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1
Introduction

The last decade has witnessed a dramatic shift in the method used to determine hospitals’
reimbursement for services they provide. Prior to 1984, most reimbursement was cost-based. In
1984, the federal government introduced a prospective payment system (PPS) for Medicare patients
whereby hospitals received a fixed price for each payment depending on the diagnosis related group
(DRG) of the patient. Since this time, many state governments have adopted similar systems for
Medicaid patients and many private insurers have begun negotiating similar reimbursement systems
for their patients. Thus a large fraction of hospital revenues are now determined by some type of
prospective payment system.l

The primary motivation for this change was the hope that this system would reduce costs.

The hoped-for cost reduction would occur for two quite distinct reasons. First, fixed prices would
encourage hospitals to be efficient since they would become the residual claimant. Second, and
perhaps most importantly, there was a feeling that demand for intensity of treatment was much higher
than socially optimal due to the existence of insurance. By setting fixed prices for treating various
DRGs, a payer (government or the private insurer) could indirectly control the intensity of treatment
provided. In particular, by lowering prices (or by not allowing them to rise along with inflation over
time) the payer could force hospitals to provide lower levels of treatment intensity (presumably, closer
to the socially optimal ievel) and thus reduce health care costs.

To summarize the above, payers for health care now use price regulation of hospitals as a

way of indirectly regulating the provision of treatment intensity. Most hospitals are nonprofits. Thus



price regulation may not be needed to control profits and indirect control of treatment intensity might
be viewed as the primary purpose of this price regulation.

For the case of a nonprofit hospital producing a single medical service, the correct course of
action is clear. The payer should determine the level of intensity that it feels is appropriate and
estimate the hospital’s average cost of supplying this level of intensity. If price is set equal to this
value of average cost, the hospital will be unable to raise treatment intensity above this level and
break even. Assuming that the hospital is altruistic in the sense that it attempts to provide the best
treatment possible subject to the constraint that it break even, the hospital will therefore choose
intensity equal to the desired level.

In reality, of course, hospitals produce multiple services and thus the payer must set a price
for each service. Given that the major role of price regulation is controlling intensity choice, and
given that hospitals invariably produce multiple services, the question of how the simple one-product
analysis generalizes to the case of multiple products is obviously important. The important questions
are:

(i) How does a nonprofit hospital choose treatment intensities across products as
a function of the price vector chosen by the payer?

(ii) Given this behavior, how should the payer optimally choose prices?
Surprisingly, there appears to be no existing formal analysis of these questions. The implicit
assumption of policy analysis seems to be that the logic of the singie product case can be applied on a
product-by-product basis. That is, the answer to question (i) is that the hospital will choose trearment
intensity to break even on a product-by-product basis. If this is true, then the answer to question (ii)
is clear. For each product, the payer should decide on the desired treatment intensity, estimate the
cost of supplying this intensity, and then set price equal to that cost. This theory of hospital decision
making has some intuitive appeal. If the hospital is a nonprofit, it must break even overall. If the

hospital is altruistic, in the sense that it agrees with the payer on the social value of increasing



intensity across products, it may seem appealing to conclude that the hospital will “obey the
command” of the payer and choose intensity on each product to break even.

This paper shows that, while perhaps superficially appealing, this theory is incorrect. The
logically correct statement of an altruistic nonprofit hospital’s decision problem is that it attempts to
maximize the social value of health care (using the payer’s definition of social value) subject to the
constraint that it break even. It is shown that the solution to this problem generally does not involve
the hospital breaking even on each product. In equilibrium, the ratio of price to marginal cost will
vary across products inversely with the elasticity of demand with respect to treatment intensity. That
is, products where demand is more responsive to increases in treatment intensity must exhibit lower
ratios of price to marginal cost in equilibrium.

In this paper’s model, the payer is generally able to induce the efficient or first best vector of
treatment intensities. However, it does not do this by choosing prices such that the firm would break
even on a product-by-product basis. Rather, it chooses prices so that, at the desired intensity vector,
the ratio of price to marginal cost varies inversely with the intensity elasticity of demand. (The
precise formuia is given in the paper.) Generally speaking this will mean that the hospital earns
positive profits on products with below average intensity elasticities and negative profits on products
with above average intensity elasticities.

The intuition for this result depends on recognizing the nature of the “flaw” in the hospital’s
preferences. The hospital is altruistic in the sense that it evaluates the social value of health care
using the payer’s utility function over health care, However, this does not mean that the hospital and
payer have the same preferences. Consider the following thought experiment. Suppose there are two
different vectors of treatment intensities. One must be chosen. In either case the payer will
reimburse the hospital for its costs so the hospital breaks even. How will the payer and hospital
compare these alternatives? The payer will select the alternative that maximizes the social value of

health care minus the cost of health care. The hospital, on the other hand, will select the alternative



that maximizes the social value of health care. In particular, the cost of producing health care is of
no direct relevance to the hospital. So long as it can induce the payer to pay, more is always better
than less.

Thus the basic divergence in preferences between the hospital and payer is that the hospital
only directly cares about the benefits of health care while the payer cares about the benefits minus
costs. In particular, the hospital would always like the payer to spend more money on health care.

Now suppose that the payer wishes to induce a particular intensity vector and attempts to do
this by setting prices so the firm would break even by choosing the desired vector. It turns out that,
by increasing intensity on goods with high intensity elasticities and decreasing intensity on goods with
low intensity elasticities, the hospital can simultaneously induce the payer to spend more and still
break even. The hospital prefers this expenditure increase because it increases the social value of
health care, even if it decreases the social value minus cost of health care.

Thus the hospital is biased towards increasing (decreasing) expenditures on high (low)
elasticity products because this increases the payer’s expenditures. Of course the hospital is also more
predisposed to increase intensity on goods where the ratio of price to marginal cost is high (because
profits earned on one good can be used to cover losses on other goods). By definition, in equilibrium
the hospital must view the marginal value per dollar from increasing intensity to be the same across
all products. Thus, products with high intensity elasticities (making the marginal value of intensity
high) must be counterbalanced by low ratios of price to marginal cost (making the marginal value of
intensity low).

In summary, this paper presents a theory of how a nonprofit aitruistic hospital selects a vector
of treatment intensities given a vector of prices and then shows how the payer should select prices in
light of this theory. The payer is generally able to induce the hospital to select the efficient vector of
intensities, but this is accomplished by choosing prices such that the ratio of price to marginal cost is

higher on products whose demand is less responsive to intensity changes. This result is a byproduct



of the fact that an altruistic hospital always prefers more health care to less so long as the payer can
be induced to pay for it.

It is also shown that this paper’s main result (that the ratio of price to marginal cost varies
inversely with intensity elasticity across products) generalizes to a variety of different specifications of
the hospital’s objective function.> Two major alternate specitications are considered where precisely
the same result is shown to hold., Under the first, the hospital is assumed to be less altruistic than in
the main model. It is assumed that the hospital’s goal is to maximize its size {as measured by
revenues) subject to a break-even constraint. Under the second, the hospital is assumed to be less
altruistic, still. It is assumed that the hospital values both profit and revenues, and attempts to
maximize a utility function defined over both these variables. This second alternative formalizes the
idea that nonprofits may value profit to the extent that it can be converted into managerial perks, used
to fund projects of particular value to managers, etc. Under both of these alternate specifications, the
result that price varies inversely with intensity elasticity across products continues to hold true.

Finally, the case where the hospital has direct preferences over the health care it provides, but
these preferences are different than the payer’s is considered. (Recall that, in the basic model the
hospital is assumed to be altruistic in the sense that its preferences over health care are the same as
the payer’s.) This case is meant to capture the idea that the hospital may care directly about some
aspects of health care such as technological sophistication more than does the payer. It is shown that
the ratio of price to marginal cost is now affected by two factors. Just as in the basic model, the ratio
varies inversely with intensity elasticity. However, the ratio also varies inversely with the hospital’s
own assessment of the marginal value of each service it provides, i.e., the ratio of price to marginal
cost is lower on services that the hospital is particularly anxious to provide more of. Thus the effect
identified in the basic model continues to hold, although it is now only one of two effects determining

the ratio of price to marginal cost.



A relatively large number of papers in industrial organization, regulation, and health care
have considered the subject of the effects of price regulation on quality choice. Most of these papers
consider the case of a firm whose goal is profit maximization.> One exception is Hodgkin and
McGuire (1993) which assumes that the hospital cares about both profit and intensity. However, they
only consider the single product case. Harris’s (1979) analysis of how an altruistic hospital sets
prices across products when consumers are differentially insured is similar in spirit to this paper’s
analysis. However, Harris does not consider intensity as a choice variable for the hospital. Two
papers by Rogerson (1990, 1991) build models of bureaucratic decision making where bureaucrats are
altruistic in the same sense as the hospital is in this paper, i.e., their goal is to maximize the social
benefit of their activity and they do not directly care about the cost. Just in this paper, this means
that bureaucrats choose actions in an attempt to increase expenditures on their activity. However, the
types of decisions modelled and the nature of the distortions which result are very different in these
papers.

Section 2 presents the model. Section 3 presents preliminary analysis and section 4 presents
the main results concerning the ratio of price to marginal cost across products. Section 5 considers
the issue of whether the results of section 4 hold true when accounting costs are substituted for
marginal costs. Section 6 generalizes the basic model to allow for expenditure caps and suggests that
expenditure caps may play a useful role in a prospective pricing system. Section 7 generalizes the
model to allow for a variety of other specifications of the hospital’s objective function. Finally,

section 8 discusses the resuits.

2
The Model

Part A will describe the utility and cost functions of the various agents in the model. Parts B

and C will define, respectively, equilibrium and efficient outcomes. Then finally part D will



introduce three assumptions that play a role in guaranteeing the existence of equilibrium and efficient

outcomes,

A. Utility Functions and Cost Functions

Suppose that there is a single payer and a single hospital. Thus issues of strategic interaction
among multiple payers or competition between multiple hospitals are abstracted away from. ¢

Suppose that there are n; different diagnoses or illnesses that the hospital treats and ng
different groups of patients. In a larger model the payer would be modelled as choosing how to
detine diagnoses and groups of patients. In this model, these will be taken as given.

Define a “product” to be the treatment of a particular diagnoses for a patient of a particular
group. Let n = nyn, denote the number of products the hospital produces and leti € {1,..., n}
denote an index for the products.

Let q; denote the intensity of treatment for product i where ¢; is a non-negative real number.
Intensity of treatment can be increased by increasing the number of tests, using more advanced
technology, increasing the length of stay, etc. Let ¢ = (qy,..., q,) denote the vector of intensities for
all products. Let x; denote the quantity supplied of product i where quantity is measured in
discharges.5 Let x = (x,,..., x,) denote the vector of quantities.

The vector (x,q) will be referred to as a health care outcome since it completely describes the
health care produced.

Assume that demand for product i is determined by treatment intensity according to the

function
2.1 x; = x;(g;)

Let x(q) denote the vector (x,(qy),..., x,(q,)). Patients are assumed to be fully insured so that price
does not affect demand.® Also, the products’ demands are independent in the sense that demand for

product i is only affected by product i’s treatment intensity. Assume that



fa.l) x;(q;} is a real-valued function mapping [0, ) onto [0,00). It is twice

continuously differentiable, and strictly increasing.

Let g;(x;) denote the inverse function and let g(x) = (q;(x),...,q,(x)} denote the vector of intensity
functions. Obviously, g;(x;) satisfies the properties in (a.1), as well.

It will be assumed that the hospital chooses treatment intensity, q, but then must supply
enough discharges to meet all demand thus generated, )((q).7

The payer values the benefits that patients receive from health care according to the utility
function U(x,q). The payer’s goal is to maximize the benefits of health care minus its payments to
the hospital. The hospital is assumed to be a nonprofit and thus is constrained to earn nonpositive
profit. In order to survive, it must earn non-negative profit. Thus the hospital must earn zero profit.
It is assumed that the hospital is perfectly altruistic in the sense that its goal is to maximize patients’
benetits of health care as viewed by the payer. Thus the hospital’s goal is to maximize'U(x,q) subject
to the constraint that it earn zero profit.

Let V(x) denote the utility which occurs if x is the guantity and g is chosen to induce x.i.e.,

(2.2) Vo) = Ulx,qx)

Since V will be the relevant utility function for most of the analysis of this paper, it is most

straightforward to state the conditions that preferences are assumed to satisfy in terms of V.

Assume that

fa.2) V is a real-valued twice continuously differentiable function
defined over (0,o). It is strictly increasing in each argument
and strictly concave,

(a.3) limV() = -m

x;—~0



Assumption (a.2) simply states that V is a well-behaved utility function. Assumption (a.3) guarantees
that solutions to various maximization programs will never be corner solutions so attention can be
restricted to values of x > 0.8

Let F(x,q) denote the cost of producing (x,q). Define G(x) to be the cost of producing x

given that treatment intensity is adjusted to cause patients to demand x. It is formally defined by

(2.3) Gx) = Flx,q(x)

and will be referred to as the intensity adjusted cost function. The tunction G(x) will be the cost
function used in most of the analysis. Therefore it is most convenient to directly introduce most of

the required assumptions about cost functions in terms of G. Assume that

{a.4) G is a real-valued function defined over [0,<0)" such that G(0) = 0 and
G(x) > 0 for every x # 0. It is twice continuously differentiable, strictly
increasing, and strictly convex over (0,00)",

Assumption (a.4) states that G exhibits smooth, strictly increasing, strictly convex variable costs.
However, G may exhibit fixed costs and thus jump discontinuously as any x; is increased from O to a
small positive amount.

It will also be useful to formally make one very natural assumption about the cost function F

which is not necessarily implied by (a.4). Assume that

(a.5) F is a real-valued function defined over {0,00)3“ which is twice

continuously differentiable and strictly increasing over (0, 00)",

In particular, costs increase in both x; and q;, which is natural to expect.
It is important to note that the intensity adjusted cost function, G(x), is an unusual cost
function and is not what economists would normally refer to as the hospital’s cost function. The

function G(x) gives the cost of producing the quantity vector x given that treatment intensity is



adjusted to induce patients to demand x. Economists would normally calculate a cost function for
some fixed treatment intensity vector. A useful way to think of this distinction is to consider the

formula for intensity adjusted marginal cost,”
aF F ’
(2.4) G0 = 2Ele.qu) « Il gmlaw .
ax" aql

The first term on the RHS of (2.4), given by dF/0x;, is the marginal cost of producing more units of
x; and will thus be referred to as the “marginal cost of production.” The second term on the RHS of
(2.4), given by (8F/aqi)qi, is the marginal cost of increasing treatment intensity to induce patients to
demand the extra units of x; that are produced. Therefore, it will be referred to as the “marginal cost
of demand inducement.” The intensity adjusted marginal cost, G;, is the sum of these two terms. By
assumptions (a.1) and (a.5) both of these terms are positive. In particular, this means that the
intensity adjusted marginal cost is strictly greater than the marginal cost of production.

Since economists would normally hold intensity fixed when they calculate the cost function
for a hospital, they would calculate a value of marginal cost equal to marginal production cost. The
intensity adjusted marginal cost is strictly greater than this because it includes, additionally, the cost
of increasing intensity sufficiently to induce patients to demand the higher output.

A special case that will be referred to in the discussion of the results occurs when there are

constant returns to scale and production of each good is separable. This occurs when F is given by

(2.5) Flx,q) = Y c;(gx
i=1

In order to guarantee that (a.4)-(a.5) are true it is sufficient to assume that!?

(b.1) ¢;(q;) is non-negative, twice continuously differentiable,
strictly increasing and strictly convex over [(, o).

(b.2) q;(x) is weakly convex over [0,c0).

10



The results of this paper are particularly striking and simple for this special case because average cost
equals marginal cost. Thus marginal cost pricing allows the firm to break even. The result of this
paper is that marginal cost pricing never occurs in equilibrium,

It will be useful to create a measure of the elasticity of a good’s demand with respect to

expenditures on treatment intensity. Let n,(x) denote this measure which is defined by

X; (4i0)) /x;
oF oF
— _(x,qm)/g(

(2.6) 7,(x) =

X.q(x)x;

The numerator of (2.6) is the percentage change in demand for good i when q; is increased. This is
straightforward. The denominator of (2.6} can be interpreted as the percentage change in the cost of
producing good i when q; is increased. This interpretation is slightly more involved. The term
dF/dq; is clearly the change in cost. In order to calculate the percentage change in cost, we must
therefore divide by the total cost of producing good i. The problem is that, when costs are not
separable, there is no unambiguous method of defining this cost. Therefore, the term (9F/x;)x; has
been chosen as the estimate of the cost of producing good i. For the special linear, separable case of
(2.5), it is clear that this choice is the unambiguous best one. In this case

aF
-—X

i

2.7) i = Ci(qi)xi

which is clearly the cost of producing good i. In this case the elasticity is given by

X (g) 1%,
2.8) m(x) = 40 TR
¢; (g;) 1eilgp)

11



which is the elasticity of demand for good i with respect to intensity increasing expenditures which
increase the unit cost of good i. In the nonseparable case there is no unambiguous correct choice and
(2.6) can be interpreted as a reasonable definition for a measure of the elasticity ot demand with

respect to quality expenditures.

B. Equilibrium

The structure of the strategic interaction between the hospital and the payer can now be
described. Tt is assumed that the payer and hospital both have symmetric and complete knowledge of
all aspects of the model such as demand functions, cost functions. one another’s preferences, etc.
However, it is assumed that intensity cannot be contracted upon. The motivation for this assumption
is that aspects of treatment intensity are often difficult to objectively specify and measure. As a
consequence, the payer can only indirectly influence the hospital’s intensity choice through its choice
of prices. Therefore, the sequence of moves is as follows. First, the payer chooses a price vector p
= {py,.... p,). Given this price vector, the hospital then chooses an intensity vector, q, so as to
maximize V(q,x(q)) subject to the constraint that it break even. Recall that a health care vector is as
an ordered pair (x,q). However, since patients always choose quantity according to the demand
function x(q), it is sufficient to describe an outcome by only specifying one of the two vectors, x and
q. It is perhaps most natural to view q as the outcome description, since hospitals view themselves as
choosing q. However, logically, one can also think of the hospital as choosing x (and then choosing
q so that x is chosen). Although this latter viewpoint seems more convoluted, it turns out to be useful
for generating clear, simple intuitions for the main ¢esults. Therefore, this paper will view x as the
variable describing outcomes.

Formally, x will be said to be induced by p if it solves the program

2.9 Maximize Vix)
x>0



(2.10) subject to Y pix; - Gx) =0

i=1

Let P(x) denote the (possibly empty) set of prices that induce x. Let I denote the set of outputs which

are inducible in the sense that a price exists which induces them.

(2.11) I={x:Px) # o}

An equilibrium can now be described. The payer can be viewed as choosing an (x,p) pair to
maximize his utility of health care minus his payments for health care subject to the constraint that the

hospital will choose x given p. Formally, then, (x,p) is an equilibrium if it solves the following

program,
H
(2.12) Maximize Vix) = Y p;x;
x>0,p i=1
(2.13) subject to p e Pix)

However, by (2.10), if p € P(x) then the hospital earns zero profit, so the payer’s payments to the
hospital equal the hospital’s costs. This means that the hospital’s costs can be substituted for the
payer’s payments in the objective function (2.12). This yields an extremely simple characterization of
an equilibrium.

A pair (x,p) is an equilibrium if and only if x solves the program

(2.14) Maximize Vix) - Gix)
x>0
(2.15) subject to xel

and p satisfies

(2.16) p € P

13



That is, the payer chooses an optimal output by first finding the x in I that maximizes his utility

minus the cost of production. Then any p € P(x) creates an equilibrium (x,p) pair.

C. Efficiency
For some expenditure level g, a vector x will be said to be efficient given the expenditure

level g if it solves

2.17) Maximize Vix)
x>0
(2.18) subject to Gix} < g

A guantity vector x will simply be called efficient if it maximizes benefits minus costs of

heaith care, i.e., if it solves

(2.19) Maximize Vix) - Gix)
x>0
D. Existence Assumptions

Three more assumptions will now be introduced which can all be interpreted as stating that
“costs eventually begin to rise rapidly.” They are ali relatively natural, and their purpose is simply to

guarantee existence to various optimization problems,
fa.6) For every p € R", the set

{x:anandEp,. .- G(x) 20}
i=1
is bounded.

This states that the set of outputs that generate non-negative profit is always bounded, i.e., the firm

cannot increase output infinitely and continue to earn positive profit.
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Second, assume that

(a.7) For every k € R, the set
{x:x > 0 and V(x) - G(x) 2k}

is bounded.

This assumption states that the outputs generating surplus greater than or equal to any given level are
bounded.
The third assumption requires the introduction of a new concept. Define S(x) to be the

elasticity of total cost with respect to a small proportionate change in all outputs. Formally,

d 0
2.20 s == G(0x,,...,8
which can be rewritten as
E Gi(x)xi
2.21 S(x) = &=L
@20 ) G(x)

The function S(x) is normally interpreted as a measure of returns to scale at xS <
(=,>)1, these are said to be increasing {constant, decreasing) returns to scaie in the sense that a
proportionate increase in all outputs causes a less than (equal, more than) proportionate increase in
costs. Thus, there is a sense in which average costs drop (stay constant, increase).

The third assumption can now be stated. It will be assumed that there is at least one x > 0

such that G exhibits constant or decreasing returns to scale.

fa.8) There exists an x > Q such that S(x) = 1.

5



This is, of course, an extremely minimal assumption. In fact it seems plausible that G(x) will
generally exhibit decreasing returns to scale over large portions of the relevant range of production
for most hospitals. Recall that G(x) includes both the cost of production and the cost of increasing
intensity to induce patients to demand that quantity. The cost function normally considered by
economists holds intensity fixed. This means that marginal cost is higher under G(x) than the cost
function normally considered by economists. Therefore, G(x) will always exhibit lower returns to
scale than will the cost function typically considered by economists. In particular, then, a sufficient
condition for G to exhibit decreasing returns is that the normal constant intensity cost function exhibit
decreasing or constant returns. There is some evidence that hospitals’ constant intensity cost

7r v
2 Thus it seems

functions exhibit relatively constant returns to scale over large output ranges.
plausible that G(x) may generally exhibit decreasing returns to scale over a broad range of outputs.
It is straightforward to formalize this point. Let N(x) denote the returns to scale measure at x

holding intensity fixed at q(x). It is given by

) %(Lq(n) X;
(2.22) N(x) = =1 ’
Flx,q(x))

Of course (2.21) can be rewritten as

.E —g;(x,Q(x)) + g(x,q(x))q;(x) X;
@-23) Sy = 2L L™ 4
Flx,q(x))

These expressions are the same except for the marginal cost terms in brackets. For N(x), the

marginal production cost is used. For S(x), the intensity adjusted marginal cost (i.e., the production

16



marginal cost plus the demand inducement marginal cost) is used. Therefore, S(x) is strictly greater
than N(x). In particular, S(x) will be greater than 1 if N(x) is greater than or equal to 1.

The special constant returns to scale cost function in (2.5) illustrates this idea. For this
function, there are globally constant returns to scale holding q constant. Thus N(x) = 1. Since 5(x)

is strictly greater than N(x), this implies that S(x) is giobally stricly greater than 1.

3
Preliminary Analysis

Part A of this section will characterize the correspondence P(x) and thus also characterize the
set of inducible outputs, 1. Then part B will use these resuits to characterize the equilibrium. Section

4 will go on to analyze the nature of price cost margins in equilibrium.

A. Characterization of P(x)
The program (2.9)-(2.10) defining P(x) uses an equality constraint for profit. This is because
the firm must earn non-negative profit to survive and nonpositive profit by the legal requirement that

it be a nonprofit. If the program were relaxed to allow any non-negative profit, it would become

3.1) Maximize Vix)
x>0
(3.2) subject to Yopix, - Gx) 20

i=1
I.emma 3.1 states that this relaxed program is equivalent to the unrelaxed program. 13

Lemma 3.1 Fix any p € R". Then x satisfies (2.9)-(2.10) if and only if x
satisfies (3.1)-(3.2).

17



This result is very intuitive, If profits are positive, the hospital could always increase its utility from
health care by supplying more health care. For the remainder of this paper program (3.1)-(3.2) will
be viewed as the definition of x being induced by p.

The first order conditions for program (3.1)-(3.2) are

V,'(x) .
3.3) - =95 fori=1,.,n
Gj(x) - P
(34) Ep,-x,- - G(X) =0
i=1
(3.5 0<d £ o

Four remarks should be noted about these first order conditions. First, since x must be
positive by (a.3), there is no need to consider corner solutions. Second, since lemma 3.1 establishes
that the break-even constraint will be satisfied with equality, (3.4) is written with equality. Third,
since V, > 0 by (a.2), 6 cannot be zero so (3.5) is written to reflect this. Fourth, and most

important, 4 is allowed to assume the value oo, If 8 = oo, conditions (3.3)-(3.4) can be written

(3.6) Gi(x) -p; =0 fori=1,..,n

3.7 Yopix; -Gx) =0
i=1

Equation (3.6) states the first order conditions for unconstrained profit maximization. Equation (3.7)
states that profits are zero at this point. Thus (3.6)-(3.7) are the first order conditions corresponding
to the case where there is a single x > 0 satisfying the constraint (3.2) and thus this single element is
the solution to the program. Rather than write this as a separate case it is more convenient to simply

let & assume the value o,

18



It will be convenient to introduce notation to capture this distinction. If there exists an x > 0

such that

(3.8)

n
p;x; - Glx) >0
=1

!

then p will be said to permit positive profit. If there does not exist an x > 0 such that (3.8) is true
but there does exist an x such that (3.8) is satisfied with equality, it will be said that p permits zero
but not positive profit.

Enough regularity has been assumed to guarantee that the first order conditions characterize

the solutions to (3.1)-(3.2). This is stated as lemma 3.2,

Lemma 3.2 For any (x,p), where x > 0, x is induced by p if and only if there exists a 6
such that (3.3)-(3.5) are satisfied. If 6 < oo, then p permits positive profit.
[f 6 = oo then p permits zero but not positive profit.

For any x > 0, define p™(x) = (p}(x),...,p,(x)) and 5°(x) as follows.

= Vl-(.x)
(3.9) p; (x) = Gi(x) - —
8" (x)
Y Vilox
(3.10) 85 (x) = =l

¥ Gix)x; - Gix)
i=|

It is straightforward to invert (3.4)-(3.5) to show that for any x > 0, p?(x) and 67(x) are the unique

values of p and & such that (x,p,8) satisfies (3.4)-(3.5). This is stated as lemma 3.3.

Lemma 3.3 For any x > 0, p (x) and 8 (x) are the unique values of p and & such that
(x,p,8) satisfies (3.3)-(3.4).
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If follows immediately that for any x > 0, that x is inducible if and only if §°(x) > 0. Ifx
is inducible, then p‘(x) is the unique price that induces it. The price p"(x) permits positive profit if
5"(x) < o and permits zero but not positive profit if 5'(x) = . Equation (3.10) determines 8°(x).
The numerator of (3.10) is always positive. Therefore 5*(x) is negative, positive, or infinite,

depending upon whether the denominator,

(3.11) Y Gi(x)x; - G(x)
i=1

is negative, positive, or zero. By inspecting the definition of the returns to scale measure, 5(x), in
(2.21), it is clear that (3.11) is negative, positive, or zero, depending upon whether S(x) is less than,
greater than, or equal to 1.

Therefore, x is inducible if and only if the cost function G exhibits constant or decreasing
returns to scale at x. If x is inducible, p*(x) is the unique price which induces it. If G(x) exhibits
constant returns to scale at x, then p*(x) permits zero but not positive profit. If G exhibits decreasing
returns to scale at x then p'(x) permits positive profit. This conclusion is formally stated as

proposition 3.1.

Proposition 3.1
Suppose that x > 0. Then x is inducible if and only if S(x) = 1. If x is inducible, p'(x) is
the unique price which induces it. If S(x) = 1, then p"(x) permits zero but not positive

profit. If S(x) > 1, then p"(x) permits positive profit.

Proposition 3.1 states that x is inducible if and only if the cost function G exhibits constant or
decreasing returns to scale at x. It is intuitively clear that decreasing or constant returns to scale are a
necessary condition for inducibility. Suppose, for contradiction, that x is induced by some price p

and that there are increasing returns to scale at x. Now consider a proportionate increase in all
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outputs. The firm’s revenue rises proportionately since all prices are constant. By assumption, the
firm’s costs rise less than proportionately. Therefore, the new, increased, output vector is feasible
because profits are positive. However, since all outputs are higher, the hospital preters this vector.
To summarize this logic, an altruistic hospital can never be induced to choose any output
where there are increasing returns to scale in the cost function, G{x). This is because so long as the
hospital’s is breaking even at x, it can continue to break even by proportionately increasing x. Thus a
necessary condition for x to be inducible is that G(x) exhibit constant or decreasing returns to scale,
Proposition 3.1 shows that this condition is, in fact, also sufficient for inducibility and shows that
p*(x) is the unique price that induces x when it is inducible. Furthermore, p”(x) permits positive

profit when S{x} > 1 and permits zero but not positive profit when S(x) = 1.

B. Equilibrium
It is straightforward to show that a unique efficient output exists. Lemma 3.4 states this

result.
Lemma 3.4 There exists a unique x which is efficient.

Let xE denote the unique efficient output.
By proposition 3.1, the definition of an equilibrium in (2.14)-(2.16) can be rewritten as

follows. A pair (x,p) is an equilibrium if x solves the program

(3.12) Maximize Vix) - Gix)
x>0
3.13) subject to Six) =21,

and p satisfies

(3.14) p=p .

Sufficient regularity assumptions have been made to guarantee that program (3.12)-(3.13) has
a solution. Thus an equilibrium always exists. This is stated as lemma 3.5.
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Lemma 3.5 There exists a solution to program (3.12)-(3.13).

The nature of the solution will now be characterized. Recall that x is efficient if it solves

(3.15) Maximize Vix) - Gix)
x>0

Therefore under both program (3.12)-(3.13) and (3.15), x is chosen to maximize the same objective
function. The difference is that under the equilibrium program, the constraint is added that S(x) = 1.

Recall that xF is defined to be the unique efficient point. If follows immediately from the
above that if G exhibits constant or decreasing returns to scale at xE, that xE is the equilibrium

quantity. This is stated as lemma 3.6.
Lemma 3.6 Suppose that S(xE) = 1. Then (xE, p'(xE)) is the unique equilibrium.

If S(xE) < 1, then xE cannot be chosen. Since the objective function is concave, it is

immediate that the constraint (3.13) must hold with equality. This conclusion is stated as lemma 3.7.
Lemma 3.7 Suppose that S(xE) < 1. Then if (x,p) is an equilibrium, S(x) = 1.
Proposition 3.2 summarizes the conclusions of this part.

Proposition 3.2

(1) There exists a unique efficient output denoted by xE,
(i) If SE) = 1, the unique equilibrium output is xE.
(iii) If S(xE) < 1, at least one equilibrium output exists.

Every equilibrium satisfies S(x) = 1.
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4
Price Cost Ratios

This section will characterize how the ratio of price to marginal cost varies across products in
equilibrium. In the model of this paper, it is possible to calculate these ratios using either the
intensity adjusted marginal cost, G;, or the marginal cost of production, dF/dx;. In real practice,
economists calculate cost functions for hospitals holding intensity fixed. Therefore, the value of
marginal cost that they would normally calculate is the marginal cost of production. Therefore, in
order to characterize the nature of the ratio price to marginal cost that would normally be calculated
by economists, one should use the marginal cost of production. However, it turns out that
considering the ratio of price to intensity adjusted marginal cost sheds some extra light on the
structure of the model. Therefore, this will also be considered. Part A will characterize
price/marginal cost ratios using intensity adjusted marginal cost. Then part B will do the same using
the marginal cost of production. Part C will describe the implications of this result for the separable
constant returns to scale case. Finally, part D will discuss the connection of the results to Ramsey

pricing.

A. Intensity Adjusted Marginal Cost
Recall that x is inducible if and only if S(x) = 1. When x is inducible, p*(x), defined by
(3.9) is the unique price that induces x. Dividing both sides of (3.9) by G;(x) yields the following
result.
P V:(x) . 1

(4.1) _ =1 -
Gi®) GE® 5

where 6°(x) is defined by (3.10).
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If S(x) = 1, then 6 (x) = o and p;/G; is constant and equal to 1 for every i. This result is

stated as lemma 4.2.

Lemma 4.2 Suppose that p induces x and S(x) = 1. Then

P

—— =1
G, (x}

(4.2)

This result is very intuitive. It S(x) = 1, setting p; = G;(x) for every i means that x
maximizes the firm’s profit and the profit at x equals zero. Thus x is the unique element satisfying
the break-even constraint so the firm chooses it.

The situation where S(x) > 1 is more complex. In this case, 8'(x) € (0,00). Therefore by
{4.1), py/G, varies inversely with the ratio V,/G;. This result is very intuitive. A higher value of
V,/G; means that expanding output of product i is more desirable in the sense that it yields more
utility per dollar. If one attempts to induce the hospital to choose an output vector where it is more
desirable to increase some outputs than others, the ratio of price to marginal cost must be ¢hosen to
be lower on the more desirable products. (Note that even though the hospital is nonprofit, the ratio
of price to marginal cost still affects its output decision. All other things equal, increasing the p,/G,
ratio makes increasing the output of product i more attractive because the cost savings can be used to
produce more output of some other good and thus increase the utility from health care.)

Therefore, when S(x) > |, the fact that p induces x does not necessarily imply that p,/G; is
constant. This is only true if the utility per dollar from increased output, V,/G;, is constant across
products. However, by proposition 3.2 this is true if x is an equilibrium. By proposition 3.2, if x is
an equilibrium and S(x) > [ then x equals xE, the efficient output. Of course the first order

condition for xE is

4.3) Vi(x) = Gi(x)
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Substitution of (4.3) into (4.1) therefore yieids the following result.

Lemma 4.3 Suppose that (x.p) is an equilibrium and S(x) > 1. Then

4.4) =

In particular, the ratio p,/G;(x) is constant across products. The intuition for this result is

illustrated in figure 4.1 for the case of two products. The efficient output is labelled xE. The iso-

utility curve passing through xF is labelled V and the iso-cost curve is labelled G. Since xE is

efficient, the two curves are tangent at xE. The slope of the iso-cost curve at xF is

dx, -G (xE)
4.5) _—
dx;  G,(xE)

E

In order to choose a p which induces x™, we must choose a p such that the iso-protit line for the zero

profits level passes through xE and is tangent to0 V. This is drawn as # = @ in the figure. Then

E

when the hospital chooses an x to maximize V subject to 7 = 0 it will clearly choose x®. The slope

of the iso-profit line at xE is given by
dx') - pl - Gl (IE)

(4.6) z -
dx, Py - Go(x By

By comparing (4.5) and (4.6), it is clear that prices must be chosen proportionate to marginal costs in
order for the iso-profit line to have the same slope as the iso-cost line,

It should also be noted that lemma 4.3 implies that in an equilibrium where S(x) > 1, price
will always be strictly less than intensity adjusted marginal cost. This is simply a consequence of the

fact that the firm earns zero profit in equilibrium. If there are decreasing returns to scale and prices
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Figure 4.1
Equilibrium When S(xF) > 1
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are proportionate to marginal cost, then prices must be strictly less than marginal cost for the firm to
earn zero profit.

Lemma 4.2 implies that p./G; is constant when p induces x and S{x) = 0. In particular, then,
p;/G; is constant when (x,p) is an equilibrium. Lemma 4.3 implies that p;/G; is constant when
S(x) > 0 and (x,p) is an equilibrium. Therefore, lemmas 4.2 and 4.3 together imply that p,/G; is

constant in equilibrium. This is the major result of this section and will be stated as proposition 4.1.

Proposition 4.1
Suppose that (x,p) is an equilibrium. Then
P; P

4.7) = for every i,j.
G;(x) Gj(x) Y

Of course, in equilibrium the firm also earns zero profit. That is, (x.p) satisfies

(4.8) Ypix, - Gx) =0
i=1

Equations (4.7) and (4.8) are equivalent to

b; 1 .
4.9) —_ for every i.
G, S y

That is, when p;/G; is constant and profit is zero, p;/G; must equal 1/S(x). Theretfore, corollary 4.1,

below, is equivalent to proposition 4.1.

Corollary 4.1

Suppose that (x,p) is an equilibrium. Then {4.9) is true.
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Although proposition 4.1 and corollary 4.1 are equivalent, it will be convenient to view
proposition 4.1 as the statement of the main result. This focuses attention on the result that p,/G; is
constant across products, which is the main analytic result. The particular value that p,/G; assumes is

simply as algebraic consequence of the zero profit condition.

B. Marginai Cest of Production
It is immediate trom (2.4) and (2.8) that the following relationship always holds between

quality adjusted marginal cost and the marginal cost of production.

L
n;(x)

aF
E(x,qr(x))

H

(4.10) G:(x) = [1 .

Recall that 9,(x) is the elasticity of demand for product i with respect to intensity expenditures on
product i. It will simply be referred to as the intensity elasticity of demand for product i. As
explained in section 2, G; equals the marginal cost of production plus the marginal cost of demand
inducement. If the intensity elasticity of product i is high, then increased expenditures on g cause
large increases in demand. This means that the marginal cost of demand inducement is low, which in
turn means that G; should be closer in value to dF/dx,. This property is true according to (4.10).
Substitution of (4.10Q) into (4.7) yields an equivalent statement to (4.7} which is the main

result of this part.!* It will be stated as proposition 4.2.

Proposition 4.2

Suppose that (x,p) is an equilibrium. Then,

F F
P;'/a—(x,Q(x)) pjla_ (x’Q(x))
ax; ax; .
(4.11) = / for every i,j .
s ! 1 L
n;(x;) 'qj(xj)
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That is, the ratio p;/(8F/dx;) is not constant across products. Rather it varies in proportion to
1 + 1/q,. In particular, if n, is larger, then p,/(dF/ax;) will be smaller. That is, products with larger
intensity elasticities of demand will exhibit lower ratios of price to marginal production cost.

Just as in part A, the fact that profits must be zero in equilibrium actually determines the

value of the ratios in (4.11). That is, (4.11) and (4.8) are equivalent to

p,-fi;;(x,q(x))

(4.13) ! 1 S I® for every i .

n;(x)

1 +

Therefore corollary 4.2 is equivalent to proposition 4.2,

Corollary 4.2

Suppose that (x,p) is an equilibrium. Then (4.13) is true.

Just as in part A, it will be useful to view proposition 4.2 as the statement of the main result.
This focusses attention on the result that p;/(dF/dx;) is proportionate to | + 1/3;, which is the main
analytic result. The particular value that [p;/(8F/dx,)]/[1 + 1/n;] assumes is then a simple algebraic
consequence of the zero profit condition.

As the proof preceding proposition 4.2 makes clear, the explanation for proposition 4.2 is that
it is simply an equivalent way of stating the relationship between p and x stated in proposition 4.1
(i.e., given that (4.10) is true by definition, (4.7) and (4.11) are equivalent statements).

Some extra intuition for the result can be had by considering “what goes wrong” if one tries
to set prices proportionate to the marginal costs of production. Consider the two-good case described
in connection with figure 4.1. Figure 4.2 repeats all of the details shown in figure 4.1 except for the
zero profit line which induces xE. Suppose that 7, > 7,. Now suppose that the payer chooses prices

such that they are proportionate to marginal production cost and such that profits are zero at xE.
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X2

Figure 4.2

Output Choice When Prices are Set Proportional
to Marginal Production Cost At xE
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Thus xE is feasible for the firm since it will earn zero profits if it chooses xE. Wil the firm choose

15

xE? The answer is no. The iso-profit line at xE will be steeper than the iso-cost {ine.’” Therefore

when the hospital attempts to maximize the utility of health care subject to the zero-profits constraint,
it will choose the point x™ which yields a higher level of utility than does xE.
At first, this result may seem counter-intuitive. The payer chooses prices such that the

E

hospital can break even by choosing x*. The hospital’s goal is to maximize V(x) subject to breaking

E maximizes V(x) subject to expenditures being no greater than G(xE). (In fact it

even. The point x
maximizes V(x) - G(x).) Why, therefore, doesn’t the hospital choose xE? The answer is that the
hospital can cause the payer to increase expenditures above G(xE) by choosing x*. This generates a
higher level of benefits from health care. Since the hospital only cares about benefits, it thus prefers
x" Since the payer cares about benefits minus costs, it prefers xE,

It is usefui to describe the above example in terms of the hospital’s quality choices. Let
q" = q(x") and qF = q(xE). Since x3 > x&, it must be that q; > q5. Similarly since x] < xF, it
must be that qf < qlla. Now suppose that the principal hopes to induce the agent to choose qE.
Suppose he sets prices proportionate to marginal production cost at x(qE) and such that the firm’s
profits would be zero if it chose qE. The hospital responds by raising intensity on good 2, which has
a higher intensity elasticity of demand, and lowering intensity on good 1, which has a lower intensity
elasticity of demand. In order to induce the hospital to choose qE the payer must choose prices such
that the ratio of price to marginal production cost is higher for the good with the lower intensity
elasticity of demand.

Thus, one intuitive way to think of proposition 4.2 is that the firm is “biased” towards
increasing intensity on products with high intensity elasticities. Thus, in order to induce correct

incentives, the payer must choose lower price/marginal cost margins on goods with higher intensity

elasticities.
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C. The Separable Constant Returns to Scale Case

It is useful to explicitly describe the implications of proposition 4.2 for the separable, linear
case of (2.5) since the conclusions are particularly striking in this simple example. Although the
formal analysis viewed quantity as the choice variable of the hospital, it will be more natural to view
the hospital as choosing intensity in this part.

As explained in part D of section 2, the intensity adjusted cost function exhibits decreasing
returns to scale for every x for this case. Therefore, the efficient quantity, xE, is inducible and will
be the equilibrium. Let qF denote the intensity which causes patients to demand xE.

Suppose that the payer decides to induce qE. One possibility to consider would be to set each

price equal to the unit cost at qE, i.e., to choose

(4.14) pi = claf)

Since c(q]is) is the marginal cost of production for good i, prices are thus chosen to be proportional to
marginal production cost. The hospital can break even by choosing qE. The hespital is completely
altruistic and qE is the efficient intensity. Why, then, doesn’t the hospital choose qE? The answer is
that, so long as intensity elasticities of demand vary across products, the hospital can raise intensity
on goods with higher elasticities and lower intensity on goods with lower elasticities and
simultaneously

(i) still break even,

and (ii) increase the payer’s expenditures.

This increase in expenditures increases the benefits of health care so the hospital prefers this outcome.
Of course, costs increase by more than benefits, so the payer prefers qF.

This does not mean that qE is unattainable. The payer can induce the hospital to choose &
by setting prices according to (4.13). That is, prices should be set so that pllci(qliz) is proportional to

E : E . ff 16
(1 + 1/5;(x})) and the firm can just break even at q~. Formally, p should be chosen to satisty
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(4.15) Pi = k[l + IE ] for some k and

(4.16) fj [pi - Cs(qf,-E)]x,-E - 0

Note that, if ni(x}f) is not constant for every i, then (4.15) implies that pi/ci(q?) will not be
constant for every i. Then (4.16) implies that pifci(q]is) will be greater than | for some values of i and
less than 1 for others. Thus, both negative and positive profit margins will be observed in
equilibrium. Thus, far from being the signal that something is remiss, the existence of positive and
negative profit margins is the expected result when all is well and the payer is managing to induce the

hospital to choose the efficient level of care, qE.

D. Ramsey Pricing
This paper’s “inverse elasticity” rule resembles the familiar Ramsey pricing rule tfrom

17 Thus it is of some interest to explore the connection between the two results.

regutation theory.
Although the results are closely connected, the nature of the connection is not the one suggested by
the superficial resemblance of the inverse elasticity rules. In particular, there does not appear to be a
simple relabelling of the variables in the Ramsey problem (for example, by replacing price in the
standard Ramsey problem with intensity) that directly yields the inverse elasticity result of this paper.
Rather, the connection is somewhat more indirect.

The main result of this paper is proposition 4.2, which states that the ratio of price to
marginal production cost varies inversely with intensity elasticity across products. This result follows
directly from proposition 4.1 and equation 4.10. Proposition 4.1 states that the ratio of price to

intensity adjusted marginal cost is constant across products. Equation 4.10 states the relationship

between the intensity adjusted marginal cost and the production (or constant intensity) marginal cost.
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It will now be shown that the result of proposition 4.1 can be interpreted as following from a version
of the Ramsey problem.

The general Ramsey problem is

(4.17) Max W(x)
(4.18) subject to Y pix)x; - Cx) 20
i=]

where W is the social utility function, p;(x) is the inverse demand curve for good 1, and C is the cost

function, The general result, is that the optimal choices must satisfy

n ap;
4,19 W. + A _j.+ .- C. =0
(4.19) () L_§=1: 3 P ]

Problem (4.17)-(4.18) is the hospital’s problem where W(x) equals V(x), C(x) equals G{x), and p,(x)
is taken as the fixed price, p;. Substitution of these values into (4.19) yields

(4.20) Vix) + Np; =G} = 0

Note that all of the derivatives of price with respect to output vanish, because, in the hospital’s

problem, price is fixed. Now, when the payer performs his optimization, he induces an x such that
(4.21) V.= G,

Substituion of (4.21) into (4.20) yields proposition 4.1.

In summary, the intermediate conclusion, proposition 4.1, that prices are proportional to
intensity adjusted marginal cost can be viewed as being derived from the Ramsey problem. There
does not appear to be a simple relabelling of the variables in the Ramsey problem that directly yields

the final conclusion, proposition 4.2.
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5
Accounting Cost

Proposition 4.2 characterizes the nature of the ratio of price to marginal production cost
across products. Unfortunately, the only readily available cost data for most hospitals is accounting
cost. There is, in fact, a large literature in health care policy which is concerned with comparing the
ratio of price to accounting cost across products. The focus is on identifying whether cross-subsidies
occur when accounting cost is viewed as the “true” cost of each product.!® This literature often
refers to itself as studying cost-shifting.

Therefore, it would be extremely useful if the results of this paper could be interpreted as
applying to the ratio of price to accounting cost. In particular, it would be usetul if proposition 4.2
were still true when the marginal cost of production is replaced by the accounting cost of production.
In this case, data would be readily available to test or apply the theory. Furthermore, the theory
could be interpreted as providing a new analytic perspective on the cost-shifting literature. The major
result of this section will be to show that relatively natural assumptions exist which generate this
result.

Define an accounting system to be a function from x to R" denoted by
a(x) = (a;(x),..., a,(x)) where a;(x) is interpreted as the unit accounting cost of product i given that
the hospital produces x (and, as usual, given that the hospital chooses q so that patients demand x).
That is, in order to produce the quantity x at treatment intensities q(x), the hospital incurs various
expenditures. The hospital’s accounting system assigns expenditures to products. The total
expenditures assigned to product i divided by the units produced of product i, equals a(x), the unit
accounting cost of product i.

Formally, then, the goal of this section is to identify a sufficient condition for the statement
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pila;(x) ~ pj/aj(x)

(5.1) (x,p) is an equilibrium = for every i,j

| + I +

7;:(x) ﬂj(x)

to be true. This means that a; can be substituted for dF/dx; and proposition 4.2 is still true.
By comparing (4.11) and (5.1), it is clear that a sufficient condition for this is that accounting

costs be proportional to marginal costs, i.e., that

(5.2) a,;(0) - k 2Ex q(x))
ax;

!

for every i for some

(5.3) k>0
This result is stated as proposition 5.1.

Proposition 5.1

Suppose that a(x) satisfies (5.2)-(5.3). Then if (x,p) is an equilibrium, (5.1) is true.

A relatively plausible example exists which satisfies the sufficient conditions (5.2)-(5.3).
Suppose that variable costs are linear and separable as described by (2.5) but that there may be a

fixed cost as well. Formally, assume that costs are given by

n

(5.4 Fix,q) =K+ Y ci(g)x

i=1

where K = 0 and the second term on the RHS of (5.4) satisfies (b.1) and (b.2). Assume that the
firm calculates the accounting cost of product i by directly assigning the variable cost and then
allocating the fixed cost across products in proportion to variable costs. Then the total accounting

cost of product i equals
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Kci( i)xi
(5.5) clg ) + a0

n
2 g
j=1
The unit accounting cost of product i is obtained by dividing (5.5) by x; and equals

K

(5.6) a;(x) = ci(q;(x))| 1 + -
2 645060 )%
=

The marginal cost of production equals ¢{q;(x;)) and the term in brackets does not depend on 1.
Theretore, this example satisfies {5.2)-(5.3).

Note that if K equals zero, then a;(x) is then set precisely equal to ¢;(q,(x;)). Since accounting
cost is set precisely equal to marginal cost, obviously proposition 4.2 holds true for accounting costs
for this case. The above example shows that proposition 4.2 continues to hold true for accounting
costs when there are fixed costs, so long as the fixed costs are allocated in proportion to the variable
costs.

To summarize the above, suppose that the following three conditions are satisfied.

(i) Variable costs are linear and separable.
ii) The hospital correctly assigns variable costs to products.
(iii) Fixed costs are allocated in proportion to variable costs.

Then (5.1) is true. That is, accounting costs can be substituted for marginal costs and proposition 4.2
is still true.

Of course, none of the above three conditions is likely to be perfectly and completely satisfied
in real situations. However, all three conditions are relatively plausible and may well be “close to
true” in many situations. Therefore, it may be that the desired result is approximately correct in

many situations. This is basically an empirical issue and therefore cannot be further resolved by this

paper.
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6
Expenditure Caps

This paper’s model suggests a possible role for expenditure caps in a prospective payment
system. Define an expenditure cap to be a non-negative real number, M. Now assume that the payer
chooses a pair (p,M). This means that the hospital will receive revenues according to price vector, p,
but only up to a maximum of M. Formally, let R(x,p,M) denote the hospital’s revenues it patients

receive X from the hospital. It is defined by

mn
(6.1) R(x,p,M) = min1 ¥ px;, M

i=1

It will be said that (p,M) induces x if the hospital chooses x given (p,M). Formally (p,M) induces x

if x solves
{6.2) Maximize Vix)
x>0
(6.3) subject to Rx,p.M) - G(x) =0 .

The value of an expenditure cap now can be explained. Recall that xE is the efficient

E

outcome. In the model of the paper with no expenditure caps, x= was inducible if and only if

S(xE) = 1. When xF was inducible, there was a unique price that induced it. Suppose that an

expenditure cap is set equal to the cost of the efficient outcome, i.e.,
(6.4) M = GoEy
E i

Suppose also that p is chosen to be any price vector such that the firm breaks even at x=, i.e.,

6.5) Y pixt - Gy =0
i=1
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Then (p,M) induces x. This result is formally stated as proposition 6.1.

Proposition 6.1

Suppose that (p,M) satisfies (6.4) and (6.5). Then (p,M) induces xE.

Before explaining the significance of this result, its intuition will be outlined. In the model
with no expenditures, the reason that p'(xE) was the unique price that induced xF was that, for any
other price vector such that the hospital broke even at xE, it could choose a different x and induce the
payer to increase his expenditures. This is no longer possible with an expenditure cap.

The result in proposition 6.1 has two important features. By far the most important feature is that

E E

any price which causes the firm to break even at x© can be used to induce x®. This means that prices
could be chosen to satisfy some other criterion. For example, prices could be chosen so that price
equals accounting cost for each product if this was thought to be desirable. In a more general model
where price affects patient demand and thus directly intfluences weltare, prices could be chosen to
help solve this welfare problem. This feature also means that less information is required on the
payer's part to induce xE. Without expenditure caps, the payer had to calculate the particular price
vector p (xE) and this depended upon the intensity efasticities. When the payer can choose any price
vector such that the hospital breaks even, he no longer has to know the value of intensity elasticities.

The second feature of the result is that xE is inducible even if S(x} < 1. Thus output vectors

where G(x) exhibits increasing returns to scale can be induced if this is efficient.

7
Alternate Objective Functions

The purpose of this section is to consider three alternate assumptions about the nature of the
hospital’s objective function and show the basic result that the ratio price to marginal production cost

will vary inversely with intensity elasticity continues to hold.
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A, Different Preferences Over Health Care

First, suppose that, while the hospital has preferences over health care, that these preferences
are not necessarily identical to the payer’s. Formally, assume that V¥ is the payer’s utility function
and VH is the hospital’s utility function, and both functions satisfy the assumptions made for V. Then

lemma 4.1 is still true for VH. Substitution of (4.10) into {4.11) yields the following result.

Proposition 7.1
Suppose that the hospital’s preferences are described as in part A of this section. Suppose

that p induces x. Then

7.1) pi o2 (x.q(x)) = [1 :

1 (x) G;(x)6" (x)

1

1 } - ViH(x)

Unfortunately, it is no longer necessarily the case that the ratio V}il(x)/Gi(x) will equal 1 when

E

x = xE. This is because xF

maximizes VP(x) - G(x). This means that, even in equilibrium, it may
be that p,/(0F/dx,) varies because of variations in VI{I/G-I.

Therefore, the best that can be said in this case is that p,/(9F/9x;) will be affected by two
factors. It will vary inversely with the intensity elasticity of demand, n,, and inversely with the
hospital’s own assessment of the marginal utility per dollar from increasing x,. Thus, although

p;/(8F/dx;) still varies inversely with #;, this is only one of two factors that will influence dF/dx;.

B. Revenue Maximization

Another possibility is that the nonprofit hospital is not as altruistic as described in the main
model. Instead of having preferences over health care and attempting to maximize the benefits of
health care, the hospital may simply want to grow as large as possible. The assumption that

bureaucrats wish to maximize the size of their organization for various reasons (prestige, career
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enhancement, etc.), is a typical one in the economics literature. A natural measure of size in this

model is the hospital’s revenues. Formally then, p induces x if x solves

H
(7.2) Maximize Z P x;
x=z0 i=1
n
(7.3) subject to Y pix; -Gx) =0
i=1

It follows immediately trom the first order conditions that the desired relation must hold.

This result is stated as proposition 7.2,

Proposition 7.2

Suppose that x sclves (7.2)-(7.3) for p and that x > 0. Then (4.11) is true.

Note that this is a stronger result than proposition 4.2. Proposition 4.2 required (x,p) to be
an equilibrium in order to guarantee that (4.11) is true. Proposition 7.2 only requires that p induce x.

The intuition for proposition 7.2 is as follows. As explained in section 4, in order to induce
some x, price must be chosen so that the hospital cannot increase revenues and still break even. This

is program (7.2)-(7.3}).

C. Profit and Revenue Maximization

This part will assume that the hospital is even less altruistic than in part B. [t will be
assumed that the hospital values both revenues and profit and attempts to maximize a utility tunction
which depends on both. The motivation for this assumption is the idea that managers ot a nonprofit
may still value profit if it can be converted to managerial perks, higher salaries, or used to fund
projects of particular interest to managers. The assumption that a nonprofits goal is to maximize a
utility function depending upon profit and other variables is, in fact, quite standard in the literature

(Hodgkin and McGuire 1993, Wiesbrod 1993).
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Formally, then the hospital chooses x to solve

(7.4) maximize T'(w,R)
where
n
(7.5) T =Y px; - G(x)
i=1
n
(7.6) R = Eple
i=1

and I is a twice continuously differentiabie function strictly increasing in = and weakly increasing
in R.
Just as in part B, the first order conditions immediately imply the desired result which is

stated as proposition 7.3.

Proposition 7.3

Suppose that x solves (7.4) and x > 0. Then {4.11) is true.

Just as for proposition 7.2, this is a stronger result than proposition 4.2 because proposition
7.3 only requires that p induce x in order for (4.11) to be true.

Also note that proposition 7.3 applies to the case of a pure profit maximizing firm. This is
the special case where I'(w,R) equals #. The model of a profit-maximizing monopolist or oligopolist
choosing product quality is well studied in the economics literature.!® Equation (4.11) is obtained
by manipulating the standard first order condition to this problem. However, there does not appear to

be a paper that makes the precise statement that (4.11) is true when x satisfies (7.4).
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8
Discussion

Part A will discuss the implications of this paper for interpreting the behavior of price/cost
ratios in hospitals. Then part B will explain how this paper’s theory provides a ditferent explanation
for differential price/cost ratios across payer groups than the traditional “cost shifting”™ explanation.

Finally, part C will discuss empirical predictions and tests.

A. Price/Cost Ratios

For the purposes of this discussion, it will be assumed that accounting costs are relatively
proportional to marginal costs for most hospitals so that the conclusions of this paper apply to
price/cost ratios when cost is measured by unit accounting cost. Therefore the term "price/cost ratio”
should be interpreted as the ratio of price to accounting cost for the remainder of part A.

The major conclusion of this paper is that price/cost ratios are endogenously determined by a
hospitai’s treatment intensity choices even if prices are completely fixed. Price/cost ratios will vary
across products inversely with the products’ intensity elasticity of demand. That is, price/cost ratios
will be higher on products where demand is less responsive to increased intensity. Therefore, in an
accounting sense, the hospital will be earning positive profits on some products (those with low
intensity elasticities of demand) and negative profits on some products (those with high intensity
elasticities of demand).

From a policy perspective, the major contribution of this paper may be that it suggests a very
different theory of how a nonprofit hospital chooses treatment intensities than the traditional theories.
This, in turn, implies a different normative theory of how a payer should choose prices. There are
perhaps two traditional theories of how a nonprofit hospital chooses treatment intensities. The first,
which will be called the "exogenous intensity” theory is that hospitals determine treatment intensity
based on medical issues completely independently from prices. The second theory, which will be

called the "endogenous but separable” theory is that, for each product, the hospital increases treatment
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intensity up to the point that price just equals the accounting cost of supplying the product. Thus the
hospital breaks even on each product.

Under the traditional view, it has generally been thought to be desirable that all price/cost
ratios be equal to one to avoid cross-subsidies. This is thought to be desirable based on fairness
grounds.

Both of the above theories, together with the view that cross-subsidies are undesirable,
generate relatively similar normative theories of price setting. Under the exogenous intensity theory,
the payer begins by simply estimating the exogenous intensity choices of the hospital. Then, given
the view that cross-subsidies are undesirable, the unambiguous best choice is to set the price of each
product equal to its cost given the treatment intensities. Under the slightly more sophisticated
endogenous but separable theory, the payer begins by choosing the vector of treatment intensities that
he wishes to induce. He then induces the desired vector by setting each price equal to accounting
cost given the desired treatment intensity. This policy has the desirable side effect that there are no
cross-subsidies.

This paper shows that neither of these theories of intensity choice stand up very well to
logical scrutiny. The theory that intensity choice is completely independent of all financial issues is,
of course, flawed. If a hospital must break even to survive and is legally prevented from earning
positive profits, then intensity choice must respond to financial issues. The "endogenous but
separable” theory is slightly more sophisticated in that it acknowledges this point. The theory that a
hospital will adjust intensity to just break even on each product might be superficially appealing. If a
hospital is a nonprofit it must break even. If the hospital is altruistic, in the sense that it agrees with
the payer on the relative social value of increasing intensity across products, it may seem appealing to
conclude that the hospital will “obey the payer’s command” and choose intensity on each product to

break even.



This paper shows that, while perhaps superticially appealing, this logic is incorrect. The
logically correct statement of an altruistic nonprofit hospital’s decision problem is that it attempts to
maximize the social value of health care (using the payer’s definition of social value) subject to the
constraint that it break even. It is shown that the solution to this problem generally does not involve
the hospital breaking even on each product. Relative to the intensity choice that would cause the
hospital to break even on a product by product basis, the hospital increases intensity on products with
high intensity elasticities and decreases intensity on products with low intensity elasticities. The
reason for this is that the hospital can increase the payer’s total expenditures on health care by doing
this and thus increase the social utility of health care. This paper’s theory suggests the following
normative theory for price setting by the payer. First, the payer should decide on a desirable level of
intensity for each product and estimate its accounting cost.2% Then the payer should estimate the
intensity elasticity of demand, n;, for each product. Finally, the payer should set prices such that the
price/cost ratios are proportional to 1 + 1/9; and the firm will just break even when it chooses the
desired intensity vector.

Note that in this paper’s model, prices can no longer perform the role of eliminating cross-
subsidies. So long as intensity elasticities vary across products, then so must price/cost ratios. In the
formal model of this paper, this is of no great concern because there is no reason to value the
elimination of cross-subsidies. The concept of a “cross-subsidy” is simply an accounting artifact and
has no direct bearing on anyone’s welfare. This is because there is a single payer and individual
patients are fully insured. Furthermore, even in more complex models with multiple payers or
patients that partially pay for services, it seems likely that appropriate lump-sum payments could be
made between payers or from the payer to the patient to achieve any desired surplus division among
payers or among patients.

Therefore it seems plausible that, in many circumstances, the issue of whether cross-subsidies

exist is of no great welfare consequence. The view that prices should equal costs on a product-by-
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product basis may stem largely from the fact that there has been no good theory to explain how prices
shouid be set and, in the absence of any good theory, the simple idea that price should equal cost
seemed appealing. This paper provides a theory to fill this vacuum.

It may be in more complex models that the choice of price could be modelled as having some
direct welfare consequences. For example, if patients pay for a fraction of their health care
themselves, then price will influence patients’ demand and this will have direct welfare consequences.
In such a model these extra welfare effects would have to be taken into account, and the solution of
this paper would no longer necessarily be optimal. Nonetheless, the factors identified in this paper
should continue to play a role in more complex situations. The discussion of expenditure caps in

section 6 is also very relevant to this issue. In particular, imposition of expenditure caps creates a

“degree of freedom™ to choose relative prices to solve some other problem.

B. Cross-Subsidies Across Payer Groups and Cost Shifting

The most remarked-upon instance of cross-subsidies is between Medicare and privately
insured patients groups. On average, the prices hospitals receive for supplying services to Medicare
patients are less than the accounting costs of the services provided, while the prices hospitals receive
for supplying services to privately insured patients are greater than the accounting costs of the
services providi;ad.21 The accepted explanation for this phenomenon is that hospitals have responded
to low Medicare prices by raising the prices they charge to privately insured patients. This behavior
is usually referred to as “cost shifting.” One difficulty with this explanation is that it does not explain
why large private insurers have accepted these price increases.

The purpose of this part is to argue that this paper’s model can be interpreted to supply an
alternate explanation of this phenomenon which does not rely on the lack of bargaining power of large
private insurers. Just as in part A, assume that accounting costs are proportional to marginal costs so

that this paper’s theory applies to accounting costs.



Assume that the hospital’s objective is as modelled in part C ot section 7. That is, its goal is
to maximize a utility function depending upon both profit and expenditures. Theretore, by
proposition 7.3, the basic inverse elasticity result, equation (4.11), holds for any fixed price vector,
so long as the hospital maximizes its utility given the fixed price vector.>?

Assume that there are two payers, the federal government and a private insurer. For
simplicity, assume that there are two groups of patients and each group consumes a single health care
product. Let product 1 be health care for privately insured patients and let product 2 be health care
for Medicare patients. Assume that an individual patient’s demand for health care as a function of the
treatment intensity offered is identical across ali patients and that the intensity elasticity of demand
decreases as intensity grows larger. Assume that a {nonmodelled) strategic interaction between the
two payers determines an equilibrium price vector (pr,p;). Then the hospital chooses the intensity
vector (q;,q;) to maximize its utility given the price vector (p;,p,). Consistent with observed
outcomes, assume that, in the resulting equilibrium, privately insured patients receive a higher
intensity of treatment than do Medicare patients, i.e., qf > q;. This outcome presumably occurs in
equilibrium because the payer for the privately insured patients is willing to pay more for intensity
increases than is the federal government.

Since all patients are alike and intensity elasticity declines with intensity, this implies that the
demand curve of the privately insured group will exhibit a lower intensity elasticity of demand than
the demand curve of the Medicare insured group at the induced intensity choices. The major result of
this paper (proposition 7.3, for this version of the model) is, of course, that price/cost ratios vary
inversely with intensity elasticity. I particular, therefore, it must be true that there is a higher
price/cost margin on the privately insured group than the Medicare insured group. If the hospital is
earning zero profit overall, it must therefore be earning a positive accounting profit on the privately

insured group and a negative accounting profit on the Medicare insured group.
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Therefore, in the above model, the hospital earns a positive accounting profit on privately
insured patients and a negative accounting profit on Medicare patients even though the hospital has
absolutely no ability to affect prices. The profit differentials do not result from the hospital raising
prices to private insurers (as in the standard “cost-shifting”™ explanation). Rather, they result from the
hospital’s choice of treatment intensities in response to fixed prices.

Note that this paper’s explanation for observed profit differentials depends on the property
that the intensity elasticity of demand is higher for Medicare patients than privately insured patients.
This simpie property is sufficient to generate the observed differentials through its effects on the
hospital’s intensity choices. I am not aware of any empirical investigations of intensity elasticities
across patient groups. This paper clearly suggests that such empirical measurements would be

interesting.

C. Empirical Predictions and Tests

Although the variation of price/cost ratios across payer groups is an appealing issue to apply
this paper’s theory to (because of the great policy interest in this issue), the most natural issue to
apply this paper’s theory to is price/cost margins across products for a single payer. In particuiar, the
case of variation in price/cost margins across DRGs for Medicare is a very natural candidate to apply
this paper’s model to. This is because there is definitely a single payer and prices are definitely fixed
by the payer. This case, in fact, supplies an opportunity to empirically test predictions of this paper’s
theory.

Two different possible approaches to testing this paper’s theory are possible. The more ambitious
approach would be to attempt to directly estimate intensity elasticities and then directly test either
(4.11) or (5.1) depending upon whether estimates of marginal cost or accounting cost were available.

The second, less ambitious but much more feasible approach would be to identify observable

characteristics of products that would tend to indicate that intensity elasticity is relatively high or low.
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One would then test the proposition that price/cost ratios tend to be higher for products that exhibit
characteristics which suggest that their intensity elasticities are lower.

One obvious example of such a characteristic is the presence or absence of competition for a
particular product. For example, suppose that two hospitals, A and B, are situated relatively close to
one another. Suppose that both hospitals supply product 1 but only hospital A suppliies product 2 and
only hospital B supplies product 3. Then it seems plausible that product 1 may exhibit a much higher
intensity elasticity than products 2 or 3 {i.e., a slight increase in product 1’s intensity may cause a
large demand increase because all patients will shift to the hospital supplying higher intensity). Thus,
this paper’s model suggests that price/cost ratios will be lower on product 1 than products 2 or 3. A
similar type of analysis could be conducted for a single DRG across different hospitals. It may be
that some hospitals experience more competition in a particular DRG than do other hospitals. This

paper predicts that price/cost ratios would be lower for hospitals experiencing more competition.
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Notes

1. See Prospective Payment Assessment Commission (1993) for a more detailed history. See Glazer
and McGuire (1993a) for statistics on the use of the prospective payment method.

2. See Wiesbrod (1993) for a general discussion of the possible goals of nonprofits, some empirical
evidence on this issue, and references to the literature.

3. See Dor and Farley (1991), Glazer and McGuire (1993), Ma and Burgess (1993), Ma and
McGuire (1993), Spence (1975), and Wolinsky (1993).

4. See Ma and McGuire (1993} for an interesting analysis of strategic interaction between payers

5. A discharge is the treatment of one patient for one diagnosis.

6. The analysis of this paper remains similar if demand is allowed to depend on price as well as
treatment intensity. Since the hospital views prices as fixed when choosing intensity, the conditions
characterizing the hospital’s choice of intensity remain unchanged. However, the payer’s choice of
prices is now complicated by the additional factor that prices affect the level of demand as well as the

hospital’s tntensity choice. This additional factor complicates some of the conclusions.

7. Whether a hospital might find it optimal to purposely engage in rationing is a topic beyond the
scope of this paper.

8. Throughout this paper for any vector y = (y,..., y,) € R", the notation y > 0 will be used to
denote the property that y. > 0 for every i and the notation y = 0 will be used to denote the
property that y; = 0 for every i.

9. For functions of x, the subscript i will be used to denote the derivative with respect to x;.

10. Since these assumptions are only made for the special case and are not maintained throughout the
paper they will be numbered differently than the other assumptions. When the special case (2.5) is
referred to in the remainder of the paper, it will always be assumed that (b.1) and (b.2) hold as well.
[1. See Baumal, Panzar, and Willig (1982), p. 50.

12. See Friedman and Pauly (1981).

13. All proofs are contained in an appendix.

14. Obviously versions of lemmas 4.1-4.3 can also be derived by substituting (4.10) into the various
results.

15. It is straightforward to algebraically show this is true because 7, > 7.

16. In this special case, 7; depends only on x; and not the entire vector x as shown in (2.8).
Therefore, 7; is written only as a function of x;.

17. See Spulber (1989) for a treatment of Ramsey pricing and references to the literature.
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18. See Carey and Stefos (1992), Congressional Budget Office (1993} and Prospective Payment
Assessment Commission (1993) for a discussion and further references.

19. See, for example, Dor and Farley (1991), Ma and Burgess (1993), Spence (1975), and Wolinsky
(1993).

20. Of course this paper’s theory also explains how the payer determines the desirable level of
intensity.

21. See Congressional Budget Office (1993) and Prospective Payment Assessment Commission
(1993).

22. The advantage of this formulation over the formulation used in the basic model, is that, in the
basic model, the desired result only holds when the payer chooses price optimally. In the
interpretation of this part there are two payers and there is no reason to believe that they choose a
jointly optimal price vector.
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Appendix

Lemma 3.1

First suppose that x satisties (3.1)-(3.2). It is obviously sufficient to show that (3.2) is
satisfied with equality. Suppose, for contradiction, that profit was strictly positive. Then by
continuity it would also be strictly positive for a small increase in output which would increase the
objective function. Thus x cannot be a solution.

Now suppose that x satisfies (2.9)-(2.10). Suppose tor contradiction that it does not satisty

{3.1)(3.2). Thus there exists some x such that

(A1) V{£) > V(x)
and
{(A.2) Y it -G >0

i=]

Assumption (a.6) implies that there must exist a 6 > 1 such that

n
(A.3) Y opib;% - Gox) =0
i=1

Thus 6% satisfies the zero profit constraint. As well,
(A.4) V(gz) > V(&)

since § > 1. Equations (A.1) and (A.4) imply that

Vigz) > V(x)

contradicting the assumption that x solves (2.8)-(2.9). QED
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Lemma 3.2

Conditions {3.3)-(3.5) are cbviousiy necessary. The question is whether they are sufficient.
For § < oo, (3.4)-(3.5) are the Kuhn-Tucker conditions. Since G is convex for x > 0 the constraint
set is convex for x > 0. By assumption, the objective function is concave. Therefore the necessary
conditions are sufficient.

For 6 = oo, (3.3) is the first order conditions for x to maximize profit. Since G(x) is strictly
convex for x > 0, x must be the unique maximum to G(x) over x > 0. By (3.4), profits at x are

zero. Therefore, there is a single x > 0 satisfying the break-even constraint. This, therefore, is the

solution.
QED
Lemma 3.3
Simply invert (3.3) and (3.4).
QED
Proposition 3.1
The proof is contained in the text preceding the proposition.
QED

Lemma 3.4
For the purpose of this proof define V(x) to be equal to -oo for any x such that x, = 0 for
some i. By (a.3), V can be viewed as a continuous function over {0,e)". Choose any X > 0. Let

k denote
(A.9) k =V - GO

By (a.7), the set

(A.6) X, ={x:x20and V(x) - G(x) = k|
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is bounded. It is also closed since V and G are continuous. Therefore. V{(x)-G{x) achieves a
maximum over this set. This is obviously the unconstrained maximum as well. Since V is strictly

concave and G is strictly convex, the maximum is unique.
QED

Lemma 3.5
Define (A.5) and (A.6) just as in lemma 3.4. When doing so, choose an x such that

S(x} = 1. Recall that X, is compact. The set

(A7 S = {x 8(x) 2 land x 2 0}

is closed. Therefore § M X, is compact. Therefore V(x) - G(x) achieves a maximum over this set.

This maximum is obviously also the maximum to (3.12) - (3.13).
QED

Lemma 3.6
The proof is contained in the text preceding the proposition.

QED

Lemma 3.7
For contradiction, assume that (Q,p) is an equilibrium and that S(ﬁ } > 1. Let x® denote the

value of x which is a convex combination of x and xE.

(A.8) x% =af + (l-a)xt

Let f(x) denote the payer’s objective function.

(A.9) fx) = Vix) - Gx)

By assumption, xF is the unique maximizer of f. Therefore
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(A.10) fxEy > A2

By assumptions (a.2) and (a.4), f is strictly concave. Therefore

(A.11) fx®) > f(2)

for every o € (0,1) Since S(x) is continuous and S(; ) > 1, S(x¥) > 1 for values of « sufficiently

close to 1. This contradicts the assumption that X solves (3.12)-(3.13).

QED
Lemmas 4.1-4.3, Propositions 4.1-4.2, Corollaries 4.1-4.2
All proofs in section 4 are contained in the text prior to the tormal statements of the
results.
QED
Proposition 6.1
Program {6.2)-(6.3) can be rewritten as
(A1) Maximize Vix)
x>0
R
(A.13) subject to YN pix, - Gx) =0
i=1
(A.14) Gix) < M

Now suppose that (6.4) is true. By definition, xE solves the program of maximizing (A.12) subject to

{A.14). However, by (6.5), xE satisfies (A.13). Therefore it solves (A.12)-(A.14).
QED
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Propositions 7.1-7.3
The proofs of these propositions are contained in the text prior to the statements of the

propositions.
QED
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