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Mount and Reiter in a Model of Computing with Human Agents [17] (referred
to hereafter as M-R) propose a model applicable to computing units consisting
of human beings, or computers, or both. The motivation for that model stems in
part from the fact that performance of economic units and economic systems is
constrained by the limited ability of human beings to process information, even
with the help of computers and telecommunications equipment. Theoretical
analyses that ignore limitations on human rationality may lead to irrelevant
or erroneous conclusions. It has long been recognized that many phenomena
of economic behavior and economic institutions that appear to be beyond the
reach of current theory might be understood and analyzed via theories that take
into account limitations on the ability of humans to calculate and reason.

Limitations on information processing abilities may be expressed in terms of
direct constraints. Cost of information processing and decision-making in turn
are determined by the interaction of direct constraints and resource prices. The
kind of reasoning or information processing that is typically found in economic
models of human behavior or the functioning of institutions typically involve
calculations susceptible to an algorithmic treatment. Radner [19] has presented
data showing the importance of information processing tasks in the economy,
as indicated by the resources devoted to them.

Simon [26] and [27] has long advocated that economic theory take into ac-
count the boundedness of human rationality. On the whole terms like bounded
rationality and ”satisficing” point to the consequences of information process-
ing limitations, on behavior or performance, but do not refer to an analytical
model in which basic limitations of computational capacity can be expressed,
and performance consequences derived from them. The problem seems acute in
game theory, where games, especially repeated games, with fully rational players
have so many equilibria that some people call into question the usefulness of the
analysis. (It should be noted that models with multiple equilibia are important
in explaining diversity. Matsuyama [13] has emphasized this point.) In recent
vears there have been several atiempts to explore the implications of bounded
rationality of players. These have mainly used the finite state automaton as a
model of boundedly rational players, although recently perceptrons have been
used for this purpose. To model a player as a finite state automaton expresses
the constraint on her computational ability by the number of states of the au-
tomaton that models her. {See Neyman [19] Dilip Abreu and Ariel Rubinstein
[2), Ehud Kalai and William Stanford [10], Ariel Rubinstein [23] and {24] ]

Since the finite state automaton is a special case of the Turing machine, when
memory is assumed to be finite, this model also incorporates the restrictions on
computation that flow from the requirement that everything involved be finite.
But there is as yet no consensus among game theorists that this model is the way



to go. Indeed, it seems to be the consensus that the finite state automaton is
not a satisfactory or even useful model of human behavior under computational
limitations. The more recent use of perceptrons to model players in repeated
games, (see Ariel Rubinstein {25], In-Koo-Cho (7], In-Koo-Cho [8]) rather than
finite state machines, perhaps a development growing out of this consensus,
comes closer to the point of view of complexity that is taken in M-R. This is
made clear in Example 3 below, an example taken from In-Koo-Cho [8].

The aim of M-R is to provide a model of computation, applicable to sys-
tems involving human agents as component elements, in which limitations on
the ability of agents to compute can be made explicit, and the complexity of
computational tasks can be analyzed. The M-R model is a generalization of
McCulloch-Pitts [14] networks in a direction that, we argue, makes it particu-
larly suitable for application to calculations performed by human beings in the
context of economic models. Since the M-R model was first presented in 1982
[16]), a number of attempts have been made to model computation in a stmilar
spirit. We note particularly the work of Raduer [20] and Radner and van Zandt
(21], using a network model of computing similar in some respects to that in
M-R [17], and the work of Rubinstein [25) and In-Koo-Cho [8] referred to above.
Blum, Shub and Smale in [5] have constructed a model of computing based on
Turing machines with elementary functions that are Real algebraic functions.

We present in this paper an informal account of the M-R network model of
compuling, and illustrate how that model applics to computations performed
by human beings. We do this by examining how certain tasks are performed
by machines and by humans. Human beings can easily do some things that are
very difficult for machines to do. For example, humans easily recognize visual
patterns. The same task can be formidably difficult for a machine. There is
a range of possibilities for models of human pattern recognition, {rom models
based on the neurophysiology of vision, to black-box models, ( i.e., models whose
inputs are patterns and whose outputs are names of patterns, with no attempt
to analyze the process in more detail). The challenge here is not just to make a
model of inman computation, but to make one that:

(a) connects appropriately with models that express our basic understanding
of computation;

(b) that applies to computations performed by machines;

(c) that can be analyzed and usefully applied to economic models in which
human behavior matters.

Qur aim in this paper is:

A. to present some of the salient ideas of the network model presented
in detail in M-R, with a minimuin of formal teclinicalities;

B. to present some examples that we hope will make clear how that model
can apply to human agents;

C. to show how the model can be useful in the analysis of economic
models.



In formulating the M-R network model we have made several strategic
choices. These include:

1) the class of functions (operations) considered elementary should be a
primitive of the model, i.e., not fixed once and for all, but to be chosen according
to the application to be made;

2) the complexity of a function should depend on the class of functions
considered to be clementary;

3) functions defined on Euclidean spaces should be among the possible can-
didates for elementary computational operations;

4) there should be a formal procedure for computing functions that are
defined on topological spaces, and for determining their complexity, because
such functions arise in classical economic models;

5) the model should be sufficiently tractable to yield results, at least in
some economic models, and sufficiently sensitive to distinguish among different
economic mechanisms in such models;

6) the model should have a clear relationship to the standard models of
computing, such as the finite state automaton.

It is clear that 1), 2), 3) and 4) make the concept of complexity in this model
one that is relative; it depends on the class of functions or operations that we
choose to regard as elementary.

This feature seems to us essential for a model to apply to human beings. If
the elementary functions were fixed in advance for all applications, they would
most likely be Boolean functions. While these model the switching devices
that make up electronic computers, it is not at all clear that they are useful in
modeling computations performed by human beings. The level of reduction of
a model in which every computation must be reduced to binary operations, or
some finite equivalent of them, seems too fine for the analysis of computations
represented in economic models as carried out by human beings or groups of
them.

In any event, in the present state of knowledge we would not be able to carry
out such a reduction, even in relatively simple cases.

In this paper we do not deal with the relationship our model has to standard
models of computing. The relationship of the model in M-R to the standard
models of computing is treated in M-R, where limit theorems relate our com-
plexity measure to standard measures of complexity of certain approximations in
the finite automnaton model. We interpret these results to say that our model is
an idealization of finite computing in the same sense that using the real numbers
to model measurement is an idealization of physical measurement processes.

We deal here only briefly with applications of the model of computing to
analysis of economic mechanisms. We discuss a special case in which the process
of figuring out the complexity of a function, and the use of a theorem giving
certain necessary and sufficient conditions 1s illustrated.

The rest of this paper is organized as follows. First we present a sketch of
the M-R network model. This exposition includes the concepts of compufability



and of complezity used in that model. We also show how complexity is measured
in that model. We present the definition of computing an encoded version of a
function. Following that we discuss how the complexity of a function is analyzed.
Finally we present three examples of tasks performed by persons, or person-
machine combinations.

As a first example of a person-machine combination processing data, we
describe an idea introduced by Chernoff [6] in which human beings and com-
puters combine to detect patterns in observations that involve a large number
of variables.

The second of these is a task that is complex and difficult for computing
machines, but which is performed routinely by human beings, namely reading
of handwriting. We show how the M-R network model deals with that task
when it is performed by a human agent and when it is performed by a machine.

A third example is taken from the work of In-Koo-Cho [8]. in which he
analyzes the repeated prisoner’s dilemma using perceptrons to model players.
This is a different model of the information processing capabilities of players
than is the finite state automaton, which i1s the model used in earlier study
of the complexity of strategies in repeated games. He considers two special
perceptrons , one with asingle layer, and the other, the simplest perceptron with
two layers. He shows that perceptrons of this kind are sufficiently powerful to
generate strategies in the repeated prisoners’ dilemma that form Nash equilibria
in the full repeated game, and to yield the "subgame perfect folk theorem” in
the full repeated game. Cho does not introduce a formal concept of complexity.
However, the concept of “simplest perceptron” implicit in his analysis, and
discussed in his paper, can be related to the concept and measure of complexity
in the M-R model. This is carried out in the analysis of Example 3 in this paper.

Each of the perceptrons used in Cho's paper is a network of the type used in
the M-R network model, and the complexity of the perceptron is a special case
of the measure of complexity given in M-R [17] for computations performed
by an M-R network. Thus, Cho’s analysis provides an example of the useful
applicability of the Mount and Reiter network model to an economic (game
theoretic) model with human agents.

The network model of computing introduced in M-R is a version of the (dis-
crete) McCulloch and Pitts [14] (hereafter called M-P) model in which modules
can be continuous functions. (A discussion of M-P model can be found in Arbib
[3] in a form more easily related to our work than the original M-P paper.) The
general idea is 1o replace the finite alphabet used in the M-P model by an open
neighborhood of the origin in a Real vector space of finite dimension, and re-
place the neurons of M-P by (smooth) functions defined on that neighberheod.
The move to networks using vector-valued functions is a natural one, as is the
representation of nctworks by directed graphs. The use of directed graphs is
common in automata theory. ( see [3], or [9].)

We do not claim much originality in this. However, we have been unable to
find a reference that carries out the construction we use. As we have pointed



out, the model is presented here somewhat informally. The formalities can be
found in Appendix C of M-R [17].

In the M-P model, (as presented in Arbib [3]), there is an alphabet A, which
is a finite set of cardinality d, (d a natural number); a module is a function
f:TI1 A — A, from the s-fold product of A to A. The function f can be thought
of as modeling a computing device, such as a finite state automaton. The input
set of this device consists of sequences (ay, ..., a,), ¢ € A, and the output set
of the device is the set A. This automaton has A as the set of states. If the
function is in state q at time t, and f accepts the input (ey,...,a,) at time t,
then the output of { at time t+11s f(ay, ..., a,).

It is sometimes convenient to think of the module f as a pair ((1,...,5).,f)
where,

(1) (1,...8) is the sequence of indices of the variables of f,

i.e., indices for the coordinates of the domain of T ;

(2) f names the function, and every function f : []] A4 — A, can be a module.
Le., the set of elementary functions is F* = {f | f: ][]} A — A}

At our convenience we will denote the module either {(1,....s),{) or f.

An M-P network is a finite collection of modules from F*, together with a
rule of interconnection thal describes how outputs from modules in the collection
are distributed among the inputs of the collection. This rule is itself a function.
The domain of the inlerconnection function is a subset of the collection of all
pairs [j,f], where j is the index identifying a variable of the module f. The range
of the interconnection function is the set of modules of the network. Because
the interconnection rule is a function, if a pair [j.f ] is in the domain of the in-

terconnection rule, then the rule assigns exactly one module, say, {{1,...,5),¢9)
to that pair. We visualize the j** input variable of f as connected to the output
set of ((1,...,s'), ) by a delayless wire or line. When the module g computes a

value, that value is instantly relayed to the j** input variable of f. Some of the
pairs [j,I} can be outside the domain of the interconnection rule. Such a pair is
a network mpul line. It is visualized as a wire running frem a point outside the
network to [},f]. Some modules are designated as oufpul modules. A wire runs
from an output module to a point outside the network. The output modules
are where the results of a computation are read. Sometimes an output module
is called an output verter.

The interconnection rule is a function from the finite set of pairs [j,f], to the
fintte set of modules of the network, therefore the interconnection rule can be
represented by a directed graph or digraph, that has as vertices the modules of
the network. If the interconnection rule assigns a module ((1,...,5"),g) to the
J*" input variable of the module ({1,...,s), f) then the digraph has an arc that
starts at the vertex g = ((1....,5),¢) and ends at the vertex f = ({1,...,s), f).
The arc from g to fis indexed by j. to show that the arc ends at the j** variable
of f.

In the M-R model we are considering, the alphabet A is replaced by a sub-
set {a neighborhood of the origin} of a finite dimensional Real vector space of

on



dimension d. The modules of the network are functions chosen from a specified
class F. We refer to the model as an F-network. The class F 1s a primitive of
the model. For example:

(i) the class F is the class of analytic functions of s- tuples of d-dimensicnal
Real vectors, 1 < s, that have d- dimensional vector values;

(i1) the class F consists of d-dimensional vector-valued continuous functions
that have as variables d-dimensional Real vectors.

Because one of the limitations on computational powers of human beings
(and also, perhaps less significantly, of machines) is a bound on the number of
variables that can be attended to simultaneously, we often distinguish for special
attention a parameter, r, that may be implicit in the specification of the class F
of elementary functions. The parameter r 1s a positive integer, and represents
the number of variables (d-dimensicnal real vectors) that can be arguments of
a function in F. When this assumption is made, the number of 1puts s of a
module is subject to the restriction 1 < s < r. When this assumption is made,
we speak of an (r.d}-network with modules in F.

An example is useful. The diagram in Figure 1 represents a (2,1)- network
C. The class F¢ of functions used in the network consists of four functions of
the two Real variables A and B;

Fe={A+ B.AB, 4/B, Identity function}.

Each vertex of the digraph that represents C is denoted by a box with a label
that represents the function assigned to that vertex. The vertices are labeled
with upper case letters (rather than lower case) identifying the modules; Ly and
L4 are the input vertices of the network, while the output vertex of the network
1s labeled F3. Each arc of the digraph is labeled by a letter. We use the same
labeling for a variable and for the arc that indicates the assignment made by
the interconnection rule,
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Figure 1

We consider next how an F-network computes. Ve have assume that the
output of a module f appears one unit of time after it receives its inputs. The
state of an F-nelwork is an array whose entries are the state of each of the
modules of the network in some prescribed order. We assume that the network
is initially in some fixed state ¢. A network with s input lines that is in state o’
acts on each s-tuple placed on the s input lines. If an s-tuple of values is placed
on the network input lines, the network will undergo a sequence of changes of
state over time. We assume that when the s-tuple of values on the input lines
of the network is changed, the network returns to the fixed initial state o for
the start of the new computation. As long as the values of the s-tuple on the
network input lines remains unchanged, the values produced by the network at
the network output vertices at the end of any interval of time are functions of
the s- tuple on the network input lines.

As an example, we return to the diagram in Figure 1. Assume that in
the initial state o, the vertices Ly, La, F1. Fa, F3 have the values 0,0,0,1,0,
respectively. We represent the initial state o by the row matrix

(00010).
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Table 1

Table 1 shows the sequence of changes of state over time as the network C
compuies. Table 1 can be read as follows. The entry 0 in the column labeled
F1 and the row o is the state of Fy in the initial state ¢ of the network. The
second row of the Table | indicates the new state of the network at time t = 0.
At that time, the input lines of the network are changed to the state in which
input vertex L; has state x and input vertex Lo has state y, i.e., the values x
and y arc placed on the respective input lines at time 0. During the period from
t =0 to t = 1, the state of the network changes to a new state in which the state
of Fy is the value of the module F,{4, B) = AB. Since at t = 0 A has the value
x and B has the value 1. which is the initial state of the vertex Fo, it follows
that Fy changes to the state x at t = L.

After 4 units of time, when t — 4, starting from the tume that x and y were
first placed on the network input lines, the output line Fy, corresponding to the
module 5, carries the value

z(l+x+y)

e = T+ y)

and t = 4 is the earliest time at which this value appears on the output line
of the network. The network C is said to compute the function h in 4 units of
time.

Generally, as in the case of a finite M-P network (see Arbib {3]), an M-R
network € 1s said to compute a function F in time ! from wnitial state ¢ 1f t 1s the

carliest time for which it is the case that for each sequence of values (ay. ..., ap)
assigned constantly to the network for t units of time, the value on the output
lines of the network at time t is the function value Fla;,....ap).

Complexity and computability

Let F be a class of modules. and let F be a given function. (It is understood
that F maps a product of d-dimensional Real vector spaces into a d-dimensional
Real vector space.) We may consider the class of all networks whose modules are
in F and ask for the minimum time such that a network in that class computes
F. That minimum time may or may not be finite.



If the time is not finite. we say the function F is not computable by a network
with modules in F.

If a network in that class does compute F in finite time, then the complexity
of F is the minimum over the class of networks of the time required to compute
F. (If that time is not uniform over the domain of F, then the complexity of F is
the minimum over the class of networks of the maximum time over the domain
of F.) Thus, it is clear that the complexity of a computation is relative to the
class of modules F.

Computing an encoded version of a function.

In many situations it is necessary to evaluate a function F whose domain or
range is not a subset of a FEuclidean space. The complexity of such a function
can be analyzed in the F-network model by converting the computation of F
into the computation of a function F* derived from F, whose domain and range
are acceptable to a network with modules in 7. The conversion is done using
a real variable version of the concept of computing an encoded version of a
function found in [3]. The idea is that the domain of the function is mapped
into a product of Euclidean spaces by encoding functions, and the range of
the function to be computed is embedded by one-to-one maps in a product of
Fuclidean spaces.

We also require that the encoding be done so as to preserve the product
structure of the domain of F. The reason for this requirement is to accommo-
date a situation often encountered in economic theory in which the value of
the function F describes some outcome for a group of agents each of whom is
characterized by individual parameters.

For example, the funetion F might describe the allocation of resources among
agents who are characterized by parameters. Then the domain of F is the prod-
uct of the agents’ parameter spaces, which of course need not be Euclidean. The
definition of encoding we use requires that the product structure be preserved,
i.e., the parameters of cach agent must be kept together and associated with
the relevant agent. The definition is the following.

Definition 1. Suppose that F : X1 x ... x X, — ¥ is a continuous function
from a product of topological spaces A; to a topological space Y. Suppose
V = R x...x R is a d-feld direct product of the Real numbers. We say
that an (r,d}-network € computes an encoded version of F in time t, if:

(a)there are Euclidean spaces £; (E; a w;-fold direct product of copies of V)
and continuous functions ¢; : \; — F;, 1 <i < n, and

(L) there are continucus functions hy, ..., hy where h; Y — V, such that
the following conditions are satisfied:

(i) h = (hy1,..., hy) is a bi-continuous one-to-one map to a topological
subspace of 1" x ... x V (h is an embedding),

(ii) there is a function D = (Dy, ..., D) : H'; FE,—V x ... xV from
(Zwyg)-fold tuples of d-vectors to b-fold tuples of d- vectors that € computes in



time t,
(iii} the following diagram commutes,

F

!
4

4\—1 X ... X ,\-n
H‘y.l lh:(hh Ay

Elx.. . xE, 22P0 DYy v

The maps g; encode the domain of F and the map h encodes the range of F.

Analyzing the complexity of a function

Consider next how to analyze the complexity of a function. Here we make ex-
plicit the restriction on the number of inputs that a module may have. (Without
such a restriction, if the class F of elementary functions is sufficiently inclusive,
an F-network with ene module would suffice to compute F. Thus, in this section,
we confine attention to (r,d)-networks with modules in F.

While, as we have just seen, the (2,1)-network in Figure 1 computes the
value of h In time 4, it also computes

z(1+ y)

Q(Isy): m

in time 3 and
k(r.y) =21+ )t +y)/(1+y+z(l+z+y))

in time 5. As this example illustrates, a given F-network can compute many
different functions, depending on the length of time the values on the input
lines of the network remain unchanged. The number of functions computed by
a given network can be arbitrarily large as time is allowed to increasc.

For this reason, given an (r,d)-network and a function that it computes in
time t, it is useful to construct another (r,d)-network that computes the given
function in time t, using the same modules as the original network, and that
computes the given function for all time after t.

Delooping

Suppose that C is an (r,d}-network with digraph G that computes a function
I in time t. Suppose that the value of F is a d-dimensional vector. In that case,
the network C has one output line. For simplicity suppose d = 1. Consider the
special case in which the network G is a connected tree T with a single root
to which each vertex can be connected by a sequence of arcs (directed edges)
where for each arc in the sequence, except for the first, the beginning point is the
endpoint of the previous arc. By a free we mean a digraph without loops, even
when the direction of edges is ignored. In the parlance of graph theory, each
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vertex of the tree can be connected to the root by a directed walk. The length
of a directed walk, i.e., of a sequence of arcs connecting a vertex to the root, is
the number of ares in the sequence. The maximum over the set of vertices in
the tree of directed walks from a vertex to the root is the length of the iree.

It is a relatively easy task to show that if a function F can be computed by an
(r,d)-network in time t using a finite subset F* of F, then one can construct an
(r,d)-network whose directed graph is a tree, computes F in time t, and where
the modules assigned to the vertices of the tree are either elements of F°, or
are identity Tunctions. The details of the delooping procedure can be found in
M-R [17].

The (2,1)-network shown in Figure 2 constructed by this procedure computes
in 4 units of time the function h also computed by the (2,1)-network shown in
Figure 1 1n 4 units of time.

Figure 2
Superpositions

A network that is represented by a connected tree with a single root computes
functions that are superposilions of the functions in F, L.e. superpositions of
functions that are the modules of the network. The depth of the superposition,
i.e., the number of levels of functions used, is less than or cqual to the length of
the tree. Furthermore, if the network inputs are constantly on the input lines
for a time that exceeds the length of the tree, the network output is constant
for all times thereafter, and the depth of superposition is the length of the tree.



Thus, we see that the complerily of a function F relative to (r,d}-networks
with modules in the class F, is equivalent to the minimum depth t such that F
can be writlen as a superposition of funclions from the class F, with depth L.

The complexity of F relative to (r,d)-networks with modules in F, is related
to a classical problem in mathematics, namely, Hitbert’s Thirteenth Problem
(see [12]). The essential substance of the problem is to decide whether a given
function F of n variables can be written as a superposition of functions of fewer
than n variables from a given class. It is imnplicit in the literature that the depth
of the superposition expresses an intuitive notion of computational complexity.

When the functions in the superposition are restricted to be continuous and
have fewer variables than F, Arnold and Kolmogorov have shown ( c.f. [12]
p.168, [27] Introduction]) that F can always be written as a superposition of
continuous functions of fewer variables. Indeed they have shown that each
function of 1 variables can be written as a superposition of continuous functions
of twe variables. Furthermore the depth of the superposition is bounded above
by a function that depends only on the number of variables of F.

If, on the other hand, the functions used in the superposition are required
to have the same degree of smoothness as F, then it is known that in general
such a superposition representation cannot be guaranteed (c.f. {12], {27]).

Even if we reduce the class of functions and ask, as Hilbert did, whether an
arbitrary analvtic function of n variables, can be written as a superposition of
analytic functions of at most two variables, then an argument of Hilbert says
that the answer is No.

We may interpret these results as follows. The Kolmogorov and Arnold
results suggests that there are {00 many continuous functions of two variables,
and Hilbert’s argument suggests that there are {oo few power series in two
variables. Furthermore, in being too large, the class of continuous functions of
two variables includes many functions that it would strain credulity to regard
as elementary.

On the other hand real analytic functions of two variables can be considered
as extensions or idealizations of arithmetic operations, especially if we restrict
them to be truncated power scrics,

In any case, for the purpose of illustrating the analysis of complexity of
functions, we take the class F of elementaty functions to consist of power series
in two variables up to degree M. Specifically, we assume:

Al) F consists of real analytic functions (power series) in two variables,
truncated at degree M, with constant term identically 0, and linear term not
Zero;

A2) The functions to be computed, i.e., whose complexity is to be analyzed,
consist of real analytic functions of n variables that vanish at the origin. They
are to be computed only up to degree M.

Then, we say that a function F can be computed in time T to degree M if
it can be written, to degree M, as a superposition of length T of functions from
F, but not as a superposition of length T-1.

12



Are there conditions on the function F that inform us whether it can be
written as a superposition of length T of functions from F, but not as a su-
perposition of length T-17 And further, how can we construct a superposition
of length T for F, or equivalently, an (r,d)-network with modules in F that
computes F in time T7

For this informal presentation we restrict attention to representing I as a
superposition of analytic functions of two variables. (See M-R [17] for a more
general treatment.) Accordingly, throughout this discussion the function F and
the class of clementary functions F satisfy assumptions Al) and AZ) .

We use the following theorem, (Leontief [11] and Abelson [1].) We first state
the theorem for a function

F:R™"x R — R,

and then illustrate in a special case how it can be used. We suppose that E™
has coordinates z = (ry,...,&,,) and R® has coordinates y = {y1,---,¥m).In
order 1o state the theorem we define two matrices associated with the function
F. These are: )BH F(z:y) =

aFjox, O*F/0x,0yy ... O*F/0r,0ys
8F |0z, PF/or,dy ... B*F[8z,, 0y,
where 2 = (21,.... ZTm ), y="(y1,---¥n) and

2YBHF(y; x), is constructed by interchanging z and y in the construction of
the matrix BH F(z:y). B

The Leontief result {as used by Abelson [1]) implies: A necessary and suf-
ficient condition that a three times continucusly differentiable function F with
non-vanishing first partials can be written in the form G(A(z),y), where A
is a function with continuous first derivatives in a neighborhood of a point
(a.b),a = (a1..... am), b = (b).....by) is that the matrix BHF(z;y) has
rank at most 1. Abelson used this result to analyze the information trans-
fer of a multistage distributed computation of the function F. The function
F = H(A(2), B(y)) if and only if both matrices B F(z;y) and BHF(y;z)
have rank at most 1. (A complete proof can be found in Mount and Reiter [17]
or [18].)

Suppose further that in addition to satisfying the hypotheses of the theorem
F is a function of 2% variables, that the linear part of F depends on all 2%V
variables, and as assumed above F(0....,0)=0. It is easy to sce that the shortest
time in which F can possibly be computed is N. To see this, note that to compute
the linear combination of the 2% variables z; j = 0,.. ., 25 _ 1 that is the linear
part of F in minimal timme, using (2,1)-modules in F, one should compute as
many of these as possible at the same time. This is done by the (2,1)-network
shown in Figure 3, a (2,1)- fan-in of length N.
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Figure 3

Now suppose that F can be computed up to degree M, (i.e., not just the linear
part of F), in the minimal time N. Then the graph of the (2,1}-network that
computes it must also be a fan-in of depth N. We need only specify the module
assigned to each vertex of the fan-in in order to specify the network completely,
i.e., to write F as a superposition of functions in F. We next show how to make
that assignment. The Leontief-Abelson theorem can then be applied to verify
that the assignment proposed can in fact be made.

Assigning modules to the vertices of the fan-in

We begin by labeling the vertices of the fan-in. This is done as follows. If
the vertex is a leaf, (an input vertex) then it is labeled with the index of the
variable that is input there. If the vertex is not an input vertex then it is labeled
with an ordered pair. There are two cases:

1) The two inputs to the vertex v come from vertices labeled {ij) and (k.l},
respectively, where i < k. Then the label attached to v is (i]);

2) The input lines of v are network input lines. Network input lines are
labeled by the variables they carry. Thus. the inputs to v arc the variables in an
adjacent pair (zs;, rsj41) for some jin 0, .. ., 2%-1 _ 1. In this case the vertex
v has the label (27.2)+1).

This labeling is illustrated in Figure 4 for N = 3. The leaves are labeled in
order from left to right,0,1,...,2% — 1= 0,1,....7. The vertex whose inputs
are zo and z; is labeled (0.1); the vertex whose inputs are the outputs of (0,1)
and (2.3) is labeled (0.3), and so on. (There is no ambiguity in this labeling
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scheme, because if a vertex has inputs from vertices (i,j} and (k.l), i < k implies
that (i,1) # (i, j') for any vertex labelled (7, j").)

w\/ >/23 \[, \@
Y/

Figure 4

A function F computed by a (2,1)-network in minimal time determines the
modules of the network essentially uniquely. The qualification ‘essentially’ refers
to the fact that the modules are determined up to an equivalence relation,
according to which two functions are equivalent if they are the same except for
changes of variables in the domain and range. This is defined more explicitly
below. In the interest of clarity and to minimize notational complexity, we
illustrate the process of assigning modules for N = 3. and the tree in Figure 4.
We suppose that

F:R*—R,

where
F(Io, . ..,;L",')

is computed by a network whose tree is shown in Figure 4 with modules in F.
The module assigned to vertex (i,j) is denoted A ;). Consider first the ver-
tex (0,1), which has as inputs the variables ¢ and z,, and therefore is as-
signed the function A 1. Consider how the network evaluates F at the point
(2g,21,0...., .0}. Because the functions Ag; j, in I' have the property that

‘-11(,"]' ’[0 0] == 0,



it follows that at any vertex (i) such that i # 0, the output of the module
assigned to that vertex must be 0. Furthermore, at each vertex (0J), where
7 > 1, only the left input line carries a value different from 0. Thus, cach
module Aq jy where j > 1, acts like a (truncated) power series in one variable.
Therefore, the composition of the modules from A 3y to the module assigned
to the root, acts like a power series in one variable. Denote this composition
h(z) {not to be confused with the function h of Table 1.) Thus

R(z) = Ao 7){Ao,3y(2,0),0) (EL}.
Write F(Ig] 1‘1,0, ey 0) = F(grl)(l'g, .‘L‘l). Then
h(/dl(g‘l)(l'g\ l‘])) = F(l’,‘o, Xy, O, PN 0) = F(g’lj(l‘o, :L'l).

Simularly, for F(0,0,£2, 23,0, .. .. 0y = Fra.a)(x2, z3),

where,
g(2) = Apnldoal). 0] = h(=z).

The last equality is by equation (FE 1}). Therefore,

h{ Az 3)(22,23)) = Fiaz(zz, £3).

Le., the composition of the modules A ;) which is the function h works with
both Ao, and A(Q'g).

In the same way, the modules A(45, and A4 7) can be assigned by using
Fia5) and Fg 7y defined analogously.

Next, define new variables, y; ;, by

Yij = Apgslzi,z;) where(i, j) = (0,1},(2,3),(4,5), or(6.7),

and consider the network shown in Figure da.
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Figure 1a

The same process that was used to determine Ay 1y can be applied to the
determination of A 1, using the function

G(yo.a,y23) = Flzo, £y, 22,23,0,...,0),

where yo1 = Ao 1y(zo, #1) and yaz = A2 3)(72, Z3). The other modules in Figure
4a can be assigned in the same way.

Let us define an equivalence relation on real analytic functions of two real
variables as follows.

Two (real analytic) functions B(x.y) and C(x,y) are equivalent if therc are
nonsingular(have nonzero lincar terms) analytic functions u, k. 1 of one variable
such that

Bl y) = u(C(k(z), {(y).

The constructions illustrated in Figures 4 and 4a indicate that if the function F
can be computed by a superposition as in Figure 4, then the modules Ay ;) are
unique to within equivalence, i.e., they are equivalent to the functions Fi; ;.

We digress here to present a determination of the modules A ;; in Figure
4, that makes explicit use of the power series expressions for all the functions
involved, This material can be skipped by readers who find the foregoing suf-
ficiently explicit. We assume that M = 2, i.e, that I is to be computed up to
degree 2, and the modules are power series truncated at degree 2.

Then,

rd - o
Flro..... Y=Y gair + X _obiry + 282075207, i<iCi FiT)
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Using the power series for F and the modules Ay ;) we have,
: 2 2
Flonlzo, 1) = agro + arx; + boxy + biz7 + co1zoxy

A.n(zo, 21) = apzg + o1 + Boxzd + Bi7i + xo12021,
Apoay) = ooy + 561}2,
A (¥, 0) = apy’ + 37y”,
where,
y = agzg + a2y + Fozd + B + xa1%ox1,

2,29 ¢4 ) 2.2
¥ = agry+ 2apa gy + Ty,

and hence,
¥y = Apoa(2,0) = agplaeze + a1x; + ﬁoi‘g + .311"1“) + xm o1+

PRI 2.2
oy (agey + 2ega 2Ty + @y ry).

Using the expression for y'. and calculating y'2, we evaluate A 73(3',0) to
obtain,

2= Apny o)
= al(ahagro + aharzi + (ahde +aled)zd +
(apd + a'lﬂrf).rf + {agyo + 2alacar oz +

1 i 22 I\2 / 2.2

V((agae) zh + 2a0a(ag) rory + (agar ) 27).
Because the superposition we have obtained is required to compute Fig 1y .
i.e. because, for all {zg, 1),

1"{0‘1)(1'0,-31) =z,

we may equate coefficients of like terms, which yields the equations,

ay = agagag,

a; = agapai.

be = aflapde+alal)+ 36’(0600)2‘

by = af{ahd +ohal) 4 3 (ahar ) {E2)
cor = al{aly + 2alasa)) + 3y (2a0a;(af)?).
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These are five equations in nine unknowns. We specify the values of four of
the variables arbitrarily and solve for the remaining five. Thus, let

ah=al=al=g =1 (E3)
Then the equations (E2) reduce to
ag = au,
ay; — g,
bo = By + 20,
by =31 + 20?,
co1 = Xo1 +4apny.

or equivalently,

ap = ap
a, = a

B = bo—2a3 (F4)
S = b — 20%

Yor = co1 — dago.

Equations (E3) and (E4) determine the modules A g ;) for j=1.3,7. To verify
that these modules do in fact compute F(xo, £1.0,....0), we substitute from
(E3) and (E4) into (E1). Then the expression for z becomes

: = zoag 4 1yay + xi(bo — 2ad + 2a5)+

23y — 2a% + 2a}) + zori(col — dagm + aga;) =
2 9
agrg + agXo + bora + f}{.‘l"]' + cgrxpry =
Flzg,z1,0,...,0).

The process for determining the modules of the fan-in that computes F in
the general case yields the following information about the expression of F as a
superposition of functions in F. Looking first at the root of the tree for I, we
see that

I:(I‘U, .. .,.’Egh',l) =

H(F (20, ... Tans_1, 0, 0}, F(0,. .0, zyn—s, ..., Zox 1)),

where I is shorthand for A 51y,

The function F(zq,... a~v-1_1,0,...,0), or a function equivalent to it, is
computed in minimal time by the subtree whose root is the vertex (0, 2v-1_1).
Similarly the function F(0...., O.zon-1..... ra~_;). or a function equivalent
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to it, is computed in minimal time by the subiree whose root is the vertex
(2¥-1. 9% _ 1), In Figure 3 these are the subtrees with root (0,3) and {4,7)
respectively.

Recall that the Leontief-Abelson theorem gives necessary and sufficient con-
ditions for these computations. Therefore that theorem gives us two ways to
verify whether the computation indicated in Figure 2 can actually be carried
out, i.e., whether the functions involved exist.

We illustrate the application of the theorem in a simple example.

The function P to be computed gives the price as a function of the parameters
characterizing the agents in a two-person, two-good exchange economy in which
the utility functions of the agents are quasi-linear. Denoting these parameters
by (x.z) for agent 1 and (2', =) for agent 2. the function P is given by,

-1

r—ux
(See [16] p. 124 for the derivation of P.) The function P is to be computed by a
(2.1)-network whose inputs are the variables z, z, 2’| z' in some order. In order

to avoid singularity, we make a coordinate translation to coordinates R.5,T,U,
where

R=z—-1,5S=:T=<+1,0U0=7.

In the new coordinates

S+ U+ RU-ST

PR, STU) = ST R-T

Here the number of variables is 2% = 4, so that N = 2. Hence the minimal
(2.1)-network is a tree whose depth is 2. In terms of superpositions, if P is
computable in time 2, then there must exist real analytic functions A’, B and
' or A", B and €, defined on a neighborhood of the origin in 2%, such that
P can be written,

PR, S, T.U)Y= C[A(S,T), B(R.U)] (E3),

or

P(R.ST.U)=C"[A"(R ), B(S, )] (E6).

Consider the case in which P is given by equation {E5). The Leontief-Abelson
theorem states that a necessary condition for the existence of A’ B’ and C’
satisfving (E53) is that the matrix

8P atp o*P

ap _8*P a2
ET B]]}J S‘T‘le' 0000 = 35(0,0) R85 (0.0) d.Sc)b(0,0)
(0,0:0,0)
BT(0,0) @8ROT(0,0) BUFT(0,0)
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have rank at most 1. But P. being real analytic, can be written in power series
in the form

P=(S+U+RU =TS (-1 (5 (T - RY) =
S+UWT-R
B+ OB 40,
where @ is a sum of monomials in R.S,T,U of degree at least 3. Evaluating the
matrix in (ET) we see that

(%)[(S+ U+ RU-T5)+

=1
3
0

=

BHP(S T R. U000 = (

=
S’

which has rank 2.
We try next the possibility that

P(R.S.T.U)=C"A"(R.T), B"(5, 1))

In this case the matrix BHP has the form

apP ap &P

EYd fidad id a"g)
BHP(R.T:S, U)(o,o;o,o) — ( 85(0,0) aﬁ;aS(o,n) 8587 (0,0 _
BU(0,0) @R&C(0,0) 8T8l (0,0)

When evaluated as above, this matrix is

1oL
PO
4 9

which has rank 2. Thus, the necessary condition of the Leontief-Abelson con-
dition is not satisfied in either case. Therefore P cannot be computed in a
neighborhood of the origin by a {2,1)-network with real analytic modules in
less than 3 units of time from the inputs R.S.T,U. However, P clearly can be
computed from RS, T,U in 3 units of time.

o a3 —

Application of the F-network model in examples
Example I. Chernoff’s Faces

As a first example of the way in which humans and computers can interact to
analyze complex information, we give an example in which the class of functions
F used in the construction of an F-network contain functions that are easily
evaluated by humans, but so far have not been handled efficiently by computers.
Human beings are good at seeing patterns. The ability to see patterns seems
to depend on the structure and functioning of the human visual apparatus.
Consequently, this ability applies to patterns in the space, or space-time, that
the visual system evolved to function in, i.e. , in at most 3 or 4 dimensions.
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On the other hand, situations arise in which we would like to detect patterns
in high dimensional data, say observations represented by points in R*, for k
a positive integer much larger than 4. Computers are good at handling data
of high dimensionality. While there are algorithmic processes, such as diserim-
inant analysis or cluster analysis, for detecting patterns or regularities in some
cases, we do not have algorithms for recognizing patterns that do as well as
hurnans when restricted to low dimensions. Therefore, the idea of combining
the power of computers to manipulate data with the ability of humans to see
patterns is appealing. Indeed, the practice of making graphical representations
of data as a way of bringing to bear the hurnan visual system predates the elec-
tronic computer, and is widely used in physical. biological and social science
and mathematics, as will as in business and everyday affairs.

Chernoff [6] introduced the idea of combining human beings and computers
to detect patterns in a sample of observations of a relatively large number of
variables. Specifically, he introduced the graphical representation of multidi-
mensional data as cartoon faces drawn in two dimensions, and illustrated its
use by two examples. These are: (i) a set of 8 measurements made on each of
87 fossils, and (ii) a set of 53 observations of 12 variables taken from mineral
analysis of a 4,500 ft. core drilled from a Colorado mountain side.

The data are encoded as faces by a program that provides for up to 18
parameters that govern 18 features of a face. E.g., one variable determines the
horizontal distance between the eyes; another determines the height of the eyes:
another determines the curvature of the arc that forins the mouth, etc. If the
number of variables observed is k < 18, then 18-k variables are fixed at some
value and the remaining k variables determine the variable features of a face for
each point observed. The computer prints out the set of faces, and a human
being looks for a pattern in them. In the example with measurements made on
fossils, the pattern sought was a classification of the fossils into groups of similar
ones. In the second example, the observations were assumed to be gencrated by
a multivariate stochastic process, and the problem was to detect a point in the
time series of observations at which the process changed character.

Let

ScRE.S={z" ... 2"},

be the sample of observations, cach a k-dimensional point. Let
n:8— R?
be a correspondence, where
7](ri): yCRL,i=1,...n

is the subset of R° that constitutes the visual itnage encoding the observation
' ( Tt is implicit in this notation that distinet points of S are assumed to be
mapped to distinct subsets of /£2.) Thus, in Chernoff's first example, k=8, r' Is
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the vector of 8 measurements made on the i*? fossil, and y' is the cartoon face
that encodes those measurements.

Sinee the problem is to classify the fossils, we seek a partition of the set 5,
or correspondingly a partition of the set

Y={y', . .,¥"})

Because S has n elements, the number of non-empty subsets in a partition of S,
and a fortiori in a partition of Y, is a most n. Therefore a partition of S (or of
Y) can be represented by characteristic functions as follows. Let

{ [ {0. l}n

where

E=(&,....&) &S — {0, 1},

and define
Qi={reS|&x)=1}=&"(1)CS,

Then
Q = {Ql!"'er‘}

is a partition of S, where, possibly after a renumbering of the characteristic
functions, Q; is the i*" nonempty subset defined by £.
Similarly a partition
P: {P[....,P,-}

of Y is defined by characteristic functions
v Y — {0, 1},

where,
v={u.oxm) o Y — {001},
and
P={yeY|wuly=1=x"hcCY

An algorithm, such as a cluster analysis of S, would compute a (vectorial)
characteristic function &, using some class of elementary operations ¥ in a com-
putation representable by an F-network. On the other hand, a human being
looking at the set Y of faces encoding S would "compute x directly.” In that
case, even if there were no algorithm for performing the required analysis on S,
the function £ could be defined as in Figure 5, and incorporated into the set
F. However, the interpretation which equates depth of superposition with time
might be questionable if a long time were required for a person to make the
classification of faces.
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Figure 5

For our purposes here, Chernofl’s sccond example differs from the first only
in that the sets S and Y are ordered according to the time sequence of the
observations and the functions £ and y are step functions, with the step at the
point at which the stochastic process is deemed to change character.

Example II, Reading handwriting

Humans are very good at recognizing visual patterns, whereas that is often
a difficult task for a machine. An important example of a computation that
humans perform routinely and in many cases easily and that computers have
great difficulty with is reading of handwriting.

The phrase “reading handwriting” can mean several different things. For
example,

1) writing in non-cursive form.(i.e. print) the (Fnglish) expressions indicated
by the given sample of cursive script;

2) uttering the expressions indicated by the given sample of cursive script;

3) extracting the "meaning” encoded in the cursive writing sample.

The first of these, namely, the translation of cursive script into printed form
is still highly difficult, complex and even problematic for machines, as recent
experience with Apple’s Newton computer attests, while it is, of course routinely
performed by literate persons,(though not without error). For example, Jenny
reads aloud to Bob a postcard written {under conditions not favorable to good
penmanship) by their friend Mike while hiking in Yellowstone Park.

A more impressive example is the reading of physicians’ prescriptions by
pharmacists.

We focus on the task of translating cursive statements into printed state-
ments. Imagine a typesetter, a person or machine, who has before him (it} a
manuscript (cursive statement) and a font of type, and whose task is to produce
a sequence of type elements, ( upper and lower case letters, punctuation marks,
and spaces), that correctly translate the cursive manuscript into printed form.

A cursive writing sample is a plane 'curve’, a curve that may have discontinu-
ities, e.g., gaps between adjacent letters, due to the idiosyncrasies of handwriting
of a particular person, or the normal spaces between words; it may have isolated
points, e.g., the dot over the letter "i” or the full stop that marks the end of a
sentence; it may have crossing strokes, such as in the case of the letter 't’.

We may consider these curves to be concatenations of clements of a finite
dimensional space consisting of conceivable finite samples of cursive script of no
more than a given (unit) length. Thus we assume the writing to be constructed
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of some collection of curves capable of being represented by a subset of a finite
dimensional Euclidean space. Denote this space by C. (Other properties of
curves that can be cursive writing samples, such as being of bounded variation,
or having uniform upper and lower bounds on the height of letters could also be
considered.) The space C can be made into a topological space, for example, by
introducing a metric topology using a concept of the distance between curves
of finite length.

The space, T, of printed text consists of a null element, and all finite strings
over the alphabet made up of the clements of a font, such as the one referred to
in the preceding paragraph. It is a topological space with the discrete topology.

The act of reading a cursive statement may be represented by a {continuous)
function

p:C—T

Typically, this function will be many-to-one. Unreadable cursive samples
are mapped to the null element of T. ( If it is useful to do so, the function p
may be assumed to depend on the person who writes, as well as on the person
who reads, or boih}.

First, however, we consider how a machine might perform this act-read
a given cursive writing sample. The curve that constitutes a cursive writing
sample must be presented to the computer in a forin the computer can accept.
This may be done by a device like a scanner that converts the curve into a
string of symbols from the alphabet recognized by the computer, or perhaps by
a sensitive tablet on which the sample is written using some sort of stylus or
light pen. The result of either of these input devices is an encoded represenlaiion
of the curve. This may be as a graphic image, or an object specified by the
equations that define the curve as a locus in two-space, perhaps relative to
some given coordinate system. Another possibility, which however involves more
information, is to give the curve parametrically, by equations

ylt) = o2
<t to

where (x,y) denotes a point in the plane, and t is in the interval between ?; and
{5 in the Real line. This representation, or a discrete approximation to it, might
describe someone writing cursively on a sensitive tablet,

Given this input, the computer would require programs to process the input
into the ASCII code for the string of font symbols that constitute the output
desired. Because the task is a complex one for a computer, the program is likely
to be long and perhaps likely to produce incorrect results on many writing sam-
ples. (In the present discussion we may regard an incorrect result as equivalent
to infinite computing time, i.e., we would have to wait forever for the correct
result. A more satisfactory approach would be to measure the degree to which
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the output approximates the correct result, but this seems too complicated for
the present purpose.) The diagram in Figure 6 represents the situation.

In that diagram the function ¢ : € — R x ... x R!= is an encoding of the
elements of C, i.e., cursive statements, into elements of Rl' x ... x R'» (Note
that if the encoding is done by a device such as a scanner, the encoding may
depend on the position of the cursive statement on the screen of the device. In
that case the coding would not be unique unless the positioning of the cursive
sample is standardized. We may either assume that this i1s the case, or define
a set of transformations in the plane that leave the cursive sample invariant
except for position and define the encoding to be the same for any element of
the equivalence class so generated. Evaluating this equivalence relation describes
something humans do regularly in stabilizing the visual field; it is a complex
task for a machine.}

Furthermore, the function, a, in the diagram is an encoding of T in R x

. x R'". The ASCII code for alphanumeric characters is an example. (Here
the null element of T is mapped to any element of R x ... x Ri» that is not the
image of any character.) The inverse of the encoding a, performed by a device
such as a printer, would produce the final result, the translation of the cursive
writing sample into a printed writing sample.

B xR —2 R xx Rim

Figure 6

If the computer cannot read a cursive writing sample in one step, then the
function f, would not be elementary for that computer, i.e., not be in the set
F consisting of the operations that are elementary for that computer. There
would have to be a program written that computes f, from the inputs using the
operations that are clementary for that computer system.

The computation may be represented by an (r,d)-network with modules from
the class F. that computes f,. The complexity of f, is likely to be very high, if
indeed that function is at all computable relative to the modules in F.

If, for instance, the clementary operations consist of the arithmetic and
logical operations, then a program that can read handwriting is likely to be
long and involved, and the time required to compute F is likely to be long.

Consider next a person reading the cursive writing sample. The fact that a
person can read cursive script may be expressed by saying that the evaluation
of the function p is an elementary operation for that person. le., the person
does it immediately or directly without any apparent intermediate steps, taking
only a small {unit) interval of time per unit length of curve. Another way to
describe this is that we do not analyze the process into steps internal to the
readet.
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While the function p is clearly a representation of the act of reading cursive
writing, it is not in itself a useful model that meets the criteria stated above;
it does not yet connect with any other model of computation, nor does there
appear to be a way to use it in the analysis of economic models.

On the other hand, in modeling a person reading handwriting we may con-
sider the function p to be equivalent to the composition

alof,oe=p (E8)

in Figure 6. To say that a person can evaluate p in one unit of time can be
interpreted as saying that the composition (E8) can be evaluated in one unit
of time. This amounts to saying that the function f, cannot take more than
one unit of time. Hence it may be included as an elementary operation, i.e., a
member of F, in any application of the model in which a human being capable
of reading cursive writing is among the computational resources.

For example, at the local drug store there is a pharmacist who reads the
prescription form given to her by the customer, a form written by a physi-
cian in longhand. The pharmacist enters the prescription and other relevant
information into a desk-top computer by typing it on the keyboard. The com-
puter processes this input according to its internal program, a computation
representable by an (r.d)-network. The act of translating a unit length of the
handwritten prescription into type keys is elementary, and in the (r,d)-network
model is formally scamless with the rest of the computation.

Example 3. Perceptrons Play the Repeated Prisoners’ Dilemma

This example is taken from the work of In-Koo-Cho [8]. Game theorists
have taken account of limitations on the capabilities of players to calculate their
strategic behavior in repeated games, in particular, in the repeated prisoners’
dilemma. Some have done this by modeling a player as a finite state automaton
([20,21,22,23]). The number of states limits what the player can figure out. In a
closely related approach, the complexity of strategies has been studied by Kalai
and Stanford [10]. Cho studies the repeated prisoners’ dilemma using for players
a model based on the perceptron. This model allows Cho to impose limitations
on the capacity of a player to compute that are different from those imposed by
the finite state automaton. Although Cho does not introduce explicitly a formal
concept of complexity, his discussion makes it clear that he has a different idea of
complexity than that implicit in the automaton model. The difference lies in the
operations that are considered to be elementary. We describe his approach in
terms that allow it to be compared with the concept of complexity introduced
in the F- network model. In order to make the exposition self contained we
summarize Cho’s model. He considers the 2 x 2 game G, a prisoners’ dilemma,
in which the set of actions of player i (i = 1,2) is S; = {C, D}.

The set S = S; x Sy is the set of outcomes of the game G, and u;(s) is
player i’s pavoff when the outcome is s in S. In the supergame G obtained by
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repeating G infinitely many times, a history for the game played in period t +1
is

Rt = (s!, ..., s"),
where s/ € S, for j = 1,...,t. The set of all histories for time t +1 is H*, and
H =|J2, H is the set of all histories, where H° consists of the null history at

the beginning of the game.

A strategy f; for player i is a mapping from history to action in each period.
le.,

fi:H—=5,1=12

is a strategy for player i in G™. The set of all repeated game strategies for
player i 1s F;, and F = Fy x [ is the set of all strategy pairs. Let ct(f), be
the action of player i at time t prescribed by the strategy pair f in F, and let
' (f) = (e4(f), o4(f)). The payoff to player 1 in G* is

v, FF— R,

where !
vilf, f2) = liminfie (5 B, wilo' (D).

As pointed out above, Cho models the players as perceptrons. [See Weisbuch
[28] p.77 for a definition of perceptron. See also, Minsky, Marvin L. and Seymore
A. Papert [15], or [22]]

A perceptron, as described by Weisbuch, is a network with three layers; an
input layer, {called the refina by Weisbuch, and the sensory layer by Cho}, a
layer of assoctational units, and a decision layer. Because a perceptron has no
feedback, i.c., is free of loops, the graph of the network is a tree. Because the
output of the network is a single decision, the tree has a single root.

Cho’s approach is to model each player by a simple perceptron, thereby
limiting the set of strategies to those that are computable by such a perceptron;
he studies properties of the equilibria of the game when only strategies in the
restricted set are used.

In determining the restricted set of strategies he considers only two kinds of
networks, those with one layer, and the simplest two- layered ones. Therefore,
in this example we can confine our discussion to these perceptrons.

For a fixed t, for i = 1,2, the strategy f; maps H' into {C, D}. We may use
the encoding function e to encode histories as strings of 0's and 1’s. I.e. for all
t>0,

et HY — ({0,1} x {0, 1})".

Furthermore, for 1 = 1,2, the function

B : {C.D} — {0.1}

encodes S5; in 0's and 1's.
The following diagram applics the definition of a network computing an
encoded version of ff, where f! denotes the restriction of f; to H*.
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Figure 7

In Figure 7 the function Py, is the encoded version of f; computed by a
perceptron in the class admitted by Cho.

We describe the one and two-layer perceptrons considered by Cho in a way
that facilitates comparison with the concept of complexity introduced for F-
networks.

In the case of a one-layer perceptron. the network is as shown in Figure 8.

Yy e
R 2t

¢

&
at at

4!

Lt
v

Figure 8

In Figure 8 the inputs are binary variables z;, encoding a history . The
functions af associate a t-vector of real numbers to each encoded history of
length t. (We use a slightly different notation than dees Cho, who introduces
functions a; : S; — R, and applies them histories k' = (s',...,s") of length t,

component by component, so that
al(h’) - (al'(sl )! R a'i(st))'

This in effect makes «; a function from the set of all histories to the space
of all sequences of real numbers. The value a;(h') = (ai(s'),....ai(s")), is
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interpreted as being player i’s perception of the history A'. An example is
aij(sy =v] —uj(s) i#jVse{C, D},

where v* = (v}, v3) is any fixed individually rational payoff vector in the game.)

There may be several such perceptions. Because Cho considers only one-
layered and the simplest two-layered perceptrons, it is sufficient to consider just
two perception functions for each player, denoted a!* and alt.

The next layer of the perceptron consists of associative units, which, ac-
cording to Weisbuch, receive inputs from the units of the retina, in this case
the values of the functions «;. These inputs to the associative units are labeled
al,...,a' in Figure 8. Each associative unit (in Figure 8 there is just one such
unit) computes a fixed function denoted ', of these inputs. In Cho’s paper,
the function A’ is

E;F:l ay(s') + 1?

where A? is a number, the initial value.

The last layer consists of a single decision unit, labeled Y in Figure 8, which
accepts as input the outputs of the units of the preceding layer, labeled 2! in
Figure 8, and has as its output the value y*. The function Y is a Heaviside
function, ie., for v in R,

Y, : R —{0,1}

YU(Z)_{I fz2>v

0 otherwise

where,

(We sometimes omit the index v, especially when the Heaviside function is
the one for v = 0.) Thus. the value of 3*, the output of the decision unit is either
0,orl.

The perceptron in Figure 8 computes an encoded version of ff if

fi‘:B;o}"o‘4'onEoc'

or
Rty = Bi(Y (T _g ag(e"(R') + A))).

The perceptron itself is the superposition of the three functions, af, A, Y.
The composition
6! =Y oA oal,

is called a threshold automaton. [Weisbuch [28], p. 47]. If we take threshold
automata to be elementary functions, i.e., if we define the class F to consist
of all threshold automata, where t can take any positive integer value, af can
be any function from 0,1 to R', and Y any Heaviside function, then for every
t, the network constituting the perceptron, shown in Figure 9 has one layer.

le., for every t, the encoded version of f that it computes is expressed as a
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superposition of functions in F of depth 1. We may define this to mean that
the complexity of f; is L.

il
x! 3 It

gt

Figure 9

Cho also considers strategies generated by the simplest two-layer percep-
trons. These are shown in Figure 10, in the notation used for the one-layer
perceptron except where otherwise indicated.
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Figure 10
In Figure 10 the subscript i has been omitted, the functions a'* and a’! are
two different functions from {0, 1}f to R', and the function 4? denotes a linear
combination of its two arguments. Le,,

a

A = 3y

where 3! and 3% are real numbers.
The threshold automata in Figure 10 are

gt = Yod'oall
9;“ = Yodloal'. .
Bt = VoAl

Therefore, the network in Figure 10 can be written
0% (0}, 6%,

or shown as in Figure 11,
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Figure 11

It is clear that if an encoded version of a strategy ff is computed by a
network as in Figure 11, then it has complexity 2, as measured by the depth
of superposition of the elementary functions in the class of threshold automata
considered by Cho.

In defining the class of clementary functions. Cho may be interpreted to
have assumed that it is no more difficult for a player to add up, say, twenty
numbers than to add up ten numbers. A finite state automaton would assign
different complexity to these two addition problems.

Cho has also implicitly assumed that it is just as difficult for a player to
convert any finite history in the game to an equally long string of real numbers
as to convert any other history of different length, i.e.. he assumes that the
complexity of evaluating af is independent of t. This specification of the set
F of elementary functions places the networks shown in Figures 10 and 11
within the F-network model of computation in its general form. However,the
perceptrons of Cho are not (r,d)-networks for any fixed r and d.
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