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1 Introduction

Several recent examples (van Darnme (1957), Harris {1990), Reny and Robson {(1991). Seidnann
{1992}}) illustrate that well-behaved gaines with infinite action or type spaces may have no sequential
equilibrium. Motivated by the nature of those examples, specially van Damme’s, we continue the
analysis initiated in Part [, by considering the addition of cheap talk to infinite signaling games.

In a signaling game, player 1 first learns his private information and then sends a signal. Playver
2 observes that signal and responds with an action: the game ends. In the cheap-talk extension of
a signaling game, plaver 1 sends in addition to his signal a pavoff irrelevant message {cheap talk) to
player 2. A cheap-talk sequential equililiriumn is any sequential equilibrium {SE} of the cheap-ralk
extension game. Infinite signaling games have been extensively applied in economics and finance
There is also a developing literature on signaling ganies with chieap 1alk.®

1t follows from the examples in Part | and in the next section of this paper that the non-existence
of SE originates with the inability of player 1 to convey information efliciently to plaver 2. Ax a resulr,
player 2 cannot coordinate her actions with the private formation of player 1. Cheap talk simply and
clearly solves the problem by allowing the sender to trausiuit the extra information. Thus. cheap-talk
extension games always have SE. We prove this by showing that the correspondence that assigns to
each game its set of cheap-talk SE outcowes 1s upper hemi-continuous.

Farrell and Gibbons (198%a) argue that cheap 1alk can be credible, is ubiguitous, and economists
and game theorists should give it more attention. We found another reason for adding cheap talk
to a signaling game: It solves the non-existence problein without fundamentally altering the nature
of the game. We prove that when the sigualing space 15 rich, 1.e. it has sufficiently wany signals,
every cheap-talk SE outcome can be approximated by a sequential e-equilibriuin outecome of the gane
without cheap talk.

We provide two caveats. The approximating SE (of the gmne without cheap talk) may be contrived:
if the signaling space is not rich, for instance wlen it is finite, the approximation need not veeur. In
deciding whether to include cheap talk in a model. the analyst must consider the underlving econemic

situation.

! Applications of infinite signaling games (or variants) include Bhattacharya (19758), Leland and Pyle (1977). AMilgromm
and Roberts (1982), Myers and Majlufl (1951), Riley (1979). and Spence (1974). Signaling games Lave also been used
to analyze refinements of the sequential equilibrium concept: Lor instanee, by Banks and Sobel (1987), Che and Kreps

(1987}, and Che and Sobel (1992).

?See, for example, Farrell and Gibbons (19894, b). Matthews, Okuno-Fujiwara and Fostlewaite {19593, Seidnann

(1990}, and Stein (1989).



S3’ follows from Lemma 3.

Similarly, since (&, 7, 3) € SE(I'). 51 implies
Ve X', f’r U2t 2() n(a)) 3(e)(dt) > jﬁf. U2 F(a) ) 3(ayd)y Vg e M(Y).

Once again, S4° follows from Lertuma 3. QED

Proof of Theorem 4: We apply Lemma 20 Let & = X x L and e(e.f) = (e (r. 1)), Then,
F= (T, p), X x LY, UL /3], Lemuna 2 imiplies that for any A€ SEOQO(T(I™)), there exixts (a. 1. 4) €
SE(L), such that

A= (aep)og ! where g(t. (2. 1)} = (£. 4. y((+.1))). and
i= (& p)of™" where feh(t. (x 1)) = (t (.. yl(s. 1)),

We complete the proof by showing that A = )\T w Vow g Lot Ax B x O CTx XN xW hea

measurable rectangle. Then

;\(A x BxC)y = (aep) ofr'}_l(:l x Bx()=(nep)(Ax{(BxLyny ()

= (Gep)ofy T AXB X Lx () =Ap 0y y glAd x Bx ()

QED
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The language used for cheap talk deserves consideration. At one extreme there s a language
with a unique message. In this case, the cheap-talk game does not differ from the game without
cheap talk, and may therefore have no SE. A richer language is required to solve the non-existenee
problem. We prove that every potential chicap-talk SE outcome can be obtained with any language
that distinguishes among player 2's responses. Two examples are the unit interval and the set of
all player 2’s responses. With the latter, cheap talk may be interpreted as a message thar player 1
submits to player 2 suggesting a particular response. This lurerpretation is justified: We prove that
any cheap-talk SE outcome may be realized with strategies 1 which player 1, in addition 1o his signal.
recommends a response and player 2 for his part follows the recommendatiens on the equilibrium path.
With the former, a particular cheap talk wiessage (an clement of the unit interval) has no meaning in
itself. It is simply used as a coerdination device: cheap talk could also he the color of the dress warn

by the player, the temperature set on the thermostat. or the length of the luuch break.

We conclude the introduction with a brief account of the literature. The uon-existeuee of SE las
shown common manifestations in different 1vpes of infinite giunes. Infinite games may be approximated
by finite games obtained through increasingly finer discretizations of the type and action spaces. In
equilibrium, players coordinate their actions in the finite games but are not able to do so in the limit
infinite game. Some form of correlation is necessary to reestablish the lost eoordination. This is the
case in signaling games, and cheap talk is a natural way to achieve the necessary correlation.

Harris (1990) has an example of an infinite stage-game where no equilibrimimn exists: Players eannot
attain the coordination that is possible in the finite version of the game. Harris alse proves that a
stage randomization device provides the necessary correlation te restore existence. Reny and Robson
{1991) provide a minimal (with four plavers and two stages) non-existence example for the samne elass
of games. It follows frotn the results in Simoen and Zawe {1990) that stage-correlated equilibria exist
in two-stage games.

Borgers (1991) also anticipates with an example the coordination problemn in stage games. In lis
example, a sequence of equilibriumm outcomes of approximating games converges to a litnit disiribution
that cannot be realized by strategies of the limit game. All through the sequence playvers achieve certain
coordination that they loose at the limit. Gur examples in Part 1 show the same pattern.

Still a similar sttuation arises in sitnultaneous move gaimes of incomplete information. Milgrom and
Weber (1985) prove the existence of Bavesian-Nash equilibria under a restriction on the distribution
of player types. It is not known whether equilibria exist without that restriction. Simple examples
{Milgrom and Weber 1985) show that some coordination possible with finite types may not be so witl

infinite types. The restriction on types avoids precisely these problems. Relaxing the restriction on



each f; is continuous on the set E_j and the collection of these sets 1s disjoint by construction. Let
X" =J; E;. By asimilar argument. v is a bijection on N

Write v(2) = (F(z2),#(2)). To complete the prool of the Lemima, observe that r & X' hnplies
d.(z,%(z)) < € because, by construction, hoth r and &(+) are contained In some ball A; with diuneter
less than & < €. By definition of 4. the function #(-) satisties (a). (a) and the definition of & iimply
(b). QED

We proceed with the proof of the thearein. We will apply Lemma 20 To do so let S = XY and v
as in Lemama 3. Thus, there exists {a. 7, .3) € ST, supporting the outcomne A

Define g : T x X' —T x X x ¥ by setting

gltor) = {e(r)) = (03 (r) y(a).

We now show that playing the strategies (a. ) results in an outcome A with Prohoroy distanee
plA, M) < €). By the definition of outcome. A = (o p) o f?rf’l.

Given an event F' C T x X x ¥, deline the set

G(FY = alf; " (Fyn (T x X0 supplA]

{g(t.sy | € N, [t a) € Fogltr) e supp(Al}.

Then by defimtion,
A= (wep)(fy 71 () = MGE)
Let F¢ be the set of elements of 7' x X x ¥ within distance ¢ of F. To show p()\. A) < e 0t suflices to
show that A(F) < A(Fe) and A(F) < A(F¢). and to show this it suffiees ta prove thar G(F) € Foand
(F v supp[A]) € G(Fo).
To show G(F) C Fe, let g(t.2) € (UF). We will show that g(t. ) € Fe. By Lemnua 3.

d{flt,x) gt ) = {6 e onple)) (L F ) ple))) < e

Since f(t,z) € F by definition of (;(F). we have g{f. 2} € F as we were to show.

To prove (F N supp[A]) € G(F¢). let g{t.r) be au arhitrary element of F 0 supp[A]. (Since
A= (deplog™! € F¢, and g is continuons on supplaep], we can represent any elentent of 70 supp[A]
this way (Lemma 3 in Part 1).) As before, d(f(2 ). g{f.r)) < e.so f(t.r) € Fooand y{t.r) € G(F)
as desired. This proves p(A, A) < ¢

We now prove that & and 7 satisfy S37 and 517 Since (o9 9) € SE(F). 83 implies

VEET, [, UMt (e} ylr)) ait){dey = U i) onla' ). vl € X,
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types, Cotter {1991) proves the existence of correlated equilibria with public randomization devices.

There is a basic difference, however. between sunnltaneous move games and signaling games, In
Cotter’s games the coordination failure arises because of the distribution of types in infinite spaces.
The failure is inherent to the structure of the uncertainty. The non-existence in signaling gaines occurs
because of the infinite signaling space, independent of the type space. We proved in Part | that finite
signaling spaces suffice to guarantee the existence of SE: the coordination problein artses hecanse of
decisions made by players.

Crawford and Sobel (1982) provide the original description of cheap talk in signaling games. They

characterize the set of Bayesian-Nash equilibria for gares in which signals do nor affect payvotfx.

2 Some Examples

Example 1, first discussed in Part |, demoustrates the role of cheap talk in solving the non-existence
problem.® Consider the signaling game I' = [(T. p). X. Y {71 {7%]. where player 1's private inforiation
ist € T = {~1,1}, with probability p(1}) = p(=1) = 1/2, his signal » may take any value in
X = [-1,1], and player 2 may respond to a given signal » with any action y in ¥ = [—1.1]7
Ut z,y)y = —z? + ty is player U's pavolf and U7(f 1 y) = ry is player 2's.

Dan, player 1, is a wine lover living in an isolated Nordic town. During some months, he prefers
to drink red wine (¢ = 1) and during others, white ({ = —1). Dan may request either red or white
wine from a wine store down south. To do so. he rents air tine on a radio station. He may rent time
in any amount r € [0, 1] at a cost {—r*). The vernacular of the area has two words. 1 and —1. Hence.
Dan may send any signal z = r x 1 or e = r x (=1).

Pat, player 2, is in charge of a wine store. She prefers to honor a request if she has received one.
and she is indifferent between sending red. white or no wine if she recelves no reguests, She may only
send one type of wine.

Suppose Dan wants to order red wine, He must decide how much air tiine to rent. Since sending
a short request takes virtually no tinie, any strictly positive time » would suffice to transimit the key
word. There 1s no least expensive way of sending the request; for any r. Dan would do better by
renting /2. Thus, the only solution to [¥an’s problem is to rent no space » = U, and arrange with Pat
(in advance) that no request meaus red wine, An analogous argument shows thar when Dan prefers

white wine, he ought to submit no request and agree with Pat (again in advance.) that no request

3The basic idea behind the example is due to Eric van Danune (1987].

4To simplify notation we write p(1) instead of £({1}).



Lemma 1 implies conclusion (ii). Using (3) and the remark after Lemma 1, 77 = 7 on the supp[ps]

and (& e p) = p. Therefore, conclusion (i) follows from (i) of Lemma 1. QED

Proof of Theorem 3: We begin with a lemma providing the function that we will nse 1o convert
signals in X x ¥~ (of ['(¥7}} to signals in X (of T'). Let d be the metric on T x X x ¥ used to define

the Prohorov distance p.

Lemma 3 If X is rich, there exisls a meuswrable sct X' C N with closure X' and a confinuous
function v : X'— X x ¥ that is a bijeclion on X', Fir ¢ > U and denote v(r) = (o) n(e)). For
T ¢ X, define Z(z) = z. Then, we may chovsc v and X' so thal for all (1. 2. 5) €T x X x4,

(a) d((t,z,n),(t, 2{(2),n)) < ¢, and
(b) | Ut z,n) = Uit 2(x). ) |< &, for i = 1. 2.
Proof: Choose é with 0 < d < esothat Ve, e XN . VieT. Vpe Y. andi=1ar 2

d{t.z y). (L. FHry g <& = [ ey =1t ) i<

[N I

Such § exists because the functions {7 are uniformly centinuous on the compact set T x N x W,
Define a metric d, on X by setting

de(z 2"y = max d{(t r ) (2 g).
(ET.!}E‘-I’

Using the metric d; on X, let (.—13);\':1 be a covering of X by N closed balls of positive liameter Jess
than é. Let By = A, and for j = 2. ..., V. deline

-1

B=A40 .

i=1
Then X ={J; B; and each B; is a measurable set disjoint frow the others. Let A/ be the number of
non-empty B; and reindex these sets so that B; s non-empty if j < M. Foreach j =1, .0 M. 1t
C; be a closed ball of positive diamncter less than 0/2 with €5 C By, Sucli € exists because f3; is the
intersection of a closed ball and an open set. Sinee X is nich. there exists a clased set 12,0 [); < ¢ and
a continuous surjection fj DJ#-BJ- * . By Theorem 1422 of Parthasarathy (1967), there exists o
measurable set £; C D; such that f; restricted to £ Qs a bijection from £ auto [« W

We can now define the sets X\’ and the function ¢ given in the statemnent of the lennna, We fet

X' = Uj E; and define v : X'—X x W by setting ¢ = f; on E;. The function v is continuous since



means white wine. This is not possible. When Pat receives no requests {& = 0). she could respond
by sending either type of wine or by mixing {(the actions, not the wine). but she cannet perfectly
coordinate her actions with Dan’s tastes. She ignores thenr. Whatever Pat decides ta «da on those
occasions will make Dan change his strategy. No SE exists.

Both types of player 1 would like 10 differentiate themselves but the most inexpensive signal mean-
ing red coincides with the most inexpensive signal teanmnyg white. This prevents costless separation.
Paradoxically, having an infimte number of signals implies that there are not enough useful signals
(that is, free signals).

Consider a variant of T, in which Dan may also suggests a response to Pat (withont renting
space). Dan’s suggestion (cheap talk)) 1s not binding and does not affect payoifs. We will call this
variation [(Y ") = [(T,p), X, Y™, UL U77], the cheap-talk exlension of [. Y™ a copy of Y is the space
of all possible suggestions. The symbol * differentiates a payolf irrelevant message = € 177 from the
response y € ¥ .8

This variant has a SE: Dan sends no written request r = 0. but suggests to Par what to da
y¥" =t and she follows that suggestion on the equilibriun path. O the equilibrivin path (o 2 0) Pat
responds with y = 1 to any o > 0. and y = =1 to auy » < 0. Since Pat’s beliefs o not enter her
payoffs, we may use any set of beliefs.

The inability of plaver 1 to cfficiently convey his private information s the main obstacle rao 1he
existence of SE: Consider a sequence of increasimgly finer diseretizations of an infiuite gare. and a
sequence of SE outcomes of thase finite games converging to a limit distribution. The Linit distribution
may fail to be a SE outcome of the lituit game for two reasons. First, it may not be feasible: it cannot
be realized in the limit game by strategies of the lunit game (Example 1 in Part 1), Second. it way
be feasible, but not realizable with a continuous strategy of the second plaver {Examples 2 and 14 1o
Part 1).

Cheap talk solves both problems: Any liinit distribution may be realized by strategies hecause,
through cheap talk, coordination can be obtaiued in the it game as well. The linat distribotion may
be realized with strategies in which player | suggests a response and playver 2 follows it (Proposition
2). Thus, player 2’s strategy will be trivially continuous.

Example 1 captures the essence of the non-existence problem: Cheap-talk extension games alwayvs
have SE (Corollary 1). We obtain that result from Theorenn 1. the upper hemi-continuity of the SE

outcome correspondence for cheap-talk extension games.

3In the next section, we provide a general definition of cheap-talk extension games that accounts for mixed strategies,
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Proof: By Parthasarathy Theorem 4.2, page 23. there exists a measurable set 8* C 5 such that
v:85 —X x L is one to one and onto. We will apply Lemina 1.

Let ((,"9,(:,'3') be a simple SE generating the outcome A, and define £(s) = Projyr(s). and y(s) =
Proj v(s). Both functions so defined are continuous. The function v, when restricted ro 5, is one
to one, and therefore has an inverse. We denote by 1';,1 c N x T —28" that loverse funcrion. By the

Kuratowsky Theorem (Parthasarathy 1967, Corollary L3.3, page 22). 1:;,1 Is measurable. Deline
Wi yT) = t‘;.f(x'. Ty
To define p, consider any measurable rectangle A x B C T x5, and let
(A x B) = A4 x o(B NS

Since v restricted to S’ is one to one. and since v7} s measurable, o(B N S) is a0 measurable ser.
Therefore gt 1s a well defined measure on T x 5.
We must verify (1)-(iv) of Lemma L. Let gt s) = (L or(s) = (G a(s)pls)) ACTand DTN < 0

be measurable sets. Then, using the delinitions.
pog A x D)= (g " A x DY) = pld =7 D)) = MAx (07D S,
But v(v=1{D)N S') = D hecause v is onto even when restricted to 8. Therefore,
o g~ A x D) = A(A x D).

which proves (1).
{11) is immediate.
By definition of @ and v, Z({x. 1)) = F{v~ {x)) = ». which shows (iii).

Let h(t,{z,1%)) = (t, @(z.7")) and lot A x BCT x5 Then,
(peploh YA xB)={remidxu (B
Because w(X x ¥*) = &, and using the definition of @,
"By =T BOS ) = (B na).

Then,
(poeploh ™M A x By = (sep) (A x v(HMN)) = AMAx c{BNAS)) = pu(A = B).

where the second equality follows Ly 2. and the last une follows Ly definition of jo This proves (iv).

2)



Adding cheap talk to a signaling game solves the non-existence problern but raises the guestion
of whether the inclusion of cheap talk fundamentally alters the nature of a game. In I'. for instance.
separation cannot not be achieved without a cost, but it may be achieved at a very small loss: For
a small ¢, type ¢t = 1 signals ¢ > r > 0, and type ¢ = —1 signals —¢ < o+ < 0. This observation
generalizes: When the signaling space X is rich, i.e. it has many signals, every cheap-talk SE onteome
can be approximated by a sequential e-equilibriuim outcorie of the game without cheap talk (Theorem
3).5

For finite signaling games, the set of SE outcotnes coincides with the set of limits of sequences of
sequential e-equilibrium outcomnes as e——0. The example shows this is not true for infinite signaling
games. lnstead, the set of limits of sequential e-equilibrium outeomes includes the chieap-talk SE
outcomes when X 1s rich.

Games with rich signaling spaces remain fundamentally unchanged by the addizion of cheap talk,
at least if sequential e-equilibria are cousidered. We argue with 1wo examples that this conelusion

must be taken with care.

Example 2 shows that, when the signaling space X iz not rich. a cheap-talk SE ourcorne need
not be approximated by an e-equilibrium outcome of the game without cheap t1alk.

Let 'y differ from I', only in that X' = {—=1.=1/2.0.1/2. 1}. The cheap-talk extension of this game
still has a SE where player | sends the signal v = 0 with the suggestion y= = £, and player 2 follows
the suggestions on the equilibrium path. The corresponding SE outcome cannot be approximated
without cheap talk: There are no signals » of arbitrarily low cost that can replace the cheap talk
messages; the most inexpensive positive signal is + = 1/2 and the most inexpensive negative sivnal is

z = —1/2, which costs 1/4 to player 1.

Example 3 shows that even when cheap talk can be emulated using the costly signal. doing so
may be contrived and unintuitive.

Let T differ from T only in that [7?(¢t, 2, y) = —fry. The cheap-talk extension of this gane still
has a SE where player 1 sends the signal # = 0 with the suggestion y* = ¢, and player 2 follows that

suggestion on the equilibrium path.

Fix 0 < ¢ < 1. One sequential e-equilibriurn in Iy has playver | signaling o+ = fo and player 2
responding
=1 ife<—
yle) = 0 if —e <<«
1 ife >,

8The definition of a rich signaling space is provided in Section 5



Alternatively, suppose that & ¢ supp[yes]. It follows from Proposition 1 in Part 1 and () that
UMt z(s),n(s)) = [y, U e ey 2(00de x dl)
fXXL U e Uy s(0de x dD) Y (') e X < L

DU () IR D)) = TR 3(s"). ("))

v

where the inequality follows by $3 for (,2,¢.%): the thied line follows by defining »' = #(+') and " = [,

and by definition of s’} when s’ & supplus]. QED

Proof of Proposition 2: We apply Lemma 1. Let S8 = XV x ¥ gt (0. y7)) = (f.r.q7).
e, ) =z, iz, ") =y @ (e ) = (#.C(e. D). and g = A Wit these definitions. A = jro f771 = A,
since fﬁ_l is the identity.

(1) follows by definition of j¢ and because ¢ is the identity. (i) follows hy defimtion. (111) follows
because Fw(z, i)} = Z(x, {{x. )} = ». To venly {iv). note that, by definition of outconie. A =
(ep)oh~t where k(t, (. 1)) = {£, 0. ({0 {}). This proves (iv). Lenuna | then bnplies that A= Als
a SE outcome of ['(¥7). It follows from (5) that A s supported as a simple SE. QED

Proof of Theorem 20 We apply Lerima I Let S = Vo r{e) = oow{eny’) = v and o= Ay v
(1), (i1} and (1i1) are immediate. To show (i1v) holds. et {(2.¢.4) be a simple SE supporting A in

[(¥"). Then, (¢e p) = A by (2). This iplies.
(peploh™t =MNoh™H,

but A(t, 2, 9*) = (¢, &(z,97)) = (f.r}. Thus. (Fep)oh™' = Ap .y = p. This proves (iv),
With these definitions, A = o f,"'f1 = A. by (1). Lemmma I implies that A is a SE onteowe of T,
QED

The following Lemma will be used to prove Theorems 3 and 4.

Lemma 2 Consider a continuous game U= [(T. 03 XY U072, and ats cheap-talk crlension N(W7) =
T, p), X, W™, Y, UL U3, Let S be any compuct metrie space such thal there exists @ contonuons sur-
jective funelion v : S—X x W™ Define the game T = [(T.p).-‘.\’,Y.[_:].(L"}. where Iti(!..z"‘p;) =
Ut, Projyv(s),y), fori=1.2 Lt Ne SFO(TILY). Then 3.y, 3) € .H'E(f). surk that

(1) A= (G ep)og ! where g{t.s) = (. Projyv(s). y(s)). and

(i) A= (aep)ofy™

1Y



To select this response in a sequential c-equilibrium. player 2 must believe that there is equal proha-

bility of t = 1 or + = —1 whenever ||2]| # €. The cheap-talk equilibrium is siinpler and more natural.
The analyst must decide whether cheap talk is essential to the economice situation to be modeled.

Adding cheap talk to a game raises several other issucs. The use of the set Y7 as the cheap-
talk language is justified by two properiies {Proposition 2):” First, any SE outeame obtained with
an arbitrary cheap talk space may also be realized using the set of all player 2°s responses. No
other SE outcome is possible. Second, any cheap-talk SE outcame can be supported by equilibrivin
strategies in which player 1 suggests a response y™ to player two. who. i turn, follows that suggestion
on the equilibrium path. These propertics underlie the Interpretation of a chieap-talk message as a
recomimendation with a precise meaning.

It is not necessary, however, to use a language with an intrinsic meaning. As leng as the laguage
distinguishes between player 2's responses. all potential SI outcomes can be realized. This sectns to
require a language of considerable size. Theoremn 4 demonstrates that it is possible to replace the
cheap-talk space ¥ with any rich space, for instance the unit mterval, and obtain the same results,

Finally, communication may not be possible without the consent of hath parties. and player 2 may
find 1t in her best interest to avoid any cheap talk: 'y has several SE outcomes depending on how
the response of player 2 to £ = 0 is defined. I any of these outcornes, player 2°s eguilibrivm pavoll is
at least 1/4. In the cheap-talk extension of I's. the outcomne described in Example 2 gives player 2 a

payoff of zero. Were this cutcome a possibility, Player 2 would clearly prefer to avold the chieap talk.

3 The Cheap-Talk Game

In this section, we define the game and its chieap-talk extension. We also repeat, for completeness and
without discussion, some definitions already present 1 Part 1

A signaling game is summarized by I'= [(7"p). XY 0 07%) In this game. playver 1 first privately
observes his type ¢ from the set T and then sends a signal » fronn the set X Player 2 observes this
signal, infers player 1’s probable types, and then responds with an action y from the set Y. The game
ends and each player i receives pavolf [7(¢. . y). Plaver 2 has prior beliefs p about the possible types
t of player 1; p is a Borel probability distribution on 77 that is commen knowledge. We denare the
support of p by supp[p] and assume for convenience that suppfp] = 7"

We alter T to include some payoff irreievant comumunication between the players: After observing

"In the general case, we use MY}, the <t of all probability distributisms on V. to include the mixed responses of

player 2.



Since :\T « § =, 7 =1 on the support of s, and using the definition of 777,

fT < S(j?(t,s,ﬁ(s)) ‘iT w sldE x ds) = jj w o Ut 2(s), nls)) pldt x ds)

IT % N o U F20E e o) Mdt < dr s dy)

I« vy URlt e Cle D) (9 e p){dl x de < ddl)
f;{‘ w VL Ut e e D) (e )t x de x dly, (7)

A

Y¢" measurable. (i) imphes the second equality. the fact that (2.¢) generates A implies the third one.
and $4 for (&, ¢, %) implies the inequality.

Given any continuous ', define '+ X x L —W by
el = laie ).

which is measurable. Then, (i1} inphes that

fT % Xop VSt o (e 1)) e p)ldt < dir x dy)
= 7 g DA @ )y (e 0))) (2 @ p){dt > de s dl)
IT =5 ("g(f"‘-'(s]v y'{x)) pldE x ds)

= f] xS [:'.’(_f‘ 5. rjff(_u)) ;\Y y hv(:“ X ids) (¥

where {iv) implies the second cquality: the definition of 1% and ,i;r w & = p the last one
The expressions (7) and (8) tmply (6). Then. Proposition 2 in Part | asserts that there exist heliefs
/ such that (&, r),,@) satisfies 82 and 54,

It remains to prove 53, which using the definition of s
Yt €T, ¥s € supp[a(i)]. /('l(f.i'(s).r)(.w))n(f)(ci's) > UNE RS 8]y v e N
5

Pick any t € T and s € supp[a(/)]. Since o satisfies (1), {f.5) € supplg]. Then. the continnity of

I and 9 and Lemma 3 in Part | imply,

{£.R(s). yls)) € supplA]. (4)

Consider any s’ € 5 and suppose first that s € supp[us]. By Lemma | in Part 1. there exists ¢
such that (#,s") € supp[ps]. Once more, the continuity of & and y. and Lenuna 3 in Part i, haply

that (¢, 2(s"), n(s")) € supp[;\]. Then (i1} and (iii) of Proposition 1 in Part | imply

UM E(s)on(s)) 2 UM 2 (") nls"))



his type, player 1 sends, in addition to a signal x. a message { from the set L of all such messages.
Player 2 observes both z and { before responding with an action y. The (cheap talk) message | does
not aflect the payofls of either player who receives Ut 2. y) as in . We swunmarnize this signaling
game with cheap talk by T{(L) = [(T,p). X. L. Y. U}, (79

We shall be concerned with continuous games. such as

”

Definition 1 T = [(T,p), X. Y. UV U3 is continwous of T. X, and Y are compact metric spaces and
Ul and U? are continuous. If in addition {the cheap-talk sct) L is a compact melric spaco. then

T(L)y=[(T,p), X, L, Y, U U? 15 conlinuous.

Fix a continuous game I' for the remamnder of the section.
A strategy for a player in T'(L) 15 a measurable function mapping her information into distributions
over her available actions. o represents a generic strategy for plaver 1, and by ¢ one for plaver 2.

Strategy spaces are therefore ®

SHT(LY) {p: T—M{X) x L], Is measurable}

(LYY = {¢: X x L—M(Y)| ¢ is measurable}.

[t will be convenient to differentiate strategies in I'(L) frem strategies in i a represents plaver
1’s strategies in [, and 7 player 2's,

After observing a pair (2.} player 2 forms Leliefs about the types of playver 1 that may have
sent that signal. The definition of sequential equilibrium will require that the heliefs of plaver 2 be
consistent with the strategy of player 1: Let ¢ o p denote the joint distribution on T x X x L indueed
by the behavior strategy ¢ when combined with the distribution poon 77 1t is defined for afl event

rectangles D x EC T x X x L as

(o) (1) x E):j; S{E) pldfy.
)

Player 2’s beliefs are a function 7 : X« L— (T} 5{we.{) is a prohahility distribution en playver
I’s types T given that player | has sent the signai r and the cheap-talk message [, Consisteney requires
that 4 be a conditional probability distribution of ¢ given & derived fram the joint distribution - e p.

The set of consistent beliefs-strategy pairs (4. 2) 8%

3= {(v,¢) Lo € £~ is measurable and 7 o iy = g, where g = 20 p}

8For any metric space A, let A1) denote the set of Borel probability distributions on 4. Define an orent of 4 o
be a Borel-measurable subset.

9 Given two metric spaces A and B and 5 € MiA x By, py and gy denote the marginal distributions on A and B



(iv) p=(pep)oh™! where h{t. (. 0)) = (£ @{x. D)}

Then, A € SEQ(T).

Remark: X is supported by (a.7..7). where o 15 o regular conditional distribution of s given

derived from p, and #{s) = () Vs € supplia e pjs]

Proof: We must find a (4.5 ) € SE(I') generating the distribution A We first define the
strategies & and 5, and prove that they support the outcome X. Then. we apply Proposition 2 in Part
1 to find the beliefs 3, and to prove S2 and S1. Finally. using Propoesition 1 in Part 1 we verify that
53 holds.

Define & to be a version of the regular conditional distribution of » given ¢ derived from g thar s

jt = & e pig, with the property that

teT and s € supp[nit)] = (t.+) € supp[pl. i

i
El
Lemrma 8 in Part 1 shows that such an o exists. Since « s tneasurable. o € SHI). We will use ()
to prove 53 later on.

Pick any le L. and define

W) Ws e supplus) (5)
ENS |

atherwise.

Thus, 5 € Ez(f’) and S1 is satisfled.

We now show that (a,7) generate the outcorne A:
A=qo f,}_l =(nepjo f,]_l =(neple fr-l_l

The first equality follows by definition of A, Fo prove the second oue. note that by definition of
outcome, A = (pop)ogTt. Then, Ay = p. By (i), jrs = Ar and therefore i = p. This imiplies that
(& » p) = p2. Finally, the last equality holds because 5y = 5 [prs]-alimest everywhere.

In three steps, we define a function 3" and verify the hypothieses of Proposition 2 in Part 1. First,

let 3° be any measurable function with

FHs) = (0(s) 1) Vs & supplps).
Second, by S4 of (2,¢,3), (C(i(s). 03 v(F(s). 1)) € MBR(FHs). Y. T.U0). Sinee As = g, the
definition of # and 8% implies that Vs @ supp[As]. (n(s). 3 (5)) € MBR(s. Y. T. ).
Third, we show that ¥»'(:) continuous

fT % Slﬁ(t.s, n(s)) ;\T w sldt xals) > ]1 w S [:3(1‘ 5.8 ;\T o Gt sy {6}

I



On occasions, it will be more convenent to extend the players’ payvolf functions 17 from ¥ 1o

M(Y) by taking expected values: for each (.0 ) €77 x X % M(Y). we let

Uit e, ) = f},l"'(!.r.y) i dyy. (1)

U' is a continuous function on T x X' x Y il and only if the extension of I to T x X x (¥} is

continuous {Lemma 4 in Part | proves the nou-trivial half of this statement).

DPefinition 2 4 Sequential Equilibrium (SE) for T(L) = [(T.p). X. LY. UL as a triple (£.C.7)

satisfying

(S1) ¢ € ZHI(L)), ¢ € SXI(L)):

(82) (4,9) € TXI(L));

(83) VteT, [y Utt, 2.{(x. 1) HO(de = dl) > UHe & e ) ¥ (' 8 e N ox L
(84) Y(z,) e X x L, [ U3t e {e ) A(e. D{dE) > [ 07w (e (dE) ¥y e M(Y),
SE(T(L)) is the set of SE of T(L).

We are concerned with the outcome of signaling games.  Any strategy pair in I generates a
distribution on 7' x X x ¥ and a distribution on T x X x M(Y). We call them. respectively. the
standard oulcome and the outcome of playing those strategies. Any strategy pair in a cheap-talk
game I'(L) generates a distribution on T x X x M(Y), the outcome of playing those strategies. The
outcomes of I'(L) are defined on the payofl-relevant spaces. This makes the comparison of anteomes

between I'(L) and T paossible.

Definition 3 Let T = [(T.p). X. Y, U, U%]. The distribution v on T x X x Y is a standard vutcome
of U if there 1s a strategy pair (o, ) in [ such that v = ypelaep). The distribution d on T = X x M(Y)
is an oulcome of T if there 1s a strategy pair (. 7)) i U osuch that A = (n . ) of”"l. where f”(f. ry=
(t,z,9(x))-

Let T(LY = (T, p), X\, LY. UL U3 The distrabution M on T x X x M(Y) s an wutcome of U(1)
if there is a strategy pair (&,C) in D{L) such that A = (e 1) o_q:l‘ where ge{t e Dy = (1 0. ClHe 130,
We say that the strategy pair (2.C) supports {or tmplements or y:'?it rates) the ouleome A, SEO(T(L))
is the sel of cutcomes generatcd by the set of SE of I'(L).

The standard outcome is the more commonly used notion. In the proofs. specially in Part 1. we
need our more refined notion of outcome. Al cur results. hovwever. could be staled and inicrpreicd

withoul any changes tn terms of standard oulconics. This assertion is justified by Proposition 1 helow.
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Example 1, there exists a different SE supporting the sauie cheap talk outcome in I'(Y 77 ): Dan sends

no request {xr = 0) and asks for red wine wheu he wants white and viee versa {y° = —f). and Pa
responds by contradicting the cheap-talk suggestions (5(0.y") = —y7). In this equilibrine a message

“I want ted {y* = 1)” actually means [ want white™: 1t is the equilibriumn that gives its meaning to
the cheap-talk messages.

This issue is of particular tinportance in econotnic applications where direct communieation may
be taken as a sign of eollusion. It has been argued recently that US airlines communicate their pricing
intentions to their rivals by entering letter codes before a particular fare, or by setting fares 1n advanee
on thelr computerized reservation systenl.

Proposition 2 proved that any cheap-talk SE outcome may be obtained by nsing player 27s responses
as the set of available cheap-talk messages. Any language that has enough symbols (or strings of
symbols) to distinguish among player 2's responses would suflice. This 1= the content of the next

theorem.

Theorem 4 Consider a contenuous game U = [(T.p). X Y. UV U and ats cheap-talk vxtension 1Y) =
(T, p), X, 9", Y, U U). Let L be any wctric space such thal there cxuests a continuons surpective fun-
tion - L—W*. Then, SEO(T (™)) = SEOI(L). where UiL) = {(T.p). X LY 7T

It follows immediately that any rich cheap-talk space L. for nstance the unit interval, wonbd suffice

to abtain all potential cheap-talk SE outcomes.

7 Proofs

The proofs of our results are similar in that we use Proposition 2 of Part | to obtain the SE beliefs. To

avoid repetitions, we first prove an abstract lemuma from which our results follow ax particular cases,

Lemma 1 Let T(L) = [(T,p). X. LY UV U? be contimwons and let (£.(.3) € SE(U(L)) generale
the outcome A. Suppose there exisls a compact melric space S, p € M(T x 5). and measurable
functions 2. S— X, 1:5—W¥ and v : X x L—5&. Lot I = (T ). 5 Y, (:1‘(:"’} where f:’(f..x:,y) =
Ui, #(5), ), and define A= o f~" where filt.s) = (Ls.ij(5)). Suppose

(1) A=pog™t, where g(t,s) = (£, F(s). n(s)).
{11} Z(-) and §(-) are conlinuons on the supp[ps].

(ii1) Z(w(z,l)) =z, and



The remainder of this section discusses, for completeness, the relationship between outeone and
standard outcome. It is not essential 1o the results or proofs 1w this article.

Not all distributions on T x X »x M(}") are outcomes. or equivalently. not all distributions ean be
realized by strategies of the game. (Sumlarly, not all distributions are standard outcomes.) Although
several distributionson T x X x M(Y') may generate the same distribution on 7 x X x Y: this cannot
happen with outcomes. Any given pair of strategies generates a unigue outcoine and standard onteame,
We shall see that there is a continuous, injective mapping between outcomes and standard outeones.

The following simple result is not employed in the paper. We provide it for informative purposes,

Proposition 1 Let T = [(T,p), X. Y. I"1 1'?] be continuous. and A be an outcome of T. implomented
by & € BN, and 5 € X2(T'). The function g(X) = e (a e p) from the sel of vutcomes lo the sel of

standard outcomes is an homeomorphism.

v oa well detined

Proof: All strategy pairs immplementing A are equal alimost everywhere. Thus, g

function.
We first show that g 1s injective. Let A’ be another outcome of I', realized by the pair (o y'). aud

suppose that g(i) = g{N). Then. their marginal distributions are equal as well:
(ep)=y(Ap o v =g(N)p v = (0 ep)

It follows that 7 = 5" almost everywhere. Therefore. A = (e p)o ff,'—l ={(neplo f,;,l = M.

We now show that g and its inverse are continnous. Let (o

™) he a pair of strategies pencrating
the standard outcome v", for n = I, 2. ... We st prove that (™) = v < (g~ He" ) = 4~ Y,

Let [/(¢, z, y) be any continuous function en T = X »x ¥ Then

fT % VxV Ut e y) (0" ein o)) ((df x dr x dy))
= Jrx x Ultoean™enia™ o p)((dt x de))

1

= fT w Vs L) {(a™ e p) of”_.,l)(df x da o dr).

where the first equality is obtained integrating over y: the second ane follows becanse (o™, ') generate

the outcome (o™ » p) o f.!. Therefore,

fT « X x Y Utz g™ ((dt x de x dy)) = J‘,]. w vy UL ey THEdE % dy x dig).

Since U({, z,y) 15 continuous 1f and only if its extension to T x X x M {Y) is continuous (equation
(1)), the characterization of weak convergence with comtinuous functions itnplies the desired result

QED



For instance, any finite space X is not rich. The unit interval is an example of a rich zignaling
space (Parthasarathy 1967, Theorem 1:4.1). but the signaling space X = [0, 1JU{2} is not rich. because
there are not enough signals near the element r = 2.

The idea behind Theorem 3 is siimple: Let A be a SE outcome of a cheap-talk extension gane
I'(¥*). By Proposition 2, it can be supported as a siple SE: player | suggest a response to player 2
who follows that suggestion on the equilibrium path. When the signaling space X has many signals,
it is possible to associate to any pair (z.77) a unique element #' close to x and. vice versa. Henee,
given a SE of [(¥") it is possible to construct a sequential e-equilibrium for T with the same outemne
by letting player 1 signal 2’ instead of (&, ™) and letting player 2 respond to r' with 5~

Adding cheap talk to a game with a rich signaling space does not alter it significantly. at least when
sequential e-equilibria are considered. We empliasize that the approximating SE way he contrived
and un-natural (Example 3), and that the approxitnation need not hold when the signaling space s
not rich (Example 2).

A sequential e-equilibrium differs from a SE i that players miay choose € hest responses:
Definition 8 A triple (i, 1), 3) 15 a scquential e-equilibroam of il salisfies
(S1°) ae NI, e ST,
(s2) (4,&)e ()
(83) WteT, f, Ult,x dj(x)) a()dr) = TNt 2" 0fe")) — ¢ W' € X
(84") Vze X, [[ U*(t.z,7(x})) A)(dt)y > S T2 ) Hx)dt)y = ¥ ye MYy

Theorem 3 Lel I' = [(T,p0). X, Y. UL (%] be a confinuons game with a rich signalimg space N. Lit
C(U™) = [(T,p), X, W™, Y. UL, U be its cheap-lalk extension. Giren A € SEQT(Y™)Y) and ¢ > 0. there

ezists A with Prohorov distance plA. X) < ¢ such that A 1s « scquential e-cquilibrom of 11!

6 The Cheap-Talk Space

Adding cheap talk to a game raises the question of what constitutes cheap talk., We Lhave defined cheap
talk as any payoff irrelevant message. This includes simple comnmunication using the vernacular, as
well as through any symbol, even without intrinsic taeaning; for tustance. playver 2 observing the calor

of player 1’s tie. The nature of the equilibnum assigns ineaning to the different symbuols or coloes: In

U Far a definition of the Prohorov distance see Billingsley (1968},



4 Existence of SE in Cheap-Talk Games

Consider a continuous signaling gamne [' = [(T.p). X Y. {78 7] with no SE. for iustance the gmue
in Example 1. As previewed in that example, the non-existence problem may be solvid by in-
troducing cheap talk in . Different cheap-talk spaces. however. produce substantial differences
in the set of SE outcomes: When only one cheap-talk message s available (L 1s a singleton),
F(L) = [(T,p), X, L, Y. U U? = I'. and the non-cxistence problem prevails. As the language L
becomes richer, the possibilities for commmunication increase and so does the set of SE outeannes.
There is a limit to this process. Proposition 2 shows that all potential cheap-1alk SE outcones may
be realized by using the set of all playver 2's available responses as the language of cheap 1alk. We

formally identify this cheap-talk space.

Definition 4 To conserve notalion we use W or W7 nstcad of M(Y'), the sct of probabedity disivibu-
tions on Y. We term T(¥™) = (T, p), X. U™ Y. U1 7] the cheap-talk extension of ',

In this game, the cheap-talk space W™ coincides with the set of all possible mixed responses of
player 2. An element 7 € ¥ denotes a generic response by player 2. The syvmbal « signifies that
the variable carrying it does not alter payvofls; it distinguishes between the message 57 sent by plaver
1 and the response 7 of player twe. Auy cheap-talk wessaze % In ¥ can be naturally iuterpreted
as a suggested response to plaver 2. This interpretation turns owt to be fratful. Praposition 2 alsa
demonstrates that any SE outcorne of (¥ )Jean he supported by equilibrimin strategies in which player
| sends a signal and suggests a response to plaver 20 who fullows the suggestions on the equibbriu

path. We call this strategies a simple SE. Formally,

Definition 5 Let T(¥™) = [(T\p). X ¥~ Y. UL 2] and et (;Q") bea SE of UUWT) wilh outeome
X. The triple (c;o,C,“y) ts a simple sequential equilibrium of

() Sz, n™)=n, (" =n) Yo )e supplAy o gl
(i) € ™) = ). Waor), (er) & sl . gl

Condition (i) states that player 2 follows player I's suggestions on the equilibrium path; (i) states
that player 2’s responses do not depend on the suggestions received off the equilibrium path.

We note a fact that we use repeatedly later on: The distribution en T x X x W™ generated by
player 1’s strategy ¢ is the SE outcome A. By definition of outcane,

A= (pepegstowhere gty ) = (e )
{

I



Intuitively, a SE outcome of a cheap talk game can he realized as a siiuple SE. By hypothesis, it
can also be realized by strategies of the game without cheap talk. The strategies in both cases must
coincide in general. The proof, which does not follow this reasoning, is provided in Section 7.
Consider now a sequence of games converging to a limit game, and a corresponding sequence of
SE outcomes converging to a limit distribution. The Lot distribution may not he a SE outeome of
the limit game. It follows from Theorem | and (3) that it will be a SE outcome of the cheap-ralk

extension of the limit game:

Corollary 2 Let '™ = [(T",p"). X" Y U 09 n=1. 2 ., and [ = [(T.p). XY 70072 b
continuwous games. Let T(W™) = (T, p). X\ 9™ Y. UM 020 Suppose (I'My—1. ) oe SE"Y and
(A"Y—X. Then, A € SEO(T(¥7)).

Remark: It follows from Corollary 2, and Propositions 4 and 5 in Part 1, that for sirengly

menotonte signaling games, which were defined in Part 1. SEQF) = SEO(T{(¥™)).

Combining Theorem 1 and Theoremn 2 we ohtain

Corollary 3 Cousider the confinuous games IV (" 7y = [(I" . ") X" 7"y 0 0 n=1. 2. ..

T(¥") = [(T,p), X, 9", Y, UL U, T = (1) X Y UL U2 and et A € SEOI™ (W7 7)), Suppose
{T7(¥" ")y —T(¥"), (An) = A, and that there crists a continuwous ' o supp[Ax]——V  such that
A=Ay xofn™' Then A€ SEO).

5 Does Cheap Talk Significantly Change a Game?

Example 1 illustrates that the addition of cheap talk may ncrease the set of SE outeomes, and
therefore, one is temipted to answer this section’s title in the aflinmsative. When sequential e-equilibria
are considered, the answer is not so clear. Theoretn 3 states that if the signaling space 1= =afficiently
rich, all cheap-talk SE outcones can be approxitnated by a sequential ¢-equilibrivim outeome of the
game without cheap talk.

A signaling space is rich if there are sufliciently many signals in any section of the signaling space

X. Formally,

Definition 7 A signaling space X is rich if for all compact wetrie spaces Z and for all elised balls
B C X, there exists a closed sel AC B and a continnous mapping from A onla 2.

14



= (peplog™ whereg(t. 2. ") = (£, 2.97)

S04

= v * (

where the second line follows by (i}, and the third one because ™ and ¥ are two copies of the sune

space.

Proposition 2 Let [(L) = [(T.p). X.L.Y. IV U7 be continuous. Let (2.C.%) be a SE of U(L) with
oufcome A. Then, there exists a sunple SE for T(W™) = [(T.p). X W™ ¥ IV 0] with outeome A

The intuition behind Proposition 2 is as follows. Let (. ;) and (. fs) be two possible mnessages on
the equilibrium path in T(L). Player 2's equilibriui strategy prescribes responses (e i = 5t and
é(x,lz) = n? respectively. In (7). player 1 could send a signal and a suggestion. (. ') imstead of
(z,0}), and (z,n?*) instead of (&, 12). (Reeall that ° = 5. i = 1. 2t the symibol » only distingnishes
a payofl lrrelevant suggestion {rom a response.) Plaver 2 would respond by following the suggestions.

It is incorrect to assume that player 2 would follow any suggestion: Suppose. for wn=tance, that
player 1 suggests to player 2 a response that is strictly dominated (from player 2's point of view).
Player 2, of course, will not follow that suggesrion. No SE will have that response on the equilibrium
path. Thus, player 2's response need not depend on player 17s suggestions off the equilibrian path.

In the proof, which we provide i Section 7. care must he exercised to account for the equilibriam

beliefs.

Before proving Theorem [, the upper hemi-continuity of the SE outeotme correspondence for cheap-
talk extension games, we must define a nction of convergence of ganies. We use weak convergeuce
for probability distributions, convergence with respect to the Hausdorfl distance for action and 1ype
spaces, and continuous convergence for pavolf functions. The definition that we now reproduce has

been discussed in detail in Part 1.

Definition 6 A sequence of conlinuous games, MW7) = [(T7 pf), N0 @ =y b s pane
verges to a confinuous game U(W™) = [(T.p), X ¥ Y. 7L 07 (T (0" " )y —T (). if

(H1) (X"} —X, (Y)Y —Y. (I —T. ") =

(H2) (U')—U*' continuously for (f.o.y) €1« X x Y. i=1. 2

Theorem 1 {Upper hemi-continuily) Constder a sequence of continuous games U (¥ "), =1, 2, ...
and a confinuous game T{¥™). Suppose {I"(¥" ") —C(¥7). A e SEOT™W" ")) and {,\”) = A
Then, A € SEO(T{¥*)).

12



Proof: We will apply Theorem 1 of Part 1. Consider alternative but eguivalent representations
of T™(¥™*), and T(¥™*). Let I = [(T7,p") XM Y U0 03 and TP = (T p). XY 72 where
X = X x ¥, X" = X x ¥ It is immediate that {0 ") —T(F"). We st verify the
hypotheses H3 and H4 of Theorem | of Part 1.

By Proposition 2 there is a simple SE {5.¢,~) generating the outcome A in (0™ 7). The teiple
(¢,¢, %) is also a SE of I'™, and generates an outcome A" i that gane,

e

{
I

e pt) oy

Cwhere glt (o)) = (e o). (O = )

»

=
n

= og—l,

where the first line follows by definition of outcowe. and the last twe by the definition of shuple SE
{11), and by (2).

Taking limits in the last equation {Ilildenbrand 1971 page 51). A = Ao y™*

CThis proves B3 and

letting ' (z, ") = 5 (with 5™ = ). establishes 111, QED
Since SE always exist for finite cheap-talk games,
Corollary 1 Every continuous cheap-talk extension game T(¥7) = (T p). N W Y 070 072 has a SE.

Let A be any SE outcotne of a signaling game I'. Adding cheap-talk to [ will preserve A as a SE
outcormne: In the modified game plaver 1 sends always the same cheap-talk message. and player 27

response remains unaltered by the cheap talk. Thus,
SEOTN) CSEOr (). ()

Example 1 showed that the inclusion may he strict.
For a signaling game U, if SEQ(T(¥ 7)) = SEOT). T has a SE. Thus. it s nnportant 1o determine

=

when a SE outcome of T(¥7) will also be a SE outcomne of 710

Theorem 2 Let T = [T, p). N Y. UL 072 be continuous and lef A be n SE outeome of s chap-talk
extension T(W*) = [(T,p). X W™ Y. UL 172, Suppose therve exusts a strategy pair (a.n) onplementing
A, and n is condinueus on supplAx). Then. A e SEO(D).

If a SE outcome A of a cheap-talk gate can be huplemented with a continnous strategy for plaver

2 in the game without cheap talk, then it is also a SE outcome of the game without cheap taik.

19Crawford and Scobel {1982) and Seidmann (1990} present conditions for pure cheap-talk games to be cotumunication-

impervious; every SE outcome of the cheap talk extension game is also a SE outcome of the sriginal game.
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