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Abstract
SUBJECTIVE GAMES AND EQUILIBRIA

by Ehud Kalai and Ehud Lehrer

Applying the c;oncepts of Nash, Bayesian or correlated equilibrium to analysis
of strategic interaction, requires that players possess objective knowledge of the
game and opponents’ strategies. Such knowledge is often not available.

The proposed notions of subjective games, and subjective Nash and correlated
equilibria, replace unavailable objective knowledge by subjective assessments. When
playing such a game repeatedly, subjective optimizers will converge to a subjective
equilibrium. We apply this approach to some well known examples including a
single multi-arm bandit player, multi-person multi-arm bandit games, and repeated

Cournot oligopoly games.



1. Introduction

The notions of a subjective game and subjective equilibria, formulated in this
paper, model strategic interaction in uncertain complex dynamic environments. In
such situations, players often possess only partial knowledge of the game.
Therefore, classical game theoretic approaches, where a significant amount of
objective knowledge is assumed, are unrealistic, even for fully rational players.
Under the subjective approach, proposed in this paper, each individual player
replaces missing objective knowledge by subjective assessments, which he uses in
computing an optimal strategy. Following these subjectively optimal strategies, the
players eventually converge to a subjective equilibrium.

The proposed subjective model is drastically different from the Nash (1950)
and Harsanyi (1967) models. In Nash’s formulation, precise, detailed information,
like the set of opponents and their strategies, is assumed to be known to every
player. In Harsanyi’s extension of Nash to Bayesian games, each player assigns the
objective correct probability distribution to all conceivable games that may be
played, and within each such game he knows the set of opponents and their
strategies.

The subjective model departs from Nash and Harsanyi in two important ways.
First, players replace missing knowledge by subjective assessments which are not
assumed to be correct nor to coincide with each other’s. Second, an individual
player does not attempt to assess the complete game, i.e., nature’s moves, the set of
all possible opponents, and their strategies. He restricts himself to aggregate data
sufficient for computing his best strategy. In other words, the player views his
strategy choice in the game as a one person decision problem.

Nevertheless, the proposed subjective approach can be also thought of as an

extension of Nash or Harsanyi. When the subjective assessments of the players are
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sufficiently complete and coincide with the true game and chosen strategies, the
subjective equilibria proposed coincide with the corresponding (objective) Nash
equilibria.

To separate the objective and the subjective data, our model of an n-person
subjective game consists of two components. The first is a standard r-person
infinitely repeated stochastic-outcome game with discounted future payoffs and
partial monitoring. It describes the actual game that will be played, i.e. the real
strategies and information available to the individual players throughout the game,
as well as their payoff functions. However, since the players do not fully know this
real game, a second component describes their individual subjective conjectures
regarding payoff-relevant events in their own portion of the game.

These conjectures are described by each player through an individual

environment response function. Such a function assigns probabilities to all the

individual outcomes he may encounter in every stage of the game and for every
action he may take. In other words, it is the individual decision tree that he believes
to be encountering in the real game by the opponents strategies, whatever they may
be. Clearly, the real game and actual opponents’ strategies induce on him an
objective environment response function and it is unlikely that his subjective function
coincides with the objective one.

The real game and the vector of n subjective environment response functions
form the subjective game. A vector of n-strategies of the real game is subjectively
rational if each individual’s strategy is optimal relative to the individual’s subjective
environment response function. The vector is a subjective equilibrium if in addition
to being subjectively rational, it has a belief-confirmation property. That is, the
subjective probability assigned by a player to any event observable to him in the play

of the game coincides to the true probability induced by the real game and chosen



strategies.

Our convergence result gives a long run justification to the belief-confirmation
property. Assuming that the players start with subjectively rational strategies, under
sufficient conditions relating their beliefs with the truth, Bayesian updating will lead
them eventually to beliefs which are confirmed. In other words, they will converge
to a subjective equilibrium.

Before continuing with the general model, and its relationship to earlier
literature, we illustrate our approach and concepts through an n-person, infinitely-
repeated Cournot game with differentiated products. This game may be thought of
as a multi-product extension of the Porter (1983) model, used later by Green and
Porter (1984) and by Abreu, Pearce and Staccheti (1986).

At the beginning of every period, each of the n-producers decides on a non-
negative quantity of his own good to be produced for the coming period. For each
fixed n-vector of chosen production levels, there is a fixed probability distribution
determining a random vector of n individual prices for the n-producers. Each
producer is informed of his price realization, with which he can compute his period’s
profit. The game continues in this manner where, prior to every period, each
producer’s strategy may depend on his own history of past production levels and
realized prices. There is a high level of imperfect monitoring here since a player
sees only his own realized prices. But even if he saw the prices of others he may
still not be able to infer opponents’ quantities. The general model presented in the
body of the paper allows for a large variety of information systems, ranging from
perfect, full information to only learning one’s own payoff.

In order to explain and contrast the subjective approach with existing
objective ones, we consider the problem of determining an optimal strategy from a

producer’s viewpoint. The uncertainties faced by him are many. He must know the



market demand function. This demand function depends, however, on the
production levels of all his competitors. For this purpose he must identify all related
products. He must therefore know the competitors capable of producing these
related products, their production capabilities, their information structures, their
utility functions, etc. For example, a soft drink producer must have objective
knowledge regarding production possibilities, information systems, and strategies of
all other soft drink producers and of producers of related products--e.g., fruit juice,
milk, and their related products. A naive version of Nash approach will assume that
the player and all his opponents know major parameters of this complex game and
with this common knowledge somehow contemplate their way to one selected Nash
equilibrium.

The above assumption, that all the ingredients of the game are known, seems
non-realistic here. In order to improve it one may try to resort to Harsanyi’s
extension to Bayesian games. In this model the players consider all the possible
values of parameters of the above unknown game, and possess common knowledge
of the prior probability distribution by which nature selected the actual game played.
Within each possible game each player somehow selects a strategy which is best
response to the profile of strategies selected by all various types of his opponents in
all possible games. Thus by some process of contemplation players arrive to one
large vector of strategies, which is a Bayesian équilibrium of the giant game. This
concept seems even less realistic since it requires objective knowledge over a much
larger space. In addition, it stresses the rationality assumption to an unrealistic level
for modeling people’s behavior.

The subjective approach to the problem, which we proceed to describe now,
also makes non-realistic assumptions on the knowledge and rationality of the players.

However, it is less demanding than existing models and, in this sense, presents a



move in the right direction.

Rather than attempting to model the parameters of all potential producers of
related products, the subjective player will be assessing only the environment
response function, induced on him by the real game and real opponents. Such a
function specifies a probability distribution over the prices he may realize, in every
stage, and for every one of his production levels. Two facts are important to notice.
First, the real game and opponents’ strategies induce on him a real environment
response function which is usually unknown to him. Second, whatever the real game
and opponents’ strategies are, finding an optimal strategy in the game is equivalent
to finding an optimal strategy relative to the induced environment response function.
In other words, the environment response function summarizes all the payoff
relevant uncertainties of the game into a one person decision problem.

It follows that assessing the environment response function, instead of the
game and equilibrium strategies, involves no loss of generality. In addition, on
practical grounds, the environment response function may be easier to assess. It is
defined over a drastically smaller space. Moreover, many different games give rise
to the same environment response function and they may be considered as one.

The above analysis leads to the incorporation of the subjective environment
response functions into the formal model. A subjective version of our Cournot
game consists of the real repeated Cournot game, with an n-vector of subjective
environment response functions assessed by the individual players.

A vector of strategies in the above game is subjectively rational if each player
strategy, i.e., dynamic production plan, is optimal against his subjective environment
response function, i.e., his conjectured price responses to quantities produced by him
at different stages. In a subjective Nash equilibrium, he has belief-confirmation in

addition to the subjective optimization above. This means that, for his chosen



production levels, the subjective probabilities he assigns to realized prices coincide
with the objective probabilities, i.e., the ones generated by the competitors chosen
strategies in the actual market.

While the belief-confirmation condition just stated is non-realistic for
interactions that have just started, it is natural for long, ongoing interactions.
Indeed, our convergence result describes sufficient conditions under which subjective
optimizers must converge with time to play a subjective equilibrium. Due, however,
to the possibility of imperfect monitoring, the limit may be a subjective correlated
equilibrium (see Aumann (1974, 1987), Fudenberg and Tirole (1992), and Myerson
(1991)) rather than subjective Nash equilibrium. The past play that has lead them to
equilibrium turns out to serve as a natural, unavoidable correlation device (see
Lehrer (1991) for a study of this phenomenon). In our Cournot example,
dependencies in the stochastic realizations of past market prices serve as a device

correlating players’ future beliefs and strategies.

The need to distinguish subjective from objective knowledge in social
interaction is not new or unique to this paper. Our notion of subjective equilibrium
has its roots already in Van Hayek (1937). He proposes that, at equilibrium, “the
individual subjective sets of data correspond to the objective data, and. . .in
consequence the expectations in which plans were based are born out by the facts.”
Since Van Huyck, other economists have advocated and used such subjective
notions, see for example Hahn (1973).

Also the newer literature on game theory contains an increasing number of
concepts reducing the objective-knowledge assumed by Nash, and moving in the
direction of subjective equilibrium. Rationalizable equilibria, see Bernheim (1934)

and Pearce (1987), and the more recent Rubinstein and Wolinsky (1990)



rationalizable conjectural equilibria, are such examples. The notions most closely
related to the ones proposed here are by Battigalli (1987) (see also Battigalli and
Guaitoli (1988) and Battigalli, Gilli and Molinari (1992)), the self-confirming
equilibrium of Fudenberg and Levine (1993), and the earlier version of
subjective-equilibrium proposed in Kalai and Lehrer (1993a). Our convergcﬁce
result is closely related to earlier Bayesian learning papers, for example Jordan
(1991), Kalai and Lehrer (1993b).

The Notions of subjective Nash and subjective correlated equilibria proposed
here generalize the earlier concepts in several ways. First, unlike the model
proposed here, the papers just cited assume that the game is known and uncertainty
is restricted to opponents’ choice of strategies. Second, while some of the earlier
papers assumed perfect monitoring of opponent’s actions, the current paper does
not. As a consequence the resulting notion of subjective equilibrium is more
general. Also, our formal presentation of the concepts is developed through a
model of infinitely repeated imperfect-monitoring stochastic-outcome game, while
the earlier notions were defined on different classes. For example, self-confirming
equilibrium was developed for finitely repeated but general extensive form games. It
turns out however, that all the notions involved are natural enough and as a result,
the modification of the equilibrium concepts as we move from one class of games to
another, is fairly straightforward. We illustrate the formulation of subjective games

and equilibria for general extensive form games in Section 6.

In recent years, researchers have been making heavy use of Nash equilibria to
predict outcomes of social strategic interaction. An excellent example is modern
industrial organization theory. Such analysis is carried in two stages. First the

analyst formulates an abstract game describing the real situation. Then, assuming



that the same game is formulated by all the players, he computes its Nash equilibria
as the set possible outcomes.

More recently, however, researchers are more cautious in using the above
approach. It is recognized that Nash analysis is sensitive to the specification of the
game and, thus, its predictions are not robust when game formulation is subjective.
The problem is especially severe since it involves compounded lack of robustness
where players mutually rely on each other’s correct formulation. For example, if all
the players formulated the game correctly but all of them except player A thought
that player A’s model is different, it is likely to lead them to change their choice of
strategies. Worse yet, even at higher levels, the fact that player A believes that
another player, B, formulates differently, may cause a significant change of strategies
on the part of A’s opponents.

Under the subjective approach the robustness issue is less severe. Here, the
choice of a strategy by a player does not rely on game specifications of others, but is
allowed to depend on independent subjective primitives. Thus, the compounding
effect of non-robustness due to mutual reliance on correct specifications is
eliminated.

Naturally, eliminating the assumption of the common availability of objective
knowledge results in a significant reduction in prediction power. This is seen by the
fact that the set of subjective equilibrium of a given game 1s in general larger than
the set of Nash equilibria. We do not view this as a serious loss since we do not
think that there was a real prediction power in the first place, because of the
robustness issue.

We feel that a better prediction power can be obtained under the subjective
approach provided that the analyst collects more data about the subjective beliefs

players hold. The body of this paper contains such preliminary illustrations. For



example, when players believe that they are too small to affect market prices, the
resulting subjective equilibrium of a finite player Cournot game yields competitive
production. In another example, dealing with a homogeneous product dynamic
Cournot oligopoly game, correct individual subjective assessments of aggregate
market demand imply that subjective equilibrium yields the same behavior as
Cournot predicts.

The literature on learning in strategic interaction has exploded over the last
few years. It includes too large a number of bounded and myopic models to list
here, as well as a large number of rational learning papers. A very partial sample of
recent related rational-learning models includes Crawford and Heller (1990),
Monderer and Samet (1990), Nyarko (1991b), Vives (1992), Koutsougeras and
Yannelis (1993), Goyal and Janssen (1993), and Fujiwara—Grew (1993). Blume and
Easley (1992) and Jordan (1993) present excellent critical evaluations of this
approach. Also, a growing literature on strategic rational learning concentrating on
reputation and forgiveness aspects is emerging--see, for example, Cripps and Thomas
(1991), Schmidt (1991), and Watson (1992). These directions are especially
important since forgiving strategies invite experimentation, a phenomenon that may
create a coincidence of subjective with objective equilibria.

The present paper is also a direct contribution to the literature on players
who do not know their own utility functions, as in the case-based approach of Gilboa
and Schmeidler (1992). We discuss this after we study the multi-arm bandit
example.

Two interesting connections to explore are with subjective variants of the
Mertens and Zamir (1985) hierarchies of rationality model, as in Nyarko (1991a)
and El-Gamal (1992), and with a new literature on endogenous uncertainty in

economics, as in Chichilinksy (1992) and Kurz (1994). It seems that there should be
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close relationships between subjective optimization and equilibria to these other new
directions.

. A forthcoming paper, Part II, will study additional properties of subjective
equilibria. Among other issues, it will study: (a) general conditions under which
subjective and objective equilibria coincide, and (b) the effect of the discount factor

on experimentation with forgiving strategies.

2. Examples and Intuition

It is obvious that a subjective equilibrium may give rise to drastically different
outcomes than objective equilibrium. Even the well known repeated prisoners’
dilemma game with myopic players may be "solved." For example, if each player
believes that whenever he acts non-cooperatively he will be severely punished by an
outside force, his best response is to repeatedly act cooperatively. Thus, the two
players play the fully cooperative path as a response to their beliefs. Moreover, their
beliefs are not contradicted, since neither ever acts non-cooperatively to find out
that his fear of severe punishment was not founded.

Before we turn, however, to additional multi-person examples with less
"dramatic” beliefs, we start with the well known one person multi-arm bandit
problem (see Wittle (1982) for the general problem, and see Rothschild (1974), and
Banks and Sundanam (1993) for more recent references and economic applications).
It turns out to be a special, stationary case, of our general formulation. The need to

distinguish between subjective and objective equilibria becomes very clear here.

Example 2.1 (A Two-arm Bandit Game): The player in each period t = 1, 2, ..., has

to engage in one of two possible activities, L and R. (A special case where these

activities represent handles of two different slot machines motivates the name of this
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problem.) Each activity, L and R, has a stationary payoff distribution, []; and []g,
describing independent probabilities of realized payoffs when the corresponding
activity is used. The player’s goal is to maximize the expected present value of his
total payoff, discounted by some fixed parameter. Clearly, the optimal objective
solution is to repeatedly use the activity with the higher per-play expected value.
What makes the problem interesting is that the player may not know [];, []g,
or both. Instead, as he plays he observes payoffs generated by these distributions
according to the actions that he uses. So every time he chooses to use L he sees the
resulting payoff generated by []; , and the same for R. But in every period, before
making his choice, he knows the full history of his past choices and resulting payoffs.
In order to maximize his expected payoff, depending on his discount parameter and
subjective beliefs, it may pay him to experiment with both activities in order to learn
something about their payoff distribution. Clearly, higher discount factors,
representing more patient players in our conventions, lead to more experimentation,
even if some immediate payoffs may seem to be sacrificed. But the problem is
difficult and the question of how much and how to experiment depends in a fairly
complex way on the subjective beliefs. These are described by prior probability
distributions on sets of possible payoff distributions associated with each activity.
Suppose, for our example, that activity L generates payoffs of $0 or $2 with
equal probabilities, i.e., ]} (0) = [T} (2) = .5. Let’s also assume that the player
knows that. On the other hand, he does not know []; and assigns positive
probabilities AC and AB (AS + AB = 1) to it being one of two possible distributions
IIC and [[B. The "good” distribution [[C has T[° (2) = .6 and [J° (0) = 4, but the
"bad" distribution has HB (2) = 4 and IIB (0) = .6. The following scenarios give rise

to equilibria, or lack of such, of different types.
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Scenario 1: [l = HB, B is very high, and the player chooses to play repeatedly
activity L. This is an objectively optimal strategy, since he chooses the optimal
strategy against the true payoff distributions of the two machines. It is also
subjectively optimal since, for sufficiently high B, the best response is not to
experiment and to just use activity L. Notice also that the beliefs of the players will
remain the same throughout the play, since the only uncertainty is regarding [[g but
R is never used. In particular, the belief-confirmation property is satisfied. That is,
given his strategy, his assessment of probabilities of his actual future payoffs is
accurate. So his strategy with beliefs constitute also a subjective equilibrium. This is
despite the fact that his conjectures, regarding hypothetical payoffs under different

strategies, are not accurate.

Scenario 2: As before, ABis very high and the player uses repeatedly activity L, but
now the real payoff distribution [[g = HG The player is best responding to his
subjective beliefs, described by the high value of 2B, Moreover, since he always uses
activity L, he will never find out that his beliefs are very far from the truth. In this
scenario we are at a subjective equilibrium, which is not an objective equilibrium. If
the player knew that []g = HG he would not want to stay with the constant Jeft

strategy.

Scenario 3: AC is high, the player uses repeatedly activity R, but [Jg = HB. This is
obviously not an objectively optimal solution. But also subjective equilibrium fails.
While the player maximizes initially against his beliefs, with increasingly high
probability he will find out that his subjective beliefs are wrong, i.e., his posterior
beliefs on HB will converge to 1, and as a consequence would not stay with the

repeated use of activity R. In particular, belief-confirmation is violated here. The
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pelief that AC is high, together with the choice of always playing R, leads the player
to optimistic assessment regarding his realized future payoffs. However, in the
language of Van Huyck, his expectations will not be "born out by the facts" as he
keeps playing R.

The previous example with the three scenarios illustrates the relationships of
the different equilibria. Every objective equilibrium is a subjective one, when the
subjective assessments happen to coincide with the true distributions. Because then,
subjective and objective optimization are the same and belief confirmation is
unavoidable. However, when the subjective assessments are not accurate, as in
scenario 2, we may have a discrepancy. Thus, the set of subjective equilibria is really
larger. But, as scenario 3 illustrates, not all strategies and beliefs constitute
subjective equilibria.

In scenario 2 above, the discrepancy between subjective and objective
equilibria is due to the fact that the player does not "know the game" he is playing.
In this example, he does not know the payoff rules. When we move to multi-player
situations, different types of information imperfections may cause such discrepancies.
In the next example, even though both players fully know the game, imperfect
monitoring of each other’s actions brings about equilibria which are subjective but
not objective. We refer the reader to Fudenberg and Kreps (1988) and Fudenberg

and Levine (1993) for similar earlier examples.

Example 2.2 (Acting in the Dark): This symmetric 2-person game has two actions

for each player: r for rest and a for act.
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T a
I 0,0 0,1
a 1,0 -1, -1

A player choosing r is paid 0 regardless of his opponent choice. A player that
chooses a, on the other hand, is paid 1 if his opponent chooses r, but -1 if his
opponent chooses a too.

We assume that the two players choose their actions repeatedly and
simultaneously in the beginning of periods t = 1, 2, ... . However, in each period,
after the choices are made, each is only told his payoff, and is not told his
opponent’s choice. This means that, when he chooses to rest, he learns nothing
about his opponent’s choice. But when he chooses to act he learns, indirectly
through his payoff, his opponent’s choice.

We also assume that the players know all the information given above, 1Le.,
they have common knowledge of the game. The only uncertainty each faces is
regarding his opponent strategy.

Let A be the constant strategy of acting in each period and R be the constant
rest strategy. It is easy to see that (A, R) and (R, A) are objective Nash equilibria
of the repeated game with imperfect monitoring. These are equilibria because the
best reply to A is R and vice versa.

What about (R, R)? The first player may be playing R because he thinks that
player two is playing A. With the imperfect monitoring he never finds out that he is
wrong and playing R against the conjecture that the other is playing A is as justified
as playing R when the other player really plays A. So again we have a situation

where each player chooses a strategy, R in this case, which is a best response to his
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conjecture, that his opponent plays A, and what he observes does not contradict his
conjectures. In other words (R, R) is a subjective equilibrium, even though it is not
an objective Nash equilibrium.

Our next example is of a two player game. It illustrates several important
items. First, moving to correlation, it shows a subjective correlated equilibrium
which is not an objective correlated equilibrium of the same game. Second, it
illustrates the process of learning and converging, in one step here, to the subjective
correlated equilibrium. Finally, it illustrates the generality of a class of games we
allow in our model. In particular, our stage game can be viewed as a multi-person,

multi-arm bandit problem.

Example 2.3 (Winners and Losers Acting in the Dark): As in the previous example

we consider a two player game with each having to repeatedly choose between
resting (r) or acting (a), and each being informed only about his resulting payoffs.
Again, a player that rests receives a zero payoff and a player that acts, at a period
where his opponent rests, receives a payoff of 1. The above information is known to
both players. However, now when both players act, a random pair of payoffs will be

generated according to a fixed probability distribution [T, ,.

T a
r 0,0 0,1
a 1,0 Ha_a

We consider different scenarios that may arise depending on the beliefs and actual
payoff when both players choose to act.

We first restrict ourselves to the case where [], , can take on only two
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possible values: [[, , = HW’L or [[pa = TV, defined as follows.

T™:L (10, 1) = .99 and [[™'L (-1, 10) = .01. In other words, under J[™* player 2
is most likely to lose while player 1 is most likely to greatly enjoy "winning" the
conflict with player 2. Symmetrically, we define HL’W_ (10, -1) = .01 and

=W (-1, 10) = .99.

Scenario 1: A standard common knowledge game. Nature moves first and chooses
randomly with equal probability [T, , to equal HW’L or HL’W. The realized choice,
which is to be fixed now for the duration of the infinite game, is not revealed to the
players. However, following standard game theoretic analysis, we assume that all the
information above is common knowledge.

If the players are sufficiently patient, then each would want to learn if heis a
"frequent winner" or a "frequent loser” in order to continue playing the game
optimally. A reasonable Nash equilibrium of this Bayesian game has each player
experimenting by acting at the first stage. If he loses he stops acting forever, but if
he wins 1 or 10’s he acts again. (After a while the computation of equilibrium
becomes more complicated, since every time that he receives a 10 or a -1 he can
update his prior as to the underlying Ha,a being HW’L or HL'W. Like the one-arm
bandit problem, this is a relatively simple analysis. Once a player decides to rest at
some stage he receives no new information. Assuming therefore a "once-rest, rest-
forever" strategy, facilitates the computation of relatively simple equilibrium. We
choose not to complete this computation here, since it is tangential to the points we

wish to make.)

Scenario 2: Where both players are wrong and learn in one step to play a subjective

correlated equilibrium which is not objective. Suppose the players believe everything
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as in Scenario 1 and, therefore, choose Nash equilibrium strategies of the type
described there. But assume that they are both wrong in that the payoff distribution
of both acting, Ha,a, is really the random distribution HR, defined as follows.

TR (10, =1) = [IR (-1, 10) = []R (-1, -1) = 1/3. In other words, in each period when
they both act it is equally likely, independently of the past, that one would lose, the
other will win a lot, but also that they both lose.

Since both players choose to act in the first period, they will be paid according
to a random draw of HR. Therefore, there are three possible developments from
period two on. With 1/3 probability, the first draw is a (10, -1). Following this they
will each assign high subjective probability to ]'[a,a = HW'L, and will continue playing
the constant strategies (A, R). Similarly, with 1/3 probability they will be paid
(—1, 10), assign high probability to HL’W, and play (R, A). But also with 1/3
probability they will draw (-1, -1) in the first period. This will lead each player to
assign high probability to the distribution in which he is a loser and as a result the
pair of constant strategies (R, R) will be played.

So if we consider the game, starting from period two on, we have a correlated
strategy, assigning probabilities 1/3 to (R, A), to (A, R) and to (R, R).
Correspondingly, we have correlated beliefs where, with probability of 1/3 each, the
players respectively assign high subjective likelthoods to the payoff distribution being
(=Y, HL’W), (HW’L, HW’L) and (HL’W, HW’L). This is a subjective correlated
equilibrium, since after each period 1 outcome, the correlated strategies are best
response to the correlated beliefs and the induced subjective distributions on the
future play of the game coincide with the objective one.

Consider, for example, the initial message to be the draw (-1, -1). Now each
player believes that he has encountered an acting opponent in the first period.

Moreover, given that he lost (he does not, of course, even consider the possibility



18

that his opponent lost too) his updated posterior beliefs are that he is very likely a
frequent loser and he decides to stay out forever. Since both stay out forever, their
beliefs regarding their future payoffs in the game are accurate.

Since the actual expected payoffs of the action vector (a, a) are (2.66, 2.66),
the correlated strategies 1/3 on (A, R), 1/3 on (R, A) and 1/3 (R, R) are not a

correlated equilibrium of the real repeated game.

3. Subjective Equilibrium of a Single Decision Maker

We consider a player with a nonempty finite set of actions A, a countable set

of outcomes (consequences) C, and bounded a von Neumann-Morgenstern utility
function u: A X C - R

Dynamically, the player will choose actions al,az,... from A. In every period t,
after he chooses the action a', an outcome ct € C will be stochastically determined,
reported to him, and he will collect the payoff u(at,c‘). The player’s objective is to
maximize the present value of his expected utility discounted by a fixed parameter &,
0<A<l

The above formulation implicitly assumes that the player knows A, C, u and
A. What he does not know is the stochastic rule by which outcomes are generated.

Examples of such problems are numerous. We will analyze the multi-arm
bandit problem, where A represents a set of possible "arms" or activities to use,
¢ € C represents a stochastically generated payoff, and u(a,c) = c. The stochastic
choice of the outcome ¢ in this example will be stationary and its distribution will
depend entirely on the chosen a.

A more complex economic example concerns a producer in an oligopoly
whose action a' in each period t describes a chosen production level. Here, an

outcome c¢' describes his resulting market price. The stochastic determination of ct
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is a function of his production level at, the production choices of his competitors,
and a demand function which depends on the joint production vector plus a random
noise. Here we will not assume stationary determination of outcomes (prices) since
the competitors are likely to change their production levels as they too observe the
behavior of the market.

In the general formulation, the determination of outcomes is described by a

stochastic environment response function denoted by e. For every history of actions

t+1, e defines a

and outcomes, ht = (al,cl,...,at,ct), and for any t + 1 period action a
probability distribution over C. Formally, e|,, ..(c) denotes the probability that the
outcome c will be chosen after the play consisting of the history h! followed by the
action a!*1. Thus the above values must be nonnegative and sum to 1 over the
possible values of ¢ for any fixed htand a'*l. The unique empty history h is
allowed and thus €|y, describes the distribution of initial outcomes as a function of
every chosen initial action al. (When it does not create confusion, to simplify
notation we will omit some time-superscripts, e.g., write €|},.(c))-

If the player knows the environment response function e, his problem is to

choose a (behavior) strategy f to maximize the present value of his expected payoff

computed with the distribution generated by his strategy and e. Formally such a
strategy f assigns a probability distribution over the action set A for every history of
past actions and outcomes. Thus, f| (a) represents the probability that action a will
be chosen in period t + 1 if the player observed the history h'. Fixing ht,flht(a) must
sum to one as we vary a € A.

We choose not to restrict our analysis to pure strategies, where each f

assigns probability one to a single a € A. Such a restriction, even if not significant
for the one player case, would limit the scope of the analysis in the sections that

follow.
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To consider the expected present value of utility resulting from a strategy f,
we first must describe the underlying probability space. It consists of a set Z of
infinite play paths of the form z = (al,cl,az,cz,...). For a history ht, as described
above, we will abuse notation and let is also denote the cylinder set in Z, consisting
of all infinite play paths z whose initial t—period segment coincides with ht. As
usual, the o—algebra used for Z is the one generated by all cylinder sets ht and to
specify a probability on Z it suffices to assign consistent probabilities to all hYs.

We do this inductively in the usual way. Given a strategy f and an
environment reaction function e, we define uf’e(ho) = 1. For h'*1 described by ht
followed by a'*1, c'*1, we define p¢ (b'*1) = 1, (MOF], (2% elpyeilct™)-

Now we can define utility functions for strategies. First, the utility assigned to
a play path z = (al,cl,az,c2,...) is computed by u(z) = X At~ lualch). The utility of
a strategy f and an environment reaction function e is computed to be u(f,e) =
[ u(2)dpg o(2).

As stated earlier, the player’s objective is to choose f that maximizes u(f.e).
However, since we assume that the player does not know e, he cannot solve the
above problem.

Taking a subjective approach, we assume that the player holds an
endogenously given subjective belief about the environment reaction function, €, and
that he chooses f to maximize u(f,€). But we do not assume that & coincides with e.

When this is the case we say that f is subjectively optimal relative to &. If fis

optimal relative to the "real” e we say that it is objectively optimal or just optimal.

Remark 3.1

A Beliefs Over a Set of Possible Environments. While in the above

formulation the player’s subjective belief is restricted to be a single environment
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reaction function it is really more general. For example, if the player assigned prior
probabilities q;,q,,-.,q, to a set of possible environment reaction functions &,,....&,
he could replace this belief system by a single equivalent belief function €. This is
done using the usual Bayes updating construction as, for example, in Kuhn’s (1953)
theorem. After every history h! one computes posterior probabilities qq»--.q, for the
environments €,,...,€, and assign probabilities to the next outcome according to the
€’s weighted with the updated posteriors. We do such a construction in our
example of a multi-arm bandit problem discussed later.

B. Imperfect Updating of Environmental Reactions. Updating posterior

beliefs, as described above, assumes a type of consistency and perfect rationality on
the beliefs of the player. However, the abstract formulation described by a single €,
which is a function that can be freely defined after every history, allows for more
general and imperfect updating. For example, a player with Bayesian posterior
probabilities, §y,...,4,,, can adjust some up and some down if he choose to put less

weight than the correct one on small probability posteriors.

The discrepancy between the real environment response function, e, and the
subjective one, €, may make the player alert to the fact that his assessment is wrong.
Given his choice of strategy f, his assessment of the stochastic evolution of his future
outcomes is given by Moo while the real evolution follows the distribution p¢.. If,
however, Bee = M then it is impossible for him to detect, even with sophisticated
statistical tests, that he is wrong. This is despite the fact that serious discrepancies
may exist between e and & These discrepancies, however, are non-observable under
his chosen strategy. With such discrepancies, even if f is subjectively optimal 1t may
be objectively suboptimal but the player could not determine that, and will have no

cause to change his assessment or his strategy. This gives rise to the following
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definition.

Definition 3.1: The strategy f with the environment reaction function e is a

subjective equilibrium relative to the belief € if the following two conditions hold.

1. Subjective-Optimization: f maximizes u(f,€), and

2. Belief-Confirmation: Bz = Poe

Remark 3.2 (Optimizing Implies Experimenting): Reflecting on the definition

above, a subjective equilibrium can be suboptimal because, and only because, its
assessment of outcome probabilities off the equilibrium play path is wrong. An
obvious remedy to such a deficiency is for the player to experiment, in order to learn
to the greatest extent possible, the off-path outcome probabilities. When and how
much to experiment are difficult questions. While under-experimentation may be
suboptimal, over-experimentation may also be so. Computing the optimal level of
experimentation requires knowledge of real distributions, which the player does not
possess. However, under the subjective approach, it is naturally incorporated into
his subjective optimization problem.

Consider, for example, a two-arm bandit player, with two competing-activities,
L and R, of Example 2.1. Suppose each activity has a stationary payoff distribution
II; and IOp. Assume for simplicity, as we did there, that the subjective beliefs are
accurate on left, fIL = 10, with expected utility of 1 for every use of L. On the
other hand, for R, the player believes that there are the two distributions 1B and
C, one of which was drawn initially with probabilities .90 and .10, respectively.
Recall that the corresponding expected values are 0.8 and 1.2. By the law of large

numbers, sufficiently long use of R will reveal to the player whether 11° or TIB was
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drawn. Depending on his discount parameter, his subjective optimization will
determine the optimal experimentation strategy. If the future is important enough,
the ten percent chance that eventual generation of a payoff stream with expected
value of 1.2 in each period will dictate an initial experimentation period. But if
future payoffs are sufficiently unimportant, it would be subjectively suboptimal to
experiment.

The optimal strategy in the definition of subjective equilibrium above already
includes a subjectively optimal level of experimentation. The actual computation of

such optimal strategies is done using the well known Gittins index, see Wittle (1982).

We will see in the sequel that under a certain condition, relating the belief to
the truth, a subjective optimizer must converge eventually to a subjective
equilibrium. In any finite time, however, he may converge only to an e—subjective
equilibrium where the subjective distribution, Meo is only close to the objective one,
s To make this precise we must first discuss notions of closeness of distributions.

’

Definition 3.2: For a given € > 0 and two probability distributions, p and §i, we say

that i is e—close to p if for any event A, |p(A) — g(A)| S €.

Remark 3.3: Interpretations of Closeness of Distributions. We say that i is e—near

to p if there is an event Q, with ¢(Q) and {i(Q) = 1 — ¢, satisfying |1 — p(A)/E(A)]

< ¢ for every event A ¢ Q (we assume in the above that 0/0 = I).

As was shown in Kalai and Lehrer (1993c), the two notions, e—closeness and
e—nearness are asymptotically equivalent, i.e., by making the distributions
sufficiently close in one sense, we can force them to be as close as we wish in the

other sense. Thus, limit results, where we obtain eventual arbitrary closeness of two
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measures, are the same in both senses.

While the notion of e-closeness is easier to state, the notion of é—nearness is
more revealing. First notice that e—closeness says little on small probability events.
For example, we can have i(A) = 2u(A) and still have p be e—close to provided
that p(A) < /2. On the other hand, e—nearness shows that this can be the case but
not on events A ¢ Q. Within the large set Q the ratios of the probabilities must be
close to 1. This has important implications for conditional probabilities, which take
on special importance in models with infinite horizons.

Recall that our discussion of closeness of the measures fi and u is motivated
to capture the idea that a player believing i but observing events generated by p is
not likely to suspect that i is wrong. The notion of e-closeness captures this idea for
large events. Our player, however, after a long play is likely to observe small
probability events consisting of long chains of events. His forecast of future events
then will be obtained by assigning probability to future events conditional on having
observed low probability events. Thus, if our notion of closeness of p and p are
such that the conditional probabilities they generate remain close, then the player
using {i is not likely to suspect his {i even in the far future.

e-nearness, and thus its asymptotically equivalent notion of e-closeness, fulfills

this property to a large extent. Since

p(A|B) _ (A and B) i(B)
i(A|B) {i(A and B) u(B)’

we can deduce that if A and B are events in Q, no matter how small, then closeness
to 1 of the two factors in the right side implies closeness of the conditional

probabilities in the left side.
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Definition 3.3: Given € > 0, a strategy f, and environments e and €, we say that f is

an e—subjective equilibrium in the environment e relative to & if the following two

conditions hold:

1. Subjective Optimization: f maximizes u(f,€), and

2. e-Belief-Confirmation: . . is e-close to p¢..

Convergence of a subjectively optimal strategy to a subjective equilibrium is
not guaranteed in general but is true under sufficient conditions of compatibility of
the beliefs with the truth. The relationships between notions of compatibility,
notions of convergence, and alternative notions of e-subjective equilibrium, involve
detailed mathematical analysis. To proceed with the presentation of the subjective
approach, we present one such notion of compatibility that works well with our
notion of e-closeness (or e-nearness) as defined above. For alternative concepts we

refer the reader to Lehrer and Smorodinsky (1993).

Definition 3.4: We say that the subjective evolution described by (f,€) is compatible

with the one generated by (f,e) if the distribution pg is absolutely continuous with

respect to Bee Bz > Heoo This means that for every event A,

Pe(A) > 0 => p(A) > 0.

In other words, events considered impossible according to the subjective belief of the
agent, i.e., having subjective probability zero, are really impossible, i.e., they have
objective zero probability.

Our goal is to show that after a sufficiently long time T, a subjective optimizer

will play essentially an e-subjective equilibrium for arbitrarily small e. To make this
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formal we need to describe the environment response functions and strategies

induced on the "new" problem starting from time T on.

Definition 3.5: Let e be an environment response function, f a strategy, and h a

history of length t. Define the environment response function e, and the strategy fy

induced by h by

e, |5, (©) = el (c) and
f.l;@ = f|z()-

The notation hh used above denotes the concatenation of the histories h and h,ie.,

the history whose length is the sum of the lengths of h and h obtained by starting

with the elements of h and continuing with the elements of h.

Theorem 3.1: Let f be a subjectively optimal strategy relative to € in the
environment e, and assume that (f,€) is compatible with (f.€). For every e > 0 there
is a time T such that with probability greater than 1 — ¢, f, is an e-subjective
equilibrium in the environment e, relative to the beliefs € for every history h with
length greater than T.

The probability 1 — € in the statement of the theorem is the objective one,
computed by p¢..

The proof of the theorem follows immediately from the seminal "merging of
opinions” theorem in Blackwell and Dubins (1962) (see also Kalai and Lehrer

(1993¢) for extensions and alternative statements).

Example 3.1. The Multi-arm Bandit Problem
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In the general formulation, we think of A as any finite set of activities that
can be used repeatedly in periods t = 1,2,... . A countable set of outcomes C
consists of real numbers representing possible payoffs. For each activitya € A
there is a fixed probability distribution TI, over C with II,(c) describing the (past
independent) probability of the outcome ¢ being realized when the action a is taken.
The player’s goal is to choose a sequence of actions al,az,..., with each a! € A, that
will maximize the present value of his expected payoff. However, he does not know

t

the distributions, IIa’s, and whenever he uses the action a' at time t, he is told his

realized payoff, which was drawn according to 1, .. Naturally, he can use this and all

previous information before making his next choice, attl

In our general formulation, this example is modeled with A and C being
described as above, u(a,c) = c, and a stationary environment function
e|pa(c) = O,(c). Our player, not knowing the functions II but knowing the

stationary structure of the model, assumes that for every a, the distribution II, was

1

chosen from among m possible distributions II,,...,

)Ll

ar

07 with positive prior probabilities
ATl We assume that I, indeed equals Hgl for some j.

The subjective environment response function, €, is computed by the standard
method of Bayesian updating. First we compute inductively posterior probabilities
Aglh,j = 1,..,m, for every a and h. Initially, )| , = A}, And for a history of the
form h obtained by concatenating a history h with an action outcome pair (a,c)
lj-|E = ),J'.|h if a # a, and ;Lfi|E = ;Ua|h ni(c)/[z:i Ai;h Hia(c)] ifa =a. Then € is
defined by &y ,(c) = I; A4l ().

- Since we assumed above that IT, is assigned positive prior probability, for
every strategy f, () is compatible with (f.e). Thus by Theorem 3.1 for every € > 0
we can find a large enough time T such that with probability of at least 1 — € the

strategy and beliefs of the player from time T on constitute an e-subjective
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equilibrium.

Corollary 3.1: Suppose that the activities are strictly ranked by expected value, i.e.,
distinct objective expected values are generated by distinct activities, then for every
€ > 0 there is a time t such that with probability greater than 1 — € the subjectively

optimizing player described above will use only one activity from time t on.

Proof: We may assume without loss of generality that o is pure. (If ois a
subjectively optimal behavior strategy, we take a look at any pure strategy in the
support of 0.) We show that with probability 1 there is a (random) time t from
which on ¢ prescribes playing one arm only. This certainly implies the coroliary.

Assume to the contrary that there exists an event, R, with positive probability
such that on every infinite history h € R there are infinitely many truncations of
h,ht, after which o uses at least two arms. We denote by g, the continuation of ¢
after the finite history h'.

From Theorem 3.1, we deduce that on almost every h € R, o is a
8,—subjective equilibrium, where 5, — 0. We take one h € R and consider the
sequence of times t such that ¢ , prescribes the arm a, first and g, ., prescribes the

arm a, (a; # a,) first. We proceed by the following lemma to the contradiction.

Lemma 1: Let o, be a §;-subjective equilibrium, where §, — 0, then any limit of

o,(t = ) is a subjective equilibrium.

Proof: Clearly, every limit of o, is optimal against the limit of the corresponding

beliefs and moreover, confirms this limit belief. //
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Lemma 2: If & is a subjective equilibrium in the set -up of Corollary 3.1, it uses only

one arm, with probability 1.

Proof: Let A’ be the set of those arms used with a positive probability under &.
Since & is subjectively optimal in the grand game (with the full set of arms, A), it is
also subjectively optimal in the reduced game (with A’ only). As & is subjective
equilibrium with A it is an objective equilibrium with A’ (simply because there is a
full knowledge about the expected payoffs of all the arms available, A’).

However, as an objective equilibrium, & should prescribe using only one arm,

the best one. //

Returning to the proof of the corollary, recall that o is pure, that ¢,
prescribes the arm a; and that ¢ ,, prescribes the arm a,. Denote by witl the
outcome that forms with the history h!, the longer history, ht+!, (e, ht*1 s the

*1 and

concatenation of h' and wH'l.) Since there exist only finitely many w!
infinitely many t, we may assume that all the w*1 are the same. As the probability
to get witl by using the arm a, is stationary, say, p > 0, we deduce that g,
prescribes using the arm a, at the second stage with probability p. Therefore, any
limit of oy, &, assigns to two arms a; and to a, positive probabilities. By Lemma 1, &

is a subjective equilibrium which contradicts Lemma 2. //

Remark 3.4 (Players who do not know their own utilities): Learning one’s own
utility function is an important problem in decision theory--see, for example, Gilboa
and Schmeidler (1992) for a new approach and recent references. [t deals with a
player that can choose repeatedly activities a from a set A but does not know his

own utility function u(a). Our general formulation assumes that the player has a
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known utility function, u(a,c), defined on actions and their consequence. However,
it includes the case of not knowing a function u(a) as a special case. To illustrate

this point, observe that not knowing your own utility can be viewed as a special case
of the multi-arm bandit problem with the set C representing numerical payoffs, and

the unknown II,(c) assigning probability one to ¢ = u(a).

4. Multi-Person Subjective Equilibria

4.1 The Repeated Stochastic-Outcome Game

We now assume that there are n—players, n = 1, each having a finite set of
actions A;, a countable set of outcomes Ci, a utility function u; A; X Ci — R,and a
discount parameter i;. Also, as before, each players knows his individual data
above, and would like to choose a sequence of actions, al,az,..., to maximize the
present value of his expected utility. But, again, he does not know the rule of how
his actions affect his outcomes, i.e., his environment response function.

Taking the approach of the previous section, we could assume that each
individual starts with a subjective belief about his environment, described by an g,
chooses an optimal strategy f; relative to &;, and conclude that eventually each player
will play a subjective equilibrium. However, we are now interested in the long term
interactive equilibrium behavior of the players, and for that purpose we must first be
more explicit about how the actions of one player enter the environment function of
another.

We describe these cross affects by a collection of probability distributions, I,

defined for every action vector a € A = X; A;. More precisely, II,(c) denotes the

probability that the outcome vector ¢ € C = X; C; be realized if the vector of

actions a is taken. Thus, for a fixed i, the above quantities must sum to 1 as we vary

¢. Notice that the distributions IT, together with the action sets A, and the utility
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function u, fully determine an n—person stage game, G. In this game, for every
action vector a, player i’s (expected) utility is computed to be ua) = ¥,

u;(a;,c),(c). We refer to such a game as a stochastic-outcome game.

The above game will be played repeatedly as follows. In every period
= 1,2,... each player, being informed of his past actions and realized outcomes, will
choose action a% € A;. Then, based on the vector of choices, a!, nature will choose a
vector of outcomes ¢! € C according to the distribution II,. Player i will be

informed of his own outcome, c%, will collect the payoff ui(a%,cg), and will proceed to

choose ati+1, and so on. Overall individual payoffs will be computed to be the
present value of the total expected utility discounted by the individual discount

parameters, A;. We denote the infinitely repeated game described above by G”.

Example 4.1.1: A Cournot Game with Differentiated Products. We assume that

each of the n players is a producer of a certain good, with A; denoting the set of his
possible period production levels. Now C; describes a set of period market prices
producer i may realize. Thus, for every vector of production levels a € A, 11 (p)
describes the probability of the vector of individua! prices p = (py,....p;,) being
realized. The utility of player i is defined as usual by his resulting revenue minus
cost, a;p; — g;(a;), with g; denoting his production cost function. Thus, in each
period the player knows his previous production levels and prices, and based on this
knowledge he chooses his next production level.

When all producers produce a homogeneous product, and face the same

market price, we model the situation by restricting the support of each I, to p’s with

pl = pz = ..= pﬂ'

Remark 4.1.1: Imperfect Versus Perfect Monitoring. While our general
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formulation, with each player being informed only of his own realized actions and

outcomes, describes imperfect monitoring and other types of information

imperfection, it includes as special cases games with more monitoring and common

information. For example, perfect monitoring in the Cournot example above could

be specified by letting each player’s reported outcome, c; = (ay,...,a,,p;). So the

outcome reported to player i includes all the production levels but only his realized

price. Full common knowledge of histories can be modeled by letting individually

reported outcomes include all production levels and all realized prices, i.e.,¢; = (ay,...,ap, P1sPp)-
Regardless of how the c;’s and II are defined, however, under the convention

that a player knows all his previous realized actions and outcomes before choosing

his next action, our games always have perfect recall in Kuhn’s (1953) sense.

Our general subjective approach will assume that there is a real "objective
game,” G” as defined above, being played. We will depart, however, from the
traditional game theory assumption that the players know the game. Instead we will
define the notion of a subjective game to include the objective game and the beliefs
of the individual players. Such subjective beliefs will be modeled by subjective
environment response functions as defined in the previous section. It will ease the
exposition, however, if we first review and establish the notations needed for the
objective notions of Nash and correlated equilibria.

Formally, we define a history of length t, h!, to consist of a vector

(al,cl,...,at,ct) where each al € A and ¢! € C. An individual player history

ht = (a1 c},...,a%,cti) with each a];E A; and c3; = Ci' A play pathz = (al,cl,az, cz,...)
and it induces finite histories h' and finite individual histories h% by taking
projections to the first t elements and then taking projections to the i—th

component.
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A strategy of player i is a function f; describing the probability that he takes a
specified action after a specific history. Formally, filhi(ai) denotes the probability
that he would choose action a; after observing his individual history h;.

Following standard game theory, one defines the utility function u(f) for

every strategy vector f = (fj,...f;)), and a Nash equilibrium to be a vector f* with

each f} maximizing ui(f:i,fi). (Here and elsewhere, f_; denotes a vector of
strategies of all players but i where (f:i,fi) denotes the vector where all players but i
play their star strategy but i plays f;.) To define the (expected) utility functions one
needs to first establish the probability space describing the possible plays of the
game.

We let Z denote the set of (infinite) play paths, and as before we let ht
denote a history of a finite length t but also the cylinder set defined by it. Given a
strategy vector f we define the probability distribution it induces on finite histories,
pg inductively. For the empty history pf(ho) = 1, and assuming that p¢ was defined

for all histories of length t, we define it for histories h of length t + 1 by

pe(hac) = pdh) X; fi]h(ai)ﬂa(c).

Since the above construction defines consistent probabilities for all cylinder sets it
defines the distribution p on the set of play paths.

Now for every play path z = (al,cl,az,cz,...) we define uy(z) = Zt Ag_lui(ati,c}
and for a vector of strategies f we define u,(f) = [ uj(z)dpg2)-

Often the strategies of the players in the repeated game are correlated since

their choice depends on correlated past individual messages. Formally, such a

correlation device is described by two components. First is a nonempty countable

set of message vectors, M = X; M;, with each M, denoting the set of player i's
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messages. The second component is a probability distribution p defined on M.

A vector of correlated strategies, f = (fl’""fn) for the game G®, is defined by

amending a correlation device to the beginning of the game. This is done by
replacing the unique empty history by all possible elements m € M and allowing a
player’s strategy to depend on his reported initial message m;. Formally, a history of

"length zero" is now any element of M, history of length t is of the form

(m,al,cl,...,at,ct) and a play path z = (m,al,cl,az,c2,...). Individual histories are

described as before by projecting to the player’s component. So an individual

1.1

history of player i is a vector of the form (mi,ai,ci,...,ag,cb. Now a vector of

correlated strategies f = (fl,...,fn) has each f; describe a distribution over player i’s
actions for every individual history with an initial individual message. In other

words, it is a vector of standard behavior strategies for the game with the initial

correlation device, the correlated game, (M,P,G™).

The utility of player i is computed as before to be his expected present value
where the probability distribution on the expanded Z includes the initial distribution
p. Thus we only need to modify the distribution over length zero histories by
defining p(m) = p(m). The probability of longer histories are defined inductively as
before.

A vector of correlated strategies, f, is a correlated equilibrium of G% ifitisa

Nash equilibrium of the correlated game (M,p,G™) as defined above, for some
correlation device (M,p).

As in the previous section, we will be interested in the play of the repeated
game starting after a long time T. In the "new" game correlation cannot be ruled
out since each player strategy from time T on, may depend on his outcomes up to
time T. And, in general, these outcomes are correlated.

Formally, given a vector of strategies for G®, f, and a positive integer T, we
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define the induced vector of correlated strategies f! = (fT,...f’rrl) as follows. M is the

set of length T histories and p is the distribution p restricted to M. Following a
history consisting of an initial message m; followed by h;, f'{ will randomize over A
with the same distribution that f; induced in the original game after the history

obtained by concatenating m; with h;.

Remark 4.1.2: Nash Equilibrium Induces Correlated Equilibrium in Later Games.

It is easy to see that if we start with a Nash equilibrium f, then fT as defined above
is only a correlated equilibrium of the repeated game starting at time T, see Lehrer
(1991). Thus, in general games with imperfect monitoring, Nash equilibrium
"deteriorates" to become only correlated equilibrium after time. This observation
has important implications for learning theories. It suggests that, in general, we can
at most hope to converge to correlated equilibrium.

Clearly, in the construction above, we could have started with a vector of
correlated equilibrium for G%, to conclude that it induces a correlated equilibrium

after any time T.

4.2 The Individual Environment Response Functions of the Repeated Game

In our stochastic-outcome games, to compute his best response strategy, a
player does not have to know the game or his co-players’ strategies. It suffices to
know his one person decision problem, induced by the game and their strategies.
This decision problem can be fully described by an environment response function as
described in Section 3. For example, in the oligopoly game of the previous section,
if a player knew his correct price distribution, after every history of play and for
every one of his production levels, he would not need to have any information about

his opponents and their strategies in order to compute his own optimal strategy.
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The above observation will be especially useful in the next section, where we
actually assume that the player does not know the game he is playing. But before
we turn to the equivalent subjective concept, we first describe formally the objective
notion.

We consider a repeated stochastic outcome game G® as in the previous
section, and a fixed player i. As in Section 3, an environment response function for
him, e;, describes a probability distribution over his (next) outcomes after every
history of play observed by him and an action chosen by him. More precisely,
ei'h,.,(ci) is the probability of his next outcome being c; after observing the individual
history h; and choosing the action a;.

When the opponents’ strategy vector, f_;, is known, the computation of the
induced environment function, e;, is straightforward. For every history of length t,
h;, action a;, and outcome c;, we choose a strategy f; for player i under which the
individual history h; followed by a; has positive probability (or simply let player i play
the actions of h; up to time t, then a;, and anything afterwards) and let p¢ be the
induced distribution on play paths. Then define eilh,a,(ci) to be the pg conditional
probability of c; being player i’s outcome at time t + 1, given the individually
observable play h.a;. If under the opponents’ strategies, h.a, is impossible, no matter
what strategy player i chooses, then e, Ihi‘i can be defined arbitrarily (since this
situation will not arise).

Following the discussion above, it is straightforward to conclude the following

equivalence.

Proposition 4.2.1: A vector of strategies f is a Nash equilibrium iff each player’s

strategy, fi, is optimal relative to his environment function, e, induced by f—i'
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Clearly, the above discussion and definitions are also applicable to correlated
versions of the repeated game, with an initial correlated device (M,p). In this case,
as before, each zero length history consists of a message vector m and all other
histories, individual or not, start with an initial message. Again, a correlated strategy
vector f is a correlated equilibrium if and only if each f; is a best response to the
individual environment functions induced by f_; (this is now in the game with initial
correlation).

Equivalently, one can discuss these notions on the strategies induced by initial
messages. For m;, a positive probability message for player i, let fm. and €m, be his

induced strategy and environment function after receiving the message m;

(fmilhi B f’lmthi and emilht‘i - eilmihi’l).

Proposition 4.2.2: A vector of correlated strategies in the game (M,p,G%) is a

correlated equilibrium if and only if for every player i and every positive probability

message m;, fm{ is optimal relative to e_.
i

Proposition 4.2.2 is identical to Proposition 4.2.1 with the exception that the
optimization is checked only after the zero length histories. Since the zero length
histories do not have any payoff, nor strategic choices, checking for optimal behavior

after them involves no loss of generality.

4.3  The Subjective Game and Equilibrium

In this section we assume that a real game, G* as defined before, will be
played, but that the players do not necessarily have full knowledge of the game. We
assume that they each know his own components, i.e., feasible actions, possible

consequences, and utility functions. But we do not assume that each player knows
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his opponents’ possible strategies and utility functions. He may not even know who
his opponents are and how many of them may be playing.

We model such a situation by assuming that each player holds a subjective
belief about his environment described by an environment response function, &, as
defined in the previous section. The player will choose a strategy f; to be optimal

relative to the subjective environment function &;. These choices, made by all n-

players, result in a vector of strategies f = (fy,...,f;,), which, in turn, induce objective
environments €q,...€,. As we already discussed in Section 3, there is no reason to
assume that e; = € and if significant differences exist between the subjective and the
objective distributions induced by them, the player will observe that his assessments
are wrong, update his subjective beliefs, and modify his strategy.

However, an equilibrium situation can arise even if & # e;, provided that the
disagreements of the two functions are restricted to be after histories that are not
observable, i.e., have zero marginal probabilities. When this is the case for each
player, we are in a subjective equilibrium of the game.

To make this precise let Bee, and Beg, be, respectively, the objective and

subjective distributions induced on player i's play paths.

Definition 4.3.1: Letf = (fl,...,fn) be a vector of strategies, and € = (cl,...,en) be the

induced environment functions. Let € = (él,...,én) be a vector of subjective

environment response functions. The pair (f,€) is a subjective Nash equilibrium of

the game G if for each player i the following two conditions hold:

1. Subjective-Optimization: f;is an optimal response to &;;

2. Belief-Confirmation: Mo = Bog

The beliefs a player holds at the beginning of the game, as described by his
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subjective environment function €;, may depend on past stochastic observations.
This dependency was ignored in the single player model of Section 3 since it was
assumed that the choice of & already took this past experience into account.
However, in the multi-person case, if past observations of different players are
correlated, then it is useful to describe explicitly how they create correlation in the
individual belief functions.

We do this, as before, by amending a correlation device (M,p) to the

beginning of the game. The subjective correlated game will be described by the real

correlated game (M,p,G*) but together with beliefs which are message dependent.
Formally, for each player i and message m; let N describe a (subjective)

environment response function of G* conjectured by player i. We assume that each

player chooses a strategies f asa best response to each &_ These vectors of
1 i

individual choices result in a vector of individual strategies f = (fy,....f,)) in the game

with correlation. We let e, denote the real environment response function induced
i

by the vector f on player i, conditional on his initial message m;.

Definition 4.2: A subjective correlated equilibrium for G® consists of a correlation

device (M,p) as above, with a vector of strategies f = (f;,....f,) of (M,p,G”) and a
vector of (subjective) environment response functions € = (&,,...,€,,) satisfying for

each player i and message m; the following two conditions:

1. Subjective-Optimization: f is a best response to g . and
i ]
2. Correlated Belief-Confirmation: . = =y .
fmi'emi fml,cm’

Clearly, every Nash equilibrium is a subjective Nash equilibrium, with e; = €,
for all i and, similarly, every correlated equilibrium is a subjective correlated

equilibrium. However, the fact that the &’s may disagree with the e;’s off the play
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path, makes the set of subjective equilibria significantly larger than the
corresponding objective notions. Subjective Nash equilibria, which are not Nash
equilibria, could be of economic interest of their own, as can be seen in the

following example.

Example 4.2: Competitive Equilibrium is a Subjective Cournot Equilibrium With

Finitely Many Producers. Consider a homogeneous-product repeated Cournot

oligopoly game with n-identical producers. Each producer i has a constant marginal
production cost of $g/unit, with which he can produce any quantity a; at any of the
discrete times t = 1,2,... . The market price in each pefiod is deterministic and
linear, i.e., p = b - d X, a; for some positive b and d with b > g.

Consider a vector of production levels a* = (aI,...,a;) resulting in a
competitive market price p = g, i.e., a; = (b - g)/d. Suppose each player plays a
constant strategy f‘; which prescribes the constant production level a; after every
history. The vector of strategies f* = (f;,...,f;) is not a Nash equilibrium of the
repeated game since each firm i is making a zero profit which could be increased by
reducing production.

Nevertheless, the above production levels are supported by a subjective
equilibrium of the repeated game, if each of the finitely many players assumes that
he cannot affect the prices. For example, assume that the outcome reported to each
player at the end of each period consists of his own production level and realized
market price. Let each player hold beliefs described by the stationary subjective
environment response function éilh,al(g) = 1. That is he assumes that with
probability one the market price will be g regardless of past history of prices and
regardless of his production level. Clearly, producing a’; is a best response to such

€. Moreover, the price sequence (g.g,...) is assigned probability one by him and,
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indeed, it has probability one under f. So f confirms the beliefs & Thus, we are in a
subjective equilibrium.

It is easy to see in the above model that the only subjective equilibrium which
is stationary in actions and beliefs is the competitive one. Thus, the only stationary
subjective equilibrium in the Cournot game is the competitive one. This example
illustrates that, while subjective equilibrium by itself may allow many outcomes in a
game, in the presence of additional assumptions on beliefs it may lead to interesting
conclusions.

Notice that, in the above discussion, the stationarity of beliefs could be
significantly weakened provided that we keep each player believing that his actions
do not alter the price distribution. An interesting case of this type is when each

player believes that tomorrow’s price will be what today’s price was.

44 Convergence to Subjective Correlated Equilibrium

In the previous section we justified the notions of subjective Nash, and
subjective correlated, equilibrium by arguing that players, finding themselves at such
a situation, will have no reason to alter their beliefs or strategies. In this section we
present sufficient conditions under which utility-maximizing players must eventually
play a subjective correlated equilibrium.

Since the individual strategies, however, may not in general converge to a
stationary limit strategy, we will follow the same course as we did in the one person
case, Theorem 3.1. In other words, we will show that after sufficiently long finite

time they must play a subjective correlated e—equilibrium for arbitrarily small e.

Definition 4.4.1: Let (M,p,G™) be a correlated game, f a vector of correlated

strategies, € a vector of correlated subjective environment functions, and € > 0. We
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say that (f,€) is a subjective correlated e~equilibrium if the following conditions

hold.

1. Subjective-Optimization: For every player i and message m;, fm. isa

best response to €

2. Correlated e—Belief-Confirmation: With probability greater than

1 — €, a message vector m will be chosen with e being e—close to

my'

l‘"fc'

o"my

Before stating the convergence result we recall the terminology of Section 4.1.
Let f be a vector of strategies of G*, e be the induced vector of environment
response functions, & be a vector of (subjective) environment response functions, and
t a positive integer. The correlated game induced from time t is a correlated game
(Ht,ut,G™), with H' denoting all the possible histories of length t, and utis g
restricted to the events in H'. f!, e! and &' are the concepts induced on the
correlated game by the original game in the natural way, as already discussed.

We say that the players play a subjective correlated e—eguilibrium from time t

on (correlated on the past) if (t{,ét) is a subjective correlated e—equilibrium in the
game (H',p',G%).

Recalling the definition in Section 3, we say that (f;,€;) is compatible with
(fep) if p o is absolutely continuous with respect to Be e The following result is,
mathematically, an immediate consequence of the convergence result for the one

player case.

Theorem 4.4.1: Let f be a vector of strategies and € be a vector of subjective

environment functions. Suppose f and & satisfy the following two conditions for
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every player i:

1. Subjective Optimization: f; is a best response to €;, and

2. Beliefs Compatible with the Truth: (f;,€;) is compatible with (fj,e;).

Then for every € > 0 there is a time T such that from all times t on, with t = T, the

players play a subjective correlated e-equilibrium.

Remark 4.4.1; Starting with a Correlated Game. It is easy to see that Theorem

4.4.1 can be extended to the case that the original strategies were correlated. That
is, instead of playing G™ directly, the player starts at time zero with the observation
of some correlation device and choose their subjectively optimal strategies as best
response to beliefs which are message dependent. The conclusion, that they will
eventually play a subjective correlated equilibrium will be identical to the one in the

statement of the current Theorem 4.4.1.

5. Coincidence of Subjective and Objective Equilibria

The convergence theorem of the previous section illustrates conditions that
must lead the players to a subjective correlated equilibrium. The subjective notion
of equilibrium is, in most cases, more plausible than the objective counterpart, but it
entails a reduced prediction power. Since any player may hold his own individual
hypothesis that justifies his actions, an outside analyst who wants to predict future
outcomes must collect information about players’ subjective beliefs. The potential
contribution of subjective equilibrium to prediction power depends on the game and
on players’ beliefs. The preliminary examples given here illustrate situations, with

general conditions on beliefs, involving no loss of prediction power when compared
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to the objective equilibrium. That is, subjective and objective equilibrium predict the

same behavior.

5.1. Optimistic and Pessimistic Conjectures

In the multi-arm bandit example discussed above, the player does not know
the real distribution nature uses to determine his outcomes. A suboptimal arm may
be employed whenever the payoff of other arms are underestimated. In other
words, subjective equilibrium in this case is not an objective one, since pessimistic
conjectures regarding unused arms are held.

The same logic extends to multi-player games, as demonstrated in Example
2.2. It is natural to expect that, if we rule out pessimistic beliefs, the behavior
induced by a subjective equilibrium must coincide with the behavior induced by an
objective one. For this purpose, and later ones, we need to introduce the following
notions of equivalence of behavior.

Two strategy vectors f and g, of G* (or a correlated version of it in
(M,P,G™)), play like each other if the distributions they induce on the space play
paths, Z%, coincide, i.e., Be= By Notice that when this is the case, using any
statistical tools, none of the players could tell, after observing any initial segment of
play, or even after watching the infinite play, whether f or g was played. Moreover,
even an outside observer with the ability to perfectly monitor all players’ actions
could not distinguish between f and g. This is so because disagreements between f
and g can only occur off the play path, thus, with probability zero.

A weaker concept, to be used later on, is when two strategies f and f’ are

non-distineuispable to the plavers. This means, as in the notion of belief-

confirmation, that the marginal distributions, on the individual play paths of each

player, coincide. Formally, let e; and e; be player i’s environment response functions
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!

induced by f—i and f_i, respectively, we require that B = Bre: If f and {" are
non-distinguishable to the players, they induce the same marginal distributions on
each player’s payoff paths, and thus yield the same utility to each player. However,
an outsider with full monitoring power could observe events to which f and f' assign
different probability. Our present results use the stronger concept but the weaker
one can be used in other examples.

Let f be a vector of strategies of the infinite game, with or without
correlation, and let e; be the induced environment response function. We say that g

has optimistic conjectures relative to f if for every strategy g, u;(g.,€;) < u;(g;,€;)-

The following proposition states that whenever agents are optimistic, any

subjective equilibrium is an objective equilibrium.

Proposition 5.1: Let (f,&) be a subjective correlated (resp. Nash) equilibrium with

each € holding optimistic conjectures relative to f. Then f is a correlated (resp.

Nash) equilibrium.

Proof: Suppose to the contrary that f; is not optimal against the real e;. Therefore,
there exists a strategy g; of player i satisfying u;(g;,e;) > u;(f;,;). However, by the
optimistic conjecture assumption, u;(g;€;) = u(g;.€;). Moreover, since (f,€) is a
subjective equilibrium, u;(f;,e;) = u,(f;,€;). As we combine the first two inequalities
with the last equality we get uy(g;,€;) > u;(f;,€;), which contradicts the optimality of f;

against €. This concludes the proof. //

That each player holds subjective beliefs, an €;, with optimistic conjectures
relative to the actual play is a strong requirement. Yet without imposing some

conditions that make players’ conjectures realistic--or, better, yet, optimistic--one
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may sustain any behavior by a subjective equilibrium. However, the following
familiar economic model illustrates that, under some general assumptions, subjective

and objective equilibria generate the same behavior pattern.

Example 5.2. Subiective Cournot Equilibrium Plays Like Cournot Equilibrium: We

consider n-producers (players) of an identical product in a market with a commonly
known downward sloping demand function, D(s).

To fit our model, and to simplify the exposition, we make the following
assumptions. The set of outcomes, prices in this case, consists of all nonnegative
rationals. Thus, C; is a countable set for i = 1,...,n. Similarly, we let all players have
the same set of actions, feasible production levels, A; = {0,1,2,...}. We assume that
in each period the market price is established deterministicaily according to the
vector of production levels, a = (aI,...,an), byc = D(Z a;). We also assume for
simplicity that they each have a constant and positive marginal production costs, K.
So if in a given period a player produces at a level a; and the realized market price
(determined by all production levels) is ¢, his period net profit is a;c,a,K.

We let (M,P,G%) be the above game with some initial correlation device
(M,P) describing the distribution of information available to the players prior to the
start of the game. We assume that (£,€) is a subjective correlated equilibrium. Thus,
each fmi is a best response to émi and be e, = By, eo where €m, is the real
environment response function determined by the game and the other player’s
strategies, given m;, while Ch is the one induced by the subjective conjecture of i.

We assume that each player knows the demand function. Formally, we do it

by assuming that for every A the distribution §_ coincides with the
i

lbl(aifA)
distribution D(D-l(ém |y ) + A). Notice that this rules out the price taking
TR

assumption we used to obtain the competitive prices at a subjective equilibrium.
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Our goal now is to show that f plays like some g which is a correlated
equilibrium, or equivalently, a Nash equilibrium of (M,P,G™).

We construct g = (g;,--8,) as follows. For each player i, after every history,
h;, which has a p¢—positive probability we define g; to coincide with f;, i.e.,
gi|h{ = fi'h,- Notice that this implies that g plays like f. For ¢ zero probability
histories, h;, define gilh‘ to choose a large production level L with probability one.
The level L is chosen in such a way that the amount (n — 1)L, produced by n — 1
producers, lowers market price below the marginal cost, K.

By the definition of g for every player i, f and g play alike. That is, player 1
cannot tell the difference between f and g because they induce the same distribution
over the signals observed by player i.

In order to show that g is an equilibrium, we show that for every possible
deviation, g'i, of player i, ui(g;,ei) < uy(g;,€;), where e, is the environment function
induced by g_;.

We will show that g; is not a profitable deviation by showing that the outcome
generated by (g’i,ei) could be generated by some f; and &, Since f; is individually
optimal (against €;), u;(f;,€;) 2 ui(f'i,éi) = ui(g;,ei). As u;(f,€,) = uj(gj.e;) because f
and g play alike, we conclude that u,(g.g;) 2 ui(g’i,ei).

Recall the demand function, D, is commonly known and that it has a negative
slope. Suppose that after the history h; the strategy f; prescribes player i the action
a; with positive probability. Since fis a subjective equilibrium player i knows to
predict the distribution over prices given his own a;. As D is one-to-one, player i is
able to forecast after h; the distribution over the quantity produced by all his
competitors. Therefore, he knows to predict the distribution over prices not only
given a;, but also given any other quantity player i may produce. We now deduce

that after every history with positive probability (w.r.t. to f) player i knows the
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distribution over prices induced by (g;,ei). In other words, the distribution over
prices induced by (g'i,ei) is the one induced by (g'i,éi) after every history with positive
probability. By iterating the same argument we infer that the probability assigned to
history h; by (g;,&;) and by (g;.e;) is the same, provided that h; has a (g;.€;)-positive
probability.

Define f;(hi) to be identical to g;(h;) for every history h; which is positive
w.r.t. (g;€;). Otherwise, f;(hi) is zero. We will show that ui(f;,éij = ui(g;,ei). Fixa
time t and let h; be a history of length t. Conditioned on h; being (g;,€;)-positive we
get that ui(f'i,éi), which by definition equals ui(g},éi), is equal to ui(g’i,ei). As for
every other history h;, since fi(h;) = 0, the return for player i is zero. On the other
hand, the payoff u;(g;.e;) is at most zero (after h;) because the total amount
produced by all players drops market price below the cost per unit. Therefore,
conditioned on h; being a history with probability zero (w.rt(g.€)) 0= ui(f;,é]-) z
u;(g;.€;)-

We may conclude that at any period t ui(f;-,éi) = uy(g;.e;) and therefore this is
the case for the whole repeated game. This completes the proof, showing that g is

an equilibrium.

6. Subjective Extensive Form Games

In the previous sections we restricted the subjective approach to repeated
stochastic-outcome games. The extension to general extensive form games is straightforward.
We need only to modify the definition of the environment response functions.
Recall that eilhla,(ci) represented the probability that outcome ¢; will be realized by
player i after the play consisting of the individual history h; followed by the action a;.
The role of hy’s in the above must be replaced by the player’s information sets. For

every information set h;, the a;’s following it must be restricted to actions feasible at
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this information set. The consequences, ¢;’s in the above, can be replaced by two
objects. They could be terminal nodes with their associated payoffs, when the action
a; taken at h; can lead to such termination. They could also describe new individual
information sets if following h:a; the other players could lead playerito a "next"
information set. )

The following example illustrates such a generalization and its usefulness
without the need to develop the general terminology of extensive form games.

Consider a three stage alternating offer bargaining between a seller and a
buyer. At stage one the seller can ask the buyer for two prices, H or L. In the
second stage, the buyer can accept the asked price, X, with X = Hor X = L,
yielding the respective payoffs X — R, R, — X, where R, and Ry, represent the
respective reservation values. Or the buyer can counter propose two prices, C4 or
Cpg, which the seller than accepts or rejects. If Cy is accepted, X = Aor X = B.
Again, the respective payoffs are Cy — R, R, = Cx. If it is declined, the resulting

payoffs are 0 and 0.
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The extensive form game has the following simple representation.

_acccopk
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reject

The decision tree of the seller has the following structure.
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His subjective environment response function will specify six probabilities
corresponding to the six arcs marked accepted, C, and Cp. For example, e |
(accepted) represents the probability that a seller’s initial low offer of L will be

accepted, and e |;(C,) represents the probability that an initial H offer will be
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responded to with a counteroffer C,.
However, different games will give rise to the same decision tree of the seller

as illustrated by the following two scenarios.

Scenario 1: The buyer consists of two players, b; and b,, with hierarchical decision
making. Upon hearing the asked price X, player by can accept, counter-propose Cg4,
counter-propose Cg, or pass the decision to b,. If by passes, then b, decides
whether to accept, or counter with C, or Cg. Now there are three reservation
values, and if the item is sold at price P, the respective payoffs are (P — R

R, - P, R, -P)

Notice that the only concern to the seller are the probabilities given by his

s’

environment response function and not the process of the decision making by the
group of buyers. We could construct a large number of scenarios, like the one
above, all of which constitute different game trees with different possible interacting

buyers, but all yielding the same individual decision tree for the seller.

Scenario 2: A Bayesian game with unknown buyer’s reservation value. Suppose the
single buyer has two possible reservation values chosen according to some prior
probabilities. The buyer knows the realized value, but the seller does not. Now we
have two versions of the original game, with nature moving first and choosing which
of the two trees to enter. The buyer knows which tree natures chooses, but the
seller does not. Every pair of corresponding nodes in the two trees are put together
for him in a single information set.

Nevertheless, his individual decision tree is unchanged and all he cares to

know are the probabilities of his offers being accepted or countered.
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When we combine variations, as in Scenarios 1 and 2 together, we see that
there is a large number of games, all yielding the seller the same individual decision
tree, and all he needs are the assessments in this one decision tree of the probability
of various responses to his offers.

The buyer has a similar task. The real game induces on him a known decision
tree. To decide on his optimal strategy, he needs to assess probabilities of how the
seller (or sellers or sellers-agents) will respond to his counter offers.

The subjective extensive game consists of the real game together with the two
decision trees and individually assessed environment response functions.

A subjectively optimal strategy consists of optimal choices in the individual
decision tree relative to the assessed responses. A vector of such strategies is a
subjective equilibrium if all subjective forecasts over future individual outcomes are
accurate. Assessments off the play path do not have to be accurate.

For example, suppose the seller assesses probabilities 1 to his proposed L
price being countered with C,. He also holds assessments regarding the
probabilities of response to his proposal H price which leads him to a subjective
optimal strategy of proposing L and accepting any counter proposal. The buyer, due
to his own assessments, chooses an optimal strategy which indeed counters L with a
C offer. If the buyer’s beliefs are that the seller will offer L and accept a counter
proposal C,, then we are at a subjective equilibrium. Every player’s expectations on
the play path are met, even though their conjectures regarding off path responses
may be wrong.

The above subjective equilibrium is closely related to earlier examples n
Fudenberg and Kreps (1988) and to self-confirming equilibrium in the Fudenberg-
Levine (1993) sense.

A major difference is that the players are not assumed to know the game.
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For example, the real game could be as in Scenario 1 above, yet with the seller
behaving and if he is in the original game facing a single buyer.

Another interesting discrepancy between the players’ model of the game and
the actual game may be regarding the continuation of the game. The buyer may
think that the game may continue with additional offers and counter-offers, yet the
seller thinking that he must make a final response to the buyer’s counter-offer.
Since at the equilibrinm proposal above the game ends after the buyer’s counter-
offer, whichever of them is wrong regarding the possibility or impossibility of

continuation will never find out.
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