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I. INTRODUCTION

The purpose of this paper is to establish conditions under which
aggregate demand behavior will have properties normally associated with
individual demand, when the distribution of income remains fixed. The
best known result of this type is that if each individual has a homo-
geneus utility function, and the distribution of income is fixed, then
the aggregate demand function will be one derived from a homogeneous
utility function. This was first established by Eisenberg [4], though
not in the context of demand theory, who employed the duality theory of
homogeneous programming. More recently Chipman {2] examined the Eisenberg
results from the point of view of demand theory, and established the
aggregation theorem by first showing the relationship between demand
functions homogeneous of degree 1 in income and homogeneous utility
functiors, and then exploiting the special properties of the Slutsky
matrices of such demand funections.

In this paper utility functions and Slutsky matrices will not be

employed; instead a revealed preference approach is taken. Strengthend

forms of the weak and strong axioms of revealed preference are used



which are preserved in aggregation, and it is shown that demand functions
homogeneous of degree 1 1in income which satisfy the regular revealed
preference axiom will also satisfy the strengthened versions. One
advantage of this approach is that it shows the Eisenberg - Chipman
aggregation theorem is a purely algebraic problem and does not reguire
continuity or differentiability assumptions. It will also be shown,

by example, that there are demand functions not homogeneous of degree 1
in income which may satisfy these strengthened revealed preference

axioms.

IT. DEFINITIONS AND NOTATION

Throughout this paper the term demand function will mean a function

h: int Ei X ﬂ; -+ Eﬁ , satisfying the budget equality ph(p,m) =m and
homogeneous of degree 0. h(p,m) is interpreted as the {-dimensional
commodity vector demanded at price vector p and income m. Given n
demand funections hl, °r, h"™ and an income distribution vector (B1, " Bn)s
where | % Bj =1 and B, = 0, the aggregrate demand function h is

J:

defined by h(p, m) = ; hJ(p,Bjm), h 1is clearly a demand function

as defined above.
An excess demand function is defined to be a function h: int Eﬁ'*
£

E~, satisfying Walras' law ph(p) = 0 and homogeneous of degree 0.

In an economy with n agents, each characterized by a demand function

hj and an initial endowment vector w3 € Ei, the formula h(p) =

0l

[hJ(p,pwj) - wj] defines an excess demand function.
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Given a demand function h, restrictions will be imposed on h
from the point of view of revealed preference. A set of k price-
\

k . .
income situations /pi, mi)i=1 is said to form a cycle of 1ength k

for h 1if:

pih(Pi+1, mi+1) = my i=1... k (pk+1 = pl)

and }Kpi, mi) * h(pi+1’ mi+1) for at least one 1i.
The weak axiom of revealed preference (WARP) 1is simply that h
have no cycles of length 2. The ctrong axiom of revealed preference
{SARP) is that h have no cycles of any length. 1In general, h will
be called acyclic of degree k if h has no cycles of length k.
WARP was introduced by Samuelson [10], [11], and SARP was introduced by
Ville [13] and Houthakker [5]. The latter two authors showed that SARP
was essentially equivilent to the hypothesis of utility maximization:
the most general results can be found in Hurwicz - Richter [6]. In the
case of differentiable demand functions, utility maximization, and thus
SARP, is essentially equivalent to the hypothesis that the Slutsky matrix
be negative semi-definite symmetric: see Hurwicz - Uzawa [7] for the
most general results. WARP has been shown to be essentially equivilent to
the hypothesis that the Slutsky matrix be negative semi-definite (but not
necessarily symmetric): see Kihlstrom - Mas - Cosell - Sonnenschein [9].
These revealed preference properties are not, in general, a property
of an aggregrate demand function even if the individual demand functions

possess them. Somewhat stronger ''revealed preference' properties will



A
now be defined which are preserved in aggregation, however. To motivate
the definitions, first consider a consequence of the weak axiom sometimes
called the '"generalized law of demand" due to Samuelson [11}. Given
two price-income situations (p, m) and (p + Ap, m), if one makes a
"compensating change in income," (Am = Ap ° h(p, m) ), and calculates

€ in demand, then the inequality Ap Ax® < 0

the corresponding change Ax
if AxC # 0 will hold in all such situations if and only if the demand
function satisfies WARP. Our first definition will be the corresponding
inequality without making the income compensation: h will be said to

satisfy the generalized law of demand (uncompensated form) if for every

P, 4, m,

1) (p - @) (h(pm) - h(q, m) ) <0 if h (p,m) * h (q, m).

Note that 1) rules out Giffern goods. In the differentiable case, 1) can
easily been shown to imply the negative semi-definitness (without symmetry)
of the Jacobian of h.

Using the budget constraint ph(p, m) = m, 1) can be rewritten

1) ph(q,m) + gh(p,m) > 2m if h (g, m) # h (p, m).

In this form, it can readily be seen that if 1') is satisfied, then

|
3

ph(q, m) =

m

1A

qh(P; m)

h(p, m) # h(q, m)
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cannot hold, and this together with homogeneity of degree O of h implies

WARP. Hence 1) can be considered a strengthened version of WARP:

now an analogous strengthening of SARP will be made. h will be called
strongly acyclic of degree k 1if for any Pys o s e pk m
) ]
2) % h ( ) k ( = p.) 1f
m =
121 P Piypr ™ WPy TRy

h(pi’ m) = h(pi+1, m) for at least one 1.

Using the same argument as above for WARP, 2) can be shown to imply

h 1is acyclic of degree k. The strengthened version of SARP is that

h is strongly acyclic of degree k for every k. Note that strongly

acyclic of degree 2 1is equivalent to the uncompensated form of the

generalized law of demand. Finally, note that all of the above definitions

can be modified to apply to excess demand functions in a natural way.
The major results of this paper will be, that with a fixed dis-

tribution of income: i) 1if each individual demand function is strongly

acyclic of degree k, then the aggregate demand function will have the

same property; and 1ii) the class of demand functions for which

acyclicity of degree k 1implies strong acyclicity of degree k

includes all demand functions homogeneous of degree one in income. An

example of a demand function which is strongly acyclic of degree 2

but not homogeneous of degree one in income is also given.



III. AGGREGATION THEOREMS

The first theorem supplies sufficient conditions for determining
if an aggregate demand function will satisfy WARP or SARP.

Theorem 1: Let H—,...hn be demand functions, each strongly acyclic
of degree k, with distribution vector (Bl,...Bn). Then the aggregate
demand function h 1is strongly acyclic of degree k.

Proof: Choose P1s-++sPgy M with h(pi, m) = h(pi+1, m) for
at least one 1. This requires hj(pi, Bj m) = h%pi+l’ Bj m) for

at least one j. Then

k k n hj
.2, pblp, om = 2 Pi ng ® 2 ™ Py = Py)
k n j
BB P By
n k i
B jél izl plh (pi+1’ BJ m)

k s
. j . . . .
By hypothesis, iél pih (pi+1, Bj m) = kBjm with strict inequality

for at least one j; thus
k n k i
= h
5 PP ™ B oih P i B
> % kB,.m = knm
3= ]

The following corollaries are immediate consequences of Theorem 1
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Let h),...,h"

3 .

Corollary 1.

be demand functions each satisfying

the generalized law of demand (uncompensated form), with fixed distribution
of income. Then the aggregate demand function will satisfy WARP.
Corollary 2. Let hl,...,hn

be demand functions, each strongly
acyclic of degree

k for every k, with a fixed distribution of income.
Then the aggregate demand function satisfies SARP.

The next theorem shows that demand functions homogeneous of degree
one in m

can be expected to have the '"'strong" acyclity proportions needed
to apply theorem 1.

Theorem 2: TLet

h be a demand function homogeneous of degree
1 in m and acyclic of degree k. Then h

is strongly acyclic of degree k.
Proof: Given PpresPys M such that

.
for at least one i, it must be shown that
k
Define numbers Kl, Kz, cens Kk by the following rules:

SEEN

1
1 5 pkh(P17m)

- 1
5 A = Mim Piahepw

Solving 4) and 5)

recursively for Kk’ one obtains



1 -

e

]
==
=

6) .
i

n
[y

1 -
m PP ™ P g TP

i=1

Equations 4) and 5) can be rewritten as follows, using the hypothesis

that h is homogeneous of degree 1 in m, and thus homogeneous of

degree - 1 1in p:

1]
N
=

5) m = XA h()x.i P> m) i

i-1 Pi-1
If Kk < 1, then xk pkh(K1 Py m) < m, and this with 5)' would
imply the price - income situations (Kipi, m) form a cycle of length

k, a contradiction. Thus Kk =1, or

Now the relationship between the arithmetic and geometric mean of arbitrary

nonnegative numbers SRR will be employed, which is

1
1 % ]E with strict inequality

==

1 k
8 k iil %y = E i

if not all x, are equal.
i
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Let X, < % pib(Pi+1;m) . If all x, are equal, their common

value must be greater than one to avoid a cycle. Thus 7) and 8)

combine to yield

rlnpih(pi+1,m) > 1, which is 3).

bl
o~ oR

i=1

Theorem 1 and 2 combine to yield a result which is analogous
to Chipman's [2: Theorem 4] main theorem:

Theorem 3: Let hl,..., hn be demand functions, each homogeneous
of degree one in m, with a fixed distribution of income. If each hi
is acyclic of degree k, then the aggregate h 1is acyclic of degree k.
In particular, if each hi satisfies WARP then h will satisfy WARP,
and if each hi satisfies SARP h will satisfy SARP.

It is of interest to know if there are demand functions, not
homogeneous of degree 1 in m, which may still satisfy the strong forms
of the revealed preference axioms. Below an example is given of a demand
function which is strongly acyclic of degree 2 but i$ not homogeneous
of degree 1 in m. A complete characterization of the class of

all such demand functions, however, is still an open problem.

Example: The demand function is the one generated by the utility

function U (Xl’ x2) = %) + 1nx2. This demand function h 1s given by
m
X = — - 1
1 Py
if Py = m
P1
X = —



-10-

Xy = 0
if Py = m
x = M
2 p2

Tt will be shown that ph(q, 1) + gh(p, 1) > 2 if h(qg,1) =*
h(p,1). The case m = 1 suffices because of homogeneity of degree

0 in (p, m). First a simple inequality will be demonstrated.

9) A + % ~ 3 for all A\ > 1:

2 2
Proof of 9): Let £ (A) = X + % Then f£f(1) = 3 and

2
£ = 2 AX-—73 > 0 for X > 1.

1, qq = 1, 1In this case,

q p q
1 + _1 + pl —g- l]-i—ql 2
Py a4 Py q

let o =—, B = — ., Then 10) can be written

10) ph(q, 1) + gh(p, 1)

11) £(a, B, py) a+é+pl[8-1]+apl%;

defined for p; = 1 and o Py = 1.

The desired result will be obtained by showing, for each fixed a, B

(not both o = 8 = 1), that f > 2 for admissable values of Py
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(p;, =1 and ap, = 1). £, as a function of Py’ is linear, so
it is sufficient to look at the values of f at Py = 0 and
. 1 1
Py " Min [1’21] . For Py = 0, f(a, B, 0) =a + e 2 foraoa+1.
) 1

Now consider py = Min [l, a] :

Case la: a > 1 : then Min [1, l] -1 and

_— a a

1 1 1 1
fla, B, a) = ot + o [B - ﬂ + E@ - } .  Minimize f with respect to pB:

I s
g B a 2
B
25 _ 2
7 "3 > 0
o8 B
Thus Min f occurs at B such that B~ = a. Remember o > 1, so

~

B > 1. Substituting,

~2

B~ + -1

2
Min £ =
B

Since B > 1, Min £ > 2 by 9).

Case 1b: o= 1. Then Min l},é] =1 and
1 1
E(x B, 1) = a+s+(B-1+alz-1

Minimize f with respect to B:



g £ 2a
s = 3 > 0.
B B
Thus Min f occurs at J such that 82 = aq. Remember a = 1,
so B = 1. Substituting,
l ~
Min £ = 3 + 28 - 1
B
. . . ; . ] ~2
Then Min f = 2, with strict inequality if o = B < 1, by 9).
1
(To apply 9), make the substitution A = E).
Case 2! Py = 1, ql = 1. 1In this case
1 9 P2
12) ph(q, 1) + qh(p, 1) = q; |7 - + = p, + =
P, P, 1 q

For Py = 1, the expression 12) increases with q,s SO it suffices
to consider the case qq = 1. But Py =1, q; = 1 1is a special case

of Case 1.

Case 3: Py =1, qq = 1. 1In this case

P q
2 . % .
=+ =52 ifp, % aq,.

h 1) + h 1 =
ph(q, 1) qh (p, ) q2 P2

Remark: This example has been shown to satisfy the strengthened
version of WARP, and it obviously satisfies SARP. I do not know,

however, if it satisfies the strengthened form of SARP.



1v. Excess Demand.

The results of the previous section can be applied to excess demand
functions provided an assumption is made to guarantee that the distribution
of income is independent of prices. 1In the absence of income transfer
schemes, this requires the severe restriction that the initial endowment

vectors w: of the agents be proportional, i.e., there must exist a dis-

J
tribution vector (Bl;"',Bn) such that wj = Bj w j=1,""", n, where
W = % w,. In such a case the excess demand function can be written
i=1
N
h(p) = 2 B(p,Bpw) - w

j=1

In this case there are theorems for excess demand functions analogous
to the theorems of the previous section. Of particular interest in
equilibrium analysis are the results which guarantee that the excess
demand function satisfies WARP. As is well know, this guarantees that
the set of equilibrium price vectors is convex and that the tatomnement
process is stable. Corollary 1 and Theorem 3 yield one such result:

Theorem 4: Let & be an exchange economy in which initial endowments
are proportional, If each agent's demand function satisfies the uncompen-
sated form of the generalized law of demand (in particular, if each demand
function is homogeneous of degree 1 in income and satisfies WARP), then
the excess demand function satisfies WARP.

This section is concluded with a version of a theorem of Eisenberg
[4]. By showing that an economy in which each individual has a homogeneous
utility function and in which income distribution is fixed acts as if it
maximizes a "'social welfare function." Eisenberg not only showed Theorem 3
in case of SARP but also provided an "elementary' proof of existence of

equilibrium. Chipman [2] and Shafer - Sonnenschein [12] have given



alternative proofs of Eisenberg's results. The techniques of this paper
can be used to prove a similar result. It has already been shown that
if each individual demand function satisfies SARP and is homogeneous
of degree one in income, then with proportional holdings the excess
demand function will satisfy SARP. Thus what is needed is an existence
theorem for an excess demand function satisfying SARP. This will be, of
course, essentially an existence theorem for a one person economy. This,
by itself, is of no interest except for demonstrative purposes; the
advantage of the proof given below is that it does not require a separation
theorem, nor does it require differentials, as in the elementary existence
proof of Katzner {8].

Theorem 5: Let h be an excess demand function satisfying

13) h satisfies SARP

14) h 1is continuous

15) for any p € Eﬁ \ int Eﬁ,

lim uh(p) = + @ , where u = (1, 1,...1) is the unit vector.
D

Then there exists a p ¢ int Eﬁ such that h(p)= 0.

Remark: 15) is the boundary condition used by Arrow - Hahn [1 p. 31]

Proof of Theorem: Let {pj}é-l be a dense subset of int Ef. First
it is asserted, that for each integer k = 1, there exists a
p; € {py5-++, P} -such that p, h(p) =0 j=1, """, k. If this

k k
is false, then for each i (1% i

A

k) there exists a j (1€ j£ k)

such that Pih (Pj) < 0. Thus one could find jl’ j2’ S jk+1 (1= j = k)



such that p. h(p Y« 0 ¢ =1, ..., k. But clearly some integer

Jz J/g+1

must be repeated in {jly"', jk+1}’ and this implies a cycle, a contra-
diction to SARP.
By choosing p; € {py,"'", p,} so that pik h(p) 20 j=1,", k
1 . .
one obtains a bounded sequence ] P. w_ satisfying
upi L k=1
k

1
16) Ep— p.

i h(pj) = 0 for each k= j and for j =1,-:-, e.
i
k

k

-]

k=1"

Let p be a limit point of ~L P. Then by 16), p h(p.) = 0 for
up. lk 3

all j, and by the continuity of h and the assumption that {pj}?zl is

dense in int EY, this implies

L

17) p h(p) = o for all p € int EY.

It will now be shown that 5 & int Eﬁ and that h(ﬁ) = 0. For any
v € int Eﬁ and O0< t< 1, ¢t ﬁ + (1 - t)v € int Eﬁ, and so ﬁh(tﬁ + (1 - t)v)=0
by 17) and (tﬁ + (1 - t)v) h(tﬁ + (1 - t)v) = 0. These two results

together imply:
18) vh(té + (1 - t)v) =0 for each 0« t« 1 and each v € int Eﬁ.
For v = u, 17) becomes uh(tp + (1 - t)u) = 0, and by letting t+ 1 it

can be seen that 5(5 int Eﬁ or a violation of 15) will result. Thus by

taking the limit as t -+ 1 in 18), one gets vh(ﬁ) = 0 for each

1A

v € int Eﬁ, and this clearly implies h(ﬁ) 0. Then h(p) = 0,

5h(5) = 0, and §>» 0 implies h(ﬁ) = 0.
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