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that all events are positive probability, with events with higher numbers being less likely. Note that
whatever the outcome on the player II dimension, the events are ordered in likelihood trom top to
bottom, and similarly when the outcome is fixed for player I. So, measured in this way, the relative
likelihood of events on one coordinate is not affected by events on other coordinates, and so one
might be tempted to conclude that the events are independent. Once again, the standard notion of
independence runs into difficulty when the measure of size becomes too coarse.

However, the same thought experiment as before now operates. Set one of our randomizing
devices to make ULT equally probable to MLB. Then, this device should also make UCT equally
probable to MCB and so forth. Exactly as in section 5, this order is not extendible to cover the
addition of these events. So. one of these devices must have the property that it equalizes two
strategies for a given player conditional on one specification for the other player, but not conditional
on some other specification, thus violating the independence condition. One can also prove an analog
to our Theorem 3: An order will be extendible only if no cycle yields a chain of comparisons that

are all "greater than” or all "less than" with at least one strict term.
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It has been argued that the natural notion of independence for conditional probability systems is weaker than
sequential equilibrium’s consistency condition. Kohlberg and Reny (1992) provide an attractive extra condition
on a conditional probability system that implies equivalence to consistency. We provide an alternative condition
and argue that it is a natural implication of independence. This condition also implies equivalence to
consistency, and so is equivalent to Kohlberg and Reny’s. However, the motivation and formulation of the
condition are different, providing an additional viewpoint from which to understand consistency.

I. INTRODUCTION

In defining sequential equilibrium, Kreps and Wilson (1982) faced the problem of how to
assign beliefs to nodes at information sets that have zero probability under the equilibrium strategy
profile. In particular, the notion that players play independently rules out some beliefs. To capture
an intuitively plausible set of conditions on beliefs, Kreps and Wilson introduced the notion of a
consistent assessment: beliefs p and strategy profile ¢ are consistent it there is a sequence of
completely mixed strategy profiles ¢” converging to ¢ such that the limit of the Bayesian beliefs
implied by ¢" on each information set converges to . As an expression of independence, it is hard
to argue that this notion is too weak. Tt is less clear that its full strength is merited.

Perhaps the most natural language to talk about relative probabilities among zero probability
events is a conditional probabiliry system (Myerson (1986)). A conditional probability system
specifies conditional probabilities for all subsets of the state space, even those with zero total
probability (a formal definition is below). When the state space has a product structure, there is also
a natural analog to the definition of independence for standard probability systems: the relative
probability of events in one set of coordinates should not depend on events in the other coordinates.
We term this quasi-independence. Every consistent assessment generates a quasi-independent
conditional probability system. However, there exist quasi-independent conditional probability
systems that cannot be generated as the limit of the fully mixed strategy profiles used to define
consistency (see Blume, Brandenburger and Dekel (1991), Battigalli (1992), and Kohlberg and Reny

(1992)). So, the seemingly natural definition of independence for conditional probability systems is

1 am very grateful to Roger Myerson, Phil Reny, Eddie Dekel, and Larry Samuelson for very helpful
discussions and commentary. [ also thank Bentley Macleod, David Levine, and Joseph Greenberyg.
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So, using Lemma 5,

I o vs. th) =TI, A (TPEIBDE) vs, TRIIBDEN)
J= =

By Lemma 4 and the fact that we defined different devices for each ¢ and ¥, this equals

. k 1 k 1 k 1 k.
ﬁ(TD(sl) ..... Ds gDt DY) o DDA DEsh),...Dis T *)

For some i € N and s, € S,, let a be a left hand side device and b a right hand side device
corresponding to the same strategy s;. Then, ﬁ(T“Bb vs. TPB®) = 1.!! So, using Lemma 4, (*) is

equal to

b(TD(sl) ..... D(sk)\aBD(tl),...,D(lk)\h Vs, TD(N) ..... D(tk)\bBD(sl),...,D(s k)\a,a(vl—aBb vs, TVBY)

- ﬁ(TD(s]) ..... D(sk)\aBD(tl),...‘D(tk)\h Vs, TD(tl)‘...,D(lk)\hBD(s]) ..... D(sk)\a)_l_

Because ((sl.tl),....(sk,tk)) was a cycle, for each i€EN and s; €S, the number of devices for s

appearing on each side of (*) is the same. Thus, we can repeat this step, pairing off all the elements

on each side of (*), and so showing that H:Z, p (s,j VS, tj) = l. u

By Lemma 3 (Kohlberg and Reny’s Lemma 3), p is thus an independent product. Lemma 2

states that if p is an independent product, then it is extendible. We have thus proven:

THEOREM 4: A relative probability p on § = IL S, is extendible if an only if it is an independent

product.

We conclude that being an independent product is the appropriate formulation of independence

for conditional probability systems.

7. AN ANALOGY
We suggested before that the problem with quasi-consistency arises because the real numbers

”

do not allow one to distinguish different “levels of zero.” To see this, return to a world of positive
probability events. Consider attempting to understand and formulate the notion of independence with
the concepts of greater, less, and equal, but without numbers, so that one cannot measure degrees of

inequality. A probability measure is thus an order on events. Consider again Fig. 2, but now assume

HNote that p(s¥T? vs. s,B7) = ﬁ(siBb Vs, sTTh) = 1. So,
A(s*¥T™BP vs. 5,B*BP)-p(sB?B vs. 5B B")-5(s,BPB? vs. s¥T'B?) = | = H(T°B" vs. T°B?).
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weaker than consistency.

Kohlberg and Reny (1992) argue that quasi-independence does not capture the full strength of
independence (readers are urged to read the original): Take the viewpoint of an outside observer, and
consider the thought experiment of replicating the situation being studied. So, if the product space S
= IL,=NS; is the space of strategy protiles in a game, then one imagines replicating both the players
and the game, and running copies of the game in k separate rooms. Within each room, players are
unable to observe each other’s choices, and the rooms are identical so that choices cannot depend on
which room a player is in. Then, Kohlberg and Reny argue, it should be possible to extend the
original conditional probability system p on $ to a conditional probability system p* over joint
outcomes in the k rooms such that (1) the marginal of p¥ for on any given room is p independent of
what occurs in other rooms, and (2) p¥ depends only on how many copies of each player i chose each
action s;, and not on the rooms in which the choices were made, or what other players did in those
rooms (so in particular, p* is not changed when the room by room choices for copies of a particular
player are permuted). Condition (1) can be thought of as capturing the idea that an cutside observer
is certain about p: no matter what the observer sees in rooms | through k-1, his beliefs about the
outcome in room k remains p. Condition (2) in an “exchangability” notion: since the play of
ditferent players is independent, the outside observer should view it as equally likely that he sees s;s,
in room | and t;t, in room 2 as that he sees s,;t, in room 1 and 1,8, in room 2.

Kohlberg and Reny show that p is extendible in this way if and only if it can be generated as
the limit of completely mixed strategies profiles and so if and only if the conditional probability
system satisfies the conditions implied by consistency. In this note, we present a different notion of
“extendibility,” and show that it has precisely the same implications as (and so is equivalent to)
Koh!berg and Reny’s. The interpretation however, is sufticiently different that it may provide a
useful additional way of understanding independence for conditional probability systems and so of

understanding consistency.
2. CONDITIONAL PROBABILITY SYSTEMS AND INDEPENDENCE
We consider conditional probability systems (See Myerson (1986)). We follow Kohlberg and

Reny in defining these in terms of relative probabilities:

DEFINITION 1: p:SXS=RT U oo is a relative probability on the finite set S if for any s,t,z in S,
(1.1} p(s vs. 8) = 1 and

(1.2) p(s vs. z) = p(s vs, t)o(t vs. z) whenever the right hand side is well defined.

The right hand side fails to be well defined when it involves the multiplication of o and 0.



element of S. Extend p to p by adding for each r € {s],.‘.,sk} U {tl,...,tk}, and eachiin N a
device d such that p(si*Td VS. rin) = |. Denote the set of devices added for r by D(r). By

construction, the sets D(.) are disjoint. We will use the following two lemmas:

LEMMA 4: Let A", B, C’, and D’ be disjoint subsets of N U Ujil(D(si) U D(tJ)). Let A specify

outcomes for the coordinates in A>.! Let B, C and D similarly specify outcomes for the
coordinates in B, C, and D’. Then, (A vs. B)A(C vs. D) = 5(AC vs. BD) whenever the left hand
side is defined.

PrROOF: Since the set of coordinates specified by C is disjoint from A or B, quasi-independence
implies that 5(A vs. B) = H(AC vs. BC). Similarly, 3(C vs. D) = p(BC vs. BD). So, if B(A vs.
B)3(C vs. D) is well defined, then 5(AC vs. BC)A(BC vs. BD) = 5(AC vs. BD) is also well defined,

and equals the same thing. .
LEMMA 5: For all | = 1.....k. p(s vs. d) = p(TPEIBPEY g TDEIBDE)
Proor: Letr € {s'.....s5} U {t',...tX}. For each iEN let d. be the element of D(r) corresponding

to r;. Then, ;ﬁ(si"‘Td'l Vs, rini) = 1 by construction. So, by repeated application of Lemma 4,
o5 vs. 1) = [Len Als T vs. 1B%) = p(s *TPO vs. (BPD) = 1.
So, p(s) vs. t) = 1-p(s vs. )]
= B(s *TDG) vs. TP A(d vs. ) A(UBPY) vs, s *TPOD)
= p(s *TPEI DY) yg gIgPEY B
B BRI BDGY thD(tj)BD(sj)).ﬁ(thD(tj)BDm) v, § *TDW) gDEsYy
= (s +TD6H gD g g *TD(‘j)BD(Sj))

= H(TPGI D) yg D) DGy .

" 10That is, let A be an element of H S, X H {T.B},.

i€A’Ns deA’nuj;l(D(sj) U D)
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For any p, there is a sequence {p"} of completely mixed probabilities on S such that

n
plr vs. s) = lim P (0) for each r and s in S (see Myerson (1986)). But, then for any & € AB ©
n—® p “(S)

S, o(A vs. B) = lim P :E:; is independent of which such sequence {p"} was chosen, and so p
e p

extends naturally to subsets of S >

Assume that S has a product structure, so that § = IL £ \S;, where N is a finite set. For &
SITE N let§ =1L S, Letd € AC Sy, and J & B S S, where & € JLK & N. Then,
define p(A vs. B) as p(A X Syy vs. B X Syk)- So, when only some coordinates of IT, <\ S; are
specified, it is understood that the other coordinates can vary freely.

Assume that S = IL\S,;. If p resulted from independent events over the §;, then knowing
what happened on components other than j should not affect the conditional probability of what

happened on component j:

DEerFINITION 2: The relative probability p on § = IL NS, is individually quasi-independent if for all j

€ Nand r;.t; in §;, o(r;sny vs. tSyy) does not depend on sy € 1L yS;.

This agrees with Kohlberg and Reny’s definition of quasi-independence. The "individually” is

added to emphasize that only the action on one coordinate is allowed 1o change, In contrast:

DEFINITION 3: The relative probability p on 8 = ILc\S; is quasi-independent if for all & € J & N

and rp.t; in IL o S, p(rysnyg vs. syl does not depend on sy € T e nyS;.

2Let a* be a maximally likely element of A (i.e., p(a vs. a*) < 1 for all a € A}, and b* of B. Then,

p "(a)
n ng, * ng. * n
Iim p_(_ﬁ‘\_l = lim P (a }),2€ap (@ ). Now, |A| > z lim_lﬂ = 1 where the first inequality
e pB) == pTb*) p (b} a€An~eopia™)
bEB pT(b ™)

n
is because a* is maximally likely, and the second because a* € B, and similarly for z lim _P (b) .
bEB neo p (b )

So,

Y pavs.a™)
n
lim -I.)-—g}_):p(al"vs.:.b")'aEA .
meo p(B) pbvs. b™)
b B



system in the example. Assume the conditional probability system in Fig. 2 is independently
extendible. Let s¥ = UL. Add four devices denoted M,D,C, and R. Then there is a quasi-

independent 5 such that p(s *TMvs, MLBM) = 5(s *TPvs. DLBP) = p(s *TCvs. UCB®) =
p(s *TR®vs. URB Ry = 1. So, the M device measures the relative likelihood of T and M, and the D

device the relative probability of T and D. Similarly the C and R devices measure the relative

likelihood of C and R versus L. Now, since 5 (ML vs. UC) = oo, it is intuitively reasonable (and
can be proven, see Lemma 5 below) that 5 (T MBC vs. T®B M) = oo, Similarly, since
5(UR vs. DL) = w, 3(TRBD vs. TPBR) = . So, p(TMTRBCBPL vs. TCTPBMBR) = o

(see Lemma 4 below). But, this implies 3 (MR vs, DC) = oo a contradiction.

6. EXTENDIBILITY AND CONSISTENCY
In this section, we show that a relative probability g is independently extendible if and only it
it is an independent product, and so generates a consistent assessment. This follows quite directly

from the following Definition and Lemma trom Kohlberg and Reny:

DEFINITION 6: A sequence ((sl,t'),....(sk.tk)) of pairs of elements of S = IL o \S; is a ¢ycle if

1 . . L1 . ..
,...,sik) is a permutation ot (t; ,...,tik) for each i in N,

(s;

LEMMA 3 (KOHLBERG AND RENY LEMMA 3): A necessary and sufficient condition for p to be an
; e e . NN k ik k i N = s
independent product is that for any cycle ((s'.t'),...,(s%,)), Hj=l p (s vs. tJ) = | whenever it is

defined.

ProoF: Non-trivial. See Kohlberg and Reny (1992).

We now prove:

THEOREM 3: If p is independently extendible, then for any cycle ((s',th), ... .51,

H}il p(s! vs. t) = | whenever it is defined.

ProoE: Fix a cycle ((s',th),....(s*.1%) such that Hjil p (s vs. t4) is defined. Let s* be an arbitrary

11



REMARK 1: To avoid ambiguity, we will explicitly write down the product space with respect to
which p is quasi-independent. So, when we say that p is quasi-independent on S XT, we will mean
precisely that for all r and s in S, p(rt vs. st) does not depend on tin T, and for all u and v in T, p(su
vs. sv) does not depend on s in S.> Any product structure of S or T is ignored. So, if S itself has a
product structure, say S = ILS;, quasi-independence on S XT does not mean that for example
p(r;spyt V8. 4syyt) cannot depend on syt in ILeyyS; X T. When we intend that p is quasi-
independent also with respect to the coordinates of §, we will write that p is quasi-independent on
IL N S; XT.

Quasi-independence agrees with Battigalli’s notion of independence. An equivalent definition
of quasi-independence is that for all @ € J © N, ry,ty in IL S, and spy € ILengSis p(rsny vs.
tisny) = p(ry vs. ty). For standard probability theory, if p is individually quasi-independent then it is
quast-independent (as in particular, both agree with independence). For conditional probability

systems, this need not hold:*

II II

L R L R

T z! z- T z z’

l B 73 2t : 20 2
U M1 D

Fig. 1: An individually quasi-independent but not quasi-independent conditional probability system.

Define a relative probability on the events indicated in Fig. 1 by setting p(@ vs. Z)=0
whenever i>j. This conditional probability system is individually quasi-independent, because
regardless of the actions of the other players, I always chooses T arbitrarily more often than B, II L
over R, and IIf U over D. However, it is not quasi-independent, because the likelihood of BL. vs. TR
by I and II depends on whether III chooses U or D.

We work with quasi-independence, and so in this dimension, our conditions are stronger than
Kohlberg and Reny’s. However, it seems likely that any motivation tor individual quasi-

independence would also be 4 motivation for quasi-independence.5

3As Kohlberg and Reny note, these two conditions are not redundant for conditional probability systems.
4l am gratetul to Roger Myerson for pointing this out and providing the example.
It is interesting to consider the notion of independence put forward by Blume, Brandenburger and Dekel

{1991). Say that p 1s BBD-independent if for cach 1€N,
P(SNyS; VS tays;)



So, non-extendibility relative to a set {(sj,tj)}je,( does not reflect any incoherence in the
thought experiment, but rather the inability to move from quasi-independence on § xHjEK{T,B}j to
quasi-independence on 1L, nS; XTL¢ ¢ {T.B};. By Lemma 1, this is precisely the statement that the
independence condition fails somewhere.

Extendibility will play the same role in this paper as Kohlberg and Reny’s requirement that p
can be extended to a quasi-independent k-fold product of p satisfying coordinate wise exchangability.
In fact, since we will show that for a relative probability p to be quasi-independent and independently
extendible is equivalent to p being an independent product, and since the ability to extend p to k-fold
products satisfying coordinate wise exchangability has precisely the same implications, it must be that
the two conditions are equivalent.9 So, one can view the purpose of this paper as purely to provide
a difterent way of understanding and motivating the requirement that p can be extended to an

exchangeable k-fold product, not to provide radically ditterent axioms or an independent proof.
LEMMA 2: If p is an independent product, then p is independently extendible.

ProOF: Obvious from the construction in the proot of Theorem 2, noting that since p is an

independent product, {p"} can itself be taken as a sequence of product probabilities. u

Note that we have in fact proven something stronger: If p is an independent product, then it
can always be extended, with the extension a/so being an independent product. So, an alternative
motivation for extendibility is simply as a coherence condition on an independence definition:
Whatever the definition ot independence, a system that is independent under this definition should be
extendible to include arbitrary extra dimensions also independent under this definition. The results of
this paper say that product independence is coherent in this sense, while any definition of
independence that is at least as strong as quasi-independence and coherent in this sense must in fact be

at least as strong as product independence.

5. THE EXAMPLE REVISITED

We begin by showing how the notion of extendibility rules out the conditional probability

This equivalence becomes even clearer if instead of introducing binary randomizing devices, we introduced
devices with an arbitrary (finite) number of outcomes, in which the relative likelihood of successive pairs of
outcomes are determined by pairs of events in S. Then, one could effectively make devices into copies of players
and Kohlberg and Reny's exchangability would follow directly from extendibility, We think it is somewhat simpler
given our interpretation to think about binary devices, and we like the fact that our proof goes directly to Kohlberg
and Reny’s Lemma 3, which we consider more fundamental.

10



Finally,

DEFINITION 4: The relative probability p on S = IL NS, is an independent product if there is a

sequence {p!'} of strictly positive probabilities on each §; such that for all r,s & S,

.en Pi @)

Sl vs, ) = fim LlienPi @)
n

n-»co HiEN pi (Si)

The key to the connection between consistency and conditional probability systems is that

consistent assessments and independent products are essentially the same thing:

THEOREM 1: Let I be an extensive form game, and S its normal form. Every independent product
on ILe NS, induces a consistent assessment on I'. - Every consistent assessment on I' is induced by an

independent product on IT, = \S;.

We sketch a proof. Let p be an independent product on S, Consider any terminal nede x in
I'. Nature, who is assumed to move only at the beginning of the game, has one move consistent with
reaching x. Let v(x) be the probability nature assigns to that move. Associated with x will be a
subset S(x) of S, such that x is reached if and only if players choose trom S(x} and nature chooses

appropriately. So, p induces a conditional probability system on terminal nodes given by

M = p(S{x) vs. S{y)) @ This extends in the standard way to beliefs at information
P(y reached) v(y)

sets and distributions over actions at each node. Since p was an independent product, this conditional
probability system can be seen as coming from the limit of completely mixed strategy profiles, and so
by Kuhn’s theorem, trom a sequence of completely mixed behavior strategy profiles. Thus, the
distribution of actions is the same at all nodes in a given information set. So, p induces a well
defined behavior strategy and beliets on T", and these beliefs and strategy are consistent.

Conversely, consider any consistent assessment (x,0), and the generating sequence of

completely mixed strategy profiles. This generates a sequence {p"} of completely mixed strategy

does not depend on s;. In contrast to the distinction between individual quasi-independence and quasi-independence,
this restriction has a nice interpretation: player i does not find his own strategy choice to be informative about the
choice which other players will make. So, if BBD-independence were weaker than quasi-independence, it would
be 50 in an interesting way. In fact, however, BBD-independence and quasi-independence are equivalent: Consider
p(s1Sppg V8. bySppg)s and et tyy; € Syyy. Observe that one can move from sy, to tyy in | N | steps, where at each
step, one player i in N\J changes his action from s; to ;. For each of these steps, BBD)'s condition implies that p
doesn’t change. So, p(s;5yy vs- Ysny) = p(Sjtyy v ity

5



So, if the independence condition is to hold whatever the devices we add, it must be that p is

independently extendible in the tollowing sense:

DEFINITION 5: A relative probability p on S = IL\S, is independently extendible if for any finite
set {(sj,tj)}jeK of pairs from S, there is a quasi-independent relative probability 4 on

IT; & NS; XTT; e {T, B} such that

(5.1) for all j€K, 5(s'T’ vs. ¥B') = 1, and,

(5.2) for all s,tin S, 5(s vs. t) = p(s vs. t).

That is, p is independently extendible if for any finite set of extra dimensicns, and pre-specified
relative probabilities on those dimensions, the measure can be extended to those dimensions while
retaining quasi-independence. If p is not independently extendible, then if we could build the
randomizing devices described, the independence condition would fail at least once. So, a non-
extendible conditional probability system is not truly consistent with independence. Conversely, if p
is independently extendible, then whatever set of such randomizing devices we imagine, a conditional
probability system consistent with these devices is guaranteed to exist.

The reader might worry that the non-extendibility of p might indicate not that p is not
independent, but rather that the thought experiment of adding independent calibrated devices to S was

somehow incoherent. We thus show:

THEOREM 2: Let p be a relative probability on S and let {(sj,tj)}jEK be an arbitrary tinite set of pairs
of elements of S. Then, there is a quasi-independent relative probability p on S X HjEK{T,B}j {but
not necessarily on IT; e S; XL e {T,B};) such that

(1) for all JEK, p(s"F vs. ¥B') = 1, and,

(2) for all s,tin S, p(s vs. t) = p(s vs. t).

ProoF: Let {p"} be a sequence of completely mixed probabilities on S generating p. For j € K,

n .
9 . p"(t) _

1 —an p I'I(SJ)

define q;" by I. Foreachs € Sand r € ILg{T.B};, define p"(s.r) =

pi(s). HjEK\rj:T an 'HjEK\rj=B (1 -an), and let p be the conditional probability system generated

by {$"}. Then. 5 is an independent product on § X ILe  {T,B};, and so certainly quasi-

independent. The verifications of (1) and (2) are simple algebraic exercises. u

9



n n
profiles on S. Now. lim 2" may not he well defined for all r and s in S, but lim P_S®)
n—+ p n(S) n-roo p n(S(y))
will be for all terminal nodes x and y. Taking an appropriate subsequence of {p"} thus generates a

product measure that induces (p,0).

So, justifying consistency amounts to justifying the condition that conditional probability

systems should be independent products.

3. AN ExaMPLE

Consider Fig. 2. A conditional probability system for the space of strategy profiles is given

1

by the entries z'-z°, with the interpretation that p(z' vs. z }=0 whenever i>j_6
y p

I
L C R
Zl 23 Z4
I M 22 Z5 ZS
26 27 Z9

Fig. 2: A guasi-independent but inconsistent belief system.
To see that p is quasi-independent, note that however one conditions, U is arbitrarily more likely than

M which is arbitrarily more likely than D, and simiiarly for player II. However, p is not an
independent product. In particular, it is inconsistent that p (ML vs. UC) = p (DC vs. MR) = o,
but p (DL vs. UR) =0.7 Battigalli {1992) and Kohlberg and Reny (1992) provide examples of 3
player games with this general structure in which p (ML vs. UC), o (DC vs. MR), and

p (DL vs. UR) correspond to player III’s beliefs about players I and II at difterent information sets.

This example is very similar to one in Battigalli (1992), who credits Reny. Similar examples appear in Blume,
Brandenburger and Dekel (1991), who credit Myerson, and in Kohlberg and Reny (1992).

n n
o ;en P (Mipy (L)
7Assume the system is an independent product. Then lim HIEN ! zn
n
= [Lien P (Wpa (O)

n n n n
en Py (DI, (C) ien P D2 (L)
him H'EN ! 2 = p(DC vs. MR} = o. So, lim l—LEN : 2 = oo, contradicting

= [LenPrMpIR) e TT.cn Pr(UpS(R)
p (DL vs. UR) = 0.

= p(ML vs. UC) = oo, and




However, it does seem valid to ask: for what rypes of conditional probability system do we know even
without building such devices that if we could, they would expose a problem?

To answer this question, we must be more formal about our thought experiment. Let p be a
conditional probability system on S = IL.S;. Consider adding one idealized randomizing device
for each element of a finite set K, and consider the conditional probability system p describing
relative probabilities over S X IIjEK{T,B}j. Regardless of how the devices are set, § must satisfy
three conditions. First, since the devices are independent of S and of each other, and since we have
taken quasi-independence as a necessary condition for independence, § must be quasi-independent on

S X IIJ-EK{T,B}J-. Second is the key condition described above:

INDEPENDENCE CONDITION: Let MEN, let syq,tyy € TS, and let u,v € T {T,B};. Then,

BlSpSnit) VS- WS V) does not depend on sy € Thie S

If 4 fails the independence condition, then knowing sy gives information about the relative
likelihood of sy vs. ty (albeit information that may be lost by p), and so we conclude that the
outcomes on M and N\M are not independent.

Finally, for any tixed outcome of the devices, the induced conditional probability system on S

must be p.

LEMMA 1: Quasi-independence of 5 on S X IEGK{T)B}J’ plus the independence condition is

equivalent to quasi-independence of p on IL g \S; XIL g {T,B};. (Recall Remark 1.)

ProoF: Let @ CSICK, and let G SMEN. Let sy and ty, be elements of IL; < S;, and similarly for
SniM- tNime T 1 Sgy and tgy. We need to show that
Altptthantiar V8- SmSitamtka) = AlvUSnimSku V8- SMSISNMSK)-
But, since g is quasi-independent on S kaEK{T,B}j,
Pltmtthamtxy ¥S- Spsitnmtiy) = Altvbtimskar V8- SmSitnamSk)-
and, by the independence condition, the right hand side is equal to S(tytiSnwmSku V- SMOISNMSKAD-

The converse is obvious, .

So, specify any set ot pairs {(si,tj)}ng. Denote by T/ the event that the outcome on
coordinate j is T, and B! the event that the outcome is B. Calibrate each device j such that AT vs.
#B) = 1. If p satisfies the independence condition, then 5 is a quasi-independent measure on IT;c \S;

x HjEK{T,B}J— where for each j, H(S'T! vs. tB) = 1, and for all s and t in S, (s vs. ) = p(s vs. t).



So, consistency imposes restrictions on information sets not implied by quasi-independence.

4. INDEPENDENCE REVISITED

Either quasi-independence does not capture all the natural restrictions of independence, or
consistency lacks a coherent foundation in independence. In this section, we argue that there are
natural implications of independence not captured by quasi-independence. In Figure 2, p(Mx vs. Ux})
= 0 for x = L, M, and R. None-the-less, we are not satisfied that player I chooses U vs. M
independently ot what II does. Heuristically, we have no way of knowing if the zero’s are the “same
size.” Of course, one zero being smaller than another is meaningless in the context of the real
numbers. However, note that for example p(DL vs. UL) is also zero, but on an intuitive level this
zero is “smaller” than the zero corresponding to (ML vs, UL) since p(ML vs. DL) is infinite. To
formalize this, we need to develop a way to "measure” the zeros.

We do this by the thought experiment of introducing idealized randomizing devices with
outcome space {T.B}, and with the property that the outcomes of the devices are independent of the
outcomes on S and each other.® In Fig. 2 for example, U was arbitrarily more likely than M
regardless of whether one conditioned on L, C, or R. So, consider adding one of these devices, and
comparing the relative probability of the outcome of the game being Ux and the device generating T
vs. the outcome of the game being Mx and the device generating B. Ir seems to us that a clear
necessary condition for the independence of I's choices from II's choices is that this relative
probability should not depend on whether x is L, C or R.

Assume that for any r and s in S, the device can be calibrated to generate T and B in such a
way that r and T is equally likely to s and B. So, the device "measures” the relative likelihood of t
and s and thus gives us the ability to test whether the relative likelihoods discussed are really the
same: Say that when the device is set to make URT equally likely to MRB it turns out that UCT is
twice as likely as MCB. Then it seems clear that player I chooses M half as often when player [I
chooses C as he does when player IT chooses L. So, player II’s choice of L vs. C contains
information about player I's action and I and II are not truly playing independently. However, this
information is too fine to survive the language of a conditional probability system: even though player
I chooses M half as often when player Il chooses C as when she chooses L, it remains the case that
given either L or C, M is arbitrarily less likely that U, but arbitrarily more likely than D.
Essentially, p(MC vs. UC) = 40 = 0 = p(ML vs. UL).

Of course, actually building such devices and conducting this test may be problematic.

8We will take this to mean at least quasi-independence.
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