections
model Is

(i) the complete graph ¢~ if c < § — 62,

(ii} a star encompassing evervone if § — 6% < c < é + (‘VQ—_Q)ESZ, and

(iii) no links if § + 72162 < c.

PROOF: (i) Given that 2 < é — ¢, anv two agents who are not directly connected will
tmprove their utilities. and thus the total value. by forming a link.

(ii} and (iii). Consider ¢'. a component of ¢ containing m individuals. Let £ > m — 1
be the number of links in this component. The value of these direct links is k(26 — 2¢). This
leaves at most m(m — 1)}/2 — k indirect links. The value of each indirect link is at most 262.

Therefore, the overall value of the component is at most
k(26 = 2¢) + (m(m — 1) — 2k)6°. (1)
If this component is a star then its value would be

(m - 1)(286 = 2¢) + {m — 1)(m — 2)62. (2)

3 The shortest path is sometimes called the geodesic. and t,; the geodesic distance.
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Notice that (1) — (2) = (k — {m — 1))(28 — 2c — 26%), which is at most 0 since k¥ > m — 1
and ¢ > & — 62, and less than 0 if ¥ > m — 1. The value of this component can equal the
value of the star only when &k = m — 1. Any graph with & = m — 1, which is not a star,
must have an indirect connection which has a path longer than 2. getting value less than
262 Therefore. the value of the indirect links will be below (m — 1)(m — 2)62. which is what
we get with star.

We have shown that if ¢ > 6 — 4%, then any component of a strongly efficient graph must
be a star. Note that any component of an strongly efficient graph must have nonnegative
value. In that case. a direct calculation using (2) shows that a single star of m+n individuals
is greater in value than separate stars of m and n individuals. Thus if the strongly efficient
graph is nonempty. it must consist of a single star. Again, it follows from (2) that if a star
of n individuals has nonnegative value. then a star of n + 1 individuals has higher value.

Finally. to complete (ii) and (iii) notice that a star encompassing evervone has positive

value only when 6 + %ﬂég >c |

This result has some of the same basic intuition as the hub and spoke analysis of
Hendricks. Piccione, and Tan (1995) and Starr and Stinchcombe (1992}, except that the
values of graphs are generated in different manners.

3.1.2 Stability in the Connections Model Without Side Payments

Next. we examine some implications of stability for the allocation rule Y;(g) = u;(g).

This specification might correspond best to a social network in which by convention no

payvments are exchanged for “friendship.”

Proposition 2. In the symmetric connections model with Yi{g) = u;(g):
(i) A pairwise stable network has at most one (non-empty) component.
(ii) For ¢ < ¢ — &2, the unique pairwise stable network is the the compiete graph, g* .
(iii) For ¢ — &% < ¢ < &. a star encompassing all plavers is pairwise stable, but not
necessarily the unique pairwise stable graph.
{ivj For & < ¢, anv pairwise stable network which is nonempty is such that each plaver

has at least two links and thus is inefficient.*

PROOF: (i) Suppose that g is pairwise stable and has two or more non-trivial components.
Let u'/ denote the utility which accrues to ¢ from the link ;. given the rest of g: so

P Ife+ %62 > c. then all pairwise stable networks are inefficient since then the empty

graph is also inefficient.



ut? = u;{g+ 1)) —ulg)ifij ¢ g and u¥? = u;lg) — uylg —ij) if ij € g. Consider ij € g.
Then u*? > 0. Let &l belong to a different component. Since i is already in a component
with j. but k is not. it follows that «*7 > 47 > 0. since k will also receive §° in value
for the indirect connection to i, which which is not included in u*’. For similar reasons,
u?* > u'* > 0. This contradicts pairwise stability, since jk ¢ g.

(ii) follows from the fact that in this cost range. any two agents who are not directly

connected benefit from forming a link.

(ii1) It is straightforward to verify that the star 1s stable. It is the unique stable graph
in this cost range if .V = 3. It is never the unique stable graph if N=4. (If § — 6% < ¢ < §,
then a line is also stable. and if ¢ < & — 6%, then a circle ® is also stable.)

(iv) In this range, pairwise stability precludes “loose ends™ so that every connected
agent has at least two links. This means that the star is not stable, and so by Proposition

1. any non-empty pairwise stable graph must be inefficient. ||

Remark: The results of Proposition 2 would clearly still hold if one strengthens pairwise
stability to allow for deviations by groups of individuals instead of just pairs. This would
lean even more heavily on symmetry assumption.

Remark: Part (iv) implies that in the high cost range (where § < ¢) the only non-
degenerate networks which are stable are those which are over—connected from an efficiency
perspective. {We will return to this tension between strong efficiency and stability later, in
the analysis of the general model.) Since é < ¢, no individual is willing to maintain a link
with another individual who does not bring additional new value from indirect connections.
Thus. each node must have at least two links. or none. This means that the star cannot be

stable: the center will not wish to maintain links with any of the end nodes.

The following example features an over—connected pairwise stable graph. The example
is more complex than necessary (a circle with N = 5 will illustrate the same point), but
it illustrates that pairwise stable graphs can be more intricate than the simple stars and

circles.

EXaMPLE 1.

Consider the “tetrahedron™ pictured below in figure 1. Here N = 16. A star would

involve 15 links and a total value of 306 + 21062 — 30¢. The tetrahedron has 18 links and a

g C gV isacircleif g # @ and there exists {i1.io,.... in} C A such that g =
{i1ig. inig..... fy—1in.ini1}.



total value of 366 + 4862 + 606% + 728% + 2465 — 36¢, which (since ¢ > ¢ and 6 < 1) is less

than that of the star.

Figure 1

Let us verify that the tetrahedron is pairwise stable. (Recall that %'/ denotes the utility
which accrues to ¢ from the link ij. given the rest of g: so u' = u;(g +ij) — u;(g) if ij € ¢
and u" = u;(g) ~ ui{g —1y) if ij € g.) Given the symmetry of the graph, the following
inequalities assure pairwise stability of the graph: u!? > 0, w?! > 0, v23 > 0, u!® < 0,
ul® < 0. u'® < 0. and u?® < 0. The first three inequalities assure that no one wants to sever
a link. The next three inequalities assure that no new link can be improving to two agents
if one of those agents is a “corner” agents. The last inequality assures that no new link can
be improving to two agents if both of those agents are not “corner” agents. It is easy to
check that u?! > u!2, B > 412 413 < 414 415 < 414, and u!* < u?®. Thus we verify that

u*?2 >0 and u?® < 0.
ul? =8 - 8 4 8% — 6T+ 83 — 5 4 2(6% — %) — ¢,
u = § — 65+ 82 — 6% + 62 - 85 +2(8° - 8Y) — ¢,

9
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If c=1and é =.9 then (approximately) x!? = .13 and u?® = - .17.

In this example. the graph is stable since each link connects an individual indirectly
to other valuable individuals. The graph cannot be too dense. since it then becomes to
costly to maimntain links relative to their limited benefit. The graph cannot be too sparse
as nodes will have incentives to add additional links to those links which are currently far

away and/or sever current links which are not providing much value.

Before proceeding. we remark that the results presented for the connections model are
easily adapted to replace ' by any nonincreasing function f{¢;), by simply substituting
f(t,;) whenever 6%s appears. One such alternative specification is a truncated connections
model where players benefit only from connections which are not more distant than some
bound D. The case of D = 2. for example. has the natural interpretation that i benefits
from ; only if they are directly connected or if they have a "mutual friend” to whom both
are directly connected. It is immediate to verify that propositions 1 and 2 continue to hold

for the truncated connections models. In addition we have the following observations.

Proposition 3. In the truncated connections model with bound D
(1) t,; <2D —1 for all i and j which belong to a pairwise stable component.
(ii) For D = 2 and é < ¢ no member in a pairwise stable component is in a position to

disconnect all the paths connecting anyv two other plavers by unilaterallv severing links.

PrOOF: (i} Suppose ¢;; > 2D — 1. Consider one of the shortest paths between i and j. Let
m belong to this path and ¢,,; = 1. Note that t;z > D. for any k such that j belongs to the
shortest path between m and k and such that ¢,,, < D. This is because tjp < D~ 1 and
t.; > 2D — 1. Therefore, u* > u™ (the inequality is strict since u* includes the value to i
of the connection to m which is not present in ¥™7) so i wants to link directly to j. (Recall
the notation u* from the proof of proposition 2.} An anlogous argument establishes that j
wants to link directly to i.

(i) Suppose that player i occupies such a position. Let j and k be such that i can
unilaterally disconnect them and such that ¢4 is the longest minimal path among all such
pairs. Since by (i), ¢,, < 3. there is at least one of them. say j. such that t;; = 1. But theni
prefers to sever the link to j, since the maximality of ;% implies that there is no h to whom

1's only indirect connection passes through j (otherwise t;z > tie). |
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There are obvious extensions to the connections model which seem quite interesting.
For instance, one might have a decreasing value for each connection (direct or indirect) as
the rotal amount of connectedness increases. Also. if communication is modeled as occuring
with some probability across each link. then one cares not only about the shortest path,
but also about other paths in the event that communication fails across some link in the

shortest path. Two such alternative models are discussed briefly in the appendix.

3.1.3 Stability in the Connections Model with Side Payments

In the connections model with side payments, players are able to exchange money in
addition to receiving the direct benefits from belonging to the network. The allocation
rule will reflect these side payments which might be agreed upon in bilateral negotiations or
otherwise. This version exposes another source of discrepancy between the strongly efficient
and stable networks. Networks which produce high values might place certain plavers in
key positions that will allow them to "claim”™ a disproportionate share of the total value.
This is particularly true for the strongly efficient star-shaped network. This induces other
players to form additional links that mitigate this power at the expense of reducing the

total value. This consideration is illustrated by the following example.

EXAMPLE 2.

Let N = 3 and v be as in the basic connections model. The graph g = {12.23}
is strongly efficient for § — §2 < ¢ < §. Suppose that the allocation rule Y allocates
the whole value of any graph to the players having links in the graph and reflects equal
bargaining power in the semse that Yj(g.v) — Yi(g — ij,v) = Y;(g.v} — Y;(g — tj.v) for
all ¢g. + and j (we characterize this equal bargaining power rule in Theorem 4). Then
Yi(gov) = Y5(g.0) = 6+ 252 —cand Y2(g.v) = 26 + %62 — 2¢.5 That is, each of the
peripheral plavers pays the center Aéz In the alternative network ¢’ = {12.23.31} (the
circled, Y1{g’.v) = Y2(g'. v) = Y3(¢'. v) = 26 — 2¢. and no side payments are exchanged. In
the range & — %52 < ¢ < 6 the strongly efficient netwark ¢ is uniquely stable, but in the

range & — &2 < e < b - %62 the inefficient network g’ is the only stable one.

® To see this. notice that ¥,(g — 23.v) = Y3{g — 23.2) = 6 — ¢. Ya(g — 23.v) = 0. and
Yilg—12.v) =0, Ya(g —12.v) = Y3(g — 12.v) = 6 — ¢. Then from equal bargammg power,
we have that Yo(g.v) — (& —¢c) = Yi(g.v} — 0 = Y3(g,2) — 0. Then using the fact that
Yi(g.v) + Ya(g.v) + Ya(g.v) = 46 + 26 — 4c. one can solve for Y{g. v).
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As mentioned above. the reason for the tension between efficiency and stability is the
strong bargaining position of the center in g: when ¢ is not too large. g is destabilized by the

link between the peripheral players who increase their share at the expense of the center.

This version of the connections model can be adapted to discuss issues in the internal
organization of firms. Consider a firm whose output depends on the organization of the
emplovees as a network. The network would capture here the structure of communication
and hence coordination between workers. The nodes of the graph correspond to the workers.
{For simplicity we exclude the owner from the graph, although it is not necessary for the
result). The total value of the firm’s output, v. is as above. The allocation rule, Y. specifies
the distribution of the total value between the workers (wages) and the firm (profit). It
captures the outcome of wage bargaining within the firm, where labor contracts are not
binding. and where the bargained wage of a worker is half the surplus associated with that
worker’'s employment. The assumption built into this rule is that the position of a worker
who quits cannot be filled immediately, so Y;(¢ —¢{,v) and v(¢ — 1) — Zj# Yi(g —i.v) are
identified as the bargaining disagreement points of the worker and firm respectively (where

g — i denotes the graph which remains when all links including ¢ are deleted). Thus

Z} g.v)~Yi{g—iv)—(v(g—1) ZY (g —i.v))

J# #

I\J\r—l

Yilgov) =Yilg —i.v)

If we think of the owner as external to the network. this Y is not balanced, as the firm’s

profit is v — 3 1.7
ExaMPLE 3.

Let NV =3 and » be as above. Assume Y;{g — 1, v) = 0 which means that a worker who
quit is not paid. The graph ¢ = {12.23} is strongly efficient for § — 6% < ¢ < 4. Notice
that Yi{g.v) = Ya(g.v) = 2(‘ + —E c and Y3(g.v) = %é + %62 - %c. leaving a profit
of 3¢ + 162 — ¢ for the firm. Consider ¢’ = {12.23,31}. Here Yi(¢'.v) = Ya(g',v) =
Yalg' v) = %é - %c. leaving a profit of 2(é — ¢) for the firm.

In the range § — 62 < ¢ < § — %62 the network g¢ is the strongly efficient form. but

the network ¢’ is more profitable to the firm. since it weakens the bargaining position of

* If the owner is included explicitly as a player. then Y coincides with the equal bargaining
power rule examined in Section 4.
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the worker occupying the center position in the graph g. This point complements existing
work on internal wage bargaining and its consequences for the structure of firms. Stole and
Zweibel (1993) investigate how internal wage bargaining distorts employment decisions, the
extent of investment in capital. and the division of the workforce among activities (see also
Grout {1984) and Horn and Wolinsky (1988)). The current framework adds explicitly the

network organization of the firm.

3.2 The Co—Author Model

Here nodes are interpreted as researchers who spend time writing papers. Each node’s
productivity is a function of its links. A link represents a collaboration between two re-
searchers. The amount of time a researcher spends on any given project is inversely related
to the number of projects that researcher is involved in. Thus, in contrast to the connections
model, here indirect connections will enter utility in a negative way as they detract from

one's co-author’s time.
The fundamental utility or productivity of plaver ¢ given the network g 1s
ui(g) = Y wilnijong) — e(ny),
JjEyg
where w;(n;. j.n;) is the utility derived by ¢ from a direct contact with j when ¢ and j are
involved in n, and n, projects. respectively. and c¢(n;) is the cost to i of maintaining n;

links.

We analvze a more specific version of this model where utility is given by the following

expression. For n; > 0.

11 1 ! !
() Z {n; + - + nznj] +( n));g n;

and for n, = 0. u,(g) = 0. This form assumes that each researcher has a unit of time which
thev allocate equally across their projects. The output of each project depends on the total

time invested in it by the two collaborators. nl + ni and on some synergy in the production
¥ b

1
nn; o

process captured by the interactive term
The interactive term is inversely proportional to the number of projects each author is

involved with. Here there are no direct costs of connection. The cost of connecting with a

13



new author is that the new link decreases the strength of the interaction term with existing

links. (An alternative version of the co-author model appears in an appendix.)

Proposition 4. In this co-author model: (i) if N is even, then the strongly efficient
network Is a graph consisting of N/2 separate pairs, and (ii) a pairwise stable network can
be partitioned into fullv intraconnected components, each of which has a different number
of members. (If m is the number of members of one such component and n Is the next

largest in size. then m > n?).

PROOF: To see (i), notice that 3 .y u(g) = Yien Linjesln + oo + mm] < 2V +

T nj nin;l —
1 v - . . - .
D ien Zj:zje_q o S8 and 3.V is the value of .N/2 separate pairs.
To see (ii). consider ¢ and j who are not linked. It follows directly from the formula
for u;(g) that / will strictly want to link to j if and only if

1 1 1 1 1
n-+1(l+n-+1)>[;_n-+1] Z ;L—’
J : : i Kk ikeg F

{substitute 0 on the right hand side if n; = 0) which simplifies to

n; + 2 1 1
T 2w ()
J P kk#jikeg

The following facts are then true of a pairwise stable network.

1. Ifn; =n; thenij €g.

We show that if n; < n;. then 7 would like to link to j. Note that %;‘:_—f > 1 while the
right hand side of (*] is at most 1 (the average of n; fractions). Therefore. i would like to
link to j.

2 If np < Max{nkjik € g}. then ; wants to link to h.

Let ; be such that ij € g and n, = Max{ni|ik € g}. If n; > n, — 1 then %2 > 1.

np+1
If Z2:=2 > | then (%) clearly holds for i's link to k. If 2122 = 1, then it must be that

np+1
ny > 2 and so n; > 2. This means that the right hand side of () when calculated for
adding the link h will be strictly less than 1. Thus (¥) will hold. If n; < n; — 1. then

n,+1 < n,+2 n,+2
n, ° n;+i nn+l’

ih+1

Since {j € g. it follows from (*) that

n; + 1 - 1 Z 1
TLJ' - ny — 1 ’ N '
k:k#jtk€g




Also

1 1 I 1
T T T

1
k:k#j1k€Eg

since the extra element on the right hand side is 1/n; which is smaller than (or equal to)

1

: n;+2 1 1
all terms in the sum. Thus 233 > =57, -

nt1

Facts 1 and 2 imply that all plavers with the maximal number of links are connected to
each other and nobody else. [By 1 they must all be connected to each other. By 2. anvone
connected to a plaver with a maximal number of links would like to connect to all players
with no more than that number of links, and hence all those with that number of links.]
Similarly, all players with the next to maximal number of links are connected to each other

and nobody else, and so on.

The only thing which remains to be shown is that if m is the number of members
of one (fully intraconnected) component and n is the next largest in size, then m > n2.

Notice that for ¢ in the next largest component not to be willing to hook to ;j in the largest

1

component it must be that %%"1’ < ;- (using (*). since all nodes to which i is connected
7 t

also have n; connections). Thus n; +1 > ni(n; + 2). It follows that n,; > nZ. |

The combination of the efficiency and stability results indicate that stable networks will
tend to be over-connected from an efficiency perspective. This happens because authors
only partly consider the negative effect their new links have on the productivity of links

with existing co-authors.

4. The General Model

We now turn to analvzing the general model.

As we saw in Propositions 1 and 2. as well as in some of the examples in the previous
section. efficiency and pairwise stability are not always compatible. That is. there are
situations in which no strongly efficient graphs are pairwise stable. Does this persist in
general” In other words, if we are free to structure the allocation rule in any way we like. is
1t possible to find one such that there is always at least one strongly efficient graph which
is pairwise stable? The answer, provided in Theorem 1 below, depends on whether the
allocation rule is balanced across components or is free to allocate resources to nodes which

are not productive.

Definition: Given a permutation 7 : A" — A" let g™ = {ij|i = m(k),j = 7(!), kI € g}. Let
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v™ be defined by ¢7(g7) = v(g).}

Definition: The allocation rule }" is anonvmous if. for any permutation 7. Y;(;){g".v™) =

Yiig. el

Anonvmity states that if all that has changed is the names of the agents (and not
anvthing concerning their relative positions or production values in some network), then
the allocations they receive should not change. In other words. the anonymity of ¥ requires
that the information used to decide on allocations be obtained from the function v and the

particular ¢. and not from the label of an individual.
Definition: An allocation rule Y is balanced if 3, Yi(g,v) = v(g) for all ¢ and g.

A stronger notion of balance. component balance, requires ¥ to allocate resources
generated by any component to that component. Let C(g) denote the set of components of

g. Recall that a component of ¢ is a maximal connected subgraph of g.
Definition: A value function v 1s component additive if v(g) = e,y V(R)- °

Definition: The rule ¥ is component balanced if 3, . vy Yi(g.v) = v(h) for every g and
h € C(g) and component additive .
Notice that the definttion of component balance only applies when v is component

additive. Requiring it otherwise would necessarily contradict balance.

Theorem 1. If N > 3. then there is no Y which is anonymous and component balanced

and such that for each v at least one strongly eflicient graph is pairwise stable.

PrROOF: Let V' = 3 and consider (the component additive) v such that. for all .7, and k.
ri{ b =1 0({y.2k}) = 1+ e and v({ij. jk.ik}) = 1. Thus the strongly efficient networks

are of the form {ij. jk}. By anonymity and component balance, ¥;({ij}.v) = 1/2 and

Y({ig Jkik}oe) = Ye({if. jk.ik}ov) =1/3. (%)

® In the language of social networks. ¢™ and ¢ are said to be isomorphic.

? This definition implicitly requires that the value of disconnected plavers is 0. This is not
necessary. One can redefine components to allow a disconnected node to be a component.
One has also to extend the definition of v so that it assigns values to such components.
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Then pairwise stability of the strongly efficient network requires that Y;({7j, jk}.v} > 1/2.
since Y,({ij}.v) = 1/2. This. together with component balance and anonymity, implies
that Y.{{ij. gk}, v} = Ye{{iy. jk}. v) < 1/4 + ¢/2. But this and (=) contradict stability of
the strongly efficient network when e is sufficiently small (< 1/6), since then i and & would
both gain from forming a link. This example is easily extended to v > 3. by assigning

v(g) = 0 to anv ¢ which has a link involving a player other than players 1. 2 or 3. |

Theorem 1 savs that there are value functions for which there is no anonymous and
component balanced rule which supports strongly efficient networks as pairwise stable,
even though anonymity and component balance are reasonable in many scenarios. It is
important to note that the value function used in the proof is not at all implausible, and is
easilv perturbed without upsetting the result.!® Thus one can make the simple observation

that this conflict holds for an open set of value functions.

Theorem 1 does not reflect a simple nonexistence problem. We can find an anonymous
and component balanced ¥ for which there always exists a pairwise stable network. The
implication of Theorem 1 is that such a rule will sometimes have the property that all of
the networks which are stable relative to it are also inefficient. To see a rule which is both
component balanced and anonymous, and for which there alwavs exists a pairwise stable
network. consider ¥ which splits equally each component’s value among its members. More
formally if ¢ is component additive let Y;(g.¢) = v(h)/n(k) (recalling that n(k) indicates
the number of nodes in the component h). where 1 € N{h) and h € C(g). and for any v that
is not component additive let Y;(g.v) = v(g)/.\ for all i. A pairwise stable graph for Y can
be constructed as follows. For any component additive v find ¢ by constructing components
Ao, h, sequentially, choosing h; to maximize v(h)/n(h) over all components which use
only nodes not in Uj;ll.\'(hj). For any non-component additive v any strongly efficient g is
stabie.

The conflict between efliciency and stability highlighted by Theorem 1 depends both on
the particular nature of the value function and on the conditions imposed on the allocation

rule. This conflict is avoided if attention is restricted to certain classes of value functions,

'Y One might hope to rely on group stability to try to retrieve efficiency. However, group
stability will simply refine the set of pairwise stable allocations. The result will still be true,
and in fact sometimes there will exist no group stable graph.
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or if conditions on the allocation rule are relaxed. The following discussion will address
each of these in turn. First. we describe a family of value functions for which this conflict
is avoided. Then. we discuss the implications of relaxing the anonymity and component

balance conditions.

Definition: A link 1) is critical to the graph g if ¢ — i; has more components than g.

A critical link is one such that if it is severed, then the component that it was a part
of will become two components. Let h denote a component which contains a critical link

and let h, and h, denote the components obtained from h by severing that link.

Definition: The pair (g.v) satisfies critical link monotonicitv if, for any critical link in ¢
and its associated components h. h;, and hp, we have that v{h) > v(h;} + v(ho) implies
that v(h)/n(h) > max{v(hy)/n(hy). v(he)/n(h2}].

Consider again Y as defined above. The following is true.

Claim. If g is strongly efficient relative to a component additive v, then g Is pairwise

stable for Y relative to v if and only if (¢, v) satisifies critical link monotonicity.

PROOF: Suppose that g is strongly efficient relative to v and is pairwise stable for ¥ relative
te v. Then for anv critical link 7. it must be that i and j both do not wish to sever the
link. This implies that v(h}/n(h) > max{v{h,)/n(h1).v(he)/n(hse)]. Next. suppose that g
is strongly efficient relative to a component additive » and that the eritical link condition
is satisfied. We show that g is pairwise stable for ¥ relative to v. Adding or severing a
non-critical link will only change the value of the component in question without changing
the number of nodes in that component. By strong efficiency and component additivity,
the value of this component is already maximal and so there can be no gain. Next consider
adding or severing a critical link. Severing a critical link leads to ne benefit for either node.
critical link condition implies that v(f)/n(h) > max[v{hy)/n(hy). v(he)/n(hs)]. By strong
efficiency and component additivity. adding a critical link implies that v(k) < v(hy) 4+ v(h2)

since by strong efficiency and component additivity ¢(h) > v{h;) + v{ha)., which by the

{where h; and h, are existing components and £ is the new component formed by adding
the critical link}. Suppose to the contrary that g is not stable to the addition of the critical
link. Then. without loss of generality it is the case that v(h)/n(h) > v(h{)/n(hy) and
v(h)/n(h) > r(h2)/n(hs). Taking a convex combination of these inequalities (with weights
n(fy)/n(h) and n(he)/n{h)) we find that v(h) > v(h;) + v(ha), contradicting the fact that
v(h) < v(hy) +ethe). |
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To get some feeling for the applicability of the critical link condition, notice that if a
strongly efficient graph has no critical links. then the condition is trivially satisfied. This
is true in Proposition 1. parts {i) and (ii1). for instance. Notice. also, that the strongly
efficient graphs described in Proposition 1 (1) and Proposition 4 (i) satisfy the critical link
condition. even though thev consist entirely of critical links. Clearly. the value function
described in the proof of theorem 1 does not satisfy the critical link condition.

Consider next the role of the anonymity and component balance conditions in the result
of Theorem 1. The proof of Theorem 1 uses anonyvmity, but it can be argued that the role
of anonymity is not central in that a weaker version of Theorem 1 holds if anonymity is
dropped. A detailed statement of this result appears in Section 5. The component balance

condition. however, is essential for the result of Theorem 1.

To see that if we drop component balance condition the conflict between efficiency
and stability can be avoided. consider the equal split rule (Y;(g,v) = v(g}/N). This is not
component balanced as all agents always share the value of a network equally, regardless
of their position. This rule aligns the objectives of all players with value maximization
and. hence. it results in strongly efficient graphs being pairwise stable. In what follows,
we identifv conditions under which the equal split rule is the only allocation rule for which

strongly efficient graphs are pairwise stable. This is made precise as follows.

Definition: The value function v is anonvmous if v(¢™) = v(g¢) for all permutations 7 and
graphs g.

Anonvmity of v requires that v depends only on the shape of g.

Definition: Y is independent of potential links if Y{g.v) = Y (g.w) for all graphs ¢ and
value functions » and w such that there exists j # ¢ so that v and w agree on every graph
except g — 1.

Such an independence condition is very strong. It requires that the allocation rule
ignore some potential links. However. many allocation rules, such as the equal split and the
one based on equal bargaining power (Theorem 4 below). satisfv independence of potential

links.

Theorem 2. Suppose that Y is anonvmous, balanced, and independent of potential links.
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If v is anonymous and all strongly efficient graphs are stable, then Y;(g.v) = v(g)/N. for

all i and stronglyv efficient g's.

ProOOF: If ¢ is strongly efficient the result follows from the anonymity of v and Y. The
rest of the proof proceeds by induction. Suppose that Y;(g,v) = v(g)/.V. for all i and
strongly efficient ¢'s which have k or more links. Consider a strongly efficient ¢ with & — 1
links. We must show that Y;(g.v) = v(g)/N for all ;.

First. suppose that i is not fully connected under g and ¥;(g.v) > v(g}/N. Find j such
that 1j ¢ g. Let w coincide with v everywhere except on ¢ + ij (and all its permutations)
and let w(g + ij) > v(g). Now. g + ij is strongly efficient for w and so by the inductive
assumption. Y;(g + 1. w) = w(g + ij)/N > v(g)/N. By the independence of potential links
(applied iteratively. first changing » only on g + 77, then on a permutation of g + ij, etc.),
Yi(g.w) = Yi{g.v) > vig)/N. Therefore, for w(g + ij) — v(g) sufficiently small, g + ij is
defeated by g under w (since ¢ profits from severing the link i), although g + ij is strongly
efficient while g is not - a contradiction.

Next. suppose that i is not fullv connected under ¢ and that Yi(g,v) < v(g}/V. Find
j such that ij ¢ g. If ¥;(g.v) > v(g)/N we reach a contradiction as above. So Yj(g,v) <
v(g)/N. Let w coincide with v everywhere except on g + ij (and all its permutations)
where w(g +1j) = v(g) Now. g +1j is strongly efficient for w and hence, by the inductive
assumption. Y;(g+¢j,w) = Y;{g +ij.w) = v(g)/N. This and the independence of potential
links imply that Yi(g +j.uw) = v(g)/N > Yi(g.v) = ¥i(g.w) and Y;(g +¢j, w) = v(g)/N >
Y;(g.v) = Y;(g.w). But this is a contradiction. since g is strongly efficient for w but is
unstable. Thus we have shown that for any strongly efficient g. ¥;(g.v) = v(g)/N for all
which are not fully connected under g. By anonymity of v and ¥ (and total balance of Y},

this is also true for ¢'s which are fully connected. |

Remark: The proof of Theorem 2 uses anonvmity of v and 1" only through their implication
that any two fully connected players get the same allocation. We can weaken the anonymity
of r and Y and get a stronger version of Theorem 2. The allocation rule ¥ satisfies pro-
portionality if for each ¢ and ; there exists a constant k;; such that Yilg.v)/Y;(g,v) = &y
for any ¢ in which both ¢ and j are fully connected and for any v. The new Theorem 2
would read: Suppose Y satisfies proportionality and is independent of potential links. If
all strongly eflicient graphs are pairwise stable, then Y;(g.v) = s'v(g), for all i, v, and ¢’s
which are strongly efficient relative to v, where s* = Y;(¢".v)/v(¢g"). The proof proceeds

like that of Theorem 2 with s* taking the place of 1/.V,
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Theorem 2 only characterizes 1" at strongly eflicient graphs. If we require the right

incentives holding at all graphs then the characterization is made complete.

Definition: Y is pairwise monotonic if ¢' defeats g implies that v(g¢') > v(g).

Pairwise monotonicity is more demanding than the stability of strongly efficient net-
works. and in fact it is sufficiently strong (coupled with anonymity, balance. and indepen-
dence of potential links) to result in a unique allocation rule for anonymous v. That is. the
result that Yi{g.v) = v(g)/.V is obtained for all g. not just strongly efficient ones, providing

the following characterization of the equal split rule.

Theorem 3. IfY is anonvmous, balanced, is indepedent of potential links, and is pairwise

monotonic. then Y,(g.v) = v{¢)/N, for all 7, and g, and anonvmous v.

PROOF: The theorem is proven by induction. By the anonymity of v and ¥ and Y;(g".v) =
(g™ )/N. We show that if ¥i(g.v) = v(g)/\V for all ¢ where g has at least & links, then this
1s true when g has at least & — 1 links.

First. suppose that 7 is not fully connected under g and Yi{g,v) > v(g)/¥. Find j
such that 7; ¢ g. Let w coincide with v everywhere except that w(g + :j) > v(g). By the
inductive assumption. Y;(g + ij. w) = w(g +i5}/N. By the independence of potential links,
Yilg.w) = Yi{g.v) > v(g)/N. Therefore, for w(g + ij) — v(g) sufficiently small g + ij is
defeated by g under w (since i profits from severing ij). while w(g+1i7) > w(g), contradicting
pairwise monotonicity,

Next, suppose that 7 is not fully connected under g and that ¥i{g,v) < v(g)/N. Find
Jj such that ¢j ¢ g. If Y;(g.v) > v(g)/N we reach a contradiction as above. So Y;(g,v) <
v(g)/N. Let w coincide with v everywhere except on g + 7 whre w(g + ij) = v(g). By the
inductive assumption. Y;(g+1j. w) = ¥;(g+4j. w) = w(g+77)/N. This and the independence
of potential links imply that Yi(g + ij.w) = w(g + i7)/N = v(9)/N > Yi(g.v) = Yi(g, w)
and Y;(g ~ ijow) = wlg+ )/N = v(g}/N > Y;(g.v) = Y;(g.w). This is a contradiction,
since w(g) = w(g + ¢j) but g is defeated by ¢ + i3.

Thus we have shown that Y;(g.2) = v{g)/V for all : which are not fully connected
under g. By anonymity of v and ¥ (and total balance of Y). this is also true for i's which

are fully connected. ||

Note that the equal split rule. Yi(g.v) = v{g)/N, for all ¢ and g, satisifies anonomity,
balance. pairwise monotonicity. and is independent of potential links. Thus a converse of

the theorem also holds.



Theorem 1 documented a tension between pairwise stability and efficiency. If one wants
to guarantee that efficient graphs are stable. then one has to violate component balance (as
the equal split rule does). In some circumstances, the rule by which resources are allocated
may not be subject to choice. but may instead be determined by some process, such as
bargaining among the individuals in the network. We conclude with a characterization of

allocation rules satisfving equal bargaining power:

Definition: An allocation rule Y satisfies equal bargaining power!! (EBP) if for all v, g.
and ij € g

Yilg.v) = Yilg —ejov) = Yi(g.v) = Yi(g — 2 v).
Under such a rule every ¢ and j gain equally from the existence of their link relative to their

respective “threats” of severing this link.

The following theorem is an easy extension of a result by Myerson (1977).

Theorem 4. If v is component additive, then the unique allocation rule Y which satisfies
component balance and equal bargaining power {EBP) is the Shapley value of the following
game U, , in characteristic function form.'* For each S, U, 4(5) = ZhEC(gls) v(h), where

gs={ijeg i€ Sand ;<= 5}

Although Theorem 4 is easily proven by extending Mverson's (1977) proof to our set-
ting (see the appendix for details). it is an important strengthening of his result. In his
formulation a graph represents a communication structure which is used to determine the
value of coalitions. The value of a coalition is the sum over the value of the subcoalitions
which are those which are intraconnected via the graph. For example, the value of coalition
{1.2.3} is the same under graph {12.23} as it is under graph {12.13.23}. In our formu-
lation the value depends explicitly on the graph itself, and thus the value of any set of

agents depends not only on the fact that they are connected, but on exactly how they are

' Such an allocation rule. in a different setting, is called the “fair allocation rule” by
Myerson (1977).

2 Yi(g.v) = 51U 4). where the Shapley value of a game U in characteristic function
form is SVL) = Y gen_ (U(S+14) - L-(S))#seg.v;r;!&s-n!_
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connected.!® In all of the examples we have considered so far. the shape of the graph has

plaved an essential role in the productivity.

The potential usefulness of Theorem 4 for understanding the implications of equal
bargaining power. is that it provides a formula which can be used to study the stability
properties of different organizational forms under various value functions. For example, the

following corollary brings two implications.

Corollary: Let Y be the equal bargaining power rule from Theorem 4, and consider a

component balanced v and any g and ij € g.
If, forall ¢’ C g. v{g") = v(g' —17), then Yi(g.v) > Yi(g — ij.v).

If. for all ¢' C g, v{g') > v(g' + ), then Yi(g.v) = Yi(g + ¢j. v).

This follows directly from inspection of the Shapley value formula.

The first line of the Corollary means. for example, that if v is such that links are of
diminishing marginal contribution. then stable networks will not be too sparse in the sense
that a subgraph of the strongly efficient graph won't be stable. Thus in some circumstances,
the equal bargaining power rule will guarantee that strongly efficient graphs are pairwise

stable. However. as we saw in Theorem 1 this will not always be the case.

5. Discussion of the Stability Notion.

The notion of stability that we have emploved throughout this paper is one of many possible
notions. We have selected this notion. not because it is necessarily more compelling than
others. but rather because it i1s a relativelv weak notion that still takes into account both
link severance and link formation (and provides sharp results for most of our analysis). The
purpose of the following discussion is to consider the implications of modifying this notion.

At the outset, it is clear that stronger stability notions (admitting fewer stable graphs) will

'3 The graph structure is still essential to Myerson’s formulation. For instance, the value
of the coalition {1.3} is not the same under graph {12.23} as it is under graph {12.13. 23},
since agents 1 and 3 cannot communicate under the graph {12.23} when agent 2 is not
present.
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just strengthen Theorems 1. 2. and 3 (as well as Propositions 2, 3, and 4). That is. stronger
notions would allow the conclusions to hold under the same or even weaker assumptions.
Some of the observations derived in the examples change. however. depending on how the
stability notion is strengthened.

Let us now consider a few specific variations on the stability notion and comment on
how the analvsis is affected. First. let us consider a stronger stability notion that still allows
only link severance by individuals and link formation by pairs, but implicitly allows for side
payments to be made between two agents who deviate to form a new link.

The graph ¢’ defeats g under " and v (allowing for side payments) if either

(i) ¢ =g —1ij and Yi(g.v) < Yi{¢'.v) or Yj(g,v) < ¥j(g',v). or

(i1} ¢' = g+ ij and Yi(g'.v) + Y;(g' v) > Yi(g.v) + ¥, (g.v).

We then say that ¢ is pairwise stable allowing for side payvments under ¥ and =. if it
is not defeated by any ¢’ according to the above definition.

Notice that in a pairwise stable network allowing for side payments payoffs are still
described bv ¥ rather than Y plus transfers. This reflects the interpretation that Y is
the allocation to each agent when one includes the side payments that have already been
made. The network. however. still has to be immune against deviations which could involve
additional side payments. This interpretation introduces an asymmetry in the consideration
of side payments since severing a link. (i). can be done unilaterally. and so the introduction
of additional side payvments will not change the incentives. while adding a link, (ii). requires
the consent of two agents and additional side payments relative to the new graph may play
a role. !t

Under this notion of stability allowing for side payments. a version of Theorem 1 holds
without the anonvmity requirement,

Theorem 1°. If N > 3, then there is no Y which is component balanced and such that
for each v no strongly efficient graph is defeated (when allowing for side pavments) by an

inefficient one.

The proof is in the appendix. As this version reproduces the impossibility result of

Theorem 1 without the anonyvmity restriction on Y, it supports our earlier assertion that

" The results still hold if {i) is also alterred to allow for side payments.
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this result was not driven by the anonymity of ¥, but rather by the component balance

condition.

Stability with side payvments also results in stronger versions of Theorems 2 and 3 which

are included in the appendix.

Another possible strengthening of the stability notion would allow for richer combina-
tions of moves to threaten the stability of a network. Notice that the basic stability notion
we have considered requires only that a network be immune to one deviating action at a
time. It is not required that a network be immune to more complicated deviations, such
as a simultaneous severance of some existing links and an introduction of a new link by
two players (which is along the lines of the stability notion used in studying the marriage
problem). It is also not required that a network be immue to deviations by more than two
plavers simultanecusly. Actually, the notion of pairwise stability that we have employed

does not even contemplate the severance of more than one link by a single player.

The general impact of such stronger stability notions would be to strengthen our results,
with the possible complication that in some cases there may exist no stable network. As an
example. reconsider the co-author model and allow any pair of players to simultaneously
sever anyv set of their existing links. Based on Proposition 4 part (ii). we know that anv
graph that could be stable under such a new definition must have fully intraconnected
components. However. now a pair of playvers can improve for themselves by simultaneously

severing all their links. except the one joining them. It follows that no graph is stable.

A weaker version of the stability notion can be obtained by alterring (ii) to require
that both deviating players who add a link be strictly better off in order for a new graph to
defeat an old one. The notion we have used requires that one player be strictly better off
and the other be weakly better off. Most of our discussion is not sensitive to this distinction.
however. the conclusions of Theorems 2 and 3 are. as illustrated in the following example.
Let NV = {1.2.3.4}. ¢ = {14.23.24.34}, and consider v with v(¢) = 1, v(¢'} = 1 if ¢’ is
a permutation of ¢. and v(g¢') = 0 for any other ¢’. Consider ¥ such that Yi(¢'.v) = 1/8
Yolg'.v) = Y5(¢'.v) = 1/4 and Yi(¢'.¢v) = 3/8 if ¢’ is a permutation of ¢, and Yi(g'.v) = 0
otherwise. Specify Y,(g".w) = w(g¢'}/V for w # v. except if ¢’ is a permutation of ¢ and
w agrees with v on ¢ and all its subgraphs, in which case set Y;(¢',w) = Y;{¢’,v). This

}" is anonyvmous, balanced. and independent of potential links. However, it is clear that
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Yi(g.v) # v(g)/ V. To understand where Theorems 2 and 3 fail consider ¢’ = ¢ + 12 and
u which agrees with v on all subgraphs of ¢ but gives w(g + 12} = 1. Under the definition
of stability that we have used in this paper. g + 12 defeats g since player 1 is made better
off and 2 is unchanged (Yi(g + 12.w) = 1/4 = Y5(¢ + 12}). however. under this weakened
notion of stability ¢ + 12 does not defeat g.

One way to sort out the different notions of stability would be to look more closely
at the non—-cooperative foundations of this model. Specifications of different procedures for
graph formation (e.g.. an explicit non—-cooperative game) and equilibria of those procedures,
would lead to notions of stability. Some of the literature on communication structures has
taken this approach to graph formation (see, e.g., Aumann and Myerson (1988), Qin (1994),
and Dutta, van den Nouweland. and Tijs (1993)). Let us make only one observation in this
direction. Central to our notion of stability is the idea that a deviation can include two
plavers who come together to form a new link. The concept of Nash equilibrium does not
admit such considerations. Incorporating deviations by pairs (or larger groups) of agents
might most naturally involve a refinement of Nash equilibrium which explicitly allows for

such deviations. such as strong equilibrium. coalition-proof Nash equilibrium,!®

Or some
other notion which allows only for certain coalitions to form. This consitutes a large project

which we do not pursue here.

'> One can try to account for the incentives of pairs by considering an extensive form
game which sequentially considers the addition of each link and uses a solution such as
subgame perfection {as in Aumann and Myerson (1988)). See Dutta, van den Nouweland,
and Tijs (1995) for a discussion of this approach and an alternative approach based on
coalition-proof Nash equilibrium.
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Appendix

Two Variations on the Connections Model.
As mentioned at the end of section 3.1.2. there are obvious alternatives to the connec-
tions model which are of interest.

One alternative has the following utility or production calculation:
U,(g} = —H;;&zt,j — .,

where t;, = V if i and j are not connected. This has some of the same basic properties of the
connections model. Each link costs ¢ an... all else held equal. being closer to another player is
more valuable than being further from them. What this model adds is the interaction (in the
product term) between distances to other players. Shortening the path to any given player
is less beneficial the closer one is to other players.!® This structure will tend to mitigate
the starkness of Theorem 1. where the efficient graphs were either stars. complete graphs,
or empty graphs. For instance. it is easy to calculate that when N = 4 the strongly efficent
graphs for this u'(g) are: the complete graph when ¢ < 1, a circle when 1 < ¢ € 2.5'7 a
star when 2.5 < ¢ € 25.5. two separate links (two pairs) when 25.5 < ¢ < 48, and the empty
graph when 48 < ¢.

Another alternative to the connections model has the interpretation that links fail with
some probability p. but if they do not fail then value is perfectly communicated. This also
has some of the same basic properties of the connections model. Again, each link costs ¢
and. all else held equal. being closer to another player is more valuable than being further
from them. since being closer one has fewer intermediate links which might fail. What
this model adds is the dependence on multiple paths to other plavers. rather than just on
minimal distance. If one path fails, another might net. Calculations in this sort of model

can get tricky quickly. However, for " = { straightforward (but tedious'®) calculations will

'* This can be seen as a shorthand for a mode] where each plaver observes an iid draw of
a random variable from some population whose mean the player wants to estimate. Players
communicate observations through the network with noise added along each link. Such a
model involves analytically difficult calculations. since a plaver might get communication
from another playver along several paths (which might even partially overlap).

Y When ¢ = 1 a graph which adds one link to a circle is also stable.

% For instance. in a circle u* = 2p(1—p)® +8p2(1 —p)* +12p3(1—p) + 3p* — 2¢c. Generally.
there is no simple formula for u. since it will depend on all the possible paths to all other
plavers and these may not be independent.
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again show that the efliciency characterization is less stark than for the connections model.
When p = 1/2. the efficient graph is the complete graph when ¢ < 159/192 and the empty
graph otherwise. When p = 2/3. the efficient graph is the complete graph less one link
when ¢ < 2/3. a circle when 2/3 < ¢ £ 10/9. and the empty graph otherwise. When p = 1.

the efficient graph is either a star or a line when ¢ < 2 and the empty graph otherwise.

Another Version of the Co-Author Model.

1
u;(g) = E e if n; 21, and u;{(g) =01if n; = 0.
7

Jiii€g
Efficiency:
If ¢ > 1. the strongly efficient network is the empty graph.
If ¢ < 1. the strongly efficient network is a graph of N/2 separate pairs if .V is even,
(N —1)/2 pairs and one singleton if N is odd and 1/2 < ¢ < 1,
and (. — 3)/2 pairs and one triple (two links) if N is odd and ¢ < 1/2.
Proor: : Y u(g) = #{i | ny > 1} — 2¢ {# links) |

Stability:
Let n" be the largest integer < % and assume that n* < %
If * > N — 1 the only pairwise stable network is the complete graph ¢-V.
[f n* < N —1 the pairwise stable networks are such that at least half of the players have

exactly n* links each. while the remaining players are fully connected among themselves

and there are at most n* of these players.

PrOOF: : The first part is clear. since in that case ¢ < %_1 and so it is beneficial to link to
every other playver since they will alwavs provide more benefit than cost. So let us consider
n* < N — 1. First. nobody has more than n* links since otherwise someone connected to
them would wish to sever their link. Second. two players who are not connected and have
fewer than n” links would like to connect to each other. Therefore. in a stable network all

playvers with fewer than n*® links are connected to each other. Third. let m; be the number
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of agents with exactly n* links. and let m, be the number of plavers with less than n*
links. and let & be the total number of links connecting the first group to the second. The
per-capita number of links per m» player i1s ms — 1 + ng <n"<myp-—1+ mil This implies
k{ma—m,

P — ) < 0. Notice that k < mymy since otherwise all the agents in the

mo group would be connected to all of the plavers in the m, group. implving that each m,

that m-> — m —

plaver would have N — 1 links. a contradiction. Therefore, mo < m;. ||

Theorem 1'. If N > 3, then there is no Y which is component balanced and such that

for each v no strongly efficient graph is defeated by an inefficient one.

Remark: In fact. it is not required that no strongly efficient graph is defeated by an
inefficient one. but rather that there is some strongly efficient graph which is not defeated
by any inefficient one and such that any permutation of that graph which is also strongly

efficient is not defeated by any inefficient one. This is clear from the following proof.

ProOOF: Let N =3 and consider the same v given in the Proof of Theorem 1. (For all 4, 7,
and k. c({ij}) = 1. c({1j. jk}) = 1 + € and ©({7j, jk,ik}) = 1. where the strongly eflicient
networks are of the form {7j. jk}.) Without loss of generality. assume that Y7 ({12}.2) > 1/2
and ¥5({23}.r) > 1/2. (Given the component balance, there always exists such a graph
with some relabelling of plavers.) Since {12.13} cannot be defeated by {12}, it must be that
Y1({12.13}.v) > 1/2. It follows from component balance that 1/2 + ¢ > ¥3({12.13}.v) +
Y3{{12.13}.¢). Since {12.13} cannot be defeated by {12.13,23}, it must be that

1/2 = > Yo({12.13}.v) = Y5{({12.13}. v) > Y2({12.13.23}. v} + ¥5({12,13.23}.v). (%)
Similarlv

1/2+e 2 ¥70{12.23}. v) + ¥5({12.23}. v) > Y1({12.13.23}. ¢) + ¥5({12.13,23}. v). (**)
Now note that adding (*) and (**) we get

Yo({12.13}.v) + ¥5({12.13}. ) + Y7({12.23}.v) + ¥3({12.23},v) >
Y1({12,13.23}.2) + Y2({12.13.23}.v) + 2¥3({12,13,23},v)
By component balance. we rewrite this as
2+ 2 =Y ({12.13}.v) — ¥({12.23}.v) > 1 + ¥5({12.13.23}. v).
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Thus
Y1213} v) + ¥o({12.23}.v) €1+ 2

Then since no strongly efficient graph is defeated by an inefficient one, we know that
11{{12.13}. v} > ¥7({12}, v} and ¥2({12.23}. v} > Y5({23}.v). and so
Y({12}. ey + 15023} 0) €14 2.
Since Y, ({12}.v) > 1/2. we know that }'5({23}.1'5 < 1/2+2¢. Thus. by component balance
Yy({23}.0) 2 1/2 - 2e.

Since {13.23} cannot be defeated by {23}. it must be that Y3({13.23},v) > 1/2 — 2¢. It
follows from component balance that 1/2 + 3¢ > Y1({13,23}.v) + Y2({13,23}.v). Since
{13.23} cannot be defeated by {12.13.23}. it must be that

17243 > 17({13.23}. v) +¥5({13.23}.v) > Y1{{12,13.23}. v} + ¥ ({12.13. 23}, v). (* * %)
Adding (#). (%), and (* * =). we find
3/2 + 56 > 2(Y1({12.13.23}. v) + Y2({12.13.23}.v) + ¥3({12.13,23},v)] = 2.

which is impossible for € < 1/10.
Again. this is easily extended to .N > 3. by assigning v(g) = 0 to any ¢ which has a

link involving a plaver other than plavers 1. 2 or 3. [

Definition: The allocation rule Y is continuous, if for any ¢. and v and w that differ only
on g and for any €. there exists é such that |z(g) — w(g)| < 6 implies [Y;(g,v) —Yi(g. w)| < €
for all i € N(g).

Theorem 2°. Suppose that Y is anonmvmous, balanced. continuous, and is independent of
potential links. If v is anonvmous and no stronglyv efficient graph is defeated (allowing for

side pavments) bv an ineflicient one, then, Y (g, v) = v(g)/N. for all 1 and strongly efficient

gs.

PROOF: If ¢ is strongly efficient the result follows from the anonymity of v and Y. The
rest of the proof proceeds by induction. Suppose that Y;(g.v) = v(g)/N. for all ¢ and
strongly efficient ¢'s which have k& or more links. Consider a strongly efficient g with & — 1
links. We must show that Y;(g.») = v{(g)/N for all i.
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First. suppose that 7 is not fully connected under ¢ and Y;{g.v) > v(g)/N. Find j such
that ij ¢ g. Let w coincide with v evervwhere except on g + ¢ (and all its permutations)
and let wig +1j) > vig). Now. g + 1} is strongly efficient for ' and so by the inductive
assumption. Y;(g ~ij.w) = w(g + ij}/N > v(g}/N. By the independence of potential links
{applied iteratively. first changing v only on g + 7j. then on a permutation of g + ij. etc.),
Yi(g.w) = Yi(g.v) > v(g)/N. Therefore. for w(g + 77) — v(g) sufficiently small, ¢ + ¢7 is
defeated by ¢ under w (since ¢ profits from severing the link :j). although ¢ + {j is strongly
efficient while ¢ is not - a contradiction.

Next. suppose that 7 is not fully connected under ¢ and that Y, {g.v) < v(g)/V. Find
J such that ij € ¢. If Yj(g.v) > v(g)/V we reach a contradiction as above. So Y;(g.t) <
v(g)/N. Let e < [v(g)/N —Y;(g.v)]/2 and let w coincide with v everywhere except on g +1j
(and all its permutations) and let w(g+17) = v(g)+6/2 where § is the appropriate é6(¢) from
the continuity definition. Now. g + i is strongly efficient for w and hence. by the inductive
assumption. Yi(g+ij.w) = Y;(g +ij.w) = [v(g) + 6/2]/N. Define u which coincides with v
and w everywhere except on ¢ +1; (and all its permutations) and let u(g+:j) = w(g) — 6/2.
By the continuity of Y. Yi(g +¢j,u) = v(g)/N — ¢ and Y;(g+ij,u) > v(g)/N —e. Thus, we
have reached a contradiction, since ¢ is strongly efficient for v but defeated by ¢ + ij since
Yilg+ij uh+Y;(g+ijou) > 2v(g) /N =2 > 2v(g9)/N—[v(g)/N=Yi(g,v)] > Yi(g,u)+Y;(g, u).
Thus we have shown that for a strongly efficient ¢, Y;{g.v) = v(g)/N for all i which are not
fully connected under g. By anonymity of v and ¥ {and total balance of Y'). this is also

true for i's which are fully connected. |

Remark: The definition of “defeats™ allows for side payments in (ii). but not in (i). To
be consistent, (i) could be alterred to read Yi(¢'.v) + Y;(¢'.v) > Yi(g.v) + Y;(g.v), as side
pavments can be made to stop an agent from severing a link. Theorem 2 is still true. The
proof would have to be alterred as follows. Under the new definition (i) the cases ij ¢ g
and Yi(g.v) + Y;(g.v) > 2v(g)/N or Yi(g.v) + Yj(g.v) < 2v(g)/N. would follow roughly
the same lines as currently is used for the case where ij ¢ g. and Yi(g.v) < v(¢)/N and
Yi{g.v) < v(g)/N. (For Y{g.v)+Y,{g.v) > 2v(g)/V the argument would be that ij would
want to sever ij from ¢ + ij when g + {j is strongly efficient.) Then notice that it is not
possible that for all i7 ¢ g, Y,(g.v} + Y;(g.v) = 2v(g)/N, without having only two agents
:j who are not fully connected. in which case anonyvmity requires that they get the same

allocation. or by having ¥; = »(g)/V for all { which are not fully connected.

Theorem 2 only characterizes Y at strongly efficient graphs. If we reqgire the right
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incentives holding at all graphs then the characterization is made complete:

Definition: Y is pairwise monotonic allowing for side pavments if ¢’ defeats (allowing for

side pavments) g implies that v(g") > v(g).

Theorem 3°’. IfY is anonymous, balanced. is indepedent of potential links, and is
pairwise monotonic allowing for side payvments, then Y,{g.v) = v{(g)/N, for all i, and g. and

anonymous v.

PRrROOF: The theorem is proven by induction. By the anonymity of v and Y and ¥;(¢gV.v) =
v{g”)/N. We show that if ¥,{g.v} = v(g)/.V for all ¢ where g has at least k links, then this
is true when ¢ has at least £ — 1 links.

First. suppose that ¢ is not fully connected under g and Yi(g,v) > v(g)/N. Find ;
such that i) ¢ g. Let w coincide with v everywhere except that w(g + ij) > v{g). By
the inductive assumption. Y,(g + 1j.w) = w(g + 17)/:¥. By the independence of potential
links. Yi{g.w) = Yi(g.v) > v(g)/N. Therefore, for w(g + ij,uw) — v(g) sufficiently small
g + 1j is defeated by ¢ under w (since i profits from severing ij), while w(g + i7) > w(g),
contradicting pairwise monotonicity.

Next. suppose that 7 is not fully connected under ¢ and that Yi(g,v) < v(g)/N. Find
J such thav ij ¢ g. If Yj(g.v) > v{g)/N we reach a contradiction as above. So Y;(g.v) <
r(g)/N. Let u coincide with » evervwhere except that w{g+ij) < v(¢) and v(g)/N — w(g+
/N < Slelg)/N=Yi(g. o)), Thus 2u{g+ij)/N > v(g)/N+Yi(g.v)) = Y;(g.v))+Yi(g,2)).
By the inductive assumption. Y, (¢ + ij.w) = Y;(g + tj.w) = w(g + 15)/¥. Thus, we
have reached a contradiction. since w(g} > w(g + i{j) but ¢ is defeated by ¢ + ¢J since
Yilg + . w) + Y5(g + ij.w) > Yi(g.w) + Y;(g.w).

Thus we have shown that Y;(g.v} = v(g)/N for all i which are not fully connected
under g. By anonymity of » and ¥ (and total balance of ¥'). this is also true for i's which

are fully connected. [

Proof of Theorem 4:

Myverson’s {1977) proof shows that there is a unique ¥ which satisfies equal bargaining
power {what he calls fair. having fixed our v) and such that > Y] is a constant across i's in
any connected component when other components are varied (which is guaranteed by our

component balance condition).
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We therefore have only to show that Y;(g.v) = SVi(U', ;) (as defined in the footnote
below Theorem 1) satisfies component balance and equal bargaining power.

Fix g and define Y9 by Y¥9(g') = SV(L', 4ng'}. (Notice that L', 4, substitutes for what
Myerson calls v/g’. With this in mind. it follows from Myerson’s proof that Y9 satisfies
equal bargaining power and that for any connected component h of g that 3 ., Yig) =
Lo N(R)). Since Y9(g) = Y(g). this implies that .., ¥,?(g) = L% o{N(R)) = v(h). so
that Y satisfies component balance. Also. since Y9 satisfies equal bargaining power, we
have that 19(g) — Y(g - 1j) = Y (g) - Y7 (g — ij). Now. Y7 (g — ij) = SV;(Tugng—s;) =
SVi(Uysgi;) = Yilg ~ ij). Therefore, Yi(g) = Yi(g — ij) = ¥;(g) — Y;(g — ij). so that ¥

satisfies equal bargaining power as well.



