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AnstTieacT. Inthe infornation strueture model. introduced by Awmann (19763, cach state
w of the world has been interepreted as a complete set of deseriptions of the situation under
stickv. In order 1o make this idea explicit. we construct states of the world as maximal
consistent sets of a theory in an underlving formal language with knowledge operator =,
I this framework. the following copressibility problem hecomes well-defined:

Given an event o1 20 0s there any seutence o in the underlving language such

that. for every & € 2.7 knows A at w if and onlv if o€ w?
We examine the expressibility of the possibility sets 27{w). The expressibility of possibility
sets Is terepreted as a necessary condition for each state w of the world 10 he a complete
set of deseriptions. Working in non-partitional setup. several characterizations for the
expressibility condition ave given. It is shown that if the possibilivy sets are expressible
then minimal possibility sets exist and the number of them is finite. We also offer two
characterizations of partitional information struetures in rerms of expressibility. One of
themn states that an information structure is partitional if and only if the meaning of
possibility” that we attacle o possibility sets is expressible. The other implies that the
cowton kuowledge assumption of an inforination strueture is a characterizing condition
for a partitional information strueture.



1. INTRODUCTION

In a parh breaking paper. Anmann (1976) introdueed a model. often called an information
structure. that consists of following objeets!:

The state space £2 with generie element w € £2. called a state of the world.
e oy ; Ny .o
The possibility correspondence P2 §2 — 2% one for cach decision maker.

A . . .
where 27 is the power set of £2. Onee we have an inforimation structure. we c¢an talk abont

a decision maker's knowledge of an ceent? A € 29 we sav that 7 knows A at w ¢ £ if and
only if PH(w) A Using this definition of knowledge of an event. Awmnanu (1976) detined
the notion of cotnon knowledge, and. subsequently. its inplications have been derived
by many anrhors.

This paper considers several coneeptual issues that naturally arise regarding informa-
tion structure models. Speeifically. the main issue is summarized as a simple question:
What s a state of the world L7

The question has a standard answer. which states that a state of the world is a
complete set of deseriptions under study (Savage (1954). Aumann (1976). {1987)). In the
literature. there are rwo approaches to formalize this rather informal notion of a state of
the world. The first approach. startiug with a given set of "paraieters’. constructs a stafe
of the world as an infintte hierarchy of beliefs on the parameter set (Mertens and Zamir
(1985]). Brandeuburger and Dekel (1993}). Alternatively. the second approach stares with
a theory in a formal language that is supposed to describe the decision making situarion
under study and then construets states of the world by applving methods shinilar to those
i nathemarical logie (Samet (1990). Shin (1993}). The first approach. the belief approach.,
is preferable from the Bayesian point of view in rthat it follows the principle that every
relevant question in decision making situation can be studied in teris of beliefs. On
the other hand. the second approach. the logeeal approach. is attractive sinee it gives a
taithful formalization of the standard answer mentioned above in the sense that it will be
literally the case in this approach that a state of the workd is a set of deseriptions. That
I5 to say. astate of the world will be a set of sentences in a formal sense. Following the
logieal approach. the paper studies the completeness of a state of the world as a set of
deseriprions. We formmtate a condition ealled cxpressibility for an information structure.
The expressibiliry condition can be regarded as a necessary condition for the completencss
ol a state of the world. The paper gives characterizations for the condition. and explores
Its cousequences.

Roughly speaking. a srate w of the world can be regarded as a complere set of deserip-
tions if for every relevant question about the siruation under stndy. & contains a deseription
that specifies whether the answer for the guestion is Yes or No. In other words. o is said
to be complete if for every relevant deseription it contains cither the deseription itself or
its negation. Also. we want » to be consistent in the sense that it does not contain. for
example. both “White Sox will win tomorrow™ and “Whitre Sox will lose romorrow™. In
addition. there might be deseriptions. such as “White Sox will have one. and onhy one,
ballgame tomorrow’. that are supposed to be true in every state of the world.

'No probabilistic aspects of information structure models are discussed in this paper.
*Throughout the paper. an event is just a subset of the state space.

Tvpeset by A4S-TEX



The advantage of the logical approach to information structure models lies in the
fact we can make all of these notions”® precise. Asstine that it has been determined that
what kind of desceriptions are relevant to the situation under study. We formulate the set
of all relevant deseriptions as the set of sentences (well-formed fornmlas) on a sentential
language with an operator ", that s assumed to mean i kunows that’. From the set of
all sentences. some senrences are designated as theorems. Theorets correspond to those
descriptions that bear no uncertainty. That is to say. theoreins are going to be the sentences
that will be true in every state of the world. The set of all theorems is called a theory
(in the given langnage). In this setup. the notion of a complete set of deseriptions. w. is
taithfully formulated as thar of a warimal consistent set of the theory, Roughly. a maximal
consistent set is a set of sentences that is closed nunder deduetive consequences. thar does
not contain mutually inconsistent sentences. and. for each sentence in the langnage. that
contains cither that sentence itself or its negation. We then cousider the set of all maximal
consistent sets and take this set as our state space £2. On this state space. we construet a
possibility correspondence %) to get an information structure. the one we will eall the
canonical mformation structure for the theory. We construet cach possibility set Pi(w)
in terms of the accessibility® relation. where we say that a state &' is aceessible from
if. for every seutence oo o is true at &’ whenever 7 knows that o is true ar w. Apart
from details. our approach to construct the state space is the one that has been adopted
by Aumann (1989). Samer {1990). and Shin (1993).7

In this setup. an important problein of expressibility arises in the following manner.®
Each sentence o in the given langnage may well be true’ at some states of the world and
may not somewhere else. Thus each sentence o in the language corresponds to an event
in £2 at which the sentence js true. Il we denote this set by Pl then each sentence o is
associated with an event

il ={we2iaew}

We do not have. however, the converse direetton in general. That is. there might be events
in the state space that eannot be characterized by any sentence in the fanguage. In other
words. there might be a ser that is not describable by the Ianguage in the way described
above. Given this observation., let us say that an event 4 < £2 is capressible if there is a
sentence 1 the language such that fod] = A

The tollowing question is the foeus of the paper. Consider the possibility set PiHw) for
some w ¢ 120 Is P expressible? If it s then we have an exact parallelistu berween formal
sentences that each state contains and traditional definition of knowledge. According o
the traditional definition.

i knows that PH{w) ar w.

YExcept that what kind of descriptions are relevant for the decision making situation under study.
'See Chellas (1980) and Samet (1990).

"Of these. Aumann’s {1939) setup is the one that is closest to ours.

“Both Samet (1990) and Shin (1993} recognize that there are problems in their setups that are
similar to our expressibility. In particular. Samet {1990, p.201) mentions the expressibility of possibility
sets. These issues are not their main concern. however.

"That a sentence q is true at « just means that cr € w.



since rivially Pf(w) < PY(w). Correspording to this statement we have the formal lan-
UAZE CORNTCTPATT

where o, is an expressing sentence for {w). More generallv. the analyses in the main
body of the paper shall shiow that. for every w « £2 and expressible 4 ¢ 2.

ey A if and only if Lo e w,
where acis an expressing sentence for A, Iu shorr. for each elaim we make about knowledge
at stare w according to the rraditional definition we can find a corresponding senrence in
w provided D) is erpressible.

Alteruatively. suppose that P'(w) is not expressible.  This means that there is no

senfrence o such rhar

e 020 PHLYY = Py

holds. Thus. although it is trivially the case that 7 knows that P7(w) at w accordiug to
the traditional definition. there is no formal anguage counterpart that corresponds to this
s knowledge abour Pf(w). This means that the formal language we adopted ro construet
« s not powerful enongh to capture the traditional definition of knowledge. There is a
diserepaney between the rwo formulations of knowledge.  Actually. one might take this
discrepancy as an indication of the meompleteness of w as a set of deseriptions since
statements made by the traditional definition of knowledge are relevant stateents to our
study. I particular. the nonexistence of a sentence that corresponds to i s knowledge
about one of his ouwn possibility sets P'{w) seeins to ituply that the formal language under
discussion is so weak that ir fails to incorporate an informal (but relevant) assumption that
/ knows his own inforination structure. Thus it is desirable to have (@) to be expressible.
In fact. onr intention is that the expressibility of possibility sets is a necessary condirion
tor the canonical inforination structiure with states of the world interpreted as complere
sers of deseriptions, This is the basie motivation of the current study. Our objective is 1o
show what does the canonical information struerare look like if it satisties that conceptual
necessary condirion.

We assune that the formal theory ont of which we construet the state space is a version
of sentential logic thar is assinmued to contain sentences of the form - if 7 know that A then
A" and Cif 7 knows that A then 7 knows that 7 knows that A7 as its theorems. The former
(the latrer. respeetively) has heen called axiom of knowledge (axiom of transpareney)” by
Bimmore (1992}, or mon-delusion (knowing that vou know)” by Geanakoplos (1990). or *T
(4] i modal logic lirerature. Besides these. the conditions we jtpose on the parr of the
formal theory are that ir has all rautologies of the elassieal sentencial logic as its theorems
and thar it is equipped with some mild inference rules governing knowledge sentences,
i short. we assmme that our rheory is ar least as strong as the logic known as S4 in
wodal logic fiterature (Chetlas (1980)). This wmeans that. any strengthening of S4. such
as allowing nncountably many seurences or adding infinitely logical operations. would not
alter our conclhisions.

We say that the canonical information structure is erpressible if each possibility set
P{w) of the canonical possibility correspondence is expressible. Let us sav rhat an ex-
pressible set ol s self-eeident (for 1)1 o0 = a0 Reeall that a partially ordered ser



is well-founded® if every nonempty subset of it has a minimal element. The first result
gives a characterization of expressibility (Theorem 3.7):

(i) The canonical information strueture is expressible if and only if the set of
all self-evident sets is well-founded with respeet to set inclusion.

A condition shnilar 1o (i) has appeared in Samet (1990). He used the condition to
get o generalization of Aumann's (1976) theorem. Thus (i) offers a justification of his
assinption. Roughly speaking. the well-fonndeduess condition is satisfied if aud only if a
decision maker’s knowledge at a state @ is based on a single basic sentence. In other words.
the condition is satisfied if and only if i's knowledge does not show an infinite regress. We
will diseuss this point in Section 3.

We shall show that if a possibility set PHw) is expressible then it is selfcevident.
Thus (i) implies that if the information structure is expressible then there are minimal
possibility sets. The second results srates that (Theorem 4.2):

(i1} The mmber of miniinal possibility sets is finite.

Geanakoplos and Polemarchiakis {1982) and Bacharach {1985) proved their conver-
genee results under the finite partition assumption. Alternatively. Shin (1993) has used
a similar condition to {ii) to get a characterization of common knowledge events in his
setup. Thus (i) shows that in inforination structures where states of the world are in fact
complete their asiumptions are antomatically satisfied.

It should be noted that borh of the well-foundedness of self-evident sets and the
finiteness of minimal possibility sets appear as cousequences of the expressibility. which is
meant to be a formalization of the ntuitive notion of a state of the world as a complete
set of deseriptions. which. in turn. does not involve any apparent finiteness Havor.

The third result is abour a characterization of partitional information structure in
terns of expressibility. Let us say that the canonical information structure is strongly
expressible if there is a sentence ay such that P4w) = 1Qn i for every w € 2. where
"¢ s a derived operator in the laugnage. which is supposed to mean -it is possible that',
detined by "=~ Strong expressibility requires that the meaning of “possibility” thar we
attach to possibility sets P(w) shonkd be expressible in the nuderlying langnage. We shall
show that {Theorem 4.3):

(iti) Assume that the canonical information structure is expressible. Then the
striueture 1s strongly expressible if and only if it is partitional.

If the canonical information structure is strongly expressible (e, partitional) then
there is a one-to-one correspondence between intersection relationship for possibility sets
(i.e.. whether PH(w) il 2 @ or not for a given expressible set Lad') and seutences in the
underlying theory of the form

. — O

w

a formalization of the elaim that the information structure itself is common knowledge

where P'lw) = Pogdl. We shall argue in Seetion 5 that this correspondence gives us

"See. for example. Johnstone (1987, p 1),



among deeision makers. Moreover, Proposition 5.2 will show that the existence of this
correspondence characterizes partitional canonical information strucrures. Thus. in our
setup. the common knowledge assmmiption of an information structure tirns out to be
a characterizing condition for a partitional information structure. In other words. the
comnnon knowledge assiwnption and partirional infortnation structures go together.

From a mathematical point of view. we will work in lattice theoretic framework. In
particular. the main 1ool of the paper is the Stone representation theorem. the cenrral
resudt in the duality theory for Boolean algebras, Stone’s theorem not only allows 11s to
translate syntactical strnceture of the language inno simple set theoretic operations on the
state space but also gives us a topological characterization of expressibility of an event.
More nportantly. it gives us compactness of the state space. As we will see. our resulrs
are consequences of the compactuess of the state space.”

The rest of the paper is organized as follows. Seerion 2 introduces our basic con-
struction and fonnulares the expressibility condition for the constructed possibility corre-
spoudence. Section 3 gives cownplere characterizations of the expressibility condition. In
Dection -bowe derive consequences of the expressiblity condition stated above. Sectiow 5
discusses issues concerning the notion of comuon knowledge. The paper ends with con-
chiding remarks in Seetion 6. There are two appendices. one for rudimentary definitions
and results from latrice theory, another for the proofs of the formal starements we are
SOILE o make.

2. CONSTRUCTION OF CANONICAL INFORMATION STRUCTURE

In this seetion. we mroduce our basic framework and then constries a state space and an
information stracture. which are the main objeet of the present study. We are going to use
basic facts and results from lattice theory, Necessary definitions. as well as some resules
that we are going ro invoke. are colleeted in the Appendix ! 1t should be noted that our
construction i this seetion is a version of the canonical construction in the logie literature
(Chellas (1980)). Also. similar constructions have heen done by Aumanu (1989). Sawmet
{1990). and Shin {1993).

Consider a sitnation where a decision theorist is given a many-person deeision prob-
lemn to study. For simplicity. we assume that there are two decision makers, 7 and .
Assine that the theorist have specitied all relevant deseriptions of the decision making
sitiation. These relevant deseriptions are devided into two classes. One of which cousists
of deseriptions that are supposed to hold nuder every contingeucies. The other consists
of deseriptions that are not supposed ro be so. We assume that cach deseription of the
theorist is written in a formalized language. We will call the first class of deseription a
theory in the langiage. Each deseription w the theory is cailed a theorem (i the theory).
With this background iuterpretation in mind. let ns begin our formal analvsis,

"By compactness. here we mean the most genaral version: A topological space is compact if ev-
ery open cover has a finlte subcover. A compactness argument that is similar to those we shall invoke
repeatedly can be found in Aumann (19239, Section 11).

1" A relevant reference is Davey and Priestley (1990).



A language is a tnple £ = (S. 2. ». 1. 2,). where L € 8. — is a binary operation on
S (e — is a mapping from S x S to §). T (b = 4. j) is an unary operation on S (i.c.,
g is a mapping from S ro ). We adopt the most readable notation system: we write
a — . for — (.. 7) and Tgee for Og{a). An element of 8§ is called a senfence of £. 4 is
a constant sentence. which is supposed to express -logical inconsisteney”. We read o — 9
as tif @ then 37 and S as & knows thar o The usual logical connectives such as “and’.
or’ . and "not” are defined as follows. For every a7 € § define

=N av 3= - -1

a N d = V3. e 3= (o )N (T — a)

In addition. following modal logic literature. we define
O = =~
which we read as A thinks ir is possible that ¢

Formally speaking. we presented the language £ as an algebraic structure. As a
cousequence. here a sentence o € S in £ s not necessarily a finite string of symbols.
contrary to the standard practice in marhematical logic. It can be. however. Thus our
frajework enjoys somne generality. For exawnple. there is no a priori restriction on the
cardinality of 8. Also one can add another operation on 8. which might corresponds to.
for example. infinite conjunctions.

We next introduce the notion of a theory in L. as a formalization of the class of
descriptions that are true under every contingencies. In other words. a theory should be
a collection of descriptions that our decision theorist assume to hold in the model. Given
these interpretation. we define a theory 1o be a set of sentences in £ that satisfies several
properties. A theory X in £ is a subset of § that satisfies following conditions for every
. F.~ e 8

(Con) ¢ X
(PL) e (F o) e M
(x = (F = 7))~ (le—3) - (r = 2)) e X

—gy oy €

'
—

(K} Sl — 3y = (D = T ) € 3
(MP) for— 3¢ X andae X then Je X
(N} o X then Do e X

where b =i, j. We call asentence o € X a theorem in 2. These conditions together express
our {and our decision theorist’s | basie assuptions as in the following sense. First. by
{(Con). (PL). and (MP}. X contains all tantologies!* of the elassical sentential logic (see
Lemma 2.1 (1) below). As for sentences involving knowledge operators. (N} exprosses
the assnmuption that & knows all sentences in the theory X In other words. & knows all
theorems in X or £ simply knows the theory ¥ (K} governs the inferences involving
sentences that are known by & This is a regularity condition. whose intuitive meaning,

""In our setup. the notion of tautologies requires a precise definition. This is given in the beginning
of Appendix 2.



is thar & knows all sentences that follow deduetively (in the sense given by (MP)) from
sentenees known by £ (see Lemna 2.1 (2) below). Thus one can regard this condition
as a rationality assiwmption with respeet to logical deduction.  Let us smmnarize some
conscquences of these assumption.

2.1 Lemma. Let 3 be a theorv in L. For everv oo o, €S and kb =i j.
(1) 2 contains all tautologios in elassieal sentential logic.,
(2) Ifevp A Ay, o v e X then Uy A Al - Dpa e 30
(3) Loy Ao Ay, o Calag A Aag ) €8
(4) C’.‘.‘“l VoV Ok“’n = Oplog V-V ) €L
(5) Sroay VoV Ty, o Zplog VeV, € 8

Now let us start to constriet our state space. Given a theory Y. define a binary

relation < on S by
(=<3 it and only if r — FE X,

By Lemuna 2.1 (1), < is reflexive and transitive. Denote by~ the equivalence relation
defined by o = Jif and only if @ < J and 3 < . By definition. o ~ 3 if and only if
a — 4 e 2. Denote the quotient set of § with respect ro ~ by §/X. Namely. §/% ==
{:ol a2 8} In words. we identily those sentences that are deductively equivalent in 3.
In particnlar. o+ defined by ;2 is the set of all theorems in X That is. 7 = X In
what follows. with an abuse of rerminology. we may call an element of §/5 a sentence.

We notice that §/X inherits < from §;

IR it and only if a— 3¢ X

The following tact hias a primal inportance to our study.

2.2 Proposition. (/3. <) is a Boolean algebra. with following meets (greatest Jower
bound). joins {least upper bound}. and complements: for every . 3 & 8.
Gl AL =l A Sl VT = e v 3l aal = I=ad.

In addition. 7 { £} is the top {botton. respectively) element of (S/X. <),

H

In logie Hterature. the Boolean algebra (S/5. <) is ealled the Lindenbaum algebra
for the theory 1% Notice that. in the statement of 2.2, we have used sane svinbols for
different operations.

As discussed in the Introduction. the traditional interpretation of a state of the world
1> that it is a complere set of deseriptions of the decision problem. In our setup. we can
faithtully formalize this idea by the notion of maximal filter in a Boolean algebra.

2.3 Lemma. A subsct w of 8/X is a maximal filter in 8/ if and only if w satisfies the
following conditions lor every o, 3 e §/ 5

(2) Tia's i3 e withen an de .
(3) If i ¢ wand o — F ¢ X then e w.
(4} Either i ¢ wor [al € w.

2Gee. for example. Bell and Slomson (1969).

=T



Conditions (1} and (2) rogether express consisteney. (3) expresses closednesss with
respect 1o dedietion. (1) is the notion of maximality. Notice that, by (1) awd Lemma 2.1
(1}. "or” In (4} is exclusive. In what follows. we call a maximal flter in 8/3 a state of the
world. Accordingly. our state space is defined as

ey /\" ; -

v = e e 27wl a maximal filter in §/371.

For every o ¢ 5. define

al s {w e 2y ale wh
In words. o 18 the set of states of the world at which the seutence o is tree. Notice that
fo s a subset of £25; while tof s an element of §/370 Also. by construction.

W C if and only if € w.

Moreover. conjunetions (disjunctions. negations. respectively) in £ translate inro inrersee-
fions {unions. complements, respeetively) in 250 We denote by A7 the complement of
A s with respect o (25

2.4 Proposition. For every a. . € 8.
(1) o =12 if and only if v is a theorem in X {ie.. a € ).
(2) e = 2 if and only if - £ 2.
(3) o e it and only it a — F < M)
(4} tat gt = AT
(D) Tl =,
(6) o d=tiav g

So far we have observed that for each sentence aoin S there is a migue subset Lot of
2y:. and rhat syutactie relarionships between sentences are faithfully translated mr() s(‘r
rheoretic operations on (2>:. Now let ns turn to the “converse” direetion. Namely, given
a subset A of £25 can we ind a senrenee o im § such that A = a7 As stated in the
Introduction. this is the notion of expressibility. which is the central theme of our ‘SH[([}'.
Formally we define that A < £25: is erpressible if there is a € 8§ such that A = o1 The
kev mathewmatical result to (l(‘rl] with this problem is the Stone representation thramrm for
Boolean algebras. Define

EX(XY -~ {hab ¢ 2% n e 8.

7y = the topology on £25: generated by E X (X)) as trs open base.
Notice that by Proposition 2.4 (1), EX(Y) is closed under finite interseetions. Conse-
quently. 70 is well-defined. T words, EX (X)) is the ser of all expressible sets. By Lenna
2.4 (5). it s mnmediate that if A is expressible then A is clopen. that is. both closed and
open. with respect to the Stone topology 7y An application of Stone’s theorem gives us
further properties of the topological space (20703,

2.5 Theorem.
(1} The ropological space (£25-.13:) is compacer and Hansdorff.
(2) (EX(X). ) is a Boolean algebra, whicl is Isomorphie to 8/5. In other words.
there exists a Boolean isomorphism - EX(X) — §/%.
(3) Forevery A (v, A e EX(Y) ifand only if A is clopen.



The compactuess of {(£25:.75) will play an esseutial role in following sections. What
(2) says is that rhe algebra of sets (EX (X7, C). which is a subalgebra {or a sublattice) of
the power set algebra {or lattice) (295 <) is an exact copy of the Lindenbaim algebra
2 of the theory X0 On the other hand. (3) gives us a topological characterization of
the expressibility: An event A < 250 i expressible if and ouly if A is clopen with respect
to the Srone topology 7y
Fiually we are ready to define the canounical information structure for the theory X
Define for & =i, j.
p(E)He) = [ad € §/5 Ta e ),
PRy = (o € 20wk we) < w')
In words. #(F)31(w) is the set of sentences that are known by hoat w. PFw) is the
set of states of the world swith which H(Af);}l(uj) is cousistent. I other words, PF(w)
i3 the set of all states of the world that are aceessible from w (Chellas (1980). Samet
(1990)). Henceforth we call PF() o possibility set at w € §2,-. The canonical possibility
correspondence tor & 1s a mapping
PRy s 28y

defined by P2F(2) for every w € €2, We call (£25:. P P20 the conondcd information

stracture for X The basic properties of possibility sets are as follows.
2.6 Proposition. For everv w € 5 and k =i,

(1) w e ilipal ifand only if PY(w) < fall
(2) PMwy = el aie h‘(k);—l(q;)} = Milel we 1Dall

(3) PFw) is closed, Lo PRy ¢ 1y

Proposition 2.6 {1} gives us the relationship between the traditional definition of
knowledge and knowledge sentences in X If A < 25 s ewpressible then. for overy
o e 2

A knows 4 ar w if and only if w e i
where o € § I8 an expressiug sentence for A. If we define. as has nsually been done. the
set KR4 by KF(A) = {we 250 PR w) o A} then the above equivalence rurns into
R pal ={w e a0t e W)
Thus. as we elaimed in the Introduction. there is an exact parallelisin between statemoents
abont knowledge that are made by traditional definition of knowledge and knowledge
sentences i S provided if the set in question is capressible.

Proposition 2.6 (2) simply states that 2¥(2) is the infiimnn of known senrences at w.
Notice. however. PP is the infimum of {Tof w2 0} i 299 which is complete
as a Boolean algebra with respeer to set inchision. The point here is that it need not
be the case that H(ﬁr)_}_vl(w). the set of known sentences at wo has an infinn e §/X.
which need not be complete. In fact. it can be proved that %) is expressible if and
only if the inhimmn of h‘(ll‘);;](u,') exists in /3. From this observation. we know that
the expressibiliry of possibility sets reguires the Boolean algebra §/5 to have a version
of complereness in lattice theoretic sense. At this level of generality, however. we do not
know much abont the structure of the set H(A"};‘-l (w}. Consequently. the observation irself



is not so Iformative. Alternatively. if we know some properties of h‘(k’)’;_.l(w') then we
can derive more intuirive characterization of expressibility. In other words. in order to
set wore nformative characterization of expressibility. we need stronger theory than the
one we have in this section. ITn next section. we will strengthen our theory £ and derive
sharper characterizations of expressibility. Finally. we notice that by 2.6 (3} and 2.5 (3)
PF(w) is expressible if and only if P*(w) is open with respect to the Stone topology 7

3. EXPRUESSIBILITY OF INFORMATION STRUCTURE: CHARACTERIZATION

Let us say that the canonical infornation struetnure {25 17(-). P7(4)) associated with a
© 2y and =7 j As we
observed in the previous seetion. each possibility set P¥ () is expressible if and ondy if the

theory 37 s capressible if PF{e) is expressible for every w

sot of knows sentences at w. h‘.(rl.'):\"L(w'). has a greatest lower bound in the Boolean algebra
5727 of senrences in L. In this section. by strengthening our theory 57, we derive sharper
characterizations of the expressibility condition. One of the kev notions in this seetion is
that of self-evident sers. which have already plaved an importaur role in the literature,

We additionally impose the following two conditions to onr theory X First. what is
known by a decision maker & is true. and second. if & knows something then & knows that
A knows it. Formally. we assume. thronghont the rest of the paper. thar

(T) N N R =P
{(4) Dty e T 6 M
for every o & § and A = 7. j. The main goal of this secetion is to show that the canonical

information structure is expressible if and only if the sef of self-evident sets is well-founded.
Leevery subser of it has a minimal element (see. for example. Johnstone (1987, p.61)).

Betore starting formal developinent. we discuss a possible interpretation to the char-
acterizing condition above ar this point. We consider the ser of sentences thar are known
by the decision maker b at a state of the world w ¢ 250 Ler us pick such a senrence
cep and ask “How does & know ;7" This question might have an answer that A knows
another sentence oy at w and that o) is one of a deductive consequence of .. Then
let us ask further that "How does & kuow ay?” Again there might be ag that have s as
one of its deductive consequences. Let ns repeat this process again and again. There are
fwo possible onrcomes. The repeared process renninates in finite steps or else shows an
infindte regress. Tt turns owt that the notion of well-forndedness is precisely the one that
exclndes an infiuite regress in the repeaced process. We shall show that rhe expressibility
of the canonical information srrueture is characrerized by the woell-foundedness condirion.
Therefore. mider the expressibility. there must be a single self-evidenr sentence thar is
known by & at w and all sentences known by b at w are deduetive consequences of that
sentence. Namely, the canonical information structure is expressible if and onlv if we can
give 1t the following behavioral scenario™ CIf state w occurs thew & is informed that a
senrence o ds trme. b derives all deductive consequences of o, and only those are the
sentences that are known by A ar . Apparently. this is a version of “provability interpre-
tation of kuowledge'. which was proposed by Shin (1993). Also. a condition similar to the
‘10 infinite regress” condition above has appeared in Samet (1990).
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In this seerion and the next. we fix & = /. j. Accordingly. we shall drop superseripts
and subseripts thar specifv a decision maker for notational convenience.
Let s start with a lemna,

3.1 Lemma. For everv w.w’ € (24,

(1) we Plw).
(2) If'w’ ¢ Plw) then () © Ple).

Given the fact that a logic with schemata (1) and (4) is known as an §4 systen.
we call an informarion strueture thar satisties (1) and (2} above an S4-information struc-
ture.  Several authors have already studied S4-information structures extensively (e.g..
Sawet {199)). Geanakoplos (1990). Brandenburger ef al. (1992)). Also we refer {1) ((2).
respectively) of Lemma 3.1 as (T) ((4). respeetivelyv) in what follows.

One remarkable fact about S4-information strucrures is that we can justifiably restrict
our atrention to so called self-evident sets. Let us say that (ol € EX(X) is self-erident if
fai iU ai Accordingly. we say that o € 8 is self-evident if el 1s. Now define

SE(X) = { ol e EX(X) ol ="1Ta"1.
SE(w) = {la, ¢ SE(X) we ia )

Thus SE{Y) is the set of all self-evident sets. On the other hand. SE{(w) is the set of all
self-evident sers that are true at w ¢ £2y-. Notice thar

Gt ¢ SE(XE) if and ouly if (v i €03
In words. a self-evident sentence is the one that cannot be rrue wirhowt being knowit.
Self-evident sets playv an important role in the literatire in that the notion of common
knowledge is frequently defined in terns of self-evident sets (see Seetion 5). In fact. in S4
information structures self-evident sets possesses a lot of tractable properties.

3.2 Lemma. for cvery w ¢ §2,.

1) Plw) = SE{w).

) If P{w) is expressible then Plw) € SE{3)).

) For evervilan € SE(X). day = Uoerng Dlw).
) (SEX). ) is a distributive lattice.

)

SE(w) is a pritne filter in (SE(X). ).

Let us comment on these properties. First. (1) shuplifies the analysis of the express-
ibiliry significantly. for it allows us to restrict onr attention to the ser of self-evident sets
at w. SE(e). instead of rhe set of known sentences at w. ra';-l(;;,'). (2) savs that if P{w)
is expressible then it has to be self-evidenr. Thus (3). together wirh {2). tells us that
the possibility sets form a “base” for the self-evident sets if possibility sets are express-
ible. Notice that. in a traditional informarion structure model. every possibility set is
seli-evident without any qualificarion. We have defined. however. self-evidence property
i such a way that it applies to only expressible sets. We elaitn that this restriction is
conceptually natural beeause our framework started from a theory on a formal Ianguage
aud the formation strueture is a derived construet rather than a primitive one. Finally.
(1) and (5) set the enviromnoent in which we derive our chiaracterizations of expressibility.

11



Here we should norice that (SE(X). 2} need not be a Boolean algebra. In other words.
the set of self-evident sets need not be closed under complementation.
By Lemia 3.2. we have local characterization of the expressibility,

3.3 Lemma. For cvery w < 250 P{w) is expressible if and onlyv if SE(«) is a principal
filter.

We are also interested in -global” case. i.e.. the expressibility of the canonical infor-
mwation structure itselfs By Lemma 3.2 (5) and 3.3, it is necessary for the information
structure to be expressible that every prite filter in (SE{X). ) that appears as SE(w)
for some « ¢ £2y:is principal. Thus we want to know which prime filter has the forn
SE{w). Actually. it turns owt that all prime tilter in (SE{X). <) have the form SE(@).

3.4 Lemma. For every prime filter Foin (SE(X). ¢ Y. there exists w € 2y such that
F=5FE(L}).

By Lemma 3.2 (5). 3.3, and 3.4 we have that

3.5 Corollary. The canonical information strueture {2,:. P(-)) is expressible if and onlv
if every prime filter in (SE(Y). <) is principal.

Lot us say that a partially ordered set (L. <) is well-founded if there is a minimal (with
respect to =) element a ¢ A for every nonenmpty subset A C Lo An infinitely decreasing
cham in {L. =<} is a subset € = {¢,,  n € N} of L such thar if n < m then o, < ¢, and
Cn 7 Coy for every wom ¢ N owith the usual order < on N. Now we are ready to state the
tnain result of this secetion.

3.6 Lemma. For a distributive lattice (L. <), the following couditions are equivalent.

}L. =) is well-founded.
} There is no infinitely decreasing chain in {1, <),
} Every prime filter in {L. =<} is principal.
} Every filter in (L. =< is principal

(1
(2
(3
(1

3.7 Theorem. The canonical information structure {£25:. P(-}} is expressible if and only
F{SE(X). ) is well-founded.

It follows from (K. (N). (T). (4). and Proposition 2.1 (3) that if P(w) = o and
a3 then o -3 € X and o — 203 € X independent of whether 3 is self-evident
or not. Thus we can justifiably say that P{w) is expressible if and only if there is a single
sentence o such that all known sentences at w are precisely those that are derived from e
in the theory X

1. EXPRESSIBILITY OF INFORMATION STRUCTURE: C('):\ffw'[‘l(\}l'l".f\{('iﬂs
By Theorem 3.7 from the fast section. the canonical possibility correspondence is ex-
pressible it and only if SE(X). the set of selfcevident sets. is well-founded.  Given this
characterization. we shall derive several consequences of the expressibility of the canonical
information srructure. First, we will focus on minimal possibility sets. whose existence are

12



guaranreed by the well-foundedness of SE(37). The first result of this seetion stares rhat
the number of minimal possibility set is finite. In other words, there are finitely many
SCHTOTCeS fig. . ... My € S.osuch that cach py, (B = 1., 1) is an expressing sentence of a
minimal possibility set. This follows frow the compactiess of the state space §2s:. Since
there are ouly finitely many such g, we can consider the semence gy v -+ -V i, and the
corresponding self-evident set dpy v v, i b s inediate (with Lemna 4.1 below) that
the canonical information structure is partitional if and only if the sentence py V- -V i,
is a theorem in the theory A0 that iscfpy Ve -V iy = 250 The sceond result gives a less
obvious characterization of partitional infonmation structures in terms of expressibility,
Throughour this section we assume thar the canonical information structure is ex-
pressible. We srart with a lemina, which seates, as one might expeet. thar minimal
nonempty self-evident sets are actually possibility sets and are mutually disjoint.

4.1 Lemma.

(L} Ifieer Is minimal in SE{Y) — {@} then there is w € 2y such that yaf = Plw).
(2} Minimal elements in SE(X) — {@} are mutually disjoint.

Since our state space f2x: 1s compact with respeet to the Stone topology 73, ({4 |
A e A} # @ for every A < 2 with the finite intersection property. where 4 is the
closure of & set AL The finiteness of the following result comes from this fact. For details.

see the proof in rhe Appendix.

4.2 Theorem. Assume that {2y P()) is expressible. Then the munber of minimal
possihility sets is finite.

This result has nothing ro do with the cardinality of the set S of sentences in £, since
we have itnposed no a priori restrierion on the cardinality of 8. It is solely the expressibility
condirion that is responsible for Theorem 4.2.

It the commnon knowledge literature, various kinds of assumptions or conditions that
cnsure fintteness of minimal possiblity sets have appeared (e.g.. Geanakoplos and Pole-
wmarchakis {1982). Bacharach (1085). Shin (1993)). Compared to these previouns studies.
Theorem 1.2 is unique in that it gives us the finireness as a consequence of the expressibil-
itv. which does not involve auy apparent finiteness flavor. In this regard. we recall that our
setup is general enough to accomodate sentences of “infinite length™ (see Section 2). Thus
it is misleading to think that rhe finiteness in Theorem 4.2 comes from somethiung like the
finireness of the “length of a sentenee’. a statement thar would have been meaningful if we
had stick with the standard framework of marhematieal logie literature. In other words. as
long as the theory 2 iu the underlving langnage has rhe structure of Boolean algebra. the
expressibility nmplies the finiteness of minimal possibility sets. This is the main message
of Theorem 4.2,

By Lennna 4.1 and Theorem 4.2, the expressible eanonteal information structure is
partitional if and ouly if the sentence py V-V g1, s a theorem in the theory X There
is a less obvions characterization of expressible partitional information struetures. This is
done by a stronger version of the expressibility condition.

To wotivate the stronger coudition. let ns recall the traditional interpretarion that
we associate to informmation structure models. A possibility set P{w) is thonght to be

13



the information that the decision maker & receives when a state @ £ 2y occurs. The
crucial pomt here is that what rhe meaning of rhe bformation P} is supposed to be.
The standard interpreration is that & thinks that all stares and ondy those states in (@)
are possibly to have occeurred. Tt is worth noticing here that the intended hcerpretation
involves a modal qualifier “possibly”. Given the spirit of expressibility. we should ask the
following question. Is this “possibiliry” is expressible in the language £7

Lot us say that the canonical information structure (02, P(4)} associated with a
theory X s strongly capressible i for every w € £2y: there is a sentence a,, € 8 such that
P(w) = 10ayl Tois elear thar if (£25:. () is strongly expressible then it is expressible.
We say that (825 () is partitionol if {P(w)  w @ 25} forus a partition of 2,

4.3 Theorem. Assume that {2y P()) is expressible. Then (5. P(-)) Is strongly ex-
pressible if and ondy if it is partitional.

Theorenmt 4.3 says that we have a partitional information structure if and only if the
weaning of possibility that is associated with possibility sets is in fact expressible in the
underlying forinal language.

As stated in the Introduction. the main idea of expressibility condition is a stipulation
that there shonld be an exact parallelismn between traditional definition of knowledge and
deseriptions thar are inclnded in states @ of the world. The strong expressibility further
demands that that parallelisin should extend to traditional interpretation of possibility.
We elaiin that the strong expressibility is a natural condition to consider. as long as we
take the intended interpretation to possibility sers seriously. Theorem 4.3 then guarantees
thar. if we do so. what we are poing to have is a partitional information structure. In this
sense. the idea of expressibility offers a justification for partitional information structures.

;.

By norieing the fact that 100! == [ =5-all. we get a corollary.

i

4.4 Corollary. Assume that {£2;:.P{-)) is expressible. Then (825;. P(-)y is partitional if
and only if 5ol = Y = 100l holds for every iinil € SE{X).

The corollary shows that we have a partitional informarion structure if and only if
all the three notions of knowledge. rruth and possibiliry coincide for every self-evident
set. In other words. we have non-partitional information structure if and only if there is
astate w ¢ £y and a selfevident set dall such that & thinks fal is possibly to be true at
w while it is actually false,

5. COMMON KNOWLEDGE AND COMMON THEORY

In rhis section. we diseuss issues concerning the notion of common knowledge, There are
two kinds of common knowledge in the literature. One is the formal notion of common
knowledge of ecents. defined by Anmann (1976). The other is “informal ™. which is the one
we refer when we speak of. for example. commnon knowledge of informmation structures. It
is to be nored rhat observations similar in sprit to those given in this secrion are found in
Awnann (19847 and Shin (1993).

As for the formal notion of common kunowledge. the well-foundedness condition has

sorte straightforward fmplications. Let us say that an expressible set Hall is common
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*

knowledge at w & 2y it w < 272090 for every T 2 T wehere T s the set of all finire

strings made up from 2, and 2.

5.1 Proposition. For every ial ¢ EX(X) and w € Oy ol s common knowledgoe at
w i and only if there Is o™ D such that w € jo*E © ol and o e SE(X) 0 SE{X).
Morcover, the set o has the propertv that [0 is common knowledge at w if and only
ifwe éj(t*:‘

The tirst balf is the familiar characterization that the iterate definition of common knowl-
edge and the detinition in rers of self-evident sets coineide. The second half savs that
the starement it is common knowledge that o is expressed by a*. That is. the express-
ibility of possibility sets carries over that of common knowledge. In the proof of 5.1 in
the Appendix. one finds. as nsnal. that o is the interseetion of all (000l Tt is worth
noricing that. by Lewma 3.6 (2). every common knowledge is n-th mutual knowledge. 1.e..
the iterarion of T and L2, must terminate in some ¢ N steps,

Now tet us turn to the “informal” norion of conunon knowledge. \We shall verify that. in
our setup. the common knowledge of an information strueture is a characterizing condition
for a parritional inforinarion struerure.

We first observe that there is a elose relatiouship between the interpretation of a state
ot the world as a complete sev of descriptions and the conceptual assmnprion that rhe
information structure is itself comnnon knowledge. This is exemplified in the following
passage:

Included in the full description of a state w of the world is the manner in which infortation is

mmparied to the two persons (Aumann (1976, p.1237)).

Sinee our state w of the world is indeed a set of deseription. we can find some fortal
statewents that correspond to the quotation. First of all. by successive application of (N).
we have that, for everv o € 3 awd n € N

A :,r,”(}. < 3
where fipo.o . In, o {ioj}. That is. the theory X in faet can be regarded as common
rheory” hetween 7 and j {Awmanu (1989). Shin (1993)). In other words. each theorem in
218 a comnon theorem between i and .
Now 1t follows trom Proposition 2.6 and Theorem 4.3 thar

5.2 Proposition.

(1) Forevery w € £25. i € EX(X) and b = i j. w e ($pa if and only if P*(w)

i Ao,
(2} Assume that (5. D7) P/(0)) s expressible. Then it is strongly expressible if and
ouly if

:)A” = Uw-e.-\;.-(r}) ])k-(uj)
2y

for every ol ¢ EX(X), where Ap(o) = {w e Oy i PHeinial £ 2} and k=i .
Proposition 5.2 (1) states that the possibiliny operaror § in the language £ corre-
sponds to rhe infersection operation on the canonical state space £25-. Moreover. it follows

-

from 5.2 (2) that. if the infornation strucrure is strongly expressible. then
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Pruyc o £ 2 if and onlv if afr o ool
where Py = (1i I other words. by Lennna 2.4 {3).

PRy a4 2 if and only if af s Gra e X
We rewmiark that this equivalence is avatlable only if we have a strongly expressible infor-
mation structure. Also. the set padis not restricted to be a setf-evident set. In particular,
It can be a possibility set of the othier decision waker. From our perspective. this is the

most inferesting case. Let P2'{w) = Gal 0 and Y (w) = dad " Then the equivalence above
furns 1o
Py Py A e if and only if al, Gl e Xoand of s Qpal € X

This means that the reachability relation of Aumann (1976) can be defined in terus of
comon theorems in 574

In smmmary, in a strongly expressible information strucrure. the (nonempty) inter-
seetion relationship and the inelnsion relationship among expressible sets are recorded as
theorems in the common theory X in the form of sentences involving &y and T, respec-
tively. I this sense. Aumann’s (1976) claim is formally justifiable in a strongly expressible
mformation structure. Not ouly that. we have seen that his claiin is actually a charac-
rerizing condition for a strongly expressible (oo partitional} inforiwation structure. That
15. rthe common knowledge assumption and partitional information structures are tied
togerhoer.

6. CONCLUDING REMARKS

We started wirh an asswiption thar there is a set of deseriptions that is closed with respeet
to relevance to the decision making situation under study. We proposed the expressibility
condition as a necessary condition for the relevance-closedness. Our results rell us whar
relevance-closed. or ~alk-inclusive’. information strucrures look like. In this sense. our line
of reasoning is iu the reverse direction ro that of the belief approach (Mertens and Zamir
(1985). Brandenburger and Dekel (1993)). Given a set of “parameters’. they started to
coustrict hierarchies of beliefs and showed that rhis consrruetion has a fixed point. That
is. we can close the model. In contrast. by hmposing the expressibility condition. we
have started from a closed mnodel and then derived jts properties in the logical approach
cnvironnient.

Within the logical approach itself. the couditions similar to Theorem 3.7 and 4.2 have
already appeared as asswnptions (Samet {1990). Shin (19%3)). In addition. the finite
partitton assumption has plaved key roles in several convergence resules (Geanakoplos
and Polemnarchakis (1982). Bacharach (1985)). Our study shows that their assunptions
are bound to be satistied i information structures where states of the world are in fact
all-inelusive.

it seews difficult to say that there is a general agreement about the sratus of par-
titional information structures. While some anthors {c.g.. Brandenburger. Dekel. and
Geanakoplos (1992)) have deseribed non-particional information structures as “deviations

PNotice that. by Lemma 2.1. o - 9,3 ¢ X and 3 — Dyve Yimply o 00,0 € X
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from rationality’. thereby iimplving thar the partitional case s the standard one. several
views that question the validity of the partitional case have also been addressed (eg..
Binmore (1992). Shin (1993)). Our 1wo characterizations of partitional information stroe-
tures. Theorem 4.3 and Proposition 5.20 shed another light on the status of partitional
informarion structures. If we require not only the traditional definition of knowledge but
also the intended interpretation for information structure models to be captured by the
underlying systen of deseriprions then we must have a patitional structure. Alternatively.
as long as we stick with the comnmon knowledge assmnption. there is a good reason to
helieve that decision makers do have inforation partitions. Putting together. we have
shown that partitional struetures are formally justifinble as models of idealized situations
where states of the world are complere and the connmnon knowledge assumption is sarisfied.

In the comnmon knowledge literatire. one often tinds issues conceruing the cardinality
ol state spaces (e.g.. Hart. Heifetz and Samet {1993)). Theorem 4.2 states. on the other
hand. that minimal possibidity sets are going to be finitely many. We do not know whet her
there is a nonrrivial expressible canonical information structure that has infinitely inany
states of the world

The formal development of our study shows thar our results contine ro hold as
long as rhe theory X in a forinal language £ from which we started has the strueture of
Boolean algebra. In particular. as long as we restriet ourselves to sentential (as opposed
to quantificarional) setup. any kinds of strengthening of the theory and/or tanguage. such
as allowing uncountably many sentences or adding infinitely operations. would not after
the conelusion. I this sense. our results are robust.

APPENDEX

o DEFINITIONS AND RESCLTS FROM LATTICH THEORY

The following concepts and standard results from lattice theory are nsed in the body of
the paper. For details. see. for example, Davev and Priestry (1990).

Let L be a nonewpty set. A partial order on L is a binarv relation < on L that
is reflexive. transitive. and anti-syimmetric (Leo o < b and b < o imply @ = b for every
a.bc L) We read o =< b as "o s less than or equal to b A partially ordered set is a
pair {L. <j. where < is a partial order on L. A chain in a partially ordered set (L. <) is
a nonempty subset € of Losuch that either ¢ < bor b < o for every a.b € C'. A partially
ordered set (L. <) is a lattice if for every a. b ¢ L the greatest lower bound {infimum or
meet) of {a b} denoted by a A b, and the least upper hound (supremum or jom) of {a. b}.

"TA (trivially) expressible canonical information structure with continuum of states can be con-
structed as follows. Consider the set of well-formed formulas of non-modal sentencial logic with countably
infinite atomic sentences. For each formula > define recursively that

if 2 is a tautology

otherwise.

Consider theset 31 - {0, Zp = 7} It is easily verified that s in fact an 85 system and that P(w) = 25;
for every w ¢ 21+ in the associated information structure. On the other hand. Qs has the cardinality of
2% since there are countably infinite atomic sentences.
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denoted by avib. exist. A sublattice of a lattice (L. <) is a subset A of L such that aabe A
and aVh ¢ Aforevery a b ¢ A A lattice (L. <) is distributive if aA(bVe) = (a AV (aAc)
and a v {bAe) = (avb)Alave) hold for every acb.e ¢ L. A lattice {L. =} is bounded if

there are L. ¢ L such that & (7. respeetively) is a least (greatest. respeetively) elernent
m L. A complement of an clement ¢ € L of a bounded latrice (L. <) is b € L such that
a b= 1 aud avh= T A complement of @ € L is unique if it exists and i this case

we denote it by —a. A bounded distributive Jattice (L. <) is a Boolean algebra if every
cletnent of L has a complement.

Inwhat follows et (L. =) be a bounded distributive lattice. A filter in L is a nonewmpry
sibset Fof L such that

(1) Foreverva ¢ Fandbe Loifa <bthenbe F.

(2) Foreverva b Foanbe F.
Note that. for everv a ¢ Lo theset "a = {be L1 a <D} is afilter in L. In particular.
L =7 2 s afilter in Lo A lilter Fin L is principal if there is a € L such that F =1 .
Any filter that is not principal is called non-principal. Note that a filter F is principal if
and only if £ has a minimmn clewent. A filter Fin L is prime if a vV b ¢ F hnplies either
a < Forbe Fforevery a.be Lo Afilter Fis maximal if L is the only filter that strictly
mcludes (with respect to set inclusion) F.

A.1.1 Theorem. Let (L.=<) he a Boolean algebra and F he a filter in L. Then the
following statements are equivalent.

(1) F is a maximal filter.

(2y Flis a prime filter,

(3) forevery a € L cither a € Foor e F and not hoth.
A.1.2 Theorem. Let (L. <) he a Boolean algebra and F be a filier in L such that F # L.
Then there s a waximal filter F* in L sneh that F < F/,

Au ideal in L is a nonewpty subser I of L such that

(1) Forevervaco fandbe Loifth <athenbc I.
(2) Foreverva he TLavbel

A.1.3 Theorem. Let F (1. respectively) be a filter {ideal, respectively) in (L. <) such
that ' 1 = &, Then there is a prime flter F' in L such that F o Fand FFol = &,

2. PrOO¥S

Definition. Here we give a precise definition of tautology inour langnage £. Let {p, I n €
N} be sentential variables. Denote by I the sinallest set satisfying: (1) p, € T for every
neNo 2y Feltm @Y fe.ve Dthen (g = w)e i 4y f e I then Ly € T where
b= jo An elemem of I is called a formula. We omir parentheses occasinally. Detine
—0 = ¢ = Fowhere = denotes svaractie equality. We take following axiom schemata:
(1) o = (v = ol (2) (o= (e =) = (g =) = (0 =)k (3) =g = 2. where
Soeenge I



A finite sequence {0 S of formulas is a deduction if either (D1 2y, 1s an axiom:

!

or (132} There are ros < fi such thar o, = o0 =» o holds for b = 1. i A formula o is
a syntactic taatology it there is a deduetion (... .. wn) sueh that o, = ¢ Notice thar if
(o1 Soy ds a deduction then oy is a svuractic rautology for everv b — 1., .. .

Let v {pn ' 0 & N} - 8 be any mapping. We extend r 1o 21 — § as follows:
(1) If ¢ € {pn ' noe N} then R{g) = r{p) (2) RFY = L (3 If o0 € [ othen
Rig = v) = Rlp) — Rle) (4) If o ¢ I then R(Lgy) = R R(G) where k== 7. j. By the
recursive nature of £ 7 is uniquely detriined by ro We call any mapping thus construeted
a realization. We finally define: A sentence o ¢ 8 is a fautology if there is a realization

R — S and a svutactic tautology o ¢ 17 such that R(3) = .
It is casy to show that if 0 € 3 is a tautology then o € 5. This is done by induction
o the lengrh of a deduction (... .. e where (2,0 = a. together with (PL) and

(MP}. This proves Lemma 2.1 (1).

Proof of 2.1: For {1). see the last paragraph of above definition. For others. see Chellas
(1980. Chapter 1), -

Proof of 2.2: See Bell and Slowson {1969, Chapter 2. _

Remark: Alrhough onr setup is idenrieal to that of neither Chellas (19%0) nor Bell and
slomson {1969). essentially same proofs as theirs work for our case as well.

Proof of 2.3: B3y Theorem A.1.1. L

Proof of 2.4: (1) (rhus (2)) follows from Theorem A.1.2. The rest follows from imvolved

definitions and Proposition 2.3, .

Proof of 2.5: An application of the Stone representation theorem for Boolean algebras.
See Davey and Priestley (1990, Theorem 10.8). .
Remark: Until Proot of 5.1, we fix & = 7. /. Accordinglyv. in order to have notational
convenience. we onit subseripts (superseripts. respectively) for 70 (P20, respeetively) and
relared objects.

Proof of 2.6: Clearly. {1} implies (2). which. in turn. buplies (3). The following rhree

claims prove (1),

Claim 1o Ifw ¢ Do then P(w) © o
and pick ' o Plw). Since w € lan dal € h‘;{_‘](uu). Sinee
e Ple). H“-;l(w‘) o Thus ‘o £ W or W’ € Lo

Claim 2: Pley=[rah we (T}
Proof: Plw) < (WHia' i w € Tao } tollows fromn Claiin 1. The converse follows from
involved definitions.

Proof: Suppose w ¢ @ “a

Claim 30 I P(L) 7 o thenw < Cag,
Proof: Assunie w ¢ @ Zao We want to show that there is & € P{w) such that &/ € [--a;.
By Claim 2 and the fact that 25 is compact, it suffices to show that the se

v tw e v o i-a)
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has lhv hnm‘ inrerseetion property. For a contradicetion. assume that there exist PR

vl € 4R w e T sueh thar a0 --f‘;jf,',,;;r“.i‘ﬂr = & Then |~ g0 “I ,,,;f; <.
1;(}11. Thus by Proposition 2.4 (3}, ~1 /\ RRAREE S Z. Sinee fjvilo ,,,{ & Ll
w & Uit follows frow Lemma 2.3 (2) thar (U A2 A Tyl € w. Therefore. by
Lemnna 2.1 (2) and 2.3 (3). w e [illadl. o

A.2.1 Lemma. In the sctup in Section 3. the following statements hold:

(1} For everv w € £25: ifw € 50l then Plw) © Hlall
(2} Torevery [l € EX(3). 1o € SE(X).

(3) Plo) = Ml we iTa ).

Proof of A.2.1:

(1) w € §Tni and (4) rogether hnply that w € [Thed Thus jof ¢ H{;}l(q}). Therefore
by Proposition 2.6 (1), P(w) ¢ ol

(2) By {T) and (4).

(3) By Proposition 2.6 (2} and (L'}, (Wil [ w e ifurrl‘} - P w). Conversely. pick
&€ P( @} Let w e E-jui‘ B\ (1) db()\(‘ Pw) ¢ el Thus w' € [Dall. This shows
that & < N80l we [Tal} Therefore P{w) < (Y ’ju wEeilall <

Proof of 3.1:

(1) By Lemnna 2.3 (3) and (T). if Hoa! € w theu ‘o € w. Thas h’;vl(w‘) Z w. which
means that w € P(w) by the definition of P(uj).

(2) Let . Then w3 (w) € & Pick W™ € P, It suffices to show that o € P(w). or
ccuivalently. #Mw) © W7 By (4) and Lemma 2.3 (3). if o] € wvt(w) then (Dol © h'\ .
Sinee h‘:\;l(;u‘) oWl € H:\:=J(u}) then la) € W' Thus by definition of &5, YyLif
e h'-\—l(w‘) th( 0o € h';vl(..:.,‘,). which means that H;:\i(u}) < h‘:\}l(w'l). On the other

hand. h -ly; = 2 sinee e Py Therefore k00 e) © & ol
>

Proof of 3.2:
(1) Let A = { “_ﬁiu:‘- cw ¢ Tledh Inoview of A2.1 (3). it suffices to show that

1 = SE(w). Pick .73 ¢ A, Then w ¢ (03 By A2.1 (2). 11031 ¢ SE(W). Thus
A SE(w). (on\rlsvl\ Pick 10 ¢ SE(w). Then w & 13 and 137 = 153, Thus
w € 4. Therefore. 010 € AL Sinee §391 = 1044, 43, € A, This shows that
SE{w) < A Consequently. A = SE{L).

(2) Aasmnc that Plw) = "ol for some v ¢ 8. Then Then by Proposition 2.6 (1).
w ¢ e By Lemmna A2.1 {2). }ﬁ(r < SE(Y). DBy Lemma 3.2 (3). P(w) < Dol
Stuce P(q;) = i by assmnpri()n vl Dai. Thus by (1), podl = 0al € SE(3)).

v O lULe o f()l](ms imm( ) The other direcetion follows from (4). lio! =

jgf:rz;;. (m(l A.Q.l (1 ).

(4) Since (EX(5)). T} is a Boolean algebra. it is distributive by definition. Since every
sublattice of a distributive lattice is distributive. it suffices to show that (SE(X).C) is a
sublattice of (EFX(3). ¢} By Lemma 2.1 (3). (SE(X). ) is‘ closed under imtersections
(i.c.. meets). Let us consider unions (i.e., joins). Pick fadl 3] € SE(X). We want 1o

show el U3 = Tl v D By (T). we have 12 {0 v 9 < dad i3 On the other
hand. deeb o 030 =0k w03 and Lemma 2.7 (5) give the couverse inelusion.
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(H) By construction. w is a maximal filter in §/X. Since §/5 and EX(X) are isomor-

phic.
EX{w -—-{(I QEY():)'QJE (h}

is a maximal filter in EX(5). In general. everv maximal filter in a distributive lattice is
prime (Davey and Priestley (1990, Chapter 9)). Thus EX (w) is a primne filfter in £X(37).
On the other hand. by definition. SE(w) © EX(w). Therefore SE(w) is a filter in SE{X)
since SE(Y) is closed under intersection. Let us check the primeness. Pick fjadi. 31 ¢
SE(Y) and assume thar Hodl U3 € SE(w). Then jlal ULl € EX{w). Siuce EX(w) is
prime. cither Hofl € EX{(w) or 1] ¢ EX(w). Thus. by the definition of SE{x) and the
asswmption that Low 13l e SE(X). cither |lod) € SE(w) or 13l € SE(w). which means
that S£7{(w) is prime. O

Proof of 3.3:

(=) Let Plu) =10 Then by Lemma 3.2 (2). P(w) € SE(3). Therefore by Lemma
3.2 (1). SE(w) is prin( 11)(11.

(<) HSE(Ww) s prm(*ipnl then rh(‘r(‘ is el € SE{w) such thar lall = (N SE(w). Thus

by Lemma 3.2 (1), =SE(w) = ;o) ¢ EX(Z) L

Proof of 3.4: Let F be a prime filter in SE{(X). Cousider the set
Notice that F* 2 EX(X) but it need not be the case that F' ¢ SE(X).
Claing: - F'U F has the finite intersection property.
Proof: Since Fis a filter (in SE(Z)) it suffices to show that

Gl i i £ @
where "ol € Foand 3,0 € I/ for b = 1., .. n. For a contradiction. asswine
that

‘i(}‘r\‘lijlu [ T !f—‘_l)’”” ]
Sinee =A== VeV L el (v )
Thus. IS RGNS IRV VS 1

Shuce i e ‘SE(,J) for every ik = 1.. .. .0 Lemma 3.2 (1) nnpll{\s
1V V. Jdaie SE(X).

Since Flis a filter tn SE(X) and Lol € F. L3 v v e F
However. since 3,4 € FY, ER /-
for everv h = 1., ... . which means that F'is not prime.

Sinee {£2:.7y;) is compact, the Claim fmplies that there exists w € 2y such that w €
A FY Tt s elear that £ ¢ SE{w). Conversely. pick 13 € SE(w) and assume that
L3ig FoThen d=31 ¢ F' Thus w e FY. Sinee X s assnnied o be consistent, w ¢ {171
by (T). On the other hand. sinee {13 € SE(X). 13" = [[I331 Therefore w ¢ |37, Thus
SE{w) Z F. =

Proof of 3.6: (4)=>(3) is trivial. {2)=(1) follows from the Axiomn of {Dependent) Choice
{sce Johmstone (1987, p.853)). {1}={4) follows from a simple observation that a minimal
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element of a filter has to be unique thus it is acrnally a minimuan element. Thus it suffices
to show that:

Clain: - 1f there is an infinitely decreasing chain in (L. <) then there exists a non-

principal prime filter in {L. <).
Proof: Let € = {e,, 1 n ¢ N} be an infinitely decreasing chain in (L. <). Let

A={ae L, <aforsomene N}

B {bao L7h <, for every n € N
[t follows from the definition of infinitely deereasing chain that A ™ B = @, On the other
hand. it Is immediate thar A (5. respectively) Is a filter (ideal. respectively) in (L. <),
Therefore. by A 1.3, there is a prime filter F i (L. <) such that FN B = @, The filter F
st be now-principal sinee CC AT Fand FoB =2 L

Proof of 4.1:

(1} Asswine Hof € b'F‘(,E - {2} s winimal in SE(X) - {2}, Pick w € Lol By
Lemma 3.2 (3). P{w) < CSinee Ple) 2 SE(Y) - {@). mmmmllty of fa!l implies that
BTSN ()8

(2) By the definition of minimality and the fact that SE{X) is closed wnder intersec-
tion. L
Proof of 4.2: We hirst observe that:

Claim 10 Let Lo ¢ EX(X) and 31 € SE(X). If [all ™ 130 = @ then

TP G I P

Proof: Assmme jla 00 )’” = . Then 41 < ol = lsall, Thus by (N). (MP)
and (K. 1000 C T wall Sinee |13 ¢ SE )03 OB et

Let {pa I A ¢ A} be the set of all minimal nonempty self-evident sets. It suffices to show
that the index set A is finite. For a contradietion. we assume that A is ifinite. Consider
the set
Foo{uio=uai b A e AL
Claim 20 F has the finite intersection property.

Proof: Pick D=y, il oo = il € Fo We can pick alse A € A such that )\ 7‘

Ap forbv=1..... n since ;\ is infinite. By Lemnna 4.1 (2). s, Ve - -\/,u,\ SIS

@. Since ',u,\ e SE(X). Claim 1 implies that @ # Spua ] © =y, V \/;:A”).‘:.

Thus.

B N R R TS W Il (7S WA VIRV TS I )

which shows thar F' has the finite interseetion property.

Since {2y is compact. Claim 2 implies that there is w € 2y such that w € 1yl for
every A © A Therefore Plw) < 15l € =l by Lennna 3.2 (3) and {T). Therefore.
Py it = @ for every A € A By well-foundedness of SE(X). there is Pyl © P(w)
such rhat iyt is a minhinal nonewmpty self-evident set. This contradicts the fact that the
set {0 A€ A} consists of all ininimal nonempty set in SE{Y). Ll

22



Proof of 4.3: Let ... .. Gt be the ser of all minimal possibility sets. By Lennna
4 1.{825. P{y) is partitional if and only if fpg oo il = 825

{=>) By the strong expressibilitv. there are ;... Y such that g = G0n,, for
h=1..... i Thus by Lemnma 2210 = vV ) = 0500 Ve Vi )l = 0= v v
). Therefore {i=(ju V- vy, ) € SE(X) by (T) and (4). However. sinee (e i
are the set of all minhmal nonempty self-evident sets. it follows that i=(j V.- -V,)l = &.

(<=) (‘()ll‘-ii(l(‘l' :5 rlg'j. one of mmimnl pnssibi]m' SeLs, ‘4111(1‘ gL U g [ = Oy,
STy = g e Thus B-py € SE(XY or ol = P20 by Lewma 3.2 (4).
Taking mmpl(mvnmrmn glves that g — B o

Proof of 4.4: The proof of (<) part of Therem 4.3, Lemmna 3.2 (3). and Lemma 2.1 (4)
gives (=) direction. The other direction can be proved similarly to the proof of (=) part
of the proof of Theoremn 4.3. _
Proof of 5.1: One direction in the first statement is trivial. Comid(r the other. By
(L) aud {4). ir suffices to consider only those finite strings of =, and £, such thar [,
and L appear alternatively. We redifine 1% as the set of all sueh strings. Clearly. 2%

is partitioned nto L and 2% where G5y is the set of all finite alternating strings whose
lefr wmost syimbol is 7 (b = . j). Consider the set TA (o) = {§TZ200qd 1 G0 ¢ o3}

B\' (L) and (4). TK,{a) is a chain in SE(3). Thus there is a minimmnmn. denoted by

tarloin TR ( ). Similarlv. there is a miuimmn iiu’}‘ﬁ im SE;(n). We want to show that

-nj‘!j = oy Consider ‘}C/u Cosinee P45 CAK (o) o5l < S0 e On the other
e, 1)_\ (1‘) el Z qar. Thus ;Enj-‘l,, (_'_' Hn?-:i. Sunilarly. 1ol © Jad,. Therefore
il =y

The second statement is clear from the constrietion above. i

Proof of 5.2:

(1) I follows from Qral = =L —a’l. Lemma 2.3 (1), and Proposition 2.6 (1).

(2} (=) BQpadl © U capny D) follows from (1) and (T). Conversely. pick o’ €
UJEAM) P(w). Since information structure is partitional. there is w € A(a) such that
PR’y = PPlw). By we Ala). PK) 7 il £ @ Thus, by (1), &' € 0kl

(¢} Assume that 10ca = (¢ 4,y Dlw) for every ol € EX(X). Since the right
hand side is self-evident. so is the left hand side. Thus SER(X) is closed under comple-
mentation, Now the (=) part of the proof of 4.3 shows that {£2-, P’“{~)} 15 partitional.
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