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Abstract

Growth theorists have alinost always adopted the assumption of balaneed growtl
their investigations of development phenomena. In reality conntries growtl rates oscillate,
sometimes wildly, around some average value. The latter is often taken ro represent rhe
halauced rate to which the development dynamics spontancously tends to retnrn after
each perturbation. In this paper we try a different interpretation: the growtl rate of
capital stock in a developing economy oscillates within some bounded mterval of feasible
values and the balanced growth rate is in fact unstable. These oseillations may he porsise
tent and endogenously determined by the accumulation process itself and rhey generate a
non-trivial, invariant distribution of growth rates. We study a class of two-sector models
displaying this feature in the presence of a positive external effect. The qualitative prop-
erties of a specific example are analyzed by means of analytical and wunerical methods.
Our simulations reveal that, while the artificial economy is certainly able ro display rather
impressive endogenous growth cycles, they occur only when the external effecrs 1= mrea-
sonably strong. Similarly to previous tentatives of modelling endogenons o=cillations hy
means a chaotic map, we succeed at the theoretical level hut fail short of reproducing ~owie

crucial empirical properties of the growth cycles experienced by modern market ceotomies.
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1. Introduction

[t is a customary practice in the study of growth problems to construer the analvtical
model around the pivotal assumption that long-run growth oceurs at a stable and balaneed
rate, and that growth rates different from the balanced one may appear. as Trans<icnt
phenomena, only during the initial stages of the development process.

This assumption is shared by the older models in which growth 15 due 1o COXOLCNONS
technological change (e.g. Solow (1956) or Cass (1963)) and the more recent ones in which
growht is “endogenously” determined by the continuous accumulation of some reproducible
factor (e.g. Lucas (1988}, Romer (1990)) . The task of growth theory 1s defined as rhe
explanation of the long-run average growth rate. This task is acliieved by sweeping astde
the continuous fluctuations in growth rates that characterizes actual cconomics.

This separation between cycles and growth also provides the theoretical nnderpin-
nings for the methodology adopted by proponents of Real Business Cyele theory. see vy,
Kydland and Prescott {1982) or Hansen (1983). Here the economy is displaced frony irs
constant growth trend by some unpredictable technological shocks. whose offects on the
capital accumulation path nevertheless die away rather quickly as the ccononmy returns To
its unmodified balanced growth position.

This is rather ironic, as the initial emergence of the real business evele approach
was motivated by the scientific need of connecting the theory of husiness fluernarions to
the theory of economic growth. In the view of its propouents this has heen aclieved by
emphasizing productivity shocks as a main driving force behind the trade cxvele: s the
erratic nature of the growth process that provides the impulse for the short rn business
cycles.

On the other hand, real business cvele supporters seem oblivions to the fatal rendeney
of their models to go back to a position of complete rest where there are ueirher eveles nor
growth. They handle this lack of internal dynamics by introduncing the ancillary hypothiosis
of an unending stream of technological shocks. These act like the dews cr anachina of
the whole story and provide the real business cycle’s transmission mechanizimn withy the
continuous impulses that keep it alive. This methodology reduces the claim of havine
built a joint explanation for cycles and growth to a rather vacuons statenient as we Live

1no idea of where growth comes from and if and how the business eyeles feed hack on it

'I' Romer {1986) is an exception: he assumes unbounded and increasing prowth rates
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the price of capital (in consumption units) and the real rate of return on capital wmereise
exponentially (the first faster than the second). Neither of this phienomena has heen
observed in the real world where, if anything, the consumption price of new nvestniens
has slightly declined in advanced economies.

Some of these negative properties may depend on the specific functional forms we Liave
chosen and, in particular, on the attribution of the external effect only ro the consunption
sector. Similar numerical exercises performed on the model described in Secrion 2.3. shiow
that in that case relative prices remain stationary and that the magunitude of the oscillations
of income and consumption can be somewhat reduced.

It remains a general finding, though, that the endogenous oscillations iu erowth rates

are possible only for very large, and in our opinion unrealistic levels of the external offeer,

4.2 Conclusions.

We have presented a class of two-sector models in which unbounded aceummlarion s
triggered by the existence of increasing returns in aggregate production. The nercasing
returns are due to the positive external effect generated by the aggregare stock of capatal,

The model predicts that when the external effect is very strong. the orowtlh rare will
oscillate forever along cycles of long periodicity or even over a chaotic artractor. We liave
provided a full characterization of the conditions under which this oceurs and illnsrrared
the feature of these endogenous growth cycles by means of numerical simulations,

While the theoretical exercise has certainly been succesful the cmpirical applicability
of the model seems to be still out of reach. Endogenous growtl eyeles require wireasou| Ly
high levels of the external effect when the other model’s parameters are tuned ro realistie
values. Furthermore, the dynamic properties of the aggregate prices aid (uantities gl
erated by our artificial economy in its chaotic regime fare very poorly when compared 1o
real world data.

The empirical relevance of chaos theory for an understanding of ceonomic growrh

cycles has yet to be proven.



Indeed the old dicothomy is still the crueial assumption upon which real Dusiness
cyele theory rests. Without separation between growth and oscillations atel, in partienlar.
without the exogeneity of the first to the process gencrating the second. thehr model-
building technique could not be adopted.

In this paper we point out that there is no reason to maintain this dicothomy, ar least
at a theoretical level. We show that in models in which unbounded accumilation is dne
to productive externalities, trend and cycles can be sinmltaneously generated by rhe some
endogenous economic mechanisi.

This is accomplished in a class of stylized two-sector models. without endogenons
labor supply and with rather simple forms for the utility and producrion funerions, We
show that, as long as the externality is sufficiently strong, it does ot marter if it atfeers the
consumption or the capital good sector. In both cases. persistent growtl: i accomnpanied
by oscillations in growth rates.

Contrary to the examples of endogenous cycles generated by convex versions of the
two-sector model (e.g. Boldrin (1989)). in the presence of an external factor. endogenons
oscillations can be obtained at fairly reasonable values of most parameters.

While the theoretical properties of the class of models presented here are very -
teresting and suggestive of potentially valuable developments. we are still wible o elaim
they can provide an explanation of the empirically observed oscillations i the erowtl rares
of most aggregate economic variables. As we have verified by means of many pnerical
simulations, the models constructed here do not display “realistic” features. Not ouly they
are too stylized to be of serious empirical relevance. but the strensht of the externality
required to generate endogenous oscillations implies a behavior of ourpnt and consuup-
tion which is clearly counterfactual: they both grow too rapidly and the second oscilintes
much too widely compared to what we observe in reality. It is au open question if more
elaborated versions of the same basic models may be able to overcome these mitations.

The rest of the paper is organized as follows. Section 2 introduces the theoretival
framework, derive some of its fundamental properties and describes two specifie clisses
of functional forms. In section 3 the simplest among these two models is investigated
analytically and its qualitative properties are spelled out. Section 4 briefly sunmmarizes the

findings of a number of numerical simulations of the same model anc cotclndes the paper.
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fu(#) € P, there exists a continuum of attractive period two eycles. Norice thar the
periodicity of this attractive cycle is indipendent of the initial condition =y & II.

For the special case in which A contains an aperiodic orbit (which will he trme for
example whenever the hypotheses of Lemma 1 are satisfied) then one conld try to apply

again Theorem B of Nusse [1987] to conclude that the set of points in [0. o] which do not

converge to the periodic point of period p is of zero Lebesgue measure !

On the other hand when f.,(¢) ¢ II then the asymptotic belavior of the equlibrnun
growth rate will depend on the specific structure of A. As we have already mentoned.
one cannot show that in general A has measure zero even if it obvionsly has a Cantor-like
structure. If the asymptotic behavior over A will be periodic or aperiodic can be decided

by applying here the same criteria we developed in subsection 3.1.

4. Numerical Simulations and Conclusions.

4.1 Simulations.

As pointed out in the Introduction we have tried to parameterize the model nsing whit
we consider acceptable values of the parameters and to examine thie statistical properties
of the aggregate time series so generated. While the detailed results are not reported here
to economize on space, some general comments on these findings scem appropriate.

Setting § = 1.2, § = .75, & = .5 and o = .5 this requires a value of 4 aronnd 2. Wlile
the first set of parameters are roughly acceptable the level of the external effeer i implhied
by the choice of 3 seems to be unreasonably high. This is reflected in the long i bhehavior
of the simulated time series: while they behave reasonably for the first fow periods thev
move on a very steep and exponential growth path soon after that. Not onlv: rhe =1ze
and the frequency of oscillations in the growth rates of income. capital and cousunption
become very rapidly of an enormeous magnitucde compared to what we observe i the real
world data. This is particularly for the consumption and income variables which afrer
detrending display a standard deviation which 1s almost twenty time larger than observed
ones.

Finally the behavior of the associated price sequences also appears nurealistie. Ax

mentioned above in Section 2.3 the relative prices are not statiouary in thix ceonomy:

]L The map is not three times differentiable at two jsolated points. It is a tedjous bnt straiwhtforward matter

to verify that this does not affect the proof.



2. The Model Economies.

2.1 The abstract framework.

The economy is inhabited by a continuum of identical. infinitely lived agents who
maximize Zio u(cy 6! subject to the resource constraints ¢, = F'({ oyl vy =
F(lye,zany k) + (1 — e, & = b + Lo and r, = ry + ror. Here w{+) is o smietly
concave and strictly increasing utility function, and Fl... :k). F%(-.- th) two coneave
and increasing production functions.

The notation is standard: ¢, ¢; and z; denote individual consvumprion. labor supply
and capital stock respectively, § and p are the discount and depreciation factors. In rhe
two production functions the symbol k, stands for the average stock of capital in rthe whole
economy. This is assumed to affect the individual production processes as an externality
In equilibrium we will impose that ky = x4, but it is important to keep a separare notation
when discussing the representative agent maximization problem as single imdividuals Liave
no control on the values of the aggregate capital stock.

One defines the individual production possibility frontier (PPEF) as

T(xy, Tpg1. 0 ke) = max FY{q o k)

flt-flt
subject to: ¥4y < F2e — Cpory — o k) + 01— p)ee.

For a given aggregate sequence {k}{Z,, we write the individual intertemporal maximiza-
tion problem in reduced form as

20

max I"(;r,..rt_H:_kf)(‘ir AN
lreiZo 150

subject to: (1 — p)ay < xy41 < FHlire hy + (1 — peiry

where V(zy, xep1; k) = u[T(2s, 2043, It k) is the individual return function aud rthe ex-
ogenous per-period labor supply ¢¢ has been normalized to one.

Equilibria are solutions to (P) that satisfy x, = k¢ for all + = 0.1.2..... For rhe
case in which equilibria are interior (i.e. the sequence {u,}7Z, satisfies (1 — e rpey =

F2(1,z4; 24)4(1—p)z) they are completely characterized by the following rwo restrictions

Valzg, e ) HEVi{rem dopi e ) = 0 (BB
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that the map f. looks as in Figure 13, with ¢ some number less than one. It is obvious

that only the subinterval [0, é] is now invariant under the action of f..
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Figure 13.

Visual inspection suggests that for values of ¢ close to one the beliavior of the equi-
librium trajectorics remain pretty much the same as that discussed in Section 3.1. As p
increases, unfortunately the structure of the equilibrium set becomes harder to character-
ize. We will try nevertheless to provide here a short and Leuristic discussion,

Denote with II the set of preimages of ¢ under finite iterations of the map fo.mother
words I is defined as the set of all those 2 € [0, ¢] for which there exists an n > 0 sueh
that f7(z) = é. In particular denote with P the set of direct preimages of ¢, 1.e. all those
z € [0, ¢} such that f.(z) = ¢. The reader will notice the geometric analogy between this
case and the one we just considered for m(3) > 1, an analogy worth exploiting to shorten

the forthcoming discnssion. Define
A =[0,¢] \IL

It is clear that most points in [0, ¢] will belong to IT but contrary to the previous case one
cannot claim this sct to be of Lebesgue measure zero.
When the point ¢ is mapped into IT then all the equilibria with an initial condition

zo € II are eventually periodie of some finite period p. In the special case in which



and

‘lim SlaVilag.apqpr:0¢) =0 (T

There are a number of well known ways in which one can guarantee rhat the sequences
solving { EE) and (T'C) are unbounded. We will not spend our time cdiscussing them Lbere
and instead assume directly that unbounded growth in the stock of capital ocenrs (see
Boldrin and Rustichini {1994) for details).

When unbounded growth occurs it is useful to transform (EE) into an mnplicit coua-
tion in growth rates, and to study the dynamics induced by the one-paramerer fanily ot
maps this transformation produces. More precisely: define the growtl rate of the capiral

stock at time t as A, = r¢41 /7, and let

Flirix)+(1—p)r
8 = max

>0 I

Assume that F? is such that the latter is a well defined problem with a finite solnrion. An
interior solution to ( EE) implies A, € [(1— p). 6] foralt t. Let 2y = r. then (EE) eenerares

the one-parameter family of functions 6 : [(1 — 1), 8] — [(1 — ). ] defined by
Vo(a, dpry ) + EVi{ A 0.(A A Agr) =0 VEE"

Oune is interested in characterizing the asymptotic behavior of the equilibrinun sequences
of growth rates {A}32, satisfying (EE"). In general this is very demanding and cannor
be done for arbitrary classes of production and utility functions. Neverthelessar hecones
a manegeable task when appropriate choices are made.

In the rest of the paper we will choose particular funetional forms for u. FUiand F-.
such that unbounded accumulation paths are equilibria. Our choice will adso euaraurce
that an analytical study of (EE') and (TC) can be carried ont. Our artention will then

concentrate on the asymptotic behavior of the orbits of the dynamical syrem mcdieed by

(EE') and satisfving (TC).

2.2 The Basic Example.

The model we introduce here was first proposed in Boldrin and Rustichiui (1994 I

is based on the following utility and production functions.

u(e) = ———. witho > 0.
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(iii) is also satisfied as the set of points in question is the intersection of a colleerion of
closed and bounded subsets of the real line. We have proved in Lemma 2 that the eritieal
point ? converges to —oo under repeated iteration of f,,, hence (iv) is also sarisfied. Finally
(v) is obviously true. Given that the trajectory of the critical point = converges to —X
there are no asymptotically stable periodic orbits for f. because if stiell an orbir exisred
it would attract the trajectory starting at the critical point. Hence the quoted theorem

implies our statement. Q.E.D.
Summing up we have the following characterization of the equilibrinm set &

Theorem 1 Under the assumptions of this subsection the equilibrinmz sct & defined ahove
in equation (3.7) is a closed subset of the unit interval. composed of au (nueonutable)

number of isolated points. The Lebesgue measure of & is zero.

Proof: That £ has measure zero follows from Lemma 3. The other properties are rrivially

verified by construction. Q.E.D.

The interpretation of this result is straightforward. In the presence of very strong
externalities if the economy follows a perfect foresight path then ECONONIEC agent s st
be able to select the initial growth rate Ay from within the equilibrium scf & msread of
the whole unit interval. The structure of £ is extremely complicated aud furthernnore 1t
seems unlikely that points belonging to & could be selected by chance as the set & has
measure zero. This obviously requirase some incredible computing power ou the parr of
the economic agents, a computing power we very much doubt to possess.

We will now briefly show that a somewhat similar situation arises when o realisne

depreciation factor is introduced in the basic modlel.

8.8 Asymptotic Behavior when p <1.

Earlier on we introduced the simplyfying assumption according to which the entire
stock of capital depreciates after just one period. This simplified the algebra requured
to characterize the basic properties of the equilibrium set. We should try ro relax rhis

assumption and consider the consequences of setting 0 <y < 1. In general thix nuplies



cr = FU g, oy ke = k7€ a$,, witha € (0.1) andy >0
b= bzay, b>0, 21+ 2o =x¢ and reqy = (1 —p)rr + i

After normalizing total labor supply to one, the PPF faced by an mcividual ageut with

stock 74, in the presence of an aggregate stock ky 1s
Cy = T(Ih Tig1s kt) = ‘}A? (G.l'f — .I'(+])a 1210

where 0 < v = (1/8)* < land § = b+ 1 — p > 1 will be assumed. This is cnough to

guarantee that unbounded accumulation is possible. The analogous to problem (771 1s

max ic:(l — )7 (’}’]\7?(9.1'1 — T4 )“)lﬂc\r

{I!}toiu =0

subject to: (1 — p)ry < xpyq < By

Equilibrium trajectories departing from a given nitial condition oy satisfy:

*CY’YI_UE?(I_U)(OIt _ It+1)ﬁ(1—0]—1 4 6071_08-1';’_5_1]_3)(9.1‘;.‘.1 B .J'f+z)(‘(l_ﬂ)_l VEF

and
lim &'y 7 =0 i T
t—oo

Setting 2, = 7, Teq1 = A and T4 = Ma1Aer and simplifying (EE) we obram the

following first order difference equation Aqpp = 7(Ar)

8 — (88277 (6 — X)) when 7(A;) 2 (1 — p} 12201
Ap1 =

(1—p) otherwise (220
where v = ]—:#&—) and 3={n+a)(l—-0)—1.

The presence of the floor-value (2.2b) in the definition of the dynamical evolntion of
), is meant to capture the idea that free disposal of the capital stock is really not possible
and that (1 — p) is therefore the minimum admissible value of A, Inn order ro simphty rhe
analysis we will first assume that g = 1 holds and concentrate on the portion (2.2¢) of 7
In this case the latter will be defined over the whole interval [0.8]. A posirive valne for rhe
depreciation rate g will be reintroduced later on (Section 3.3) and its implicarions for rhe

structure of the equilibrium set discussed. The transversality conition can he wrirten ax

tlim “971_06%(:1&(,)(1—0)(9 —Aettmrimt =g (2.3}



under g. Mimicking Collett and Eckmann (1980, p. 993 one can check thar in all cases ¢
must have a critical point in [r, s] which is attracted to z.

7) Finally consider the case in which g = £ has a fixed point g(=) = = at which 'z =1
Only the situation in which —oo < 2 < o0 needs to be considered. By 4) there nmsr be a
neighborhood (a, b) of z containing no other fixed point of g. Again by the same arguments
of Collett and Eckmann {1980, p. 100}, ¢g(y) > y must hold for y € (a.z). Ler d be the
minimum value of y for which g(y) > y. Observe first that (d.z) NP1y = ¥ snee by
definition = € (d, z) implies g*(z) — = as k — oc and v € P"(1) implies gfrer — 0 as
 — 0. Then either d = —oo or g(d) = d must hold. The first case contradicrs the fact
that f.(y) — —oo when y — Foo. In the second case {(d. =) must contain a critical point

of f., as proved in Collett and Eckmann (1980. p. 100). Q.E.D.

Lemma 3 Under the assumptions of this subsection the cquilibriuus set & cdefinred 1

(3.7) has Lebesgue measure zero.

Proof: Formally we want to show that the set of pouts £ such that - € {R\ &} ==
{ft}(z) — —oo} has Lebesgue measure zero when m(3) > 1. We will make wse of rhe
following theorem proved in Nusse (1987).
Theorem. Assume that f: X — X is C?* over the non-trivial interval X and 1t satisfies
the following hypotheses:
(i} there exists at least one aperiodic point for f:
(i) Sf(x) <0 for all z such that fl{x) # 0
(iii) the set of points whose orbits do not converge to an absorbing bhowdary pomnr of X s
a non-empty compact set:
(iv) the orbits of each critical point of f converge to either some asyiptofically stable
periodic point or to an absorbing boundary point of X
(v) the fixed points of f* are isolated.
Then:
a) the set of points whose orbits do not converge to an asymptotically srable periodie
point or to an absorbing boundary point of .X has Lebesgue measure zero:
b) there exists a positive integer p such that almost every point in X is asymprotically
periodic with (not necessarily primitive) period p. provided that f is bounded.
We have shown (Lemma 1) that f. has a period-3 cyele for admissible values of oo Tlis

implies the existence of an aperiodic point. f. also satisfies (ii} by constrmcetion. Hypothesis



It is straightforward algebra to verify that the map (2.2} is continuons over the mterval
0, 8] if the restriction v3 > 0 is satisfied, which we take for granted from now on. Tlos
amounts to imposing either aggregate increasing returns in the stock of capital when

0 < ¢ < 1 or a strong negative externality (n < —a) when o > 1.

In the special case 0 = 1 (i.e. logarithmic utility function) the dynamics predicted
by the model are trivial. The function (2.2) is monotoue increasing and maps (0.6] o
(—oc, 8] indepedently of the values taken by the technological parameters o and 5o The
two fixed points (corresponding to balanced growth rates) are respectively ar A = ~H
and X, = 8. The first is dynamically unstable while the second is stable but violates the
transversality condition. The reasoning of Boldrin and Rustichini (1994) theu miplies thiat
from every initial condition there is a unique equilibrium path. converging to i balaneed

growth rate A;.

In the ensuing analysis we will concentrate on the parameter values 0= 7 - el

3 > 0 as they appear the most relevant from an economic standpoint.

Before proceeding with the study of (2.2) it is opportune to clarify which amony the
trajectories induced by 7 satisfy (T°C'). It is readily seen that two different sitnanons may

arise.

When the parameter values are such that 7(A) € [(1 — ). 8] for all A € TR TENCI
one has (1 — )tz < x; < 82 for all . In this case. for any initial condition ., € Ry the
capital accumulation rate remains bounded and one may try to show that all. or at least

most, of the trajectories generated by (2.2) satisfy (2.3)

On the other hand, for any 0 < p < 1 there exist admissible values of the orher
parameters giving 7(A) < (1 — pu) for some A € [(1 — 4).#]. In these clremmsrances. for
given zg, any feasible ry such that Ag = 21 /xo induces a trajectory of growth vates alone
which 71(Ag) ¢ [(1 — ), 8] for some ¢t is not an admissible choice m equlibrmum. Thi- is
more easily seen in the case g = 1, where A, ¢ [0.6] implies lim . Ay = > nnder the
action of (2.2a), which obviously violates (TC'}). In this case only those values of ) such
that Mg = z,/zo induces an orbit remaining in [0, g for all t are candidate 1o be selected i
equilibrium. As we show later on in section 3.3, this makes the structure of the equilibrinm

set look particularly intriguing.

In either case, even if A, € [0,6] for all ¢, an additional joint restriction oun paramerer

values and the “average growth rate” needs to he added to gnarantee that (2.3) 1+ sutisficd.
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Since f(3) # #, this proves the existence of a period three. m(3) < 1 holds as a consequence

of Proposition 3. Q.E.D.

The next step is to show that every stable periodic orbit of the map fo will artract
the critical point 2. While tedious, this amounts to verifving that the proof eiven in
Singer (1978) can be replicated for a map defined over the whole real line and with zero
Schwartzian derivative at a finite number of isolated poiuts. To save space we will follow
the seven steps of the proof as given in Collett and Eckmann (1980. pp. 97-1003 sud check

that they are all satisfied also here.

Lemma 2 For all w > 1 every stable periodic orbit of f., attracts the critical poinr .

Proof: We will proceed by checcking that all the seven properties derived in Collert and
Eckmann (1980, pp. 97-100) are satisfied also here.

1) is just a property of Schwartzian derivatives. i.e. if f and ¢ ave C* then Stfcyliv =
(SF)(g(2))g'(x)* + Sg(x).

2} Let P™(1) be the set of preimages of 1 under f*. Then one can verify by direct
computation that for all n > 1, Sf" < 0 everywhere on R but at I = {Z. 1. 0y o P

3) For all z € {R\ B} || has no positive local minimum,

4) The map f., has finitely many points of period n for every mteger n > 1.

Proof. Let Per(f) be the sct of periodic points. Then it i clear that P10 Per( f1 = @,
Suppose now that for some n, f2(x) = x for infinitely many o Then by thie mean
value theorem we must have ¢'(zx) = (f")'(;z'k) = 1 for infinitely many oy ¢ PUil)
Moreover, since the cardinality of P™(1) is bounded above by 2". for infinitely many A's
[zk, T441]NP™(1) = @ will Lold. Point 3) above then implies that |g'| mmsr vanisl on those
intervals. But this contradicts the fact that f. and hence f and ¢ Lias finitely many erinical
points.

5) If @ < b < c are consecutive fixed points of g = 7 and if [a. ¢] coutains no eritical poinrs

of g, then ¢'(b) > 1.

6) Let z € R be a stable fixed point for g = f7, and assume |¢'(z}] < 1. Then the <fable
manifold of z is the set of points converging to = under iteration of ¢ awd the scmidocal
stable manifold of z is the connected component of the stable manifold of =, which contams
z. Then by our definition of £, (r, ) is the only possible forn that the semilocal srable
manifold can assume, where » and s are two finite numbers which are eitlier horl fixed

points of g, or a period-2 eycle for g or one a fixed point of ¢ and the other its preunace
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Our definition of Aayv goes as follows. Let p be a positive measure on the unit inrervil

which is invariant under the iteration of 7, i.e. such that p(r7HA)) = piAd) for all the

Borel subsets A C {0,1]. Then we have

1
Aav = / A p(da)
0

In our applications we will always be considering cases in which there is only one such
measure p which will be invariant under 7.
Under the parametric restrictions introduced so far the map 7 displays rhe following
properties.
a) It is unimodal over [0, 6] with a minimum at A* = Ff/(1 + Jr).
b} It has two fixed points at Ay = (1/86)/% and at A, = 6.
¢) The fixed points are ordered as A, < Ao, when Ap satisfies condition (241 (with
Aav = A1) and A does not.
d The latter also implies that Az is a source whereas Ay can be either a souree or s k.
e) At certain parameter values the equilibrium trajectories { A }75, are cyelie or chaorie
It is also worth noting that when the transversality condition (2.4) 1 satisficd. the
stationary point A; corresponds to a positive balanced growth rate g = AT -1 Even
if property e) may not seem obvious at this point it will become apparent affer the next

section. In the meanwhile we collect here a few qualitative implications of properties ai-c

Proposition 1 Under the restrictions 3 > 0 and 0 € o < 1. there exists a wore than

countable set of equilibrium trajectories for every initial condition .ry.

2.3 A More Complicated Ezample.

To dispel the impression that the example given above may he speetal e the elass of
two-sector economies under consideration. we will introdice here a second specification of
F! and F? which in fact induces an even more complicated pattern for the equlibriun
growth rates.

Let us restrict attention to a linear utility function from the onset. This nunimizes
algebraic complications and does not alter the qualitative conclusions. Retain notation

from the previous subsection, and specify the production functions ax

-

ey = €7 %ay,, for a € (0.1) (2.5



2()
containing all the inadmissible initial conditions. The equlibrium et rediees to

£=10,1]\ (U?:O=U‘ n) 13.7)
1t is straightforward to note that the procedure through which £ is constructed 1= remines
cent of the deletion algorithm generating the Cantor-Middle-Third sct. The only ditfference
here is that the open intervals we are removing are not symmetricaly locared aronad rle
middle point 1/(1 +w), due to the strong asymmetry of the map f..

In any case this minor difference is not essential and the proof that & is a closed et may
proceed in the standard way (see e.g. Devaney (1986)). To show that it ix dirconnected
and it has Lebesgue-measure zero one encounters real difficulties. The slope of f 1x zero
at z = 1 and very small nearby. This makes it impossible to show directly that for e > 0
any non negligible interval of the type [1 — .1} would contain points that are eventually
mapped outside the unit interval by f7. In spite of the fact that all intervals of that rype
are mapped into intervals of the type [0, f(1 — ¢)] and that the slope of fo 15 very hieh
near zero, the slope of the second iterate of f, becomes as close 1o zero ax one pleases at
values of z € [1 — €,1] close enough to one.

Hence a complete characterization of the equilibrium set £ cannot rely on exisring
results and has to derived by other means. This is what we are going to do next.

Begin by extending the function f, over the whole real line

—(z—1) 21
flz) = { ful) s e [0.1]
FP0)E + F(0)5 + f(0): 2 0

Then f: R — Ris C?, with Sf <0 and Sf<0ifz#1.2

Lemma 1 There exists an @ = v3 such that for all w > & the uwap fo hias wovvele of

period three. Also, m(8) < 1.

Proof: Consider the behavior of the third iterate ff, Denote with LY = f77(1 the lofr
pre-preimage of the critical point and with Lm = f;l(f) the left preimage of the enrieal
point. Then F3(LM) = m(8) and fi(Lm) = f,(m(.3). So 0 < LM < Ln - 2"+ L
It is easy to see that m(3) — oo as 3 — oc. This implies that _fitl_\[} — ¢ and
f3(Lm) — —oc monotonically with w = v3. Since f. is continuons and L. Lo € (0.1

there will exist an @ such that for all w > & there exists a I satisfying

f(5y=23 and Lm <Z<Lm.

!
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Ty — (1 — p)ze = by, with b >0 and (1 + (o = {, (2.6

Now introduce an external effect in the system by assuming that eapital-embodied tecl-
nological progress acts as a labor-augmenting force. Assuming a constant supply of raw

labor time f total labor supply in efficiency units can be written as
Ft = thg
by choice of an appropriate unit of measurement. The individual agent PPF 1= then
I—a

cy :'}'(bk,%—(l —)ry— T ) I

from which the two equilibrium conditions

(1-a)(@-X) "= 5((1 — (1= a}(8 = A1) a6 - ,\,H)‘*”) (2.7
and
tlim ')6‘1%((1 — )1 = a)(0— )7 a(f - /\,)1_0) 12N
are easily derived by exploiting again the substitutions &y = &y = A sudd gl =
AH,.]/\{I.

Two things are immediately apparent. The transversality condition (2.8) 1= sarisficd
as long as the growth rate remains in [(1—p).8] and b < 6! E On rthe otler hand a
well defined function A4 = 7(X;) can never be derived from (2.7). This implies thar.
no matter what parameter values one might chose. there are always more thai one eqiti-
librium sequences departing from any given initial condition Ay, Thix nuphes 1 o
that, for a given stock of capital zo at the initial time. the set of equilibrmun sequences
{2,}32, has a cardinality which is a countable times that of the contimmni. By irself tls
property guarantees that the trajectories followed by the stoek of capiral will look rarher
complicated.

The fact that this growth economy is somewhat more “realistic” than our basie model
is also worthy of attention. For example, one can verify that the equilibrinun price of the
stock of capital ¢, and the rate of return on capital r, {espressed 1L consumprion x|
follow respectively

g = (1—al(8—A)"" 2.9,

1’ Labor-leisure decisions can be introduced by making the algebra more demanding.

This becomes a “curvature-dependent” condition when a nonlinear utility function ix used.
P h
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Figure 12.

9.2 Asymptotic Behavior when m(3) > 1.

As we have already noted the behavior of the equilibrium set may hecome even more
complicated when m(3) > 1. In this case f, does not map the unit nterval mro irself. as
its maximum is now larger than one. Hence, certain points leave the interval [0, 1] afrer
o finite number of iterations: they are associated with inadmissible sequences of growrh
rates, along which A\, — oc. These cannot be equilibrium sequences. as thev obviously
violate the transversality condition.

We will now argue that in these circumstances the set of equilibria has rthe srruerare
of a Cantor set, i.e. of a closed, totally disconnected and perfeet subset of the unir inrerval.
Such a set has Lebesgue measure zero.

The intuition is standard and can be found in Devaney{1986. pages 34-48) where 1t
is applied to the quadratic map. In our setting some extra complications arise beease f
is flat near z = 0 and the technique adopted by Devaney {whichi relies on expansivencss)
cannot be used.

Let w > w* be given and such that fo((1+w)™") > 1. Denote wirh Ay the =er
of points z € [0,1] at which fu(z) > 1. Then let 4, = fz e (0.1 | folz € Agf. ond

inductively define the sequence of intervals

A.n = {Z c [0‘1] | f‘:;(;’) e .'1[]} 13.01



and

re=ay(8=X2)° (2.10)

which are both stationary processes. This is in sharp contrast with the cconomy introdired
in the previous subsection, where both the price of capital and its rate of return imerease as
the aggregate capital stock grows (for further details, see below section 4). Unfortuurely
these more realistic features cannot be fully exploited through numerical simdations. dne
to the non-invertibility of the implicit function (2.7).

Something can nevertheless be learned about the aymptotic hehavior of these ceonomic
system. By following the method of Grandmeont (1985) one may study the “hackward
dynamics” generated by the equilibrium condition (2.7). A simple change of varinbles
(¢ = 8—X; and the adoption of the simplified notation (e = ({1 -« ye o il=piil—ay = 4

and 4 = —1/a) gives the following map
. - N _
Ct =GQ:+1(“+“C:+1) (2011

The latter is a unimodal map which at appropriate parameter values displays eveles and
chaos. This can be verifed by making use of the same methods we apply in the nexr seetion

L
to the first example and will therefore be omitted here h

3. Cyclic and Chaotic Growth Paths.

In light of the previous discussion, this section will concentrate only on the model
introduced in subsection 2.2 as the latter lends itself to analytical and munerical vesri-
gation. For this and the following two subsections let us also assume that = 1.

Our study will be greatly facilitated by the change of variable

Ap — =z 3.1

which transforms (2.2a) in the map f : [0,1] — R4, defined as
. _ - = (&8 1/91/.’:7,~ IR | a9
zep1 = flze) = (68) 2(1 — =) 3.2}

The latter belongs to a class of unimodal transformations wlhicl have heen widely
studied in the mathematical literature (see e.g. Collet and Eckmanu (1930, Preston

(1982), Devaney (1986)). Because these techniques have hecome rather standard hy now,

J[ Details are available from the anthors



—
78]

We have also computed the Liapunov exponents of our map at selected paraneter
values. They follow the already familiar pattern often encountered in unimodal maps. Aun
example of such behavior can be seen in Figures 10-12, which use the sane values of #. ¢

and v as before and with 4 ranging over selected subintervals of 5.9].

Figure 10.

Figure 11.
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we will skip the details of the mathematical arguments. which can be recovered in any of
ihe aforementioned references. Indeed a map very similar to (3.2) has already hecu ntilized
in an economic context by Matsuyama (1991) f

Equation (3.2) has a stationary state at = = 0. corresponding to A, = #. and oue
at z* =1 — [(68)"/26]7! which corresponds to the previously mentioned balanced growrh
rate A;. The slope of f at zero is equal to f(0) = (60 and ar =7 ir s cqual to
fliz)y=1- v3[8(66) /7 — 1]. Tt is easily seen that 0 < 2% <1 and f/(0) > 1 whenever
the transversality condition (2.4) is satisfied by the stationary path A = Ay for all ¢, while
the local stability/instability of z* under (3.2) depends in a very complicated way ou rhe
whole set of model’s parameters. This corresponds to our assertion d). according to winels
A1 can be either a sink or a source.

In the formulation (3.2) the map f depends upon too many paramerers. Lkeeping track
of which will only cloud the analysis. As we are interested in the mmpaet of the external
effect on the growth rates of the capital stock, we will treat (and therefore 71 as owr
“bifurcation parameter” and take all other as given.

Consider now the function

m(3) = (56’)"(‘91/9’)‘/3(‘1—)14-%i
' 1+
which gives the value of f at its critical point = = 1/(1 4 #3). m{d) is well detined
for 8 € [0,00) and continuously differentiable with m'(3) < 0 for small valies of 3 and
m!(8) > 0 for large values of 3. The meaning of “small” and “large” hiere. depends on the
magnitude of § and v as m'(3) = m(B)r(Inf + In{v3) — In(1 + .33}

To characterize the attractors of f3(+) we will examine separately the two casest 1)
m(B) < 1, and 2) m(3) > 1. In the first case f3 maps the unit interval into irsclf. whereas
in the second case f3(z) > 1 for values of z € (0, 1) and so most orbits of (3.2) will cerrainly

not satisfy the transversality condition.
9.1 Asymptotic Behavior when m(/3) < 1.
Simplify notation one more time by setting A = (60} and 13 = & to rewrite (3.24 as
Zig1 = folz) = A8 (1 — z0)” (3.2

The behavior of the graph of f., as w increases is portraied in fgure 1. where we have

chosen # = 1.6, v =2, 6§ = .5 and 3 =2, 2.5, 3 and 3.5 respectively.

i’ He derives a system equivalent to (3.2) from a version of Brock (1975) monev-in-the-utility-function madcl



L

Exception made for the case in which w* =1 (when (3.2) reduces to the well known
quadratic equation) we have been unable to derive an analvtic representation of the ereodic
measure mentioned in proposition 4. Numerical approximations are reproduced 1 Figures
8§ and 9, which have been obtained for the following choices of parameter valnes: # = 1.2,

§=.75v =2 3* =8 and 8* = 9 respectively.

Figure 8.

Figure 9.
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Similar patterns emerge at most other parameter values.

Figure 1.
Proposition 2 (i) For all values of w > 0 such that =7 < Eﬁ the stationary state 27
is globally asymptotically attractive. (ii) When w is such that =% = H_% a cvele of period

two is generated. Let w = wy denote such a value. Then all orhits couverge to the period
two cycle for values of w in a right neighborhood of wy.

Proof: The proof is standard. One needs only to verify that when (1) is satisted there are
no cycles of period larger or equal to two, and then apply Sarkovskij's theorem. Ar o =
there is a supercritical flip bifurcation. This is a consequence of standard arguunents and

the details are therefore omitted (e.g. Devaney [1986) or Prestou [1982]). Q.E.D.

Figure 2 portrays the second iterate of f,, for an appropriately chosen value of oy The
presence of the cycle of period two is revealed by the triple intersection with rhe diagonil.
Figure 3 does the same thing for the fourth iterate of the map whicl is plotted for o valne

of w = ws at which a cycle of period four exists.



1G

Figure 7.

To procede further along the analythical path one needs to verify that the map (3.2")
has a negative Schwartzian derivative for admissible values of parameters, We reeall here

that the Schwartzian derivative of a function f is defined as (e.g. Devimey (193G

)3 E)

s =50 5 (g

One can check that S(f.)(z) < 0 for all = € [0.1] when w > 1. which will be assurned from
now on.

It is well known that unimodal continuous functions defined on the nt interval s

with S(f,) < 0 have the property that every stable periodic orbit attracts cither the eud

points of their domain or their critical point (e.g. Collet and Eckmann {19301, The larrey

result has the following consequence for our model.

Proposition 4 For any set of admissible values of the parameters A aud 8 there exisis
a value w*® > 1 such that f.. has exactly one absolutely contimons and invariant measnre

which is ergodic over [0, 1)].

Proof: One needs only to check that, for given A and A. 1t 1s possible to choose o7

such that

-

AW = (14w

is true. Then fo-{3) = 1, fu-(1) = 0 and the latter is unstable and such that the orein
0¢ {f%(0)|n>0}". A well known theorem of Misiurewiez (1980) is enongh ro justify
our statement. Q.E.D.



Figure 2.

Figure 3.
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that the very complicated pattern depicted in Figures 5-v appears. Alco In s case
though one can verify that the period doubling cascade follows the Feigenbanm seenario
with wa, = 2-7.3107.. .. Furthermore, as proved below in Proposition 4. an invariant wnd
non-trivial measure can be numerically generated and a non-uegative Liapimiov exponent

does exist after 5 = 8.

Figure 5.

Figure 6
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In fact a cascade of period-doubling bifurcations appears as the parameter w inereases
past w;. An analytical derivation of the period-doubling values wy. 1 = 2.3.... 15 quite
cumbersome, to say the least. It is instead possible to generate such hehavior numerically,
by fixing all model’s parameters but w. Standard renormalization technigques can he nsed
to verify that the period-doubling behavior illustrated helow holds for generie values of the
parameters.

A simple example can be obtained by choosing ¢ = 1.6. ¢ = .5 and v = 2. Then

w = 23 and the first few period-doubling bifurcations oceur at the following pomrs:

wy = 4.46, wy = 5.308, wy =5.504, wy =5.346G8. w5 = 3.5000.

we = 5.5575, wr = 5.55796. wa = 5.00802. .. 3.3

Along such cascade an attracting cycle of period 2" is created at «,, from «a evele of period
2"~} through a supercritical flip bifurcation. These values appear to converge to @ Lt

woe 1N & geometric progression as
Wy = Woe — € F" (3.4

We have

Weo = D.0681...; ¢=T7.8740...1 F =4.669202...

and therefore F is the Feigenbaum constant (Feigenbaum (1978. 1979). In fart one can

easily verify that the map (3.2") satisfies the universal relation

Wy — Wn—1

lim = 4.6G69202 . .. (3.5

n—00 Wnt1 — Wn

Figure 4 reports the bifurcation diagram generated by this choice of parameter vidues, Ax
it should be expected, the odd numbered cycles appear after the period-donbling process
is completed, with a cycle of period three appearing last. as predicted by Sarkovskij s
theorem. For the particular configuration of parameter values we lLave chosen liere a
period-three cycle exists at w3 = 2~ 3.08 and is clearly visible in Figure 4. The existence
of windows of stability even well inside the chaotic region is also detectable aud will e

confirmed later by our calculation of the Liapunov exponents.
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Figure 4.

More generally one can prove the following

Proposition 3 For any choice of 8, §, a and o satisfyving the restrictions trodieed 1
section two there exists a value of 8 = 3y > 0 such that (3.2') exhibits a cyele of perind

three at wy = 2033.

Proof: Tedious but relatively straightforward algebra will show that the following is trne
for a suitable choice of ws. Let @ = min {z € [0.1] | =(1 — ) = [(1 +«)467]7"} denore
the smallest preimage of the critical point 2 = (1 +w) tand b= A(wef) (147" the
image of 2. Then for given A < 1 and 8 > 1 satisfying the restrictions listed in section 2

there exists ws > 0 such that

fou([2.8)) D [a. 3]

which is known to guarantee the existence of a period-three evele (see e.g. Devaney (19361

Q.E.D.

Indeed it is interesting to note that the bifurcation behavior of the map f.may hequite
more complicated than the one described above. This occurs at those sets of parameter
values at which the maximum of £, rises very slowly toward one as 3 inereases. For example

we have experimented with the following choice: 8 = 1.2, 6 = .75 andd = 2 aned observed



