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Introduction

This paper establishes an elementary lower bound on the computational
complexity of smooth functions between Euclidean spaces. The main moti-
vation for this comes from mechanism design theory. A typical mechanism
design problem consists of a set of possible environments, a goal function,
and a set of mechanisms from which choice is to be made. An environment
includes specification of the possible characteristics of agents, such as pos-
sible actions, preferences and resource endowments, and a space of possible
outcomes, such as trades among the agents, or allocations. A goal func-
tion (correspondence) associates a desired outcome, or set of them, to each
possible environment.

A theory of design of economic mechanisms must eventually take into
account the costs of setting up and operating the mechanisms. These costs
include informational costs, and incentival costs. Important informational
costs include those due to communication requirements and those due to the
computations that are required by the mechanism; incentival costs include
monitoring and enforcement costs, and deductions from first-best outcomes
arising from incentive problems. In this paper we focus on the complexity of
computational tasks, because complexity, along with prices of computational
resources, determines computation costs.

The complexity of all computations required to operate the mechanism
influence the costs associated with the mechanism. Complete analysis of
these complexities would require complete specification of the computations
involved, as illustrated in [16], but for some purposes it would be useful
to have a lower bound on complexity obtained without having to specify
in detail how computations are to be performed. In this paper we present
such a lower bound applicable to any (smooth or discrete) function. We are
particularly interested in functions mapping a product of Euclidean spaces
(smooth manifolds) into a Euclidean space, i.e., in functions that are goal
functions in a certain class of mechanism design problems.

The lower bound given here generalizes a lower bound due to Arbib and



Spira and described in [2] for the complexity of functions between finite sets,
The Arbib-Spira bound is based on the concept of separator sets for a func-
tion, a concept that corresponds to the variables that the function actually
depends on, and counts their number. A counting procedure cannot be used
for functions between infinite sets. Instead, our analysis uses an equivalence
relation that corresponds to separator sets in the finite case, and also gener-
alizes to functions with infinite domains and ranges. The counting procedure
is replaced by construction of a universal object in a category, namely the
category of adequate revelation mechanisms. The universal object is a mini-
mal adequate revelation mechanism called an essential revelation mechanism.
The dimension {when it exists) of the message space of the universal object
gives the number of variables. (Notice that while we have identified the
minimum number of variables needed to compute the value of a given func-
tion with the dimension of the message space of a certain minimal revelation
mechanism, the dimension of this message space is typically not the minimal
message space needed to realize the given function by a decentralized process.
The minimal message space needed to realize the goal function is typically
smaller than the message space of the essential revelation mechanism, and is
an indicator of communication complexity, rather than computational com-
plexity. We are here concerned with the computational complexity; minimal
message spaces are introduced only as a technique of analysis.)

While we use a concept from category theory, our analysis is self-contained
and does not require knowledge of category theory beyond the concept of a
universal object in a category. This concept is not new to economic the-
ory; Sonnenschein {28] and Jordan [8] have used it in analyzing economic
mechanisms. Their work is discussed briefly in section 4.

Revelation mechanisms, and adequate revelation mechanisms, are, of
course, subclasses of decentralized verification mechanisms. The size of the
message space of such mechanisms has been studied extensively, and condi-
tions have been obtained that provide a lower bound on the dimension of
the message space of mechanisms that realize a given goal function. Among
these are rank conditions on certain matrices of second partial derivatives of
the goal function under study, namely, bordered Hessian matrices. A lower
bound on the dimension of the message space of decentralized verification
mechanisms which depends of the rank of a bordered Hessian matrix of the
goal function is given by Hurwicz, see [5], and a related one by Chen [3].
Abelson [1] gives a lower bound on the communication complerity of a dis-
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tributed computation of a smooth function also involving a rank condition
on a bordered Hessian of the function. The lower bound given in this pa-
per on the computational complezity of a smooth function also depends on
rank conditions on bordered Hessian matrices, but they are different matri-
ces, functional rather than numerical, and different conditions. The lower
bounds obtained by Hurwicz, Chen and Abelson, when applied to revelation
mechanisms, also yield lower bounds on computational complexity, but these
bounds are typically too low. The relation between our results and those of
Hurwicz, Chen and Abelson are discussed in section 3.

Analyses of mechanisms found in the literature can be classified using
three factors: whether they do or do not take into account (i) costs due
to incentives; (ii) costs due to information processing; (iii) whether they
deal with static mechanisms, i.e., equilibrium or verification mechanisms, or
dynamic ones, i.e., adjustment or learning processes. Further, informational
costs include both costs due to communication and those due to computation.

For example, implementation theory takes account of incentives, considers
equilibrium mechanisms, but typically ignores informational costs. Message
exchange processes, such as the adjustment processes summarized in [3], in
some cases take account of incentives, (see [6]) and in some do not. Typically
they do take account of informational costs, and are dynamic. Equilibrium
message mechanisms are, of course, static, typically take account of commu-
nication requirements, and may or may not take account of incentives. In
[18], [19], and [20] the models are static and treat both incentives and com-
munication requirements. In [13} the mechanisms are static and only com-
munication requirements are considered. In [26], [9], (15}, and [30] incentives
are ignored, and the communication requirements of locally stable dynamic
mechanisms are analyzed. There are also other types of mechanisms, such
as algorithms designed to converge to the value of the goal function starting
from an initial state depending on the environment, or to compute the value
of the goal function directly, as in [23], and [24].!

In each of these cases the complexity of all the functions that must be
computed in order to operate a mechanism influences the costs associated
with the mechanism. The lower bound on computational complexity applies

'Computational complexity of mechanisms has not been studied much. We are not
aware of any analysis except for the example studied in [16]. However, computational
complexity of players or strategies have been studied in repeated games, (see [10], {17],
and [25] for example).



to any of these functions. It does so via an analysis that begins by considering
the function to be analyzed to be a goal function, and finding the dimension
of the universal object in the category of adequate revelation mechanisms
that realize that goal function. However, we focus on obtaining a lower
bound on the complexity of all the computations entailed by a mechanism
that either realizes or implements a given goal function, i.e., a verification
mechanism, or a game form, based on the fact that any such mechanism must
in fact compute the goal function. Since we make use of the formal structure
of informationally decentralized equilibrium or verification mechanisms, to
make the exposition self-contained, we give a brief summary of them.

Privacy Preserving Mechanisms

There are N, a finite number, economic agents each of whom has a space of
characteristics. Let E' denote the space of characteristics of agent i (such as
her preference relations). It is assumed that the information about the joint
environment e = (e!,...,e") is distributed among the agents so that agent i
knows only her characteristic e'. Given is a function F: E' x ... x EN — Z,
called the goal function that expresses the goal of economic activity. For
example, for each ¢ = (e!,...,e") in E! x ... EY, F(e) is the Walrasian
allocation (or trade). Agents communicate by exchanging messages drawn
from a message space denoted M. The final or consensus message, also called

the equilibrium message, for the environment e is given by a correspondence
piE'x ... x EN 5 M.

Equilibrium messages are translated into outcomes by an outcome function
h: M- Z
A mechanism = = (M, u k) is said to realize the goal function F ? on E
if for all e in E,
Fle) = h(u(e).
The mechanism (M, u, k) is called privacy preserving if there exist corre-
spondences ' : B — M, for ¢ =1,..., N, such that for all ¢ in E,

ule) = w ey np(e?)n...nuM(e").

2More generally, F can be a correspondence, in which case the definition of realizing
F must be modified, as in [5].




This condition states that the set of equilibrium message complexes ac-
ceptable to agent ¢ can depend on the environment only through the com-
ponent e'. The component €' is, according to the assumption made above,
everything that ¢ knows about the environment.

From now on we focus on the case in which the characteristics of the
agents are given by real parameters. It has been shown (see [5] and the
references given there) that the inverse image of a point m in the message
space M is a rectangle contained in the level set F~'(h(m)). This fact, in
the presence of appropriate smoothness conditions, allows one to compute a
lower bound on the dimension of the message space of a privacy preserving
mechanism that realizes F. (See [7] or [5]). In the smooth case, the dimension
of the message space is a measure of its informational size which is in turn
an important indicator of certain costs of communication entailed by the
mechanism.

Specifically, according to the verification scenario (see {5, p.244 ), a can-
didate equilibrium message is announced to each agent, who independently
determines whether it is or is not an equilibrium from her standpoint, i.e.,
an element of y*(e*). A lower bound on the dimension of the message space
determines how much communication or channel capacity is required for a
verification mechanism, and therefore a lower bound on at least the capital
cost of the communication system.

Going beyond verification mechanisms while still staying in the static
framework, we consider mechanisms that find equilibrium, rather than just
verifving given candidates. Since equilibrium messages are given as the in-
tersection of individual message correspondences, finding equilibrium entails
finding that intersection. In the static framework this amounts to computing
the intersection, e.g., in the case of the competitive mechanism, solving the
system of excess demand equations set equal to zero.?

Suppose that some institution or agent has the task of computing the
intersection of the sets u'(e'). A complete design of the mechanism would
specify how the intersection is to be computed, and in what form the agents
transmit their messages to the computer. For instance, the program that

3The literature on local stability of message equilibria cited above looks at the problem
of finding equilibrium as one of converging to it by an adjustment process. That literature
shows that we need a larger message space than the smallest one that suffices for static
realization. But complexity of computations involved in the adjustment process has not
been addressed in that literature.



computes the intersection of sets might accept only a finite number of real
numbers as inputs, thereby requiring that the sets u'(e’) be identified by
finitely many real parameters—e.g., p'(€') might be a line, or the zeros of a
polynomial of degree k. Rather than to require that the mechanisms under
consideration be specified completely as to the form in which the message
correspondences are transmitted and what algorithm is used to compute the
intersection, we seek a lower bound on the complexity of the computation
based on information about the goal function alone. That is, a lower bound
on the complexity of computing F' is also a lower bound on computing F
by computing the equilibrium message and the outcome function of a de-
centralized mechanism. We turn to the problem of finding bounds on the
computational complexity of a function.

Complexity of Functions

The complexity of a function £ depends in part on the model of computa-
tion used. An explicit model of computation is formulated in {14}; as in other
models of computation the number of variables on which a function depends
determines a lower bound on the complexity of the function. A function of
two variables 1s, other things equal, more complicated than a function of one
variable provided that the function of two variables cannot be written as a
function of one variable.

Suppose that F' is a real valued function defined on the Euclidean space
R?, where the Euclidean space has specified coordinates, z and y. Then the
number of coordinates required to compute F is usually easy to estimate
by computing the number of nonzero partial derivatives. For example, the
function F(z,y) = x + y* has partials in = and y that are both nonzero. One
might be tempted to think that F{z,y) is a function more complex than,
say, the function z. However, if one treats R? as a differentiable manifold,
where smooth coordinate changes are allowed, then the function F(z,y) can
be introduced as a coordinate function on R?, so that R? has coordinates
F(z,y) and y. Having done that, F(z,y) is a function of the one parameter
the value of F, and is no more complex than z. Thus, the possibility of
unrestricted (smooth) coordinate changes invalidates using the number of
nonzero partial derivatives of F, i.e., the number of variables on which F
apparently depends, as an indicator of 1ts complexity.

Another view of this is as follows. Define an equivalence relation according



to which two points @ and o’ in R? are equivalent if F' takes the same value
at a and a’. The level sets of F' are the equivalence classes of this equivalence
relation. This set of equivalence classes is a one dimensional family (indexed
by the values of F'), and hence is no more complex than the level sets of the
function z.

However, in the case of the computation of a goal function that is defined
on a product of manifolds X! x ... x X" there is a natural restriction on the
coordinates changes allowed in the product X! x ... x X™. The restriction is
that the only coordinate changes allowed are the ones that are the product
of individual coordinate changes in each of the separate spaces X*. With
this restriction on coordinate changes, one can then ask if there is a lower
bound on the number of parameters from coordinates systems in X* required
to compute F.

For example if X = R? with coordinates z; and z, and Y = R? with
coordinates y; and yz and if G(z1,22;3%1,¥2) = 1% + Z2y2, then the re-
striction that a coordinate change is allowable only if it is the product of
a coordinate change in X and a coordinate change in Y leads to the con-
clusion that all four of the parameters z,, y1, z; and y, are required for
the evaluation of G. To see this one can describe the level sets the function
(+(z1,z2;¥1,¥2), with the restriction that two points a and b in X are equiva-
lent only if G(a;y) == G(b;y) independent of the point y chosen in Y. Then a
and b are equivalent only if @ = b. Indeed, if @ = (a1,a2) # b= (b1, 5;) where
a; # by then there exist y; so that G(a1,aq;y1,0) # G(b1,2;41,0). A similar
argument applies if a; # b;. Thus to compute G one needs sufficiently many
parameters to distinguish between each two points of X; that is, one needs
two parameters from X. Similarly, one needs two parameters from Y.

In the model of {14, 16] there is a network of processors, consisting of a
set of processors connected by a directed graph, which computes as follows.

Each processor p receives the values of its inputs, say, z!,...,z°, from
outside the network, or from immediately preceding processors, and computes
in one unit of time the value of a function y = f,(z!,...,2%). Heres <r,r a
given parameter, z* can be a vector of some fixed dimension, say, d, and f,
belongs to a specified class F of functions. Each processor sends the value of
the function it computes to every successor, i.e., to every processor to which
it 1s directly connected, or to outside the network.



A network of this kind is said to compute a function
F:E'xE*x...xEN - Z

in time t if there is an initial state of the network such that when the values
!, ..., e are constantly fed into the network starting from time 0, the value
of F(e',...,e™) appears as output of the network at time 2.

A fundamental question then emerges. How long does it take to compute
a given function F? The complexity of F relative to the class of networks
characterized by r and F is the minimum over all such networks of the
time needed to compute F. (If the time is infinite, then F is said to be not
computable by networks in the class characterized by r and F.) A lower
bound on the complexity of F depends on the number of variables on which
F "really” depends. As we have indicated above, we obtain a lower bound
on the time required to compute a function by reformulating the separator
set approach of Arbib and Spira.

Separator Sets and Quotients

We next present our formulation of the concept of separator sets for a
function in terms of an equivalence relation induced on each of the sets E
by the function F. To begin with, this is stated set theoretically without topo-
logical or smoothness conditions on the sets E*. The quotient constructions
are quite elementary when smoothness conditions are ignored. This makes
parts of the construction more transparent. Furthermore, when the E' are
differentiable manifolds the set theoretic constructions are used to establish
the existence of certain required functions, for which appropriate smoothness
conditions can then be verified.

The cardinality conditions used in the counting arguments of Arbib and
Spira are replaced by universal mapping conditions. Universal mapping prop-
erties have been used by other authors in order to classify economic mech-
anisms. In particular [24] characterized a version of the competitive mecha-
nism in relation to a certain class of mechanisms, and {8] established that the
competitive mechanism is unique among mechanisms in a somewhat different
class by constructing a mapping that shows it is a universal object in that
class.

We describe the number of variables required to compute a function by
constructing appropriate quotients. The construction we use is a natural



generalization of the argument we used in the discussion of the function
G(x1, 72,91, y2). The construction of a quotient object has the natural set
theoretic structure of a universal object. Having done that, the major part
of this paper is used to show that under a set of rank conditions on matri-
ces associated with differentiable functions, the quotient object also has the
structure of a differentiable manifold. The manifold structure on the quotient
is required to be able to conclude that the dimension of the quotient exists
as a topological concept and that dimension of the quotient is the number
of variables required in order to compute the function. The universal condi-
tion guarantees that the quotient object is a space with the least number of
variables required to compute the function.

Specifically, for a function F : E' x ... x EN — Z we establish the
existence of a collection of sets (E*/F), 1 < ¢ £ N functions ¢' : E' —
(E'/FY), and a function F'* : (E'/F) x...(EY/F) — Z that together satisfy

the following conditions. First, the composition
Fro(¢'x...x¢")=F,
and second, if there are functions
pE X
and
H:X'x..xXVN—>1Z

for which
Ho(p' x...xp")=F,

then there are (one can construct) unique functions
p X' (E'JF), 1<i<N,
such that o _
pop =4,

and

H=Fo(p,....p"N).

These conditions state that the quotient object (E'/F) x ... x (EN/F)
is universal, a concept to be discussed further. (The term 'universal object’



is used in category theory to describe objects that allow each object of the
category to be specified by identifying a mapping to (or from) the universal
object [13]).

If the sets E' are finite, then the cardinality of the set (E*/F) is an
upper bound on the cardinality of the corresponding Arbib-Spira separator
sets. Furthermore, each separator set in E* is the image of a subset of (E'/F)
under some thread of ¢'. By a thread of ¢* we mean a function t from (E'/F)
to E*' such that ¢' ot is the identity function.

Next we assume that each E' is a differentiable manifold with appropriate
smoothness. If in some coordinate system (z,...,z;) around a point in E?
(say) it were possible to ignore the coordinate z, and still to evaluate F|
then knowledge of the coordinates (z1,...,z,_1) would be adequate, at least
locally. That is, F would depend on no more than the first ¢ — 1 variables.
In this case the manifold E* can be replaced, locally, by the quotient induced
by the equivalence relation "(z1,..., 241, 2¢) = (21,...,%¢-1,2;)" 1f and only
i Flzy,... 221, 20) = F(z1,..., 7421, 7;). However, it is possible that even
if in a given coordinate system no variable can be eliminated, a change of
coordinates can be introduced that leads to a reduction of the number of
variables required to compute F. Therefore, we seek a "good” coordinate

system by looking for a "good” quotient. The equivalence relation we use is
Y g g q

LAY
7.

In the case of smooth manifolds the quotient using the relation "~" may
not have the structure of a smooth manifold for which the quotient map is
differentiable. On the other hand, when such a structure does exist, then
separator sets are again the image of subsets of the quotient under threads
of the quotient map.

Conditions are imposed that ensures that (E'/F)} x ... x (EY/F), the
quotient object, is a topological manifold. In that case, the dimension of the
quotient manifold counts the number of variables required.

When we impose the existence of certain local threads, then this quotient
object satisfies the universality conditions.

(We do not know that there is such a universal object that also is as
smooth as the original product E* x ... EV. Possibly Godement’s Theorem
([26], p-L.G 3.27) might resolve this difficulty.)

If the quotient map is one-to-one then no reduction in the number of
variables is possible no matter what coordinate system is used.
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Algebraic Conditions

An algebraic characterization of the number of variables required to com-
pute a given function F is obtained from a theorem of Leontief [11]. Abelson
[1] used this result to construct a lower bound on the communication com-
plexity of F in a distributed system. The conditions we use for the construc-
tion of a "good” quotient of E' where F': E! x ... x EN — R, are rank
conditions on the bordered Hessian BH(F). The matrix BH(F) has rows
indexed by coordinates z; from E?, and columns indexed by F' and by the
coordinates y; from E? x ... x EV with the (z;, F') entry being (0F/0x;) and
the (z,,v;) entry being (8°F/8z:9y;). The Hessian, H(F), is the sub-matrix
of the bordered Hessian that consists of the columns other than column F.

In the case that N = 2, when the goal function maps a product Rk x
R* to R, the matrix BH(F) is a submatrix of the Full Bordered Hessian,
FBH(F). The Full Bordered Hessian is the Bordered Hessian with a row
added indexed by F. The entry in (F, F) position is 0. The (F,y;) entry is
6F/8yj.

We use conditions on the submatrix BH(F) of the Full Bordered Hessian
to guarantee the existence of a manifold structure on the quotient objects
(E/F). If at each point z of E' the matrix BH |, has rank r and H |,y also
has rank r at each point z of E! and each point y of E? x ... x EV, then the
quotient of E! under the equivalence relation "=" is a manifold of dimension
7.

As an example, consider the function K(z1,£2,%,%2) =

Tayr + T2y + 20195 + 20505 = (31 + 2y3) (21 + 73)

where the variables are all scalars.

No variable can be eliminated and still permit the function to be evaluated
in terms of the remaining variables. Indeed, no linear change of coordinates
can reduce the number of variables required. This is indicated by the fact that
the Hessian of K, with rows and columns indexed by all variables z1, 2,31, ¥2,
has rank 4.

However, the (nonlinear) change of coordinates given by

¢ ={z1+23),7= (v + 2v3),

permits K to be written in terms of only two variables, namely,

K(z1, 2201, ¥2) = (0.

11



The matrices H |, and BH |; both have rank equal to 1.
Universal Objects and Revelation Mechanisms

We have noted that the quotient manifold we construct serves as a univer-
sal object. The concept of universal object comes from category theory. Our
use of universal objects and their properties does not require the panoply
of category theory. To specify the objects, we use a special type of pri-
vacy preserving mechanism in which the message space is a product. We
do this because our purpose is to find the minimum number of variables
each agent separately must send in order that the goal function can be com-
puted. The sum of these numbers across all agents is used to find a lower
bound on computation. This sum is net a lower bound on communication.
Even though the dimensions we seek are not lower bounds on the dimension
of messages spaces used in the study of the realization of goal functions,
the mechanism paradigm is a very useful way of attacking the problem of
discovering the minimum number of variables required to compute a func-
tion. In the mechanism we use each agent’s message space is his parameter
space, i.e. a revelation mechanism. A slight generalization, which we call
an adequate revelation mechanism, allows the possibility that not all the in-
dividual parameters are revealed. If mechanisms of this type that realize a
particular function have a universal object, then that object is called the
essential revelation mechanism, and it is uniquely determined to within iso-
morphism. This universal object (mechanism) exists when certain Hessian
conditions (and some smoothness assumptions) are satisfied. It is the prod-
uct (E/F)x...x (EVN/F), with a differentiable manifold structure on each
(E'/F). The universal object gives a lower bound on the number of variables
each agent must reveal in order to permit the function F to be evaluated,
that is, the number of variables on which F really depends, when nonlinear
coordinate changes are allowed.

The remainder of the paper is organized as follows. Section 1 contains the
set theoretic constructions used subsequently. Definitions of F-equivalence,
of adequate and essential revelation mechanisms are given. It is established
(Lemma 1.1 and Theorem 1.1) that the essential revelation mechanism for a
given function is the smallest adequate revelation mechanism for . Moreover,
we show that it is the (unique) adequate revelation mechanism that serves
as a universal object in the category of adequate revelation mechanisms.

12



Section 2 deals with the case where the sets E* (or X*) are smooth man-
ifolds and F' is smooth. Simple conditions are given that ensure that the
quotient sets are topological manifolds.

The matrices used in the analysis are defined, and the concept of differ-
entiable separability is defined. The main results concerning universality of
the essential revelation mechanism for a function are established.

In Section 3 we discuss the relations between our constructions and the
Theorems of Hurwicz, Chen and Abelson.

In Section 4 we include a presentation of the universality results of Son-
nenschein and Jordan.

The results on adequate revelation mechanisms in Section 2 require a
slightly altered version of Leontief’s theorem. This is related to a result an-
nounced by [1]. The three propositions, Lemma A.1, Theorem A.2 and The-
orem A.3 present this material. They and their proofs are given in Appendix
A. Appendix A also includes an example of the constructions required.

Section 1. Initial set theoretic constructions

Notation. If X;, 1 < j < n, are sets, then X<_;, denotes the set

Xy oxoox Xjoy x X x L x X
Ifre X;andifz=(21,...,2-1,2j41,.--,2n) € Xc—j5, then z [, 2 denotes
the element
(21,...,Zj_l,:C,Zj+1,...,Zn) Of)(] xX ... X X'n.-

F-Equivalence

Definition 1.1. Suppose that X;,1 <17 < n, and Y are sets, suppose that
F 1T, Xi — Y is a function, and suppose that 1 < 7 < n. Two points x and
z' in X; are F-equivalent in X if for each z € X¢_;5, F(z [;2) = F(2' [; 2).

It is elementary that F-equivalence in X; is an equivalence relation on
points of X;. Denote by (X;/F) the collection of F-equivalence classes of X;.
Set g; equal to the quotient map from X; to (X;/F).

The following lemma establishes the sense in which the set (X,/F) x...x
(X./F) is the smallest product set through which F' factors.

13



Lemma 1.1. Suppose that X,,...,X,, and Y are sets and suppose that
F:X,x...xX, — Y isafunction. There is a unique function F* : (X1/F)x
... X (Xn/F) = Y that makes the Diagram 1.1 commute. Furthermore, if
Z1,...,Z, are sets, and if there are functions ¢; : X; = Z;, 1 <1 < n, and
a function G : Z, x ... x Z, — Y that makes Diagram 1.2 commute, then

there are uniquely determined maps g}, ....45, ¢ * Zi — (Xi/F), that make
Diagram 1.3 commute.

F
X, X X X, —8 Y
q1 4n
Ft
(X1/F) x X (Xa/F)
Diagram 1.1
F
¢ X X Xn Y
9 Gn
G
VA X X Z,
Diagram 1.2

14



Proof of Lemma 1.1.

We first show that if ¢; : X; — Z; and G : [[T Z; — Y are functions that
make Diagram 1.2 commute, then we can factor the map [[f ¢; through the
product [T} X:/F). i z € Z;, choose z,z' € X; such that gi(z) = gi{z) = 2.
For each w € X._,5, set

g(w) = (gi{wi), ..., gic1(wic1), gipr (Wig1)s - -+, gu(W0n)) € Zeis.

Then

1 t

Flafw) = Glg:(z) [ g(w)) = Glgi(z') [ g(w)) = F(a' [w).

It follows that for each i, ¢;(z) = ¢i(z’). Therefore setting g (z) = g:(z) de-
fines a function ¢”1 from Z, to X,;/F). It is clear that Diagram 1.3 commutes.

To see the uniqueness of the maps gf, note that if k¥ : Z; — (X;/F),
1 < ¢ < n, are maps that make Diagram 1.3 commute when used in place
of the maps ¢*i, then for each z € Z; and each z € X, so that gi(z) = z, it
follows that

97 (z) = g} (gi(x)) = qi(x) = h](gi(z)) = h}(z).0

15



g1 i F
F-
(Xhi/F)x x (Xn/F) Y
5!
1Gn
9 F
9n G
VA Ly
Diagram 1.3

Adequate and Essential Revelation Mechanisms

Definition 1.2. Suppose that X;,1 <7 < n, and Z are sets and suppose
that F: X, x...x X» — Z is a function. An adequate revelation mechanism
realizing F is a triple (g1 X ... X gu, My X ... X My, h) that consists of:

(i} a product of sets My x ... x M,,

(ii) a collection of functions g; : X; — M;, 1 <1 < n,

(iii) a function h : My x ... x M, — Z, such that for each

(T1s.. 0, Za) € X1 X oo X Xay  Fla, .. z0) = Bgi(21), .-, gn{20)).
Using the notation of Lemma 1.1, the triple

(g1 % - X Gay (X2 /F) X ... x (Xo/F), F")
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is an adequate revelation mechanism called the essential revelation mecha-

nism.

If (g1 X ... X gn, M1 X ... x My, k) is an adequate revelation mechanism,
then M; x ... x M, is an adequate revelation message space. The map
g1 X ... X g, is the message function of the adequate revelation mechanism.

Universality of the Essential Revelation Mechanism

The following theorem is a restatement of Lemma 1.1 in terms of adequate
revelation mechanisms. It establishes the sense in which the essential revela-
tion mechanism is the smallest adequate revelation mechanism. [t states that
not only is M x ... x M, the product with the smallest cardinality that can
be used as the message space for an adequate revelation mechanism, but it is
also the case that for every other product space that acts as a message space
for an adequate revelation mechanism that realizes F there is a product map
onto My x...x M,. This ts characteristic of a universal object in the sense of
category theory. Theorem 1.1 states that the essential revelation mechanism
is a universal object in the category of adequate revelation mechanisms.

Theorem 1.1. Suppose that X;, 1 <1 < n, and Z are nonempty sets and
suppose that F: X} x ... x X, — Z is a function.
(1) The triple

(qp X ... X gu, (X1 /F) x ... x (Xo/F), F")

is an adequate revelation mechanism that realizes F';

(ii) The message function for any other adequate revelation mechanism
factors through (X,/F) x ... x (Xa/F);

(iii) The set (X;/F) x ... x(X,/F) is the smallest set in cardinality that
can be used as an adequate revelation message space for a mechanism that
realizes F;

(iv) Finally, the essential revelation mechanism is the unique adequate
revelation mechanism (to within isomorphism) through which all adequate
revelation mechanisms that realize I factor.



Section 2. The topological case.

When the X; are topological manifolds and when F' is continuous, it is
in general not true that the sets (X;/F) are manifolds. Even a high degree
of smoothness of F is insufficient to guarantee that (X;/F) is a topological
manifold. However, when the (X;/F) are Hausdorff, a fairly simple condi-
tion on the Jacobian of F' coupled with a global separation condition does
imply that the (X;/F) are manifolds. When these conditions are satisfied,
the essential revelation mechanism has the structure of a manifold, and the
dimensions of the {X;/F) can be used to establish a lower bound on the num-
ber of variables, i.e. the number of functions in a coordinate system, that
must be passed to a central processor in order to compute F. This number
determines a lower bound for the complexity of the function F.

In this section we introduce the concept of differentiable separability,
which is the Jacobian condition that will be used. We then give simple global
conditions on the function F to ensure that the sets (X;/F) are topological
manifolds. We begin with some concepts from differential geometry (c.f.[4]).

Definition 2.1. Let X and Y be differentiable manifolds. Let ¢ : X — Y
be a differentiable mapping. If at a point p € X the mapping ® has maximum
rank, and if dim X > dim Y, then @ is said to be a submersion at p. [ ® i1sa
submersion at each point of X, then ® is a submersion. Ifamapg: X — Y
is a submersion, then it is known(c.f.[4,p.9]) that the map can be linearized
(rectified). That is, if dim(X)=n, dim(Y)=m, and if p € X, we can choose
coordinates zi, ..., T, in a neighborhood U of p, and coordinates y1,...,¥m,
in a neighborhood of g(p) so that for each g € U, ¢(q) = (z1(q),- - ., Zm(q))-

Next we introduce a collection of matrices that are generalizations of
matrices used by Leontief in [11].

Suppose E!,..., E", are Euclidean spaces of dimensions d(1),...,d(n},
such that the space E', 1 < ¢ < n has coordinates z; = (Zits- ., Tid(i))-
Assume that (Bl,...,gn) is a point of E! x ... x E™, and assume that U, 1s
an open neighborhood of the point p, 1 <1< 7. We assume that Fis a
real valued C?*-function defined on U; x ... x U,. We require four matrices.

(I): The matrix

BH(F Ty ey Tad(r)y Taly - y Li—1d(i=1)y Ti41ly- - -5 xnd(n)) =

BH(F :z;35Zc i>)
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is a matrix that has rows indexed by zi,...,Zi() and columns indexed

by F,Zit, ooy Ti—1)d(i-1) T(41)1s - -+ » Tnd(n)- The entry in the z,, row and
in the F column is 8F/8x,,. The entry in row z;, and in column z;, Is
O*F 07,07 .

(IN): The matrix H(F : 2;;T._;») is the submatrix of BH(F : z;;z_:5)
that consists of the columns indexed by zy.,, u € {l,...,i—=1,t+1,...,n}
and 1 < v < d(u). In other words, we derive H from BH by eliminating the
column indexed by the function £.

In case that the number of Euclidean spaces is two, so that F : E! x E* —
R, we use a slightly less cumbersome notation. Suppose that E' has coordi-
nates (zy,...,1,) and E? has coordinates (yi,...,¥). We use as row indices
for BH(F : z1,...,Zp Y1, .., Yq) the variables z,,...,7, and as column in-
dices F, y1,...,4,. The {z;, F)** entry in BH(F : T1,...,Tp;¥1,---1Yg) 18
OF[0z; and the (x;,y;)'* entry is 0°F/0z;0y;.

The matrices H(F : z;;2._ ;) and BH(F : z;;z._;.) are matrices of
functions in the coordinates x;....,z, of E' x ... x E". The conditions we
place on the matrices BH and H require that some, but not all, of the vari-
ables are to be evaluated at a point. When that partial evaluation takes
place we indicate this by adding an asterisk to the H or BH. Specifically,

(I11): The matrix BH*(F : z;;2<.is )2 p _,,] is the matrix that re-
sults from evaluating the variables z,,...x;_y,Zi11,...,Z, of the entries of
BH(F :z;Z._i5) at the point pe_;5 = (1_)1, Y ZEN SRR ,p,). The ma-
trix BH*(F : gi;g<_,->)[g,-,;_)<_.>] is a function of the variables z;,.. .,z

i

alone.
(IV): Sirmlarly, the matrix

HY(F:zizeis)znp, ]
is the submatrix of

BH™(F: £{;£<—i>)[£32<_i>]
derived by deleting the column indexed by F.
Differential Separability

Definition 2.2. Suppose X}, ..., X, are differentiable manifolds, where
for each 1 < i < n, X; has dimension d(i). Suppose that p; € X;, 1 <
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i € n, and suppose that for each i, ¢i1,..., ¢igsy 15 a coordinate system in
an open neighborhood U; of p;. Suppose that F : [].; X; — R is a C*—
function. Assume that for 1 < < n, ¢ = [I; ¢;; maps U; into an open
neighborhood V; of the origin 0; of a Euclidean space E* = R*) and that
¢; carries p; to 0;. We assume that E* has coordinates z;,. . «»Zig(s). The
function F is said to be differentiably separable of rank (ry,...,r,) at the
point (p1,...,pn) in the coordinate system ¢11, ..., dpqny if foreach 1 <z < n,
the matrices BH(F o ([T¢:)™' : i, .- ., Tiggiy; T<—i>) and H*(Fo ([]¢:)7! :
Tily .. Tidfi); T<mi> ) {0, 0c_is] have rank r; in a neighborhood of (04, ..., 0x).
If F is differentiably separable of rank (ry,...,r.) at (p1,...,pa), and if
r; = dim (X;) for each 1 <7 < n, then we will say that F' is differentiably
separable at (p1,...,Pn).

The following lemma notes that the ranks of the Hessians used in the
previous definition are unchanged by coordinate changes. The proof is a
simple computation.

Lemma 2.1. Suppose that for 1 < 1 < n, X; and Y; are C?*— manifolds
and suppose that h; : Y; — X; is a C*—diffeomorphism. Assume that g :

*,Y.— Rand F:[~, X; — R are C*— functions such that g = [[ hio F.
Suppose that (¢q1,...,q,) € [L; Y: and let h;(q;) = (pi). If F is differentiably
separable of rank (ry,...,r,) at (p1,...,pn), then g Is differentiably separable
of rank (r1,...,7.) at (q1,--.,qn).

We can now define the term differentiably separable for a function defined
on a differentiable manifold.

Definition 2.3. If X;, 1< i < n, are C?—manifolds, the function F :
X1 x...x X, — Ris differentiably separable of rank (ry,...,r,) at the point
(p1y...,pn) if there is a coordinate system {¢;;} at the point (p1,...,ps) such
that F is differentiably separable of rank (rq,...,r,) at the point (p1,...,pn)
in the coordinate system ¢y1,. .., $nd(n)-

The Number of Variables On Which F Really Depends

If F:X,x...xX, — Risdifferentiably separable of rank (r(1),...,r(n))
at a point (py,...,p.), then it is possible to write F’ as a function of variables
{¥11,- - ¥1r(1)> - - -+ ¥nls - - - s Ynr(ny }- This assertion, Lemma 2.2, is a restate-
ment of Theorem A.3. The proof of Theorem A.3 can be found in Appendix
A together with an example of the construction.
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Lemma 2.2. Suppose that for 1 < i < n, X; is a C**'—manifold, k
Assume,

()F: Xy x...xX,—Risa C*+1_function,

(ii) (p1,....pn) Is @ point on X; X ... x Xy,

(1ii) X, has coordinates z,.

A necessary condition that in a neighborhood of the point (py,...pn) F
can be written in the form

v
8]

G(ylla o Ylr(1)s e ey Ynds e - -aynr(n))s

where (yi1, - . -, Yia(n)) IS a coordinate system on X;, is that the matrix BH(G -
Z;;T<_; ) has rank at most r(z) for each i.
Furthermore, a sufficient condition for F' to be written in the form

G(yll-:- cea ¥ir(t)s - s Ynls - - '1ynr(n))a

for 2 C*—function G in a neighborhood of a point (p1,...,px), Is that F' is
differentiably separable of rank exactly (r{1),...,r(n)) at (p1,...,Ps)-

Rank Conditions and Construction
of an Essential Revelation Mechanism for F.

Lemma 2.2 suggests that in the case of a differentiable function F satis-
fying the rank conditions stated in the lemma it is possible to construct an
essential revelation mechanism whose message space is a topological mani-
fold. We now carry out the construction suggested by the lemma. The main
result is given in Theorem 2.1 and in Corollary 2.1.1.

Definition 2.4. Suppose that X;, 1 <:¢ <n and Z are C*— manifolds
and suppose that F': X; x ... x X, — Z is a differentiable function. The
triple (g1, - - -, gn, M1 X...x My, k) that consists of spaces My x...x M, maps
G1y. i Gny Gi i Xi = M, 1 <1:<mn, and function A : My x ... x M, — Z
is an adequate C*—revelation mechanism that realizes F if;

(i) each of the spaces M; is a C*—manifold,

(ii) each of the functions g;, 1< i < n, and his a C*— differentiable
function,

(iti) each ¢;, 1 <17 < n, has a Jocal thread at each point of A,

(i) ho (Tl g:) = F°
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Definition 2.5. Suppose that F': X x ... x X, — Z is a differentiable
map from a product of differentiable manifolds X,,..., X, to a differentiable
manifold Y. The function F factors through a product of manifolds Z; x
... %X Zn if there are submersions ¢; : X; — Z;, and a differentiable mapping

h: 2y x...x Z, = Y such that the diagram in Diagram 2.1 commutes.
X; x X Xn Y
gl g'ﬂ h
1 % e X Ln
Diagram 2.1

It has not been established that the essential revelation mechanism is
an adequate C*—revelation mechanism, because the construction given in
Theorem 2.1 ignores all topological and differentiable structure.

The general outline of the method we use to put a structure on the (X;/F)
is straightforward. We first show that when the rank of BH(F : ¢y;2¢-i5)
is the same as the dimension of Xj, then for each two points r and z’ in X,
there is an element y € Xc_;5 such that F(z,y) # F(&',y). Therefore, the
set (X;/F) is X;. We next appeal to Lemma 2.2. This lemma shows that
if the rank of BH(F : z;;2<_;») at a point is r;, then in a neighborhood
of the point there is a coordinate system {z;1,...,Zi)} and a function G
such that the subset that consists of the coordinates F(ziy,...,Zp4m)) =
G((zay. .-, Tir) [; T<—i>). We can use the remaining set of coordinates in X;
to determine a subspace S of X; by setting Tirp1) = 0,..., 2y = 0. The
set S is a submanifold of X; and the restriction of F to the space S x X _;>
has the property that BH(restriction(F): z;1,...,%i; Xc_i») has rank the
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dimension of S. On S, the restriction of F separates points (at least in a
neighborhood) and therefore the map from S to (X;/F) is one-to-one. Some
technical fiddling with quotient topologies makes the quotient map, locally, a
homeomorphism. Therefore, at least locally, the space (X;/F) has the same
structure as S. The rest of the proof consists of adding enough restrictions to
ensure that the local argument can be carried out globally on X; x ... x X,.

Theorem 2.2. Suppose that X;, 1 <i < n,isa Euclidean space of dimen-
sion d(7) > 1. Suppose that for each 1 < i < N, U; is an open neighborhood
of the origin 0; of X; and suppose that F is a C°— function differentiably
separable at each point (p1,...,pa) € Uy x ... x U,. Then there is an open
neighborhood U of p; such that for each pair of points z and 2’ in U, z # 2/,
there is a point w € U¢_,5 such that F(z,w) # F(z',w).

Proof. The matrix H(F : z:y)[0,0] has rank d(z), by assumption. Set
X = X;, set Xe_i> = Y, set dim(Xc_;») = N, and set m = d(z). We can
change coordinates in X and Y separately to coordinates z in X" and w in
Y so that the new matrix H(F : z;w)[0,0] has a 1 in the z; X w; position,
1 < 7 < m, and zero in all the other positions. The Taylor series expansion
for F(z1,..., 2m w1, ..., wy) then has the form F(z,w) =

F(0,0)+uocz+vowtwoz+2'Qz+w Qu+ Pz, w)[z,w]

where @ and Q' are square matrices, u and v’ are vectors in R™ and RN
respectively, v'ow denotes inner product, zT denotes the transpose of the col-
umn vector z, and where P(z*, w")[z,w} is a cubic polynomial in the variables
(21,- -y Zm, W1,. .., wn) with coefficients that are continuous functions on
U x V evaluated at some point z* € U and w* € V. These coefficients of P are
bounded on a ball that is a compact neighborhood of (0,0) € U'x V', U’ C U
and V! C V. Then for z, 2’ € U' and w € V',| F(z,w) - F(z,w) |=

|uo(z—2)+wo(z—2)+27Qz + P(z",w")[,w] = P(z",w)[z,w] | .

The vector (z —z') # 0 and the w is to be chosen in the set V. Set 27Qz —
zTQz = K, set uov = L, and set (z — z’) = v. To complete the proof, it will
suffice to show that the function

wov+ P(z",w*)[z,w] + P(z",w)[z,w] + K + L
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is not constant on the ball V'. For this it will suffice to show that the function
Q =wov+ Pz, w)z w] — P(z",w")[z,w]

is not constant on the ball V', The function P(z*,w")[z, w] — P(z",w")[z, w]
is a homogeneous cubic T, paq sz%w” in the variables wy,. .., wy with coefli-
cients {a,(z,2’,w,w')} that are functions bounded on U’ x V. Set w = tv.
The powers of the constants zj,..., 2, can be combined with the coefficients
a. s and therefore Q = ¢ | v {* +a(i)t?, where the a(t) is also bounded as a
function of ¢. If a(t) = 0 identically in ¢, then because v # 0, different values
of ¢t produce different values of Q. If a(t) # 0, and | v |* +a(¢)t? = ¢ (a
constant), then a(t) = (¢— | v |?)/t%, and therefore a(t) is not bounded as ¢
approaches 0. Therefore @ 1s not a constant. O.

We now give conditions on a function F that is differentiably separable of
rank (r1,...,7s), so that each of the sets (X;/F’), with the quotient topology,
has the structure of a C°—manifold of dimension r;. Under these conditions
the set theoretic essential revelation mechanism is a topological essential
revelation mechanism.

Definition 2.6. If X; 1 < ¢ < n, are topological spaces, then a real
valued function F' : X; x...x X, — R induces strong equivalence on Xj, if the
following condition is satisfied for each z, 2" € X, such that z # z’; thereis an
open neighborhood U of a point ¢ € X_;5, such that F(z [;u) = F(z'[; u)
for each u € U, then F(z f,z) = F(z' [;z) for all z € Xc_i5.

It 1s relatively easy to find classes of functions that induce strong equiv-
alence. Suppose the X; are Euclidean spaces with coordinates z;;,1 <1 <
n, 1<j<d(i) Ifforeach 1 <1 <n, 8(z) = (B(e1),...,5(ed(z))) is a se-
quence of nonnegative integers, denote by :r?(i) the monomial z'?l(“) . :r?;;;d}(i))

@ . 22" the product of the monomials a:?("). Write

(2) . .’L'B{n),

and denote by 5:';}

8
F(z1,..., %) = pq),...80) A1) 5(m) T2

where Ag(z,) are polynomials in z;. Then for z;, 2| € X, F(z1,2<-15) =
F(z},z<-15) for z<_1> in an open set in X._;5, if and only if [Ag(z;) —
Ap(z)))z5? . z8) = 0 for the z4,. . ., z, chosen arbitrarily in an open set in
Xox...xX,. However, a polynomial vanishes in an open set if and only if each
of its coefficients is zero. Therefore if F(z),z<-15) = F(z1,7<-15) for the
T<_1» chosen in some open set, it follows that for each 3, Ap(z1) — Ap(z)) =
0. That is, F induces a strong equivalence relation on X;.0
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Theorem 2.3. Suppose that X;, 1 < i < n are C*--manifolds of dimensions
d(1),...,d(n), respectively. Suppose F' : X; x...x X, — R isa C*—function
that is differentiably separable on X; x ... x X,, of rank (r(1),...,7(n)) where
cach r; > 1. Assume that F induces strong equivalence in X; for each 1. If
(i} the spaces (X;/F) are all Hausdorff,
(ii} quotient map ¢; : X; — (X;/F') 1s open for each1 <i < n.
Then, for each 1 < i < n, the space (X;/F) (with quotient topology) is a
topological manifold (i.e. a C°—manifold). Furthermore, the quotient map
gi : X; = (X;/F) has a local thread in the neighborhood of each point.

Proof. Suppose that pr € (X;/F), 1 £ ¢ < n. Choose a point p; €
X;, 1 <1 < n, such that ¢(p;) = pI. Because the function F is differen-
tiably separable of rank (r(1),...,7(n)} at the point (p1,...,pn), it follows
from Lemma A.3 that for 1 < ¢ < n, there is an open neighborhood U._;s
of pc_i» in X._;5, an open neighborhood U; of the point p;, and a coordi-
nate system r; = {Ti,...,Tu) in X; such that zi(p;) = (0,...,0) and a
C®—function G defined in a neighborhood of the origin, such that

F(Iu---,iﬂn) = G((«'En,---,ier(i))f_z)
for each z € U._;» . Denote by ST the set of elements {zi1, ..., Zir(iy, 0,...,0)}
that Lie in U;. Choose in ST a compact neighborhood §; of (0,...,0) (in the
induced topology on S?). The map ¢; carries the set U; to an open set of
(X;/F) because we have assumed that ¢, is an open map. We have assumed
that the equivalence relation induced on X._;5 by F' is strong, therefore the
equality
F(-Tih c oy Tiv(i)y bi,. .., bd(i)—r(:’) f Teoiy) =

F((zia, - Zir@y, 0,0+, 0) [ 2¢2i5)

implies that gi(za,. .., %) = alza, .-, zir(sy) for each (zi,...,Ti) in
[/;. Therefore, q;(U;) = ¢:(S™%;). The set ST was constructed so that ¢; is
one-to-one on S7. By assumption, the space (X,;/F) is Hausdorf, therefore
the restriction of ¢; to S; is a homeomorphism from S; to a neighborhood N,
of pr. Denote by s, the inverse of ¢, on N;. It follows that the point p] € X
has a neighborhood N; that is homeomorphic to a neighborhood of the origin
of the space R"™, Furthermore, the function s; is a thread of ¢; on the set

N,.O
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The following corollary states that the essential revelation mechanism is
a C°—essential revelation mechanism. In this case, under the assumptions
made about F, each C®—adequate revelation mechanism factors through the
C%—essential revelation mechanism.

Corollary 2.3.1. Suppose that X;, 1 <1< n are C*—manifolds and that
X; has dimension d{i}. Assume that F: X; X ... x X, — R is a real valued
function on F that satisfies the following conditions:

(i}there are integers (r(l),...,r(n)), 1 < r(:) < d(7), such that at each
point {py....,pn) € X) x ... x X,, F is differentiably separable of rank
(r(1), (),

(ii) for each i, the map ¢; : X; — (Xi/F) is open and (X;/F") is Hausdorff,

(iii} for each 1, F induces a strong equivalence relation on X;.

Then the triple

(g1 X ... X g, (X1 /F) x ... x (Xo/F), F7")

where;
(1)each (X,/F) is given the quotient topology,
(2) the maps q; : X; — (X,/F) is the quotient map,
(3) F* . (X3/F) x ... x (X,/F) — R is such that

F‘(ql(‘rl)a"'aqv'l(zn)) = F(‘Zla‘--?‘rﬂ)

for each (zq,...,2,) € X; X ... x Xy, is an adequate C%—revelation mecha-
nism that realizes F. The space (X;/F) has dimension r(7). Furthermore, if
a triple

(g1 X ... X GnyZ1 X ... %X Zn, ()

is such that ¢; : X; — Z;, G :2Z, x...x Z, — R, and the triple is an
adequate revelation mechanism that realizes F, then there are continuous
maps g : Z; — (X;/F) such that the diagram in Diagram 1.3 commnutes,

withY = R.

Proof. We have already shown in Theorem 2.3 that the triple (¢; x ... x
gn, (X1 /F)x...x(X,/F), F~),is an adequate revelation mechanism that real-
izes F. Suppose that 27 € Z;. Denote (¢:(w),...,gi—1(w), gis1(w), ..., gn(w))
by g<—_i»(w), for each w € X._;5. Choose an element z; € X, such that
gi(zT} = zI. Suppose that z}, 27 € X;, such that g;(z}) = ¢:(z;) = z;. Then
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for each
w € Xeis, F(.r,'fw) = G(gi(z]) {9<—i>(w)) =

1

Glo:(21)  g<in(w) = F(a} [ w)

Therefore gi{x]) = gi(z}). Set g7 () = qi(z}). Because the map g : Xi — Z;
has a thread in the neighborhood of each point, there is a neighborhood N
of the point 27 and a thread s; : N — X; such that gi(si(z")) = g:i(2") for
each z*N. Then ¢7(z*) = q:{s:(z")). Because both ¢; and s; are continuous,
it follows that the map g is continuous. 5.

The Results of Abelson, Chen and Hurwicz

In [5}(p.291), Hurwicz considered realizing a function F from a product
R? x R? to R. Assume that the first factor of the product R?* x R? has
coordinates ay, a; and that the second factor has coordinates b, b;. Hurwicz
showed that if a realization of the function F exists that uses a message M
space of dimension 2 with coordinates m! and m?, and if the realization
uses messages correspondences u'(aq,a;) = {(m?,m?)|g' (!, m?; a1a;) = 0}
and u2(by, by) = {(m*, m?)|g*(m!,m? bib;) = 0} for agent i = 1,2 and if
Jacobian (8¢'/dm?); ;=1 is nonsingular, then the determinant,

0 F, &,
Foo Fayoy Foyp, | =0 (Eq.x).
Foo Fazey Fony
for all (a,b). That is, the Full Bordered Hessian FBH(F) must have rank at
most 2. He further showed.([5], p. 293},

Theorem(Hurwicz). Let F : ©! x0? — R have nonvanishing first partials
derivatives and let it satisfy equation Eq.x on ©. Then there exist smooth

functions G'and G? such that F is realized by (g%, g%, M, k) with
m? — G}(m?,a), a€ O,
m? — G*(ml,b), be ©?

g'(m,a)
g*(m,b)

and _
M=R, m=m. mH)meR, i=12

In [3])(p. 259), Chen generalized the Hurwicz result on necessary condi-
tions to the case of a goal function P : R® x R¥ — R. (Chen uses the
notation BH(P) for the Full Bordered Hessian of P.) Chen’s theorem states:
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Theorem(Chen). Let P : R® x R — R be a C* function. If P can
be realized in an open set U C R* x RF by an efficient privacy-preserving
mechanism with a message space of dimension n, then rank FBH(P) < n in

U.

This condition on the Full Bordered Hessian can be restated as the condi-
tion that all (n+1) x (n+1) submatrices of F BH(P) have determinant zero.
Further, Chen uses the differential ideal constructions of [7], to generalize the
Hurwicz necessary condition to find necessary conditions for a goal function
F:RR x...x R¥ — R™, to be realized by a privacy preserving mechanism
with a message space of dimension n.

While the Bordered Hessian used by Hurwicz and Chen 1s also used in
our constructions, the conditions placed on the Bordered Hessian vary with
the purpose. The differences, and similarities between the conditions used
by Hurwicz and Chen and the conditions we use are best indicated via an
example. The example we consider is one due to Hurwicz and can be found
in [5].

Consider two agents cach with parameter space R?, where the first agent
has coordinates x and z in her space and the second agent has coordinates
r' and 2’ in his space. We assume they are to realize the goal function
flz,z,2',2') = (z — 2')/(z — 2’). The Hurwicz result, and Chen’s general-
ization states that the function f can be realized by a mechanism using a
message space of dimension 2 only if the determinant of the Full Bordered
Hessian of f is zero. Further, Hurwicz shows that if f has nonvanishing first
partials, there is a mechanism that realizes f if the Full Bordered Hessian
has determinant zero. Indeed, if a message space of dimension 2 has coor-
dinates f and p, if the first agent signals sufficient information to indicate
the line with equation p + zf = = and if the second agent indicates the line
with equation p 4+ z'f = 2/, then these two lines intersect in a point with
coordinates ({z — z')/(z — 2'), (22’ — 2'z)/(z — z')). The required realization
is thus achieved. Furthermore, the Full Bordered Hessian of f is

0 (z—2N/(z—2")* —1f(z ~2z")
—(z=2V(z -2 -2z-2)/(z-2) 1/(z-2')
1/(z — z") 1/{(z —z')? 0

We, however, are interested in the number of parameters required to
compute the intersection of the two lines with equations p+zf = z and p +
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r'f = z’, and we wish to make no assumption that the agents are constrained
to use the coordinates z, z, ', z/. We also assume that when one computes
the intersection then one also computes the function f, perhaps with the
use of an outcome function. Thus we apply our conditions directly to the
function f. Because we are interested in what each agent must reveal in order
to compute f, we must examine each agent separately. In the case of agent
1, we first find the rank of the matrix BH(f : z,z;2',2). This matrix has
two rows, and it is easy to see that the rank is 2. Further the Hessian

( —2z -2V (z -z 1/(z —2')? )
1/(z —2')? 0

has rank 2. It then follows that two parameters are required for the compu-
tation of the intersection and further in the neighborhood of each point of
Agent 1's parameter space there is a coordinate system consisting of two pa-
rameters that can be used to compute f. In this case, of course, one can use
the parameters z and z. We then examine Agent 2. A similar pair of compu-
tations shows that two parameters are required from agent 2, and two such
parameters are available. Thus for us, four parameters in all are required for
the computation.

Next consider an example given by Abelson [1] in connection with com-
munication complexity. Let

O(X,Y) = i (waay + 2ay)

where X = (z1,...,2.), Y = (v1,.-.,yn). Here it is assumed that processor
P, knows X and processor P; knows Y. The Full Bordered Hessian for this
example is

2 91y ... kat Tl oy 4+ XE 0 yizy !
21 0 ... 0 %
kyE1 _ o ... 0 y¥
o+ izt 22 L. ok 0

As shown by Chen in [3], the submatrix that consists of the first two and
the last two rows is a matrix of rank 4. Chen's Theorem gives 4 as a bound
on the dimension of message spaces that realize ¢. Chen also offers a mech-
anism that realizes ® with a four dimensional message space. If the message
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space has coordinates my,...,my, then the messages m; = =1, my = y1,,
ms = L5 z;m}, and my = L5 yim}, together with the outcome function
h(my,...,my4) = mg + my realizes P.

Abelson used the Hessian H(F'), the matrix that has rows indexed by the
variables of the first processor and columns indexed by the variables of the
second processor, to give a lower bound on the amount of information transfer
required in a multistage distributed computation. His theorem states:

Theorem 2 (Abelson [1]). Let & : X x ¥ — R be a C*-function, let
p € X xY, and let R be the rank of the matrix of second-order partials
derivatives A;; = 0*¢/0z;0y; at p [the Hessian H(®) at p]. Then any mul-
tistage distributed computation which computes ¢ in a neighborhood of p
must have total information transfer ar least R between P, and P, not the
notation we have introduced {assuming that the functions computed at each
stage are all C%.)

In the case of the function ®, the Hessian used by Abelson has rank 2, thus
a distributed computation of ® must interchange at least two parameters.
This can be done, for instance, by having processor P send the value of x4
to P, and P; send the value of 3, to P;. Then, knowing the value of z;, P, can
compute the first term of ®, and send it to P, who has computed the second
term of @, knowing y;, and then can calculate the sum. The total number
of variables transmitted, including the value of ® is 4. But notice that it
is not possible to eliminate any of the 2N variables XY and compute ¢. In
this example, the matrices BH and H do not have the same rank, for N > 3.
Here the quotient object exists as a differentiable manifold of dimension N,

”

but this fact is derived directly from the equivalence relation "~” and not

from the ranks of BH and H.

The Jordan and Sonnenschein Theorems on
the Universality of the Competitive Mechanism

Sonnenschein studied sub-correspondences of the core net trade corre-
spondence(a CCTC) that associates with each pure exchange economy £ a
set of net trades which result in core allocations for £. A private representa-
tion of a CCTC, g consists of a triple (A4, g, f), where A is a message space,
i is a correspondence from the set of £ to A, and { is a function from A
to the set of trades. A consumer is a pair (U,w), where U is a continuous
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rea} valued function with domain @ and w € intQ,,. C denotes the set of all
consumers, and F is the set of all functions with domain an initial segment of
the positive integers and range C. The principal result of [28] is given under
the conditions placed by the following axiom:

Axiom S. A CCTC g with private representation (A, u, f} Is said to satisfy
Axiom § if for all £ = [(UY,w!),... (U™ ,w™)] € F and all a € A, there
exists £ = [(UL,w?),..., (U™ w™), (UM, o™ty (U, 0™ € F,
such that a € u(&?).

The result of Sonnenschein is then:

Theorem. If (A,u, f) is a private representation of the CCTC g, and if
(A, u, f) satisfies Axiom S, then there exists a unique function ¢ : A — P,
such that the following triangle commutes:

€

Rn CxP

f ch(ﬁ

CxA

In [8), Jordan approached the problem of characterizing price mecha-
nisms by studying privacy preserving mechanisms defined on a space of
economies E*. For an economy with L commodities, X, = {z € R" :
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z; > 0 for each j}, and RY = {z € R : z; > Ofor each j}. For each function
u' s RY 1y — RU oo, set

Ri+ if the closure inR%of the set
_ {z :u'(z) > u'(w')} is contained in
C' =< RE for eachw' € RE .,

Rf’_ otherwise.

For each i, U"' denotes the set of utility functions that are continuous and
real valued on C*, strictly monotone on C*, and that are either strictly quasi-
concave on C*, or concave on C'. E* = [[;,(RE, x U**). Jordan introduces
the concept of a noncoercive allocation mechanism. A mechanism (p, M, g} 1s
noncoercive if for each e = (w',u');, and each y € g[u(e)], v (w' +y%) > u'(w')
for each i. Jordan sets M. = {{p,y) € & x Y;py' = Ofor each i.} and he
denotes by u. the message correspondence for the competitive allocation
mechanism. Jordan then proves:

The Uniqueness Theorem. Suppose that (p, M, g) is an allocation mech-
anism on E* which is
(1) nonwasteful;
(11) noncoercive ;
(ii1) informationally decentralized (privacy preserving);
and if
(iv) M is a connected K(L-1) dimensional manifold;
(v) the restriction of p to E, the set of Cobb-Douglas Environments, is a
continuous function;
(vi) u(E) is closed in M.
Then there 1s a homeomorphism h : M — M, such that
(a) hlp'(w',u')) = pi{w,u') for each i and each (u',u') € Ri_l_ x U
(b) k[u(e)] = u.(e) for each e € E*;
and
(c)geoh=g

A diagram that represents Jordan’s result is Diagram 4.1.
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E" M,

=
=

Ge

Diagram 4.1.

The results of Sonnenschein and Jordan each can be interpreted as char-
acterizing the price mechanism as a universal object in a class of realizations.
Sonnenschein and Jordan each exhibit the existence of a map from each al-
location mechanism that is privacy preserving to the price mechanism. To
prove universality of the price mechanism one need only establish that the
map constructed can be used to reconstruct the given allocation mechanism.
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Appendix A.

Leontief and Abelson Theorem

Suppose that F(z,,...,zx) is a function of N variables which has continu-
ous partial derivatives to order d. For each sequence a = (a(1),...,a(N)) of

nonnegative integers, denote by | « | the sum a(1)+...+a(N). We denote by
D(:L'T(l) . .:r?v(N); F) the derivative 5"”|F/8.r‘1’(1) e J:C;}N). Set 3°F/0z) = F.
Notation. If F is a function of one variable and G is a real valued function
of a vector z, then (F o G)(z) denotes the composition F(G/(x).

The following statement is a classical result sometimes referred to as the
”General Theorem on Functional Dependence” c.f.[29].

Theorem A.1. Suppose that z = (z1,...,Z,) and y = (y1....,yn) are sets
of real variables and suppose F(z,y) and G(z) are real valued C"—functions
defined on a neighborhood U of the point (p,q) = (p1,...,Pm-q1,.-.gn) that
satisfy the following conditions.

(i)
Dz, F) ... D(zm; F)
(D(ml;G) oo D(zm; G )
is a matrix of rank at most one,
(ii) at p, D(z,;G) # 0.
Then there is a function C(w,y), w a real variable, such that F(z,y) =
C(G,y) in some neighborhood of (p, q).

Proof. Because of assumption (ii), the equation w — G{zy,...,zm) =0
has a unique solution in a neighborhood U’ of (p,q). Thus, there is a function
c(w,za,...,Tm) such that w = G(c(w,z3,...,2m), L2,...,Tm) and such that
(Gl(z1,. . . Tm)yT2ye .y T ) = 1. Set

Clw,z2,- ., Zm,y) = Fle(w,z2,. .., T}, T2y oy Ty Y-
Then

D(z;;C) = D(z; F)D(zj;¢) + D(z;; F)

for 7 > 1. Because

w=Gle(w,Zay .-, Zm ), T2y ey T )y
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it follows that 0 = D(z,; G)D(x;;¢) + D(z;;G) for 7 > 1. Further, by condi-
tion (i), there is an Q so that D(z;; F) = QD(z;;G) for 1 <7 < m. Therefore
D(z;;C) = Q[D(21; G)D(zj; c) + D(z;;G)] = 0. Hence the function C is in-
dependent of the variables z;,...2, and we can write Clw,z2,.. s Tm,¥) =
C(w,y). Then

C(G(x1s. .-y 2m),y) =

F(C(G(E],...,Im),xg,..A’Im),IQ,...,Im,y) = F(z1,...,Tm,y).0

Leontief’s Theorem

Leontief proved the following result in [11].

Theorem A.2. Suppose F is a function of variables z1,...,Tm,. .. ¥ty -+ Yn-
Set F; = D(zi; F), 1<i<m. Assume that (p,q) = (P1,---,Pm:q1s-+qn)
is a set of values for the variables (z1,...,Y1,...,Yn)- A necessary and suffi-
cient condition that there exist functions C(w,y1,...,y=) and G(z1,...,Zn)

such that F(z,y) = C(G(z),y) in a neighborhood U of the point (p,q) is
that;

(i) for each 1 < i, j <m and each 1 <k < n, (8/0y:)[Fi/F;] =0,

(ii} for some j, Fy{z1,...,2m)(p.q) # 0.

Proof. Form the matrix
oo, Fa
M = ( J O )
where F} = D(x;; F(z;q)). For the point q, D(z;; F)(y) = D(z;; F(z; q))-
Condition (i) implies that the derivative D(y; F;/F;) = 0. Thus the ratio
F;/F; is independent of y. Also at (p;q), F77/Fr = Fi(z,q)/Fj(z,¢). It follows
that F7/F; = Fi/F; for all (x,y). Therefore the matrix M has rank at most
one. Further, by assumption, F;(p,q} # 0 for some j. The previous theorem

shows that we can write F(z,y) = C(G(z},y).0

Corollary A.2.1. A necessary and sufficient condition that there exist func-
tions C(w,y) and G(x) such that F(x,y) = C(G(x).y) in a neighborhood of
(p,q) is that the matrix BH(F:x;y) have rank at most one in a neighbor hood
of (p, q) and D(x;; F)(p,q) # 0, for some j.

Proof. The necessity of the given rank condition has already been demon-
strated. Set F; = D(z,; F). Theorem A.2 shows that to prove the sufficiency
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of the rank condition on BH(F:x y), we need only prove that D{yx; F;/Fj) =0
for each i,j, and k. But D(yi; Fx/F;) = [D(yx; F})F; — D(ys; F5)F)/ F}. By
assumption, Q(F, ..., F.)! = (D(z1yi; F),- -, D(emye; F))' ( M* denotes
the transpose of M). Thus QD(z,; F') = D(ziys; F) = D(yx; F}) for each i
and k. Therefore D(yi; F;/F;) = 0 for all k. O

Corollary A.2.2. Suppose F(z;y) is a C*—function of variables

z=1(z1,...,Zm) and ¥ = (Y1, -, ¥n)-

A necessary condition that there are functions C(u,v), A(z), and B(y) such
that F(z;y) = C(A(z), B(y)) is that the matrices BH(F : z;y) and BH(F :
y;z) each have rank at most one. Furtherif for some 1 < j € m and
some l < k < n, D(z;;F)(p,q) # 0, and D(ys; F)(p,q) # 0, then the
rank condition is also sufficient for the existence of C, A and B such that
F=C(A,B).

Proof. Because BH(F : z;y) has rank at most one and D(z;; F') # 0 for
some ]}, it follows from Theorem A.2 that F(z;y) = C(A(z),y) for some A
and C. To complete the proof, it will suffice to prove that C(w,y) satisfies
the conditions of Corollary A.2.2 using y;’s as the z’s and w as z,. For
convenience of notation, assume that D{z,; F')(p,q) # 0. Then

C(w,y) = F{h(w,22,...,Zm)s T2y« s Tm; Y15 -- - Yn)-
Therefore
D(y;; C) = Dly;; F(h(w, 22, .., Tm )}, T20 - - Tm )3 ¥))

and D(wy;;C) = D(z1y;; F)D(w; k). By hypothesis there is a © such that
D(zyy;; Fy = ©D(y;; F) for each j. Therefore

D(wy;; C) = ©D{y;; F)D(w; k) = ©D(y;; C) D{w; h).
Therefore, by Theorem A.2, C(w,y) = G(w,B{y)) if for some y;, and for
wo = F(piq),  Dl(y;: Clw,y))(pig) # 0.
However, from the proof of Theorem A .2,

Clw,y) = F(h{w, 22, ., Tm )y T2y -+ Tm; Y )
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where R(F(z1,...,Zmiq)s T2, ... Tm) = x1. If wo = F(p; ¢}, because C(w,y)
is independent of the variables z,,...,Zm, it follows that

Clwo,y) = F(h(F(p;q),p2:-- - Pmiy) = F(piy).

Therefore D{(y;; C) = D{(y;; F(p;y)) # 0 for some j.0

Corollary A.2.3. Suppose that z,;, 1 <1 <r, 1 <7 < d(z) are r ordered
sets of variables. Denote by z; the set of variables (z:, ..., ). Assume

pP= (pls"'rpp) = (plla'--uprd(r})

is a point. Necessary conditions that in some neighborhood of the point p
there are functions G, A;, 1 <3 < r such that

F(:E“, e .,I,d(r)) = G(Al(l'l), .. .,A,.(CL‘,))

is that each matrix BH(F : z;;21,...,%;-1,2j4+1,...,%,) has rank at most
one. The condition is also sufficient if for each j, there exists a k(j} such that
the derivative

D(Ijk(jﬁF(Ph---,Pj—lng,;l)j.l.],...,p,)) # 0.

Our results on adequate revelation mechanisms require a slightly altered
version of Leontief’s Theorem. This version is closely related to a result
announced by Abelson{c.f.[1]). We begin with a lemma.

Lemma A.l. Suppose that X and Y are Euclidean spaces of dimensions m
and n, respectively. Assume that X has coordinates (zy,...,Zm) and Y has
coordinates (y,,...,yn). Assume that Fy,..., Fn are functions from X x Y
to R that are defined on a neighborhood U x V of a point (a,b), a € X and
b € Y. A necessary condition that there are functions

;41(1'1,...,.Tm),...,A,-(Il,...,l?m),

functions
Gi(Wy,...,Woy1,.. . ¥n), L €2 <N,
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such that
Flzi, . s Tmy V1o ¥n) = GilAr, A Ue - ¥n), L S2 SN,
for each (z1,...,2zm) € U and (y1,...,yn) € V is that the matrix
BH(Fy,...,FN:Z1 . s T U1y oy Yn)

has rank less than or equal to r at each point of U x V.

Proof. Because

FAz1y o Zms ¥ty - Un) = Gi(Ary oo Ar U1, o5 ¥n)s

it follows that
D(z;; Fyy = Y10 D(As; Gi)D(z55 As)

and D(z;yx; F;) = D(yiAs; Gi)D(z,; A,). Each of the columns is a linear com-
bination of the r columns (D(zy; A:),...,D(zm; Ad))' 1 £t £ 1. Therefore
the matrix BH[x,y] has rank at most r. O

The next theorem shows that for a product of Euclidean spaces, if £ is a
differentiably separable function of ranks (ry,...,r,), then the rank r; give
the number of variables required from the space X in order to compute the
function. The theorem is stated for the more general situation of a sequence
of functions Fi,..., Fn because the proof of the more general assertion 1s
complicated only by the notation and the conclusion is applicable to the case
of the vector function that computes a Walrasian equilibrium when there are
more than two commodities.

Theorem A.3. Suppose that X and Y are Fuclidean spaces of dimensions
m and n, respectively. Suppose that X has coordinates z1,...,,, and that
Y has coordinates yi,...,yn. Assume that p € X, ¢q € Y, that U is a
neighborhood of p, V is a neighborhood of q, and that F;, 1<:< N,isa
C*+1—function, k > 2, from U x V to R. Then,

(i) a necessary condition that there is a neighborhood W x V of a point
(p',q) € R™ x V, C*-functions, k > 2,

GiWi, oo s Wesyny oy ¥n )y G (W, s Wy, o0 W)
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defined on W x V, and C*—functions A1(zy,...,Tm)s- ., Ac(Z1, ..., &m) de-
fined on U x V such that

E(I],...,Im,yla"'ﬂyﬂ) =

Gi(A1 (1, Ty A T1s o T ) YLy e s Yn )

for 1 <i < N, is that the matrix BH(Fy,...,F, 1 21,...,2p;¥1,...,Y,) has
rank less that or equal to r at each point of U x V.

(ii) If BH(F\,...,FN 1 T1,...,Tm} Y15+ .., Yn} has rank at most r in the
neighborhood U x V, and if H*(Fy,....Fx 1 21,...,Zmi 41, .., ¥n)|Z, q] has
rank r at each point of U, then there is a point (p’, ¢) in R" xY, a neighborhood
W x V of (', q), a neighborhood U’ x V' of (p,q), C*—functions Gi,...,Gn,
defined on W x V', and C*-functions Ay(21,...,Zm)y- -, Ae(T1,. .., T0) de-
fined on a neighborhood of p, such that on U’ x V',

Fig@iye s TmaY1s - Yn) =

Gg(Al(zl,...,:r.m),...,A,(zl,...,zm),yl,...,yﬂ),
1<:¢< N, for each (z4,...,2,) € U and (yy,...,y;) € V.

The proof shows how to construct the functions A4; and G,.
An Example of The Coordinate Construction
As an example, we carry out the constructions for the function
F(x1, 22, T3, Y1,¥2, Y3, Ya) =

T1(yr + s+ y1ya) + T2(y2 4 y3 —~ v13a) + 25(31 + 3+ yaya) + 23(y2 + y3 = y1ya)-

It is relatively easy to see that F can be written in the form

yi@1+ 23) + y2(2 +23) + vz + 22+ 13+ 23) — sl — 2o+ 73— 73) =
y121 + 272 + ya(z1 + 32) — nivalz — 22)-

We first construct the matrix BH(Fix;y)=

y1+ Y3+ Y1vs 1+ y4 0 1 i1
(ya+ys —vyat  —ya+2z2(l+y) 1 14222 —y+ 220y
225(y1 + y3 + v1ya))
2z3(y2 + y3 — Y14 —2rayy 213 213 —2x3y1.
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The matrix BH(F:x;y) has rank at most 2, and for the point

(21,22, 23,91, ¥2,¥3,¥4) = (0,0,0;1,1,1,1) = (p,q), BH"(F : z; y)[x,q} =

3 2 0 1 1
1+6z =144z, 1 1421y ~-14 2z,
23 —213 2z, 2z4 —2x3

It is an easy exercise to check that BH* has rank 2 in R°. Furthermore, the
matrix H*(F : z;y)[p.q] =

01 1
-1 11 -1
0 00 0

has rank 2. Theorem A.3 states that there are two functions A and B with
variables z;, ..., 73, and a function C of two variables such that F = C(A B).
To construct A and B, we first compute the derivatives D(y;; F), 1 <1< 4.
The derivatives are

D(y1; F) = 21 + 22 + 194 — Toys + 22ys — 2244,

D(yy; F) =22+ :r:g, Diys; Fy=x1+ 22+ mg + zg,

and
D{ys; F) = 2131 — T2y1 + 2351 — T591.

At the point q these derivatives are
D(y; F) = 2z; — 25+ 222 — 23, D(y; F) = 22 + 23,

D(93§F)=371+$2+33§+$§,

and
2

D(yg; F) = 20 — 2 + 73 — 23
The 2 x 2 submatrix of H* whose entries are in the first two rows and
columns has rank 2. This is equivalent to the observation that the func-
tions D(y,; F) = 2z, — 22 + 22% — 25, and D(yy; F) = 22 + r%, are indepen-
dent at the point p. It is the conclusion of the theorem that the functions
D(yi; F) = 2z, — 22 + 223 — 2%, and D(y2; F) = z2 + 22, can be used as
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the functions A and B. To check this, set wy; = 2z, — 22 + 25:% - I%, and
wy = x5 + z2. We can solve these equations for z; and x5, using the Implicit
Function Theorem [4,p.7], because we have already observed that the neces-
sary rank condition is satisfied using the first two rows and first two columns
of H*(F : z;y)[p.q]- In this case, of course, the solutions are easily written
down. That is, zo = wy — 23, and z1 = (1/2) (w1 + w2 — 2wl + 4w,z — 223).
The final computation in the proof of Theorem A.3 shows that if we sub-
stitute these functions in the original function F, we derive the function a
function G{w;,ws;y1,.-.,y4) that is independent of the variable r3. Indeed,

Glwr, w23 Y1, Y2. Y3, Ya) =

(wiy1)/2+ (way1)/2+wayz + (w1y3) /2+ (Bways) /2 + (wiy1ys) /2 — (w2y1y4) /2.

If we set

_ 2 2
Ay =2z — 29 + 225, — 25,

and
2
Az = 20 + 73,

then
G(‘qls A?a Y, Y2, y31y4y4) =F.

Proof of Theorem A.3.

We now turn to the formal proof of Theorem A.3.

Proof. Condition (i) has already been established in Lemma A.1. We turn
to the proof of (ii). Because the matrix H*(Fy, ..., Fn: Z1,.. ., Zp; Y1s- - - ¥q )2, G
has rank r in the set U, there is neighbor hood U” of p and an (r xr)—submatrix

of
H‘(Fla"'vFﬂ:xla"'a"‘cp;yla""yq)["‘c*Q]

that has nonzero determinant everywhere in U/”. We can assume, without loss

of generality, that the rows of the submatrix are indexed by z,,...,z, and
that the columns are indexed by (Fuqy, ¥s01))s - - - » (Fagr)s ¥8(-))- The functions
of £ = (z1,...,2,),

,41 = D(yﬂ(l)v Fo{l})(IaQ)a R ‘41' = D(yﬁ(r)w Fa(r))('ra Q)
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are C¥—functions of (zy,...,zm) in a neighborhood of p. Set
z1= A1(T1, .y T )y ooy 2 = Ar(Tr, 0, Tm)-

Because
D(z;; Ai)(p) = D(x;3506); Fern) (P, 9)s

the matrix with (¢, 7)* entry D(z;; A;)(p,q) has rank r. Therefore, the Im-
plicit Function Theorem [4] shows that there is a neighborhood U~ of p, and
C* —functions

hi(Z1s s 2oy Totds e oy Tm )y os {21500 Ze Trg1s oo o Tm)
that are defined on U* such that
zi=Ailhy, - R Loy Tm), E.l
1 <7< r,in the set U'*. Then
(AT, s Zm)y e Ar(Thy e Tm) Trg1y - o2 Ton) = T4y
1 <:i<r for (z1,...,2,) € U™ Set
Gi(wiy e oo Wy Trg1y ooy Ty Y1y e o5 Yn) =

E(hl(wla-'-7w1'v$r+17"'v'rm)""shr(u’ls---mwrarr-{-la'"amm)ayla"'ayq)a
1 <t < N. Because
G,‘(Al,...,qu,$7+1,...,$m,y1,...,yn) =

R(hl(Als' v aAra Trgl1y--- :Im))' - ')hr(Ala me 7AT1 Trit,-- '1$M)3IT+13

"'axmsyla"')yn) = Fi(:ch'"sxmayls--'ayn)a

in order to complete the proof of the assertion it will suffice to show that
each of the functions G* is independent of the variables z,44,...,Tm. The
hypothesis of (ii) asserts that the column vector (D{z1; F2), ..., D{zm; F3))T
is a linear combination of the columns of the matrix

H-(Fla“'?Fn:I]a---sIm;yla--'ayn)[‘rufﬂ
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in the neighborhood U* x V, because BH has rank at most rin I/ x V, and
H~* has rank r in U*. Therefore, the column {D(z; F}), ..., D{zm; F})T is
a linear combination of columns indexed by (Fa1), ¥s(1))s - - - s (Fa(r)s ¥8(r)) 1
the neighborhood U* x V. It follows, that foreach 1 <: < N,and 1 <t < m,

D(Ii; R) = E::'lcisD(It; A,),

where the C;, are functions on U* x V. Furthermore, if one differentiates Eq
(E.1) by z;, for r + 1 < j < m, it follows that

0= %l Dlze; A)D(z;5 he) + D(z;; Aj).
Therefore, if r+1 <7 < m,
D(z;;G;) = E_ D(zy; Fi)D(z;i b} + D(z; Fi) =

Y B Cis Dz A D{zj he) + s = 17CiyD(z5; As) =
S (S, Dleg A D(z;; he) + D(zs; A))Cis = 0.0
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