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1. Introduction.

Many simple economic models fail to possess Nash cquilibria, particularly Nash equilibria in
pure strategies. The non-existence of a pure-strategy Nash equilibrium in an cconomic model may
lead cconomists to doubt the validity or discount the uscfulness of a model. Games that lack a pure-
stratcgy Nash cquilibrium must violate one or more of the hypothescs of the classical existence
theorems (c.g., Debreu (1952), Fan (1952), and Glicksberg (1952)).) These hypotheses typically
include continuity and a limited form of quasi-concavity of the payofl functions, in addition to the
usual convexity and compactness assumptions on strategy scts. Dasgupta and Maskin (1986) show
that one can still prove the existence of a purc-strategy Nash cquilibrium when the continuity
assumption is relaxed, as long as payofl functions still satisfy quasi-concavity. In this paper, I will
show that the quasi-concavity assumption can be relaxed, as long as payofT functions are continuous.
The relaxation of the quasi-concavity assumption facilitates the proof that purc-strategy Nash
cquilibria cxist for a class of cconomic games and is based on results from lattice theory, convex
analysis, and nonsmooth analysis. In order to rclax the quasi-concavity assumption, I use a
generalization of existing lattice-theoretic results in conjunction with techniques of convex and
nonsmooth analysis. Thus, this paper generalizes the lattice approach of Milgrom and Roberts (1990)
and Milgrom and Shannon (1991) and unifies the techniques of lattice theory (see Topkis (1978).
Veinott (1989), Vives (1989)), convex analysis (see Rockafcllar (1970, 1981)), and nonsmooth analysis
(sce Clarke (1983), Rockafellar (1981, 1990B)).

In order to study questions of the existence of pure-strategy Nash cquilibria, I will begin by
focusing on how one player’s sct of best responses varies with changes in her opponcents’ strategy
choices. This basic problem involves studying how ine set m(t)=arg min, xf(t.x} varies with changes

in the parameter t. When X is a lattice, we can usc lattice thcory to describe how the scts m(t) vary

'Also sce Arrow and Dcbreu (1954).



with changes in t by defining a binary relation on the scts of optimizing values. One such binary
relation is the strong set order, 24, of Veinott (1989), which is defined as follows: for lattice P and
X, Y<P, X>.Y if for all xeX and yeY, xAyeY and xVyeX.® Thus, X>Y if for every pair of
elements, one in X and onc in Y, the greatest lower bound is in the smaller set and the least upper
bound is in the larger sct.* The strong set order defines a notion of monotonicity of sets. The
methods 1 proposc in this paper are a generalization of the latticc approach in the sense that the
notion of monotonicity I define is an extension of monotonicity in the strong set order. The more
general definition of monotonicity of this paper is based on the concepts of convex and nonsmooth
analysis. In this sense, the work of this paper brings together lattice theory, convex analysis, and
nonsmooth analysis. By relying on concepts based in each of thesc three areas, we can analyze
problems that do not fall wholly into any single area.

In the following scction, I present some simple examples to illustrate how the lattice-theoretic
conditions of decreasing differences and submodularity relate to the conditions required in simple
comparative statics problems. In the third section, I define the concept of monotonicity and rate of
change that 1 will usc and present a thcorem stating that this concept of monotonicity is indced an
extension of the strong set order. This section contains three simple examples. The fourth section
shows how the concept of monotonicity introduced in this paper gives results that parallel those of
the lattice approach as far as proving the existence of pure-strategy Nash equilibria. Since the
definition of monotonicity used in this paper is a generalization of the lattice-thcoretic notion, there
exist classes of games which cannot be analyzed using the lattice-based approach, but which can be

shown to have a pure-strategy Nash cquilibrium using the mecthods of this paper. I describe such a

>The meet of x and y, denoted xAy, is the greatest lower bound of x and y. The join of x and y,
denoted xVy, is the least upper bound of x and y.

When P is a subsct of the real numbers and X and Y are convex, X25Y if and only if
min(X)>min(Y) and max(X)>max(Y).



class of games in Section 4. In Sections 5 and 6, I use results from convex and nonsmooth analysis
to show how the monotonicity condition can be viewed as a condition on the subderivatives of a

function. Some examples are given to illustrate these results.

2. Results of the Lattice Approach.

When the strategy sets of a game are sublattices, some simple lattice-theoretic conditions on
the players’ payofl functions guarantee the cxistence of a pure-strategy Nash equilibrium (see
Milgrom and Roberts (1990)). These conditions imply that the set of maximizers of a player’s payoff
function is nondecreasing in the strong set order with respect to the opponents’ strategics. Thus by
Tarski's Fixed Point Theorem there exists a pure-stratcgy Nash equilibrium {sec the Appendix for
a statcment and proof of Tarski’s Theorem). I will introduce these game-theoretic conditions within
the context of some simple cxamples. This will allow the reader to understand the role that each
condition plays. But first I devote one paragraph to some definitions and observations.

A latticc is a partially ordered sct with the property that for any two elements of the set, the
greatest lower bound (meet, A) and least upper bound (join, V} are also clements ol the set. For
example, the subsct of R® defined by {(xy)|x20,y20} is a latticc, while the sct
{(x.y) x+y=1x20,y>0} is not. To scc why the latter set is not a lattice, note that (0,1) and (1,0) are
elements of the sct but their meet (0,0) and join (1,1) are not. A sublattice is a subsct of a lattice
that contains the meet and join of all pairs of its elements, calculated with regard to the inherited
order. A complete lattice is a lattice that contains the infimum and supremum of all of its noncmpty
subsets. In particular, if X is a complete lattice, then it has an infimum and a suprcmum. Any
compact interval in R" is a complete lattice.

Now consider the following example. Suppose the function f:RxR~R is of class C% and

suppose we arc interested in the behavior of the sct arg min,f(t,x). In particular, suppose that this



sct is a singleton, {x*}, and that we are interested in conditions such that dx*/dt>0. The standard
first and second order conditions tell us that f{tx*)=0 and [,(t,x*)>0. Differcntiating the first order

condition gives us

[ (tx*) + [ (tx*) dx*/dt = 0.

Now note that if f(Lx*)<0, then dx*/dt=0. The condition that f(t,x*)<0 is one of the conditions

used in the lattice approach and is labeled decreasing differences.

Definition: A function [:TxX~R, where T is a partially ordered set and X is a lattice, has decreasing
differences in its two arguments x and t if for all x’>x, the difference {(t.x")-f(t.x) is

nonincreasing in t.

From Topkis (1978), we know that if { is a C* function {:R™xR"~R, then { has decreasing differences

in x and t if and only if f:-x,- <0 for all 1<i<n and 1<jsm. So in our example, { has decreasing
5

diffcrences in x and t if and only if dx*/dt=0.
Now let us consider the function f:RxR>~R, also assumed to be C°. Suppose that f(t,x,x,) has

a unique minimizer x* for all values of . As before we can write the first and sccond order



conditions for the minimization problem:
fx
f] (tx*) = 0
%

XpXp [XIXZ . . . X
(tx") is positive scmi—definite.

xpxp X%

Differentiating the first order condition, we get:

; dx, *
XIXI [‘XJXZ dl B _ftxl
R ol I e 98
Xpx2 x2%2
dt
Using Cramer’s Rule, we can write:
dxl* _ 1 —fth XX
dt Ay, £

where A is nonnegative by the second order condition. Rewriting the equation gives:

dx, _1

dt A _ffxi f"z"z +f‘)‘2["‘1"2 I

{ <
We can sec from the above cxpression that if flxISO and ™2 and fxmsO, then dx,*/dt>0. The

decreasing differences condition implics the first two inequalitics, and the lattice approach employs

an additional condition, submodularity, which implies the third.



Definition: A function [:X-R, where X is a lattice, is submodular if for all xyeX, f(x)+{(y) >

f(xAy) +I(xVy).

From Topkis (1978), we know that if [ is a C” function :R"~R, then f is submodular if and only if

fWgO for all 1<i<j<n. There arc no restrictions on fx‘_X'_.

So in our example, il f has decreasing differences in x and t and is submodular, then
dx,*/dt>0, and similarly for dx,*.

We also want to study cascs where the set of minimizers is not a singleton. In order to say
whether the set of minimizers is "increasing” with increascs in the parameter, we must define an
ordering on scts and the parameters must be drawn from a partially ordered set. In particular, using

the strong set order defined in the Introduction, we have the {ollowing result:

2.1 Theorem: Let ' TxX-Ru{w=}, where T is a partially ordered sct and X is a lattice, be order lower
semicontinuous and submodular in x given t and satisfy decreasing differences inx and t. Let
S be a sublattice of X. Then m(t)=arg min,f(t.x) is monotonc nondecreasing in the strong

sct order in t.}

At this point it may not be clear why Theorem 2.1 requires that the constraint set for the

minimization problem be a sublattice. To illustrate the need for this assumption, consider the

following problem: min__.-f(tx) subject to Bx=0, B#0. The Lagrangian for this problem is

L=f(tx)—ABx. The first order conditions are V,f(tx*)-AB=0 and Bx*=0. The second order

*A more general version of this theorem states: Let :TxX~Ru{}, where T is a partially ordered
sct and X is a lattice, be submodular in x given t and satisfy decreasing differences in x and t. Then
m(S.t)=arg min,,<f(t.x) is monotone nondecreasing in the strong sct order in (St).

6



condition requires that the following bordered Hessian have nonpositive determinant:

0 B, B,
B, V(Lx#)|
B,

Differentiating the first order condition gives us:

di
0 B, B,||dt 0
B, Vi R
1 X (t’x*) vl At
dat| |
B2 dx2 xz
dt

So by Cramer’s rule dx,*/dt satisfies the {ollowing equation:

0 0 B,
dx,* .
._] = ._1_ l?'] _ftxl [xfx A
dt A

BZ —flxz [sz

Rewriting this gives us:

dx.* 1q
1 = _
5 —AB![B'( thz)+BZflx;J'

By the second order condition, 1/A is nonpositive, and by the decreasing differences condition f'*z and

flx2 arc nonpositive. So the sign of dx,*/dt depends upon the signs of B, and B,. The decercasing

differences and submodularity assumptions arc not sufficient to guarantce that dx, */dt is nonnegative.



However, if {x|B’x=0} is a sublattice, then cither B,=0 or B,/B,<0.° Note that this assumption in
addition to the decreasing differences assumption is sufficient for the result that dx,*/dt>0.

For convenicnce 1 will now define a "min-monotone” function. A min-monotone function is
simply a parameterized function whose scts of minimizers ar¢ nondecreasing in the strong set order
in the parameter. Theorem 2.2 states the now obvious result that functions satisfying submodularity

and decreasing differences are min-monotone.

Definition: Let T be a partially ordered set, X a lattice, and S a subset of X. A function f(tx),
f:TxX~Ru{«}, is min-monotone in t with respect to S if for all t,t’eT such that t'>t, arg
min,f('.x) >¢ arg min, f{t.x).

2.2 Theorem: Let T be a partially ordered set, X a lattice, and S a sublattice of X. Supposc

f:TxX-=Ru{«} is submodular in x given t and has decreasing diffcrences in x and t. Then f

is min-monotone in t with respect to S.

3. Monotonicity Defined in terms of Nonsmooth Analysis.

From the previous section, we know that the strong set order can be used to compare two
sets. In particular, we can use the order to define monotonicity of a set-valued mapping. However,
a more general definition of monotonicity will be sufficient to prove the existence of pure-strategy
Nash cquilibria. The concept of monotonicity that will be used is defined in this section. Theorem

3.2 states that this type of monotonicity is, in fact, a generalization of monotonicity in the strong set

*Note that {x|B’x=0} is a linc through the origin or all of R". In order for the sct to be a
sublattice of R it must be a line with nonnegative slope or be equal to all of R%. Suppose B,=#0.
Then the set is a linc with slope -B,/B,. So the set is a sublattice if and only if B.=0 or B,/B. is
nonpositive.



order. I conclude this scction with some simple examples.

The following definitions will allow us to talk about the "derivative” of a set-valucd mapping.
I will give a simplified explanation before getting to the formal definitions. Consider a multifunction
m:R™=P(R")ue defincd by m(t)=arg min,f(t.x) where f is function mapping TxXcR"xR" to Ru{s}
and S is a subset of R".® For cvery t, m(t) gives the values for x that minimize f(t,x) on S. The graph
of the multifunction m is a sct in the space R™xR". The characteristics of the graph of m provide the
basis for the more general concept of the monotonicity of a set-valucd mapping. For every point
(t.%) in the graph of m, we can define a set called the approximating cone -- roughly, the translation
to the origin of the smallest conc with vertex at (£.X) that ecncompasscs (locally) the graph of m. This
cone is a set in R™xR". We can also dcfine a multifunction whose graph is exactly this approximating
conc. This multifunction will be called the proto-derivative of m. We can think of the proto-
derivative as a type of dircctional derivative. The proto-derivative of m at t relative to X in direction
t' is the set of changes x* in % such that the point (X") is an clement of the approximating cone to
gph m at (t.%).

To proceed with the formal definition of the approximating cone and proto-derivative, I will
need to define the contingent cone and the derivative cone. Let C be a closed set, and let xeC. The
contingent cone to C at x is defined as lim sup,,t'(C-x) and the derivative cone to C at x is defined
as lim inf, ot "}(C—x).” Both arc always closcd cones containing the origin. C is said to be

approximable at x if the two concs coincide.®

%Unlike a correspondence, a multifunction may map a value in the domain onto the empty set.

"To formalize the notion of the lim sup and lim inf of a scquence of sets, we have: the set
lim sup, ot 1(C-x) is the set of cluster points to scquences of the form (y*), where y*e(z*)'(Cx), and
the sct lim inf, gt /(Cx) is the sct of limits of such sequences.

%Thc contingent and derivative cones of a set C will always be equal when Cis closed and convex.
However, the following cxample shows that they nced not always coincide. Let
C={0}U{1/k|k=12...}. Cis closed but not convex. Since there are no arcs entirely contained in

9



Pefinition: Lct C be a closed subsct of R and let xeC. The contingent cone to C at x is the closed

set Ke(x) = lim sup, ,,t(C - x).

Definition: Let C be a closed subsct of R" and let xeC. The derivative cone to C at x is the closed

set V(x) = lim inf, ,t'(C - x).

The derivative cone gels its name from its relationship with the derivatives of emanating arcs
in C at x. For CcR", an emanating arc in C at x is a function y:[0,t)~R" such that y(0)=x, y(t)eC for
all te[0,7), y(t)-x as t10, and y, (0) =lim,,,[y(t)-y(M)]/t exists. Notc thaty,’(0) is the (right) derivative
of y at x. It can be shown that the derivative cone consists of all vectors £ eR" expressible as £ =y, '(0)
for the various cmanating arcs y in C at x (see Rockafellar (1989B)).

As an illustration, if f:R-R is diffcrentiable at a point x, then the contingent and derivative
cones to gph [ at (x,[(x)) are the same and are equal to the graph of the linc through the origin with
slopc cqual to f'(x). If f has left and right derivatives at x, then the cones arc again the same and
are equal to the union of the ray cmanating from the origin with slope f,’(x) and the ray cmanating

from the origin with slope £ '(x).

Definition: Lct C be a closed subset of R” and let xeC. If K(x)=V(x), then C is approximable at

x. If Ko(x)=V(x) for all xeC, then C is approximable.

Definition: The multifunction G:R*sR" is proto-differentiable at t relative to xeG(t) if the set gph G

is approximable at (t,x). The proto-derivative of G at t relative to x is the multifunction

C that include the point 0, V(0)={0}. To see that K (0)={x|x20}, notc that K-(0) is a conc
contained in R with no negative clements. It is sufficient to show that 1eK(0), i.c. that there exists
%10 and x*¢C such that x¥/<*~1. Decfining t*=1/k and x*=1/k for k=1,2...., we arc done.

10



DG, R%3R" defincd by gph DG, |,=K, (1) =V o(tx).°

The following definition introduces that notion of monotonicity of sets that I will use in this
paper. Essentially, it rcquires that sets have positive proto-derivatives. In particular, whenever a set
has a nonempty proto-derivative in a positive dircction, the proto-derivative in that dircction must
contain a positive element. Note that the proto-derivative is defined for multifunctions defined on

all of R™, but this is not restrictive since multifunctions may have the empty set as valucs.

Definition: Lct TeR™ A multifunction G:R™=R" is monotone at T if ¥&eR", Vt'eR™ with t’ >0 and {’=0,

DGy (t)#o6 = 3x'20 s.t. x'eDGy (t'). G is monotone if G is monotone at every t.

By definition, the sct of minimizers of a parameterized function is monotone if for any
increase in the parameter, all clements of the set of minimizers can be viewed (looscly) as changing
by some nonnegative amount. If the elements of the sct of minimizers always move in proportion
to the change in the parameter, then we can define the rate of increasc of the set. As made precise
in Theorem 3.1, if the rate of increase of a multifunction is nonnegative, then the multifunction is
monotone. The proof of Theorem 3.1 follows from directly the definitions of monotone and rate of

incrcasc.

Definition: Lct teR™, and let G:R™=R" be a multifunction. If there exists reR such that ¥ReG(t) and

v’ eR™ with t'>0 and t'#0, r-t'eDG(T|R)(t’), then G has rate of increase at t of 1.

3.1 Theorem: Let teR, and lct G:R=R be a multifunction. If G has nonnegative rate of increase at

°Note that for x¢G(t), DG}, docs not cxist. Also, see Rockafcllar (1989B).

11



i, then G is monotone at t.

The next theorem states that when f is min-monotone, the multifunction m:R"=sR" defined
by m(t)=arg min,_4f(t,x) is monotone. Thus the assumptions of the lattice approach, submodularity
and decreasing differences, are stronger than the assumption of monotonicity. In Examplec 3.3 I show

that monotonicity does not imply submodularity and decrcasing differences.

3.2 Theorem: Let TxXcR™R" If :TxX-+Ru{} is min-monotone in t with respect to S, then the

multifunction m:R"=R" defined by m(t)=arg min,f(t.x) is monotone on T.'

Theorem 3.2 together with Theorem 2.2 proves that all functions satisfying the assumptions

of the lattice approach will have associated multifunctions, m(t) =arg min,«f(t,x), that are monotone:

3.3 Theorem: Let TxX<R™R". Let [TxX-~Ru{«}, where X is a complete lattice. Suppose f(t.x) is
order lower semicontinuous and submodular in x given t and has decreasing differences in x

and t. Then the multifunction m:R"=R" defined by m(t)=arg min,,{(t,x) is monotonc.

In order to get a better grasp of the concept of a monotone multifunction just introduced,
I will now present three simple examples. For now I will not describe the actual calculation of the

proto-derivatives in the different examples, but this will be presented in detail in Sections 5 and 6.

Example 3.1.

Consider the function (:RxR-R defined by f(tx)=[x-t|. It is easy to scc that m(t)=arg

""Here, as in the remainder of this section, for teR™T, define m(t)=e.

12



min_f(t,x)={t}. Also, m is clearly nondecreasing in t with respect (o the strong set order since for

t'2t, {'’}25{t}. In Example 5.1, I calculate that Dmy«t)={t'}. For given I, m has rate of increasc

at T of 1 since vt'>0, 1+'eDmy(t’). Thus, by Theorem 3.1, m is monotone.

Example 3.2.
This example is similar to Example 3.1, but it illustrates the case where the set of minimizers

of a function is not a singleton sct. Define the function [ as follows:

X, x<t
f(tx) =10, texst+1
x=(t+1), t+1<x.

The function attains its minimum value when xe[t,t+1], so m(t)=[t.t+1]. As calculated in Example

5.2,
[t’,m), x=t
Dm; o (t') =1 (-eae), t<X<l+]
(—oo,t"], x=t+1.

For given t, m has ratc of increasc at t of 1 since V&em(f) and Wt'>0, 1-1'€Dmy(t’). Thus, by

Theorem 3.1, m 1s monotone.

Example 3.3
Consider the function f(t.x)=(x—t)*—2(x—1)?, which achicves its minimum valuc at x=t—1 and

x=t+1, so m(t)={t—1,t+1}. Note that { docs not have decreasing differences in x and ' Also,

"Here the decreasing differences condition is equivalent to the condition that f, (t.x) < 0 for all
(tx). However, f,(tx) = -12(x-t)’+4, which is positive for (x—1)* < 1/3.

13



f is not min-monotone since, for instance, m(1)={0,2} #{—1,1}=m(0)."> For given i, Example 6.1
shows that for all em(1), Dmy,()={t'}. So m has rate of incrcase at t of 1. By Theorem 3.1, m

1S monotone.

4. Existence of Pure-Strategy Nash Equilibria

In this scction I define a submodular game and give a key thecorem rcgarding such games.'?
Then I present the definitions of two-player and multi-player monotone games and theorems on the
existence of pure-strategy Nash cquilibria in such games. Following this, I define a class of games
which are not submodular but which arc monotone, and thus can be shown to have a pure-strategy
Nash cquilibrium using the techniques of this paper.

Consider the normal form game T'=(S,.f,),cy. Here the function f, maps S_xS_ onto Ru{},

and player n maximizes utility by minimizing the value of f,. Thc game T is a submodular game if,

for each neN:

(A1) S, is a compact intcrval in R

(A2) f, is continuous in x, (for lixed x_);
(A3) {, is submodular in x, (for fixed x_):

(Ad) {, has decreasing differences in x, and x .

The key theorem in the Milgrom and Roberts analysis (their Thcorem 5) states that if T is

a supermodular game, then the game has a purc-strategy Nash cquilibrium. It is rewritten below as

P1em(0) and Oem(1), but 1A0=0¢m(0), so m(1) » m(0).

PThe game as I define it is actually a hybrid of a submodular gamc and a smooth submodular
game.

14



a theorem about submodular games.

4.1 Theorem (Milgrom and Roberts (1990)): A submodular game I' has a pure-strategy Nash

equilibrium.

In summary, (A1)-(A4) guarantee that the "upper bound” of the set gph m, is a monotone
nondecrcasing function. If player n always chooscs his or her maximal best response to the other
n—1 players’ strategies, then playcr n's strategies will increase as the other players’ strategics increase.
The cxistence of these monotone nondecrcasing best-responsc functions for all the players in the
game implics, by Tarski’s Fixed Point Theorem, that there must be a purc-sirategy Nash equilibrium
of the game.

It is notable that it is exactly the characteristics of m,, that make it monotone which allow the
proof that the game has a pure-strategy Nash equilibrium. In the remainder of this section, we will
scc precisely in what scnse this is true. T will start by defining a monotone game. For now I employ
conditions that place restrictions directly on the multifunctions m,. In Scctions 5 and 6, I will discuss
how the results of convex and nonsmooth analysis allow these conditions to be replaced by conditions
on the payoff functions f.

First consider the very simple case of a two-player game with strategy sets that are compact

intervals of the real line. The game T'=(S,.[,),x is @ two-player monotone game if N={1.2} and for

cach neN:

(B1) S, is a compact interval of R;

(B2) {, is continuous;

15



(B3) the multifunction m :R=R defined by mn(t)—-:argminxesﬂ f (t,x) is monotone;™

(B4) for all t<max(S,,), D(m,), m,,(t)(l) exists and is nonempty.

4.2 Existence Theorem for Two-Player Monotone Games: A two-player monotone game T has a

purc-strategy Nash cquilibrium.

Before continuing, I will bricfly cxamine the conditions (B1)-(B4). (B1) and (B2) are the
same conditions used in a submodular game. They imply that m (t) is noncmpty. (B3) replaces the
decreasing differcnces assumption. The submodularity assumption is not needed in this case since
S, is one-dimensional. (B4) is a technical assumption needed to eliminatc problems caused by border
solutions. More will be said on this later.

As Theorem 4.3 states, the conditions of a submodular game (A1)-(A4) imply that the piayers’
best-response mappings are monotone, whereas in a monotone game, the monotonicity of the best-
responsc mappings are assumcd explicitly. Theorem 4.3 follows dircctly from the definition of a

submodular game and Thecorem 3.3.

4.3 Theorem: Lct T be a submodular game with $_ xS,cR™xR". Then the multifunction m :R"xR"=R

defined by m, (t)=arg min_ f,(t.x) is monotone.

xES,

This begs the question, is cvery submodular game also a monotone game? The answer to this

is no, as the following example illustrates. The example describes a submodular game which does not

MHere, as in the remainder of this scction, m,(t) is defined to be the empty set for all t not
contained in S .

16



satisfy the border condition (B4).

Let N={1,2}, §,=[02}, and £ (tx)=(x—1)*—2(x—t)". With m(t) defined as

m,(t)=arg min__ f (tx) for te[0.2], we have

{t+1}, O<t<1
m ()= {02}, t=1
{t-1}, 1<t<2.

This correspondence is monotone, but it has no fixed point. The problem in this example is

that D(m,),|,(1)=e. i.c. (B4) is not satisficd.

To understand how condition (B4) is related to corner solutions, consider Theorem 4.4. This
theorem states that (B4) is satisficd if players’ best responses are in the interior of their strategy sets
and if a second derivative condition holds. The proof of Theorem 4.4 follows from Theorem 5.4 of

Rockafellar (1989B)."

4.4 Theorem: Let ' be a submodular game with strategy sets that are subscts of the real numbers.
Suppose that for all T and all xem,(t), we have Xeint S, and &L (LX)/ox #0. Then (B4) is

satisfied.

I have shown that (A1)-(A4) imply (B3) but do not imply (B4). So clearly any submodular

game that satisfics (B4) is also a monotone game. The following example, similar to the previous

5Let G:R'=R" have the form G(t)={xeD|g(tx)=0}, where g-RXR"-R"™ is a continuously
differentiable function and the sct DgR" is closed and convex. For t and xeG(t), G is proto-
diffcrentiable at t relative to x and the proto-derivative is given by

DG, (t")={EeKp(x) | Vgt )t + Vg (LX)E=0}.
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one, shows that not all monotone games are submodular games.

N={1.2}, §,=[2.5], $,=[3.4], [,(1x)=(x—1)'=2(x—t)%, and f,(tx)=x. m(t)={t-1,t+1} and
m.(t)={3}. m; and m, both satisfy (B3) and (B4), so I is a two-player monotone game.
However, f; docs not satisfy the decreasing differences condition, so T is not a submodular

game.'®

Now I will define a monotone game allowing more than two players. As before the definition
of the game places restrictions directly on m,, and I defer to Sections 5 and 6 the discussion of how
these translate into restrictions on {.

The game T'=(S,.f,),cy 15 @ monotone game if, for each neN:

(C1) S, is a compact interval of R
(C2) f, is continuous;

(C3) the multifunction m,;R¥'=R, m,(1)=arg min_ f (tx), is proto-diffcrentiable and monotone;

(C4) the function M:S_ =8, defined by M (t)=max m_(t) is Lipschitz.

4.5 Existence Theorem for Monotone Games: A monotone game T’ has a pure-stratcgy Nash

equilibrium.

1°To see that [ docs not satisfy decreasing differences, note that £;(3.4) = -1 < 0 = £,(3,3), but
[(44) =0 > —1 = £,(4,3).

"Theorem 4.5 also holds when we allow S, to be a compact interval of R™. In this case (C4)
should be read as: ¥ie{1,2,....k,}, the real-valued function mapping t onto the i*" component of M (t)
is Lipschitz.
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Note that in the definition of a monotone game, I have used a Lipschitz condition rather than
a condition such as (B4). But Lemma A.3 in the Appendix shows that given (C1)-(C3), (C4) is just
a higher dimensional version of (B4).

The following theorem describes the extent to which monotone games and submodular games

arc related. The proof follows from Theorem 4.3.

4.6 Theorem: Let T be a submodular game with S, cR. Suppose m,(t) is proto-diffcrentiable and that

(C4) holds. Then T is a monotone game.

Now I will describe a simple class of cconomic games that are monotone but not submodular.
In this class of games, there are two competing players, 1 and 2. Each player chooses a parameter,
call it quality, from his or her strategy set, which is a compact interval of the real line. The net profit
player i rcceives on cach item, ny(g;), depends only on his own quality choice and decreases as his
quality increases. Each player's total profit is cqual to the number of items he or she sells times the
net profit per item. The number of items player 1 sells depends upon the difference between his
quality level q; and player 2’s quality level q,. Let the function f;:R-[0,) be such that fi(q;—q.)
specifies the number of customers who buy from player i when player i chooses g; and player i's
opponent chooses q,;. Assumc (this is the key characteristic of this class of games) there are
constants k; such that when q-q;>k,, f;(qi-q;) is increasing and when q;-q <k, f,(q;-q;) is constant.
In other words, the customers in this game have quality thresholds. As long as player i's quality level
is sufficiently high relative to his opponent’s quality level, then player 1 can attract more customers
by increasing quality. However, if player i's quality level is low relative to his opponent’s quality level,
then small increases in quality do not cnable him to attract more customers.

Games of this type arc not submodular games (assume players minimize negative profits)
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because they do not satisfy the decreasing differences condition. In general, if player 1 chooses low
quality, then player 2 will strictly prefer medium quality over low quality. But if player 1 chooses very
high quality, then player 2 will weakly prefer low quality over medium quality -- in either case player
2 attracts the same number of customers, and his net profit per item is higher when he chooses low
quality.

A more precisc cxample within this framework is given in the Appendix.

5. Convex Payoff Functions.

In this scetion I will show how the conditions on the multifunctions m, used in Section 4 can
be rewritten as conditions on payoff functions f, when those payoff functions are convex. I will deal
with nonconvex payofl functions in Section 6.

The first step is simply to define m,(t) in terms of f,. Before doing this, I will define the
subgradicnt of a convex function and state a theorem regarding subgradients. Following Theorem

5.1, I give some cxamples to clarily these concepts.

Definition: Let R"-Ru{=} be a convex function, and let x* xcR". Then x* is a subgradient of f at
x if f(z)>f(x) + x*:(z=x), for all zeR". This inequality is referred to as the subgradient

incquality. The set of all subgradients of f at x is the subdiffercntial of { at x and is denoted

Al(x)."*

5.1 Theorem (Rockafellar (1970)): Let f:R"~R be a convex differcentiable function. Then of(x)=VI(x).

To get a better understanding of the concept of a subgradient, consider the following

¥Note that of is a multifunction mapping elements of R* onto (possibly empty) subsets of R™
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examples. If a function f:R"~R is differentiable at x, then { has only onc subgradient at x, and it is
equal to the gradient of f at x, 3f(x)=¥Vi(x). Now consider an cxample where { is not differentiable
at a point. Supposc that f is thc function from R to itself defined by f(x)=|x|. Then f is not
differcntiable at zero. In this casc [ has a continuum of subgradients at zero, 8f(0)=[-1,1]. To sce
this, evaluate the subgradient incquality defined above for x=0. The definition says that x* is a
subgradient if for all z, f(z)2{(0)+x*:(z—0), or substituting the function definition, |z|>x*-z.
Clearly this is true for all x*€[-1,1]. The subgradicnts include the left derivative and right derivative
of the function, plus all points in between. The subgradients are all thosc values that can be used
to define supporting hyperplanes for the epigraph of the [unction. In the above example, for each
x*€[-1,1], the vector (x*,-1) can be used as a normal vector to define a supporting hyperplane for the
function f at the point (0,0). In this example those hyperplanes arc defined by h(z)=x*-z, lines with
slopc x* that pass through the origin.

In general, when f is finite at x and x*edf(x), the graph of the affinc function
h(z)=[(x) + x*:(z-x) is a non-vertical supporting hyperplane to the convex set epi f at the point
(x.{(x)). If x* is a subgradient of { at x, then the vector (x*.-1) is normal to epi f at (x.L(x))."?

The following theorems state some propertics of subgradients.

5.2 Theorem: Let [:R"=Ru{x,-=} bc a convex function. 2f(x) is a closed convex set in R".

5.3 Theorem (Proposition 5A of Rockafellar (1981)): If { is convex, the following conditions are
equivalent to cach other:
(a) f has its global minimum at x;

(b) f has a local minimum at x;

BIf x* eaf(x) and (a,p)ecpi [, then ((a,B)-(x.[(x)))-(x*-1) = (ax)x* - p + f(x) < f(a) - B < 0.
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(c) Deaf(x).

Now we have the tools to define the multifunction m, in terms of the payoff functions f. I
will assume that the payoff functions are defined on all of R"xR" since we can lct £, have value « for
points outside the domain.

Applying Theorem 5.3, we have:

5.4 Theorem: Let fR™xR"-Ru{«} bc a convex function. Define multifunction m:R"=R" by

m(t)=arg min__f(tx). Then m(t)={x|(y.0)ed(t.x), some y}.

Now we can prove the following theorem showing how the proto-derivative of m, can be

written in terms of the function f.

5.5 Theorem: Lct [:R™R"-Ruf{«} bec a convex function. Define multifunction m:R"=R" by

m(t)=arg min_f(tx). Lettand X be given. Suppose yeaf(i,x). Then the proto-derivative

of m, if it exists, is given by

Dmy (1) = {x"|(y,0) €D{( 8zt X), sOme y}.

Using Theorem 5.5, we can formulate the conditions of Scction 4, such as (B3), (B4), (C3),

2 However, it

and (C4), in terms of f, rather than m, whenever the payofl functions arc convex.
would be preferable to have formulas for Dm,, that are more easily calculated. Theorem 5.5 reduces

our problem to finding formulas for the proto-derivative of the subgradicnt mapping of f,. In the rest

PReplace references to m, by the expression given in Theorem 5.5.
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of this section, we will develop such formulas. As a matter of notation, 3f(1,%) is the subdcrivative
of the function of t, f{t |x=x%), at t=1. Similarly for thc gradient V{(t.%).

Theorem 5.6 uses the following definition to give one such formula and illustrates that the proto-
derivative can be viewed as a type of sccond derivative.

Definition: Let f:R*~Ru{} be a proper convex function.” Let §eR". Define the second-order cpi-

derivative of f at x rclative to y as follows:

D, 5 (x)-lim,, TP —D G x).

1a

5.6 Theorem: Let FR™R"-Ru{e} be a closed proper convex function and let m:R™=R” be defined by

m(ty=arg min__,f(tx). Lct T be given. Suppose xem(t) and yegf(1,%), and supposc { is

twice epi-differentiable at (1,%) relative to (§,0).7 Then

Dmy () =1{x"|(v.0) Easzuw‘O(l',x’), some y'}.
Applying Theorem 5.1 and Theorem 5.6, we have:

5.7 Theorem: Let {:R™xR"-Ru{=} be a closed proper convex function and lct m:R"=R" be defined by
m(t)=arg min___.{(tx). Lettbe given. Suppose xem(t), and supposc f is differentiable with
respect to t at (LX). Then

Dmyg (1) ={x"

(y’.0)edDf ﬁlv‘m_i)_o(t’,x'), some y'}.

J'A function £:S~Ruf{e}, where ScR”, is proper if f(x) <+ for at lcast onc x.

ZSection 3 of Rockafellar (1990A) gives cxamples of classes of functions that are epi-
differentiable and that arc twice epi-differentiable.
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In order to get a better grasp of the concepts introduced in this section, I will now present
two cxamples. These examples involve the same functions as examples 3.1 and 3.2; however, here

I will show the actual calculation of the proto-derivatives.

Example 5.1.
Consider the function f:RxR~R defined by f(t,x)=|x-t|. Since f is convex, by Theorem 5.4

we can write m(t)= {xeR|(v,0)edl(t,x), some y}. Writing out the subdifferential of {, we have

(1,-1), t>x
a(tx) = [(1,-1).(-1.1)], t=x
(-1.1), t<x.

Clearly, m(t)={t} since the only valuc of x such that (y,0)edf(tx) is x=t. Also, note that if
(v,0)edf(t,t), then y=0. To calculatc Dmyot"), we can use the formula of Theorem 5.6. Note that

we need only consider cases with t=% and §=0. By definition, szmw(t',x’) equals

t|x -t']
Sl
=T

lim .

This limit is zero if t'=x" and + otherwise. So we have

0, t'=x'

Dfes ot %)= :
mJo.o(t x') {m, otherwisc

and thus

sy (00), U=
oD ft.t|0,0(l X') {DNE, otherwise.

Thus by Theorem 5.6, Dmy (t")={t'} for all iR, and Dmy, does not exist for X#L. As stated before,
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m is monotone.

Example 5.2.

Define the function f as follows:

t-x, x<t
f(tx) =10, tsxst+l
x—(t+1), t+1<x

This function attains its minimum value when x€[t,t+1]. As in the first example, we first write out

the subderivative of f.

(1,-1), x<t
[(1,-1),(0,0)], x=t
af(tx) = 5 (0,0), t<x<t+1
[(0.0),(-1.1)], x=t+1
(-1,1), t+1<x.

By Theorem 5.4, m(t)={x|(y,0)edf(t,x), some y} = [t,t+1]. Note that if (y,0)€df(t,x), then
y=0. We need only consider %eft,t+1] and §=0 in the formula of Theorem 5.6. By definition.

szlxl 0.0(t,'x,) =

f(t +ot’ X+ox’)-f(t,X)
740 1 -
—_-T-

lim

Note that if =1, then this limit is zero if x’>t” and « otherwise. If =t+1, then the limit is zero if
x'st’ and « otherwise. If t<x<t+1, then the limit is zero for all values of x. Using these

observations and Theorem 5.6, we can write:

[t",oo)‘ }Z:
Dm;l_(t’) = { (—om), t<x<t+]
(- t’], X=t+1
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Thus, m is monotonc.

6. Nonconvex Payoff Functions.

In this section I will reformulate the definition of a subgradient from Section 5 to hold for
any lower semicontinuous, cxtended-real-valued function. As a special case, T will discuss functions
that are twice continuously diffcrentiable. In this section, I will introduce one more type of cone, the
Clarke tangent cone. The new subgradient definition for general functions will be bascd on this cone
and its polar, the Clarke normal cone. The generalized subgradient of a function f reduces to the

subgradient definced in Scction 5 when { happens to be convex.

Definition: Let C be a closed subset of R* and let xeC. The Clarke tangent cone to C at x is the

closed convex cone,
T.(x) = liminf t7(C-x').

x -x

tl0

Definition: Let C be a closed subset of R" and let xeC. C is Clarke regular at x if K.(x), the

contingent cone to C at x, is equal to lim inf; ). Kc(X').

If C is Clarke regular at x, then the Clarke tangent cone to C at x is equal to the contingent

cone of C at x. Clarke regularity holds at every point xeC when C is convex.

Definition: Let C be a closed subscet of R" and let xeC. The Clarke normal cone to C at x is the

closed convex cone N(x) defined as the polar of the Clarke tangent cone to C at x.
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If C is Clarke regular at x, then Ng(x) is the polar of the contingent cone Kc(x), and vice
versa. If C is convex, Clarke rcgularity always holds and the contingent cone coincides with the
Clarke tangent cone.

Now we get to our generalized definition of a subgradient.

Definition: Let [-R"~Ru{*} bc lower semicontinuous and let Xedom f. The set of generalized
subgradients of f at X is defined by

(%)= {zeR" |(2,— 1) €N, (R IR)) -

Formulas for calculating subgradients arc provided in Clarke (1983).

Now I will define onc morc set, &°f(t,x). This set will allow us to definc a condition
analogous to a constraint qualification in regular optimization problems. The condition will eliminate
situations where the value of min f{t,x) drops off at an infinitc ratc as t is perturbed slightly. If the
basic constraint qualification holds for f at (t.x) and x is a local minimum of f(t,-), then (y,0)€of(t,x)

for some y.

Definition: Dcfine &(t,x)={(t'x")

(' x.0)eN,,; {(tx).f(tx))}. The basic constraint qualification is

said to hold for [ at (t,x) if the only y with (v,0)ed’f(tx) is y=0.

Theorem 5.4 showed that when [ is convex, we¢ can write the multifunction
m(t)=arg min__.f(tx) in terms of {. Define the multifunction p:R"=R by p(t)={xeR"|(y.0)edf(tx).
some y}. If f is convex, then by Theorem 5.4, m(t)=p(t). When dealing with nonconvex functions,

this is no longer nccessarily true. However, the inclusion m{t)cu(t) holds as long as the basic

constraint qualification holds. In fact, when the basic constraint qualification and an additional
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regularity condition hold, can we replace m, by g, in conditions (B3), (B4), (C3), and (C4) without

altering the cxistence results of Theorems 4.2 and 4.5.

6.1 Theorem: Lct f:R™xR*-R be Clarke regular. Define the multifunction p:R"=sR by

p(D={xeR"|(y,0)edl(tx), some y} and define the multifunction m:R"=sR by

m(t)=arg min_f(tx). Supposc the basic constraint qualification holds and (gph p)\(gph m)

is closed in gph p. Then p monotone implies m is monotone.™

Now [ will state a theorem for nonconvex functions of class C*. The thcorem states that the
proto-derivative of p can be expressed in terms of the second derivatives of {** The proof follows

from Theorcm 5.4 of Rockafellar (1989B).

6.2 Theorem: Let f:R™xR"~R be a twice continuously differentiable function and let p:R™ =R be defined
by p(t)={xeR"|(y,0)€dl(t,x), some y}. For xep(i), the proto-derivative of p at 1 relative to
X in dircction t’ is given by:

Dy () = {x'|0=t"V,((1R) +x"V, (LR)}.

Example 6.1.
Consider the function f(t.x)=(x-t)*=2(x-1)". {(t,) achieves its minimum value at x=t—1 and
x=t+1, so m(t)={t—1.t+1}. There is also a local maximum at x=t, and p(t)={t—1,tt+1}. {is not

convex, but since it is twice continuously differentiable, we can apply Theorem 6.2 to get, VRep(t),

*In fact, the proof of Theorem 6.1 shows that Vxem(t), Dpys=Dmy,.
XNotation: for LR™R"-R, V (1.5} is the mxn matrix whosc (i,j)" clement is f[_)s_(TX).
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D (1) ={x"|0=-(-12(%-1)*+4) +x"-(12(x-1)*4)}.

Note that for ep(T), 12(%1)>-4#0, so Dpy(t)={t'}. Thus p has rate of increase at t of 1 and is
monotone. By Theorem 6.1, m(l) is also monotone. Furthermore, vXem(l),

Dmrlx(t’)zDPHx(t,): {t'}.

The following thcorem gives a formula that will allow us to calculate the proto-derivative of

the set p(t). The proof is similar to that of Theorem 5.5.

6.3 Theorem: Let f:R"xR"~Ru{+} be Clarke regular. Suppose ¥ely|(y,0)edf(tx)}. The proto-
derivative of the mapping p(t)={x|(y.0)€df(L,x), some y} at T rclative to Xep(1) in direction
t' is given by:

Dipiyjo(£)={

(¥'0)€D(BM))5,0(t'X), sOME ¥}

Using Theorem 6.3, we can calculate Dy for any Clarke regular function and determine
whether the multifunction p is monotone. Under the conditions of Theorem 6.1, we can also
determine whether the multifunction m is monotone. Thus, Theorems 6.1 and 6.3 allows us to writc

the conditions (C1)-(C4) in terms of the functions {, directly.
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Appendix

Tarski’s Fixed Point Theorem: Let (X,2) be a complete lattice and let f:X~X be monotone (say,
nondecreasing). Then there exists x*€X such that f(x*) = x*. Furthermore, the sct of such
fixed points is itself a complete lattice.

Proof of Tarski’s Fixed Point Theorem
Let T={z | {(x) = z}. Since (X.2) is a complete lattice, X itself has a greatest lower bound

x which is therefore also the minimum element of X. Hence, f(x)2x, so T is non-empty and has a

least upper bound x*. Since [ is monotone nondecreasing, f(x*)2{(x)=x for all xeT. Hence, f{(x*) is

an upper bound for T, so f(x*)2x*. Then, since f is monotone nondecreasing, {(f(x*))2f(x*). Hence,
f(x*)eT. It then follows that x*2f(x*). So, by the antisymmetry of the order, x*={(x*). It remains

to be shown that the sct of fixed points is a complete lattice. Suppose x and y are fixed points of f.

Let R={z | f(z)2z and x<xAy} and S={z | f(z)<z and z>xVy}. Note that sincc xAysx,

f(xAy)sf(x)=x, and since xAysy, [(xAy)<f(y)=y. Thus [(xAy)<xAy. As before we can dcfine the

largest fixed point of f, x* €S, and the smallest fixed point of f, x.eR. So R and S are nonempty. xAy
is an upper bound of R, and so f(xAy) is also an upper bound of R. Let z*=lub R. For all zeR,

{(z*)2t(z)>z, so f(z*)2z*. xAy2f(xAy)2z* and hence xAy2f(z*), and {(f(z*)}2f(z*), so f(2*)eR. Thus

z*>f(z*), so z*=[(z*). So z* is the greatest fixed point less than xAy. Hence for any two fixed

points, there cxists a least upper bound and by analogous argument a greatest lower bound. [

Proof of Theorem 2.1 (proof of version in footnote 4)
Let €T be such that t'>t and let S.8'cX be such that §'>¢S. We must show that
m(S’.t")>sm(S,t). If m(S,t) or m(§'.t") is empty, this holds trivially, so supposc xem(S,t) and

x'em(S,t"). By definition of the strong sct order, xAx’eS and xVx'eS’. Wc must show that
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xAx’em(S,t) and xVx'em(S't). Since f is submodular in x, f(x.t)+{(x,0)2(xAX ) +E(xVX ).
Rearranging this inequality, we have {(x.t)—[(xAx',t) 2f(xV&’,1)—f{(x,t). Since xVx'=x’, the decreasing
differences condition says that f(x\Wx',t) —f(x’,t) 2f(xvx",t') —f(x’,t"). Combining the last two inequalities
we have,

(D) f(x,1) —f(xAx 1) 2{(x VX, ) —£(x,0).

Since x minimizes f(-,t) on S and xAx’€S, 0>f(x,t)—{(xAx’,t); and since X’ minimizes [(-t’) on S’ and
xVx'eS’, f(xw,t)—f(x',t)20. These inequalities together with (1) give us the result that
02 F(x,t) —f(xAX, 1) 2{(xVx' 1) —1(x',t"}20. Hence f(x,t) =f(xAx",t), implying xAx’em(S,t). The proof that

xVx'em(8,t’) is similar. i

Proof of Theorem 3.2

Let TxX be a subset of R™xR". Lct TeR™ and t'eR™ with t'>0. Suppose Dmy(t") exists and
is noncmpty. By the definition, this implies that Rem(f). Let x’eéDmyy(t') be such that X $0.%
Then there exist scquences (t*), (1%), and (x*) such that %10, vk x*¢(t")7'[m(1+1*t")-x], and (' x")
is a cluster point of the sequence (t*x*). Let &,=min{t...t,’}. Since >0, &;>0. Let
Since x'#0, &, is well defined and positive. Let € be such that min{3,.3,}>€>0.

by=min, 0 X'}

Since (1'x’) is a cluster point of (tx*), there exist subsequences of (t*), (1*), and (x*), denoted by (¢)),
(V), and (%), such that for all j, max,.;;, .|t/-1|<e and max,.;_,, x}-x’|<e. Note that this mcans
¢>0 for all j.

Since >0 and v>0, m(1+ t't) >m(f) and thus (') [m(T+t/t)) —%] >5(r") "' [m(1)-X]. Note that
0e(v)) '{m(D)x]. By dcfinition of the strong sct order, x¥V0e(t)) ™' [m(T+ ) —x].

Now we show that max.;; ,, |(x/V0)-(x;V0)|<e, meaning that x’V0 is a cluster point of the

2 ¥ .
ZIf no such x’ exists, then we are done.
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sequence (x*\0), by considering the following thrce cases.
Let pe{l,...n}. x,VO=max{x,"0}.
(a) x,’<0. Then x,;VO=0 and e<-x. Wc know [x/)-x’|<e for all j. Suppose x,'>0. Then
xpj>e+xp’ and we deduce that xJ-x,">€, a contradiction. So it must be that xpj<0. But then
xV0=0 and |(x,VO)-(x,’'V0) | = |0-0| =0.

(b) x,>0. Then x;V0=x," and e<x,’. We know |xpj-xp’|<e for all j. Supposc xpjsO. Then

P
xpj<xp'—e and we deduce that xpi—xp’<—e, a contradiction. So it must be that xpj>0. But
then xV0=x} and |(xV0)-(x,V0)| =[x )-x,’| <e.

(c) x,=0. Then x,VO=x,=0. We  know  [x)-x,

<e¢ for all j. If xpjsO, then
](xijO)—(xp’VO)J=|0—0|=0. Otherwisc, xpj>0, and then |(xPjVO)-(xP'V0)|=|xpj-xp‘|<e.
We also know that for all j, xV0e(t)'[m(i+7¥)—x].  Since ©'10, and Vj,
WV0e(t) ' Im(T+1t)—%], and (U'X'V0) is a cluster point of (VxV0), then (Ux’V0)egph lim

sup,,pt [m(T+1t’)-g|, or in other words, x'V0eDmy4(t"). Since x’V020, we are done. i

Proof of Theorem 4.2

A.1Lemma (Rockafellar (1989A)): Suppose p:R"=R" is proto-differentiable. Then x’eDpyot’) if and
only if for all s in some interval (0,8) there exist arcs x(s) and t(s), x(s)ep(t(s)) with £(0)=t
and x(0)=g, such that t,’(0)=t" and x,’(0)=x" (right derivatives).”

A.2 Lemma (See Theorem 2 of Milgrom and Roberts (1990)): Let f:R-+R be lower semi-continuous
and let S be a compact interval of R. Then the set arg min,f(x) is a complete lattice.

By Lemma A.2 and (B1)-(B2), for all teS_, the set m,(t) is a noncmpty complete lattice.

*The proof is a specialization of the property of proto-differcntiability given in Proposition 2.3
of Rockafellar (1989B).
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By Lemma A.2, m,(t) has a maximal element, and the function M S-S, defined by

M, (1)=max_ m,(t) is well defined.

Claim: Supposc (B1)-(B2) hold and suppose that for cvery t<max S, there exists

xeD(mn)thnm(l) such that x>0. Then t"2t" implies M_(t")>2M,(t').

Proof of Claim: Suppose U't7eS , with t”=t" and M (t")<M_(t’). Since is M, is finite and

TN

upper semicontinuous on [t’.t”], it attains its maximum on the nonempty compact set [t't"]7

Let y=arg max,gM,(t). Notc that y<t"<max S, By assumption, there exists

x€D(m, )y (D such that x>0. By Lemma A.1, for all s in some interval (0,8) therc cxist

arcs x(s) and t(s), x(s)em,(t(s)) with t(0)=y and x(0)=M, (v}, such that t,’(0)=1 and
x,'(0)=x>0. Since t(0)=y<t" and t,’(0)=1, for all s in some interval (0,3"), t(s)€[y,t"}].
Thus for all s in (0,87, M_(1(s))<M,(y). Since x(s)em,(t(s)), then x(s)<M,(t(s)). So for all

s in (0,87}, x(s)<sM,(y), implying that x,’(0)<0, a contradiction.

Assume (B1)-(B4) hold. Let €>0 be given. Define m * by m *(t)=m_(t)+et. Then

M *()=max ; m *(t)=M,(t)+et. Let t<maxS,. By (B4) there exists x>0 such that

Sl‘l

xeD(mn)thnm(l). By Lemma A.1, for all s in some interval (0,3) therc cxist arcs x(s) and t(s),

YBy dcfinition, M, is upper scmicontinuous at t*¢ft’t”] if, given any €>0, there exists a
neighborhood of t* in which M, (t)<M,(t*)+e. Supposc M, is not upper semicontinuous. Then
there exists t*e[t't”] and >0 such that for all ncighborhoods N of t* therc cxists teN with
M, (t)>M,(t*)+e. Choose t* such that t*eB(t*,1/k) (open ball centered at t* with radius 1/k) and
M, (15 2M_ (t*)+e. Then t*~t*. (M, (t9) is a sequence contained in the compact interval S, so it has
a convergent subsequence (M, (17)), M, (t)-y. Note that (tPF, M, (t")) is a convergent sequence
contained in gph m,. Since f is continuous and S is compact, m, is an upper semicontinuous
correspondence and thus has closed graph. This implies that (t*,y)egph m, i.c. yem (t*). Thus
y<M_ (t¥). There exists P such that Vp'>P, M, (1")eB(y.e), implying that M, (1P)<y+e<M,(t*)+e,
a contradiction.
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x(s)em (t(s)) with t{0)=t and x(0)=M_(t), such that t,'(0)=1 and x,’(0)=x=20. For ali s in (0,5)
define x*(s)=x(s)+et(s). Then x*(0)=x(0)+et(0)=M,(t)+et=M_*(t) and for all s in (0,3),

x*(s)=x(s)+et(s)em,(t(s))+et(s)em,*(t(s)) and x,*'(0)=x,'(0)+et, (0)=x,"(0)+e€ze.

Therefore x+*’(0)eD(m;)ﬂM‘-(t)(1). So for all t<max S, Ix2e>0 such that xED(mn')th;(()(l). By

the Claim, t”2t" implics M *(t")2M,*(t'). But this says M,(t")+et"=M,(t')+et’. Letting €
approach zero, we have M_(t")>M, (). Therefore, M, is a nondecreasing function. Apply Tarski’s

Fixed Point Theorem to obtain a fixed point of the game T i

Proof of Theorem 4.5
A3 Lemma: Let f:R™~R. If f is Lipschitz, then for all teR™ and all t'eR" such that t'>0 there exists
¢ such that (t',{) €K, (L))

Proof of Lemma A3: Let t,t’eR™ with t’>0. Since f is Lipschitz, there exists €>0 and K>0 such that
whenever x'x"€B(x€), |f(x")-f(x)|<K]x’x'|. Let (t¥) be a sequence with t*l10 and
' <e/max{t,’,..,1,'}. Note that since t'>0, max{t,’,...,t;,’} >0. Also note that t+t1"€B(t,e}). Define
V(e (U (LT (LED)]. Then (y,5-yo) =(2) (-t =t and y . =(t") [t +11")-
f(t)]. Hence |y, |=(t) {(t+-t9)-f(t)]. Using the Lipschitz condition,
Vet (2 Kt ht = (<) KUt =Kt This implies that (y,,,*) has a convergent

subsequence with limit {. (t,{) is a cluster point of (y*), so (1',{) eKpn (4E())-

By Lemma A.2, for all teS_, the sct m,(t) is a nonempty complete lattice. Hence m(t) has
a maximal element, and the function M:S_~S, of (C4) is well defined.

Claim: Suppose (C1), (C2), and (C4) hold. Suppose that for all t<max S and all t'>0, there

exists x>0 such that xeD(mn)tMlm(t'). Then t”2t’ implies M (t™)=M,(1).

34



Proof of Claim: Suppose t”>t" and M (t")M_(t"). Since M, is Lipschitz, it is continuous and
thus attains its maximum on the nonempty compact set [t’,t"]. So let y=arg max,., ,M,(t).

Note that y<t”<max S .

case {i): y<<t”. Define A=t"-y. By supposition, there exists x>0 such that xED(mn)”M.(y)(A). By

Lemma A.1, for all s in some interval (0,8) there exist arcs x(s} and t(s), x(s)em,(t(s)} with t(0)=y
and x(0)=M,(y), such that t,’(0)=A and x,’(0)=x>0. Then for all s in some interval (0,3"),
t(s)e{t’,t”}. Thus for all s in (0,8"), M, (t(s))<M,(y). Since x(s)em,(t(s)), x(s)<M,(t(s)). So for all

s in (0,8"), x(s)<M,(y), implying that x,'(0)<0, a contradiction.

case (ii): there exists j such that y;=t”. Define A=t"—y. By supposition there exists x>0 such that

XED(mn),m_(y)(A)- As before for all s in some interval (0,8) there exist arcs x(s) and t(s),

x(s)em,(t(s)) with t(0)=y and x(0)=M,(y), such that t,’'(0)=t"-y and x,’(0)=x>0. Since x,’(0)>0,
there exists a sequence (s¥) such that for all k, x(s¥)>x(0). Thus for all k, M,(t(s"))>M,(y). If t(s¥)
were contained in [t't”], then this would be impossible. So for all k, t(s*)€{t't”]. Define
rkz(yj,t_j(s‘)). Since M, is Lipschitz. there exists K>0 and e>0 such that for all r',r” in an open ball
with center r and radius €, |M,(r')—M,(r")|<K|r"-r’|.2 Pick s* such that |t(s")—y|<e. Then
by construction it is also true that |t“y|<e By the Lipschitz condition
IM_(t(s5) =M, (15| sK]t(s*)—<*|. We know that M, (t(s*))>M,(y)>M,(t). We also know that
tsH=1; and (s>t7=y=1k, So we can write the Lipschitz condition as

M,(t(s%) =M, (t5) <K(1;(s")-t). Now note that
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M, (1(A)-M (y)
340 X :

x,(0) = 1immL:‘(0) - lim

But using the Lipschitz condition, we have
M ((A)-M,(y) M, (1) -M (1)+K(t;(})-1)

AL0 2 '

lim

A0

The last expression can be rewriticn as

i MM t(A)-y, ¥t
lm)\lO_'A'— + lm)\lo _1_+T'

But lim

t(A)-y. Tt
“0_’(_;_& :tij(O):O and y=t" so lim’\wyl 1=(). Wc can conclude that

M, (5)-M,(y)

T < 0, which is a contradiction.

x(0) < lim,,

Assume (C1)-(C4) hold. Let €>0 be given. Definc £€RY! by E=(e,....€). Definc m,* by

m*()=m,(t)+Et. Then M *(t)=max o m *(t)=M,(t)+&t. Let t'>0. Definc j such that

t'=min,q;_x-y{t[t;#0} and define A eR by A =t'/t.. Then A>0, and for all i either A;=0or A;21.
By (C4) and Lemma A3 for all t*>0, there exists { such that (t*.0)eK , (t,M(t)). Since
Ko M, (tM,(t)<K , m, (LM, (1)), this implies that K n, (t,M,(1)) is noncmpty, and thus using the

proto-diffcrentiability of m,, for all t*>0, D(mn)t‘M‘m(t "y #e. Using (C3), therc exists x20 such that

XeD(m), o (B)- By Lemma A.1, for all s in some interval (0,3) there exist arcs x(s) and t(s),
x(s)em,(t(s)) with 1(0)=t and x(0)=M,(t), such that t,”(0)=A and x,’(0)=x20. For all s in (0,3)
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define x*(s)=x(s)+£-1(s). Then x*(0)=x(0)+E1(0)=M,(1)+&-t=M,*(t) and for all s in (0,3),

x*(s)=x(s)+E-t(s)em,(t(s))+E-t(s)em,*(t(s)) and x,*'(0)=x,'(0)+&1,'(0)=x,"(0)+&-Aze.

Therefore x,,*’(O)ED(m;)'lM;m(A). Since D(mﬂ')'lw@) is a cone,
’ %7 * / _ -
tj Xy (0) ED(mu )tiM;(l) (tj 'A) - D(mn )th“([) (t ’) -

So for all t and all t'>0, 3x>0 such that xeD(m,,')t'M;m(t’). By the Claim, ("=t implics

M, *(t")=M_*(t"), which implics M,(t")+E&t"=M,(I")+E-t. Letting e approach zero, we have
M, (1")2M,(t"). Therefore, M, is a nondecreasing function. Apply Tarski's Fixed Point Theorem to

obtain a fixed point of the game T I

Example of a Monotone Game

Two firms compete for customers by choosing a level of quality q. Quality level q has cost
c(q) per customer (or per item sold). The price per customer is assumed Lo be fixed at p. Assume
firm i has N. loyal customers. Let [(x) be the fraction of a [irm’s loyal customers that desert it when
its quality lcvel is at lcast x below the quality of the competing firm. For example, f(q,-q,) is the

fraction of firm 1's customers that switch to firm 2 if g,>q,. Then firm 1’s profits are given by:

[N+N,(1-f(g, gDl p—<(q)). 4,29,

9D = N, fig,,)p(@,). 4, <G
Assume:
(x-3)°
N,=50, q;€[0.5]. ¢(q)=q/10, p=1, and f(x) = {~ 3+ xe[0.3]
0, xe(35]
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Then I, is twice continuously differentiable, but -I; does not have decreasing diffcrences in q, and
@, Hence this is not a submodular game. However, this game is a monotonc game and thus has a

purc-strategy Nash equilibrium.”

Proof of Theorem 5.2

Supposc {x*} is a sequence of points of 3f(x) converging to x*. Then for all k and for all z,
f(z)2f(x)+x*(zx). Rewriting this, for all k and for all z, x*(zx)<f(2)-f(x). Since x*-x*,
x*(z—x)<f(z)—f(x) for all z, implying x*eof(x). Therefore, &f(x) is closcd. Suppose w,yedf(x) and
1<€[0,1].  Then for all z, ((z)2f(x)+w-(zx) and f(z2)>f(x)+y-(zx). But this implies that

f(2)2f(x)+(Aw+{1—21)y)(z—x), s0 Aw+(1—L)yedl(x). Therefore, ol(x) is convex. f

Proof of Theorem 5.5

Definition: For multifunction S:R™=R" with closed graph, definc the quotient mapping A, Sy R"=R"

by

A, Sy ()=1S(T+ ) X]={x" g+ 1xX'eS(T+1t)}.

It is clear from the dcfinition of proto-derivative and of quotient mapping that the limit as
t10 of A §;,(t)) is the proto-derivative of S at T with respect to % in direction . Thus we have:
A.4 Lemma: For multifunction S:R"=R" with closed graph, the proto-derivative of S at t with respect

to X in direction U is given by

DSya(t)=lim 54 Sq4(t)-

P This is easily verified using Theorem 5.4 of Rockafcllar (1989B) since either both &°I,/3q,3q,
o, || &m |

&]1&]1

and &II,/dq,8q, are zero or
&,

38



Using the definition of a quotient mapping and Theorem 5.4, we have the following Lemma.

A.5 Lemma: Let FR™R"-Ru{«<} be a convex function. Define multifunction m:R"=R" by

m(t)=arg min _..{(t,x). Then

A my(1)=1{x"|(y,0)edf(1+1t' X+ tx’), some y}.

A.6 Lemma: Let f:R™xR"-Ru{«}. Supposc (7,0)edf(t.X). 3y such that (y,0)edf(t+<t’x+1x") if and
only if there exists ¥’ such that (y’,0)eA of(t,x|7,0)(t'x").

Proof of Lemma A.6: Jy s.t. (y,0)edf(t+1t' 2+ 1x") = Ty’ s.t. (F+ry W edf(t+ct’ x+1x")
- 3y’ s.t. (7.0)+1(y Q) edf(t+ct’ X+ 1x")

= 3y’ s.t. (y,0)eA, (LR

SADICE

By Lemmas A4 and A5, Dmy(t")=lim_,,{x’|(y,0)8f(t + tt’,f+1x"), some y}. So by Lemma A.6,
Dmy () =lim, ,o{x’|(y"0) €A, (&)i4)50(1'X), some y'}. Since we  assume  Dmgo(17)  exists,
A {)ixq0 must converge as tl0.  Thus, IimTmz}.1,(af)mh,‘D=D(Bf)L,(|!,'0.30 Taking x’ as given,
there is a set of y values, Y(tx'), defined by Y(x.x)={y'|[(¥,0)€A, (Sf)is)g0(t’X)}. Definc
Y*(x) =1y [(y.0)eD()iq)50(t'x)}. Notc that Y(1,x’) must converge to Y*(x') as t10. The set
of x values such that (y.0)€A, (0)5¢0(t'x") for some y is just the set {x'|Y(r.x)#e}. Since Y(1x)
converges to Y*(x') as tl0, this sct converges to {x’|Y(x})ze} as ti0. In other words,
(X H(y.0) €A, (3)x)50(t'X"), some y} converges to {x'|(y,0)€D(8)y50(t'X"), some y}, completing

the proof. I

Proof of Theorem 5.6

*Note that this is convergence in the sensc that the graphs of the mappings A 8f converge.
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A.7 Lemma (Theorem 2.2 of Rockafellar (1990A)): Lct f:R"~Ru{=} bc a closed proper convex
function. f is twice cpi-differentiable at x relative to a vector v if and only if vedf(x) and of
is proto-differentiable at x relative to v. Morcover the subdifferential of %D(x|v) is the

proto-derivative of f at x relative to v: 3(VDH)(x |[v)(£) = D(a)(x|v)(£) for all .

First note that f being twice epi-differentiable implies of is proto-differentiable by Lemma
A7. By Theorem 5.5, Dm(f|g)(t)={x"|(y,0)eD(3f)(t.£|7.0)(t'x)}. Wec must show that
(v.0eD(@D)(L.X[F.0) (' x) if and only if (y.0)edDIM(LE|F.0X). By Lemma A7,
(v,0)eD(3D(L.8!§.0)(’,x) if and only if (v.0)ea(2D*D)(1L,X]§.0)(t'x"). But this holds if and only if

(2y.Meda(DN(1.%]7.0)(1".x), and wc arc done. i

Proof of Theorem 5.10

A.8 Lemma (Rockafellar (1990A)): Lct f:R"=Ru{} be a closed proper convex function. f is twice
epi-differentiable at x relative to a vector v il and only if vedf(x) and of is proto-
differentiable at x rclative to v. Morecover the subdifferential of Vzszxlv is the proto-

derivative of af at x relative to v: (2D, )(§) = D(af),|,(§) for all £.

By Lemma A.8, f being twice cpi-differentiable implies of is proto-differentiable, and
Dm”x(t’):{x’|(y,U)eD(&DU”‘O(t’,x’)}. We must show that (y.0)eD(df);;q0(t'x") if and only if
(y’,O)EB(szf‘xiy_o)(l’,x'). By Lemma A8, (y.0)eD(8)yg0(t'x) if and only if

(v,0) EaVzszmy‘O(t',x’). But this holds if and only if (2y,0) easz[,‘y_o(t’,x’), and we arc done. |

Proof of Theorem 6.1

Since the basic constraint qualification holds, (gph m)<(gph p), so K

2ph m

(L0<K,, (LX), 1

gph o
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claim that K K

gph ™ rgph m-

Proof of claim: Let xem(t). Suppose yeK,, (LX)\K,, ,(1,%). Then there exist sequencesk

gph i
(v*)} and (t¥) such that y*~y and Vk, y*e(t*)'[gph p - (1.%)]. If the sequences are such that

y*e(z*)![gph m - (1.%)] infinitcly often, then yeK , 4(1.%), a contradiction. So there exist

subsequences of (y*) and (<%), denoted (y') and (1)), such that for all
ye(t) 7 [(gph »)\(gph m) - (LX)].
So for all j, (T.X)+tyYe(gph p)\(gph m). Since ((T.X)+1%) is a sequence in (gph p)\(gph m)

that converges to (1.%), then (1,x)e(gph p)\(gph m). But this contradicts Xem(t).
Since monotoricity depends only upon the contingent conc of a proto-differentiable

multifunction, and since the contingent cones of p and m are the same when p is monotone, the

proof is complete. I
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