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pends on order. We define nice weak dominance. Under nice weak dominance,
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I. INTRODUCTION

As is well known, the result of the iterative removal of weakly dominated strategies
can depend un the order of removal.! Consider G1 with x > 1.
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Depending oun the order of elimination. the set of strategies that remains after
iterative removal of weakly dominated strategies can be {T. L}. {T . R}. or {T. L. R}.

In this paper. we define the transference of decision maker indifference (TDI)
condition. TDI is satisfied by the normal form of any extensive form for generic
assignment of payoffs to terminal nodes and by some important games that do not
admit generic extensive forms. including discretized versions of first price auctions.
We show that under TDI any two games obtained from the original by the iterative
elimination of weakly dominated strategies (subject to no more eliminations being
possible) are strategically equivalent. That is. the twu games differ only by the
addition or removal of redundant strategies and a renaming of strategies. In G1. TDI
is satisfied if and only if = 2, and if z = 2. then {7 L}. {T.R}. and {1, ., R} are
all strategically equivalent “reductions” of G1.

We derive our results in terms of a concept we term nice weak dominance. Essen-
tially, a weak duminance is nice if TDI is satisfied for the strategies involved in that
weak dominance. and so in particular. if a game satisfies TDI. then weak dominance
and nice weak duminance are identical.

We show that regardless of the game. the result of iterative removal by nice weak
dominance does not depend on order. So for games satisfying TDI. the result of weak
dominance is also order independent. And. in games not satisfving TDI. we show that
the result of weak dominance is always essentially a subset of the result of nice weak
dominance. So. even for games where TDI fails, the result allows us to easily identify
strategies that must be removed regardless of order. and to establish an upper bound
on the amount by which the results of different orders of elimination can differ.

We begin by discussing these results for the case of weak duminance involving
pure strategies. However. the results translate fairly directly into the world of mixed
strategies. We discuss this in Section V.

et 8; and r, be strategies for plaver 7. Given opponents” strategy set W . 8, weakly dominates
roil m(sit ) = mrt YL, €W and w st ) > (i f o) forsome t € Wi where m s
playver i's pavoll function.



Backward induction and weak dominance seem intimately related. both in mo-
tivation and in that every sequence of removals of actions by backward induction
is echoed by a sequence of removals of strategies by weak dominance. An uncom-
fortable feature of this relationship is that backward induction has a deterministic
outcome, while weak dominance does not. We show that eliminations of actions
under backward induction are in fact eliminations by nice weak dominance. Thus
the order independence of backward induction and the order dependence of iterated
weak dominance are related to the fairly simple difference between weak dommance
and nice weak dominance. strengthening the intuitive connection between backward
induction in the extensive form and weak dominance in the normal form.

Finally. we use our resnlt to make a comment on the work of Gilboa et al. (1993)
concerning the complexity of iterative weak dominance,

1I. THE LITERATURE

A mumber of previous papers have explored the issue of order independence.
Gilboa, Kalai, and Zemel (1990) give conditions on a dominance operator that are
sufficient for the order of elimination not to matter. These conditions are satisfied by

strong dominance. but not by weak dominance (or nice weak dominance).?
Rochet (1980) considers the following condition:
m{s) = m(t) = w(s) =w;(t) foralli je N s tellnS: (1)

where N is the set of plavers. S; is the set of strategies for player 7. and 7 1s player
i's payoff function (see Section IV for formal definitiuns).

Rochet shows that if a game satisfying (1) is dominance solvable (when one elim-
inates all weakly duminated strategies at every stage). then the same outcome is
obtained regardless of the order of elimination of weakly dominated strategies. Fur-
thermore. Rouchet shows that any normal form game derived from an extensive form

2Gilboa et al.  also consider a version of weak dominance which does not require the strict
inequality. We shall refer to this as very weak dominance. They claim, but do not prove, that with
somne additional conditions {which are satisfied by both weak and very weak dominance). arguments
similar to theirs can be used Lo show that order of removal under a relationship dom will not matter

if
[# dom y and y dom z]=>[r and y arc payolf cquivalent for all plavers].

a condition which is simitar to our TDIL. This claim is [alse as stated. because for weak dominance
the antecedent never holds (since it can never be the case that x and y each weakly dominate the
other) and so the condition is vacuously satisfied, but order can clearly matter. The claimed resuit
is correct as stated for very weak dominance, and many of the key ideas in their analysis reappcar
in the course of our proof. Gilboa ef al note that their condition is satisfied for zero sum games
under very weak dominance.



of perfect infurmation satisfying the extensive form analogy to (1) (1.e.. satisfying that
one player is indifferent over two terminal noudes only if all players are) is duminance
solvable with the same ontcome as that determined by backward induction on the
extensive form. Rochet shows by example that this need not be the case when the
extensive form does not satisfy this condition.”

Gretlein (1983) works with games in which each player’s preferences over the set
of possible vutcomes (i.e. payoff vectors) is strict. In such games. Gretlein shows
that the set of outcomes that results from iterated elimination of weakly dominated
strategies (subject to no more eliminations being possible) is the same regardless of
the order of eliminations. This condition implies (1).*

Our condition. TDI. is weaker than (1). In Section III we give examples of in-
teresting games satisfying TDI but not (1). Both Rochet and Gretlein consider only
domination by pure strategies. while we extend our results to mixed strategies. In
addition. neither Rochet nor Gretlein has anything to say about games for which (1)
is not satisfied. but our notion of nice weak dominance allows us to establish a bound
on the outcome of iterated weak dominance even for games not satisfying TDL

T11. TRANSFERENCE OF DECISION MAKER INDIFFERENCE

The normal form of a generic extensive form game always satisfies condition (1):
for #;(s) = m(t) to hold. it must be that s and ¢ reach the same terminal node. But
then 7;(s) = m;(t) for all j € N. Moulin (1979) identifies a class of voting games
satisfying (1). So. even under condition (1). establishing that the result of iterative
elimination under weak dominance does not depend on order is of considerable use.
However. there are important games not satisfying (1) to which we would also like
our results to apply.

As an example. consider a first price auction. To make this a finite strategy game.
assume that players receive signals about the value of the object that are drawn
from a finite set ) (the analysis to follow does not depend on the manner in which

3See also Monlin (1986. Chapter -1.2) on Rochet’s robustness result. dominance solvability (using
weak dominance), and the relationship between (1) and extensive-form games. Moulin (1934) gives
conditions for a game to be dominance solvable (using weak dominance) and shows that for a certain
class of games. dominance solvability implies Cournot stability.

*Alko. note that Gretleins result states only that the set of outcomes is the same. not that
the games that remain after iterated removal are in any sense equivalent. If one is interested. for
example, in Nash equilibria of the game which results from the iterative removal, then it is important
to know that different orders cannot vield games which differ as the following two games do:
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signals are related across players). and that players are restricted to make bids that
are integer multiples of a penny nup to some (large) maximum. Then. each player’s
strategy space is the set of all maps from signals in Q to allowable bids, and so is finite.
Let 7; and s; be two strategies for some player 7 that differ only in that for some signal
w € Q. ry{w) < s;(w): e let r; and s; differ only in that for some signal. 7, specifies
a smaller bid than s;. Consider any strategy profile {_; for the other players such that
the largest bid pussible under ¢ ; is less than 7;(w). Then. w (r;.t ;) =7 (5.6 ).
To see this. note that when #’s signal is not w. his behavior is the same under r; and
$,. When i's signal is w. players other than i do not receive the ubject. and so they
receive a payoff of 0 in either case. However. m(r;. ¢ ;) # mi(s;. 4 ;). Thus. this game
doues not satisfy (1).

The condition failed in this example because. once a player has lost. he is indif-
ferent over the amount by which he loses. For almost all specifications of how signals
map to valuations. this is the only way in which ¢ can be indifferent between pure
strategy profiles (7;,¢ ;) and (s;.t ;) — by having those two strategy profiles differ
only in how much i loses by when i luses. We formalize this in Appendix A. So. while
a unilatera! change of pure strategy by player 7 can change his payoft while leaving
his opponents indifferent. the opposite cannot occur: 7 cannot be indifferent about
this unilateral change while affecting his opponents’ payoffs. Thus. while the game
does not satisfy (1). it does satisfy the following weaker condition

Ti(reosg) = mte s ) = wrn s ) = aits ) (2)
fUI‘ all ?-] < jv: 7. {i = Sz: 5 = S i

This is weaker than (1). because the agreement uf player i's payoffs across two
different strategy profiles only implies agreement fur the other players if the strategy
profiles differ only by the action of player 7. So in game G2. (1) implies b = ¢ = d.
while (2) implies & = ¢. Note in particular that while (B.L) and (B.R) differ only in
the action of une player. it is the payoffs of the non-decisiun maker that agree. and
so (2) has no power.

II
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B a.c a.d
Fig 2. G2.

We shall refer to (2) as the fransference of decision maker indifference (TDI)
condition: whenever the decision maker is indifferent between two profiles that differ
only in her action. that indifference is transferred to the other players as well.® We

STnterestingly, TDI is formally equivalent to the “nonbossiness”™ condition in social choice theory.
See for example Satterthwaite and Sonnenschein (1981).



will show for any finite playver game satisfying TDI that any two games that are
achieved by the iterative removal of weakly dominated strategies (subject to no more
removals being possible) are equivalent.

For what types of games is (2) satisfied. but (1) not? We have already seen the
example of the first price auction. However. the class of games that satisfy (2) but
not (1) is much broader. Consider any game in which at sume point sume player has
the option to quit the game and collect an outside option. The game then continues
with a subgame played between the remaining players. Examples inclide patent races
and oligopoly with an endogenous number of firms. In such games, the payoff of the
exiting player is independent of the outcome of the subgame. but the pavofts of other
players are not. So. (1) is violated. However, because the exiting player makes no
decisions in the subgame. these payoff ties do not violate (2). And, if the player
making the exit decision is not indifferent over the various times at which he might
exit. then the game as a whole will satisfy (2). In the case of the patent race for
example. the exiting player presumably incurs costs as long as he is in the race. and
su he is not indifferent between different exit times.

As another example. suppose a particular public good will be provided if at least
k plavers vote that it should be purchased. If purchased. the cost of the public goud
will be shared equally among the people who vote for it. For generic valuations of
the public good. if player 7 is indifferent between voting for the public good and not.
it must be that the good is not purchased in either case. su everyune is indifferent.
However. (1) is clearly not satisfied.

Consider students competing for grades. The top 30% of the class receive A's. the
next 60% B’s. and the remainder C’s. Students simultaneously chouse actions (effort
levels. attendance. study strategies) from a finite set. A student’s payoff is a function
of her actions and grade. Then. if une student changes her action and moves from one
grade level to another. the grades of {at most) two other students will be affected.
and so (1) will fail. However. for generic assignment of payoffs to (action. grade)
combinations. a student is never indifferent over two strategy profiles that differ only
in her actions. so (2) will be satisfied. Other examples of this type of “placement
game” might include competition by workers for promotions or advertising firms for
accounts. Notice that these games bear some similarities to first price auctions. and
that indeed. first price anctions are an example of this class.

Next, consider “gronp formation” games. In these games. there is an initial stage
during which the players are assigned to groups. modeled by a process in which each
player chouoses an action and then. as a function of the vector of actions, 1s assigned
to a group. Once the grouping process is finished. the members of each group play
a game among themselves. Payoffs depend only on the members of one’s group and
the strategy profile chosen within that group. If the group formation process is of
interest to the modeler. then all these “subgames™ must be incorporated into a single
extensive form. This will involve violating (1) because a member of one group will
be indifferent over the actions of players in other groups. Thus. there will be many



pairs of strategy profiles where some but not all players have equal payoffs. However.
the game can easily satisfy (2).°

Another interesting example is signaling games in which the payoff of the receiver
is independent of the signal of the sender. Then, for any fixed action by the receiver
and type of the sender. the payoff of the receiver is unchanging as the signal changes.
but if signals have different costs. the payoff of the sender is not. Thus (1) is violated.
but (2) holds generically. An example in this spirit is “burn the dollar” games. in
which the payoff of the non-burner is dependent only on the outcome in the underlying
game. while the payoff of the Lirner depends both on the outcome in the underlying
game and on whether or not the dollar was burned. so (1) conld not be satisfied. but
for generic payoffs in the underlying game. (2) is.

There are interesting games for which (2) fails. In a second price auction. for
example. a player is indifferent between nun-winning bids. but the winner may well
not be.

IV. FORMALITIES AND THE MAIN RESULT

We work with finite strategy. finite player. normal form games. Players i € N =
{1.....n} have finite pure strategy spaces S,. Payoffs are given by 7:IL.xS; — R".
The payoff function 7 is extended to mixed strategies in the standard way. We
assime. without loss of generality, that S;NS; =@ for all i.j € V. 7 # j. So. without
ambiguity. we can drop the plaver subsecripts on the strategy names. Let 5 = U a 5:
For W C S. let the strategies in W' that belong to i be denoted by W, = 1" N 5.
Say that W C S is a restriction of S if Vi, W, # @. Note that any restriction W of
S generates a unique game given by strategy spaces W; and the restriction of # to
I, »W:. We will denote this game by (W, #). We similarly define W ; = I, W;. A
typical element 2 ; € W ; thus specifies a strategy x; € W, for each j # 1.

DEFINITION 1. Let 1" be a restriction of S. and let ;. s; € 5;. Then
(i) r; very weakly domunates s; on W. written vy VW Dy sy, if w(r ) 2
w82 ) Ve ;€W . and

% Assume for example that (a) no player is indifferent between any two outcomes which occur in
two different groupings. (b) if a plaver changes his action in the grouping phase and this affects the
group to which anyvone belongs, then it also affects the group to which the plaver himself belongs.
(¢) players observe the group to which they arc assigned and (of course) recall their own action in
the matching stage. but nothing clse. and (d) each subgame satisfics TDI. Then, consider any pair
of strategy profiles which differ only in the actions of some player 2. If player 7 is indifferent between
the two outcomes, then by (a) and (b) he cannot have affected the groupings. So, by (¢) any player
not in #'s group will get the same pavofl. Finally, because of (d). any change in the outcome in 1's
subgame will be consistent with TDIL



(i) 7 weakly dominates s; on W, written 7y Wiy s, if r; VW Dy s; and, in
addition, m{r;. z ;) > 7i(s,, 2 ) for some 2., € W 4.

This definition is phrased entirely in terms of pure strategies. Of course. when
determining if s; is weakly dominated on W, it makes no difference whether one con-
siders W ; or mixtures over W_;. However, it is pussible that s; is weakly dominated
by a mixture over W; but not by any element of W;. We extend our results to weak
dominance by mixtures in Section V.

DEFINITION 2. A weak dominance or very weak dominance involving 7; and s; on
Wis nice if forall e ; € W, i w0 ) = mlse, @ ) then 7(rix.,) = 7 (s, 2 4).

That is. a dominance is nice if TDI is satisfied with respect to the strategies
involved. Write 7; NW Dy s, if 7, weakly dominates s; on W and the weak dominance
is nice. Say that s; is nicely weakly dominaled on W if there is r; in W\s; with r;
NW Dy s;. Define NVW Dy and nicely very weakly dominated on W similarly for
very weak dominance.

DEFINITION 3. Let 1V be a restriction of S, and let W be a restriction of V.
Then W is a reduction of V by (nice) (very) weak dominance if W = VAX! _ X™.
where Vk. X* ¢ S, and Vo € X* 3z € V\X!'. ... X* such that z (nicely} (very)
weakly dominates x on VAX' .. Xf U W ois a full reduction of V by (nice) (very)
weak dominance if W is a reduction of V by (nice) (very) weak duminance and no
strategies in W are (nicely) (very) weakly dominated un W'

That is. a reduction is the result of iteratively remouving sets of strategies that
are dominated in the appropriate sense. and a full rednection is one in which no
dominances of the appropriate sort remain.

If each of the sets X in the previous definition are singletons. then W is a one-
at-a-time reduction of V (by whatever dominance relationship is under disenssion).

Clearly NW 1) is more restrictive than W 1) and NVW D), which in turn are each
more restrictive than VW ). So. any (one-at-a-time) reduction by NW /) 1s also a
(one-at-a-time) reduction by W1 and NVW D, and any (one-at-a-time) reduction
by WD or NVWD is a {une-at-a-time) reduction by VW 1.

LEMMA A. Let W be a reduction of 'V by (nice) very weak dominance. Then W
is a one-at-a-time reduction of 'V by (nice} very weak dominance.

Proof. Clearly (nice) very weak dominance on W implies (nice) very weak domi-
nance un any subset of W. So. the set of strategies removed at each step can instead
be remouved one at a time in any order. A simple induction then yields the result. W



DEFINITION 4. Let V and W be restrictions of 5. V is equivalent fo o sub-
set of W if there exist one-tu-une maps m, : V; — Wi 7 € N, such that 7(x) =
(). omg(eg)) Yo e V.

Si. V differs from a subset of W (specifically m(V'}} only by a renaming.
OBSERVATION 1. The relation “equivalent to a subset™ is transitive.

DEFINITION 5. Let W be a restriction of S. and let r;.s;, € 5;. Then r; is
redundant to s, on W. written r; Rw s, if a(rez ) = ®(siz ;) Vo ; € W A
strategy s; is redundant on W if there is ; € Wi\s; with 7y Ru ;.

OBSERVATION 2. r; NV [y s, if and only if either r;, NW Dy s; or ry Ry 55
Clearly V11 is transitive. In addition:

OBSERVATION 3. NVW ) is transitive: i.e.. r; NVIW Dy s, and s; NVW Dy £,
imply r; NVW Dy 85

To see this. suppuse 1, NVW Dy s; and 5, NVW Dy ;. and consider any s ; €
W .; such that 7,(ri. s o) = 7:(ti.s ). Then m(rios o) = m(si.8.4) = mi(ti s ,). and
so w(ry. s ) = w(si.8.4) = w(ty.s ). Thus. ry NVW Dy o,

DEFINITION 6. Let W be a restriction of S. A set V is said tu be a reduction
of W by (nice) weak dominance/redundance/substitution if V' can be obtained from
W by letting V® = W and performing a finite number of iterations of the following
process: obtain V7! from V7 by either (i) letting V7*! = V7\s/. where &/ is (nicely)
weakly dominated on V7 by an element of V7\s?, or (i) letting V7! = V7\s7. where
s7 is redundant on V7 to an element of Vi\s/ or (iii) letting V7! = (VI\s/) U r.
where r € S and 7 is redundant on V7 to §7.

Note that if W is a restriction of S. then any reduction of W by (nice) weak
duminance/redundance /substitution is also a restriction of 5.

LEMMA B. Let W be a restriction of S. let T be a reduction of W by (nice) very
weak dominance/redundance/substitution, end let s € W. Then there crists s el
such that s (nicely) very weakly dominates s on T

Proof. Let s € W. Since T is obtained frum W by (nice) very weak dominance/
redundance/substitution. there exist restrictions 7O 7Y ™ such that 19 = W
and 7™ = T and each 177! is obtained from T? as in the definition of a rednction by
dominance/redundance /substitution. The Lemma is satisfied for T? because s € T°.



so ¢ itself serves. Assume that the Lemma holds for 77. Then there exists s’ € 17
such that s (nicely) very weakly dominates s on T7. If &' € 7711 then s’ serves and
the Lemma holds for 771!, Note in particular that if a strategy for another player is
removed in going from 79 to 771, then since the requisite inequalities and equalities
hold on 77 they continue to hold on any subset. and in particular on 77*!, while if a
strategy is substituted. then the requisite relations continue to hold by the definition
of redundance.

Suppose that &' @ T7'!. Then &' is the strategy that was eliminated when IEAR
was obtained from 77. If s’ was eliminated by (nice) weak dominance or redundance
by some t € T7\s" = T7'1 then let s” = t. If &' was eliminated and replaced by
redindant strategy r € W\s'. then let s” = r. In either case. s" € 1741 and §”
(nicely) very weakly dominates s un 7741 The result follows by induction. W

Lemma C is the key to the results. Roughly. it says that if you can get from W’
to W by NVW D, and you can get from W to V' by (nice) very weak duminance.
then you can get from V to what is essentially a subset of W by iteratively removing
strategies that are either redundant or (nicely) weakly dominated.

LEMMA C. Let W be a resiriction of S, let W be a reduction of W by nice
very weak dominance, and lel V' be a reduction of W by (nice) very weak dominance.
Then there crists V equivalent to a subset of W, where V is obtainable from V by the
iterative removal of strategies that are either (nicely) weakly dominaled or redundant.

Proof. Since W is a reduction of W by nice very weak dominance. by Lemma A
we can write W = W', . ™ where for k = 1....m W*=W\z' . x* is a (une-
at-a-time) reduction of W\z'.....x* ! by nice very weak dominance. Let Wo =W

We proceed by induction. For some 7 € {0.....k — 1} assume that we have V7 and
m’ such that

(1) V7 can be obtained from V Ly iteratively eliminating strategies that are either
(nicely) weakly duminated or redundant.

(2) m? is a one to one map such that Vi € N. ¥s; € V/, mi(s;) € W/ and
V€ [Lien V. 7(t) = 7(m?(t1).....m"(t,)), and

(3) mi(V7) is a reduction of V by (nice) weak dominance/redundance/substitution.

We will exhibit Vi1 and m?*! satisfying (1) — (3). Since (1) — (3) are trivially
satisfied for 7 = 0 by taking V® = V and m® as the identity map on VO this will
establish the Lemma.

So. given V7 and m?. let us construct V7' and m/t!.

If o (V) CWIH et VI = V7 and m? " = m/.

Suppose m# (V) ¢ W'l Then since m?(V?) € W7, o9t € m/(V7). Let i be
the player to whom z7*! belongs and let 7; € W7t be a strategy that nicely very
weakly dominates 27'! on WJ. Since m/(V7) is a reduction of V' by (nice) weak
dominance /redundance/substitution. and since V is a reduction of W~ by (nice) very

10



weak dominance. Lemma B implies that there is y € m?(V7) that (nicely) very weakly
dominates 7,. and thus 7! on m? (V7). Then. either ¥ (nicely) weakly dominates
2 on m? (V7). or y and 271! are payoff equivalent for 7 on m/ (V7).

Assume y (nicely) weakly dominates 27'! on m’(V7). Then. (m?)"!(y) (nicely)
weakly dominates (77} '(z7*') on V7. So. define V7!'by V/\(m?) 1(x7*'), and let
m? 11 be the restriction of m? to VIt Clearly (1)-(3) are satisfied for V7!'! and m7* 1.

Assume y and x7'! are payoff equivalent on m/ (V7). Then. since y very weakly
dominates r; on m?(V?). and since 7, nicely very weakly dominates .’ Flon mf (V7).
it must be that », and 277! are redundant on m’(V7). Now. either r, € m/(V7) or
not.

Assume that r, € m?(V7). Then. (m?) Yz7'!) and (1n7) '(r;) are redundant on
VI So. let VA1 = VI\(m?) 1(2z7*"). and let m?!! be the restriction of m’ to VI*1.
Again. (1) — (3) are clearly satisfied for V7'! and m/ ",

Assume that r; ¢ m?(V7). Let V/'! = V7 and let m/'! agree with m/ except
that the strategy which used to map onto x7'! is now mapped onto r,. Once again.
(1)-(3) are clearly satisfied for V/*! and m/"!. and we are done. W

PROPOSITION 1. Let X be a full reduction of S by nice weak dominance, and
let Y be a full reduction of S by (nice) weak domanance. Then. after the removal of
redundand strategies, Y s equivalent to a subsel of X.

Proof. X is a reduction of S by nice very weak dominance and ¥ is a reduetion
of S by (nice) very weak dominance. By Lemma C. a set Y equivalent to a subset of
X is obtainable from Y by the iterative removal of strategies that are either (nicely)
weakly dominated or redundant.

Since Y was a full reduction by (nice) weak dominance. Y differs from Y only
by the removal of redundant strategies. So. after the removal of some redundant
strategies. Y is equivalent to a subset of X. B

The obvious application of Proposition 1 is the following:
THEOREM 1. Let X and Y be full reductions of S by nice weak dominance.
Then, X and Y are the same up to the addition or removal of redundant strategies

and a renaming of strategies.

Proof. Applying Proposition 1 twice. each of X and Y differs from a subset of the
other by the removal of some redundant strategies and a renaming. B

And. since weak dominance and nice weak dominance are equivalent for games
that satisfy TDI. we have the following corollary:

COROLLARY 1. Let (8.%) satisfy TDI, and let X and Y be full reductions of 5

11



by weak dominance. Then, X and Y are the same up lo the addition or removal of
redundant strategies and a renaming of strategies.

However. Proposition 1 has another nice implication. Even in games where TDI
fails. Proposition 1 sets an upper bound on the amount by which different orders of
elimination by weak dominance can matter. Even when TDI fails. the vutcome of
iterated nice weak dominance is (essentially) unique by Theorem 1. And by Propo-
sition 1. any full reduction of S by weak dominance is equivalent to a subset of the
outcome of iterated nice weak dominance. So. no matter what the order in which
weak dominance is applied. the result will be at least as “tight” as the outcome of
iterated nice weak dominance. In applications where weak dominance is important.
but TDI fails. one should perhaps first apply nice weak dominance. since the result of
this stage is independent of order. and only when all removals by nice weak dominance
have been made consider (nun-nice) weak dominance.”

V. MIXED STRATEGIES

The results of the previous section dealt solely with eliminations by pure strategies.
In this section we extend our analysis to mixed strategies. If W is a restriction of
S. let ¢ € A{(W) indicate that o is a mixed strategy profile in which each player 7
is using only pure strategies in W;. In what follows, we will often write s; where we
more properly mean the mixed strategy that places probability 1 on s;.

If a pure strategy s, is weakly dominated on W, then every mixed strategy placing
positive weight on s; is also weakly dominated on W. So we initially consider only
orders of elimination in which, when a pure strategy is removed. so is every mixed
strategy using that pure strategy. At each stage. the set of remaining strategies is a
subset of the pure strategies plus any mixtures uver thuse pure strategies that have
not been eliminated. For sets © of this form. a strategy s; is weakly dominated on
Q if and only if it is weakly dominated versus the pure strategies underlying (.*

TNote that it is not the case that anything achievable by weak dominance can also be reached by
first using nice weak dominance and then (not necessarily nice) weak dominance:

L R
T | 1.1 ] 20
B {13311

Only R can be removed by MWD, Once R is gone, there are no further removals by W1,
Conversely, under 117D, one can remove both B and R simultanecusly at the first step.

879 see this. note that s; is weakly dominated on © if and only if there exists o; in the recon-
vexification of 0 that weakly dominates s; on 0. The mixture g; is in the reconvexification of (1 if
and only if it is in the reconvexification of the sct of pure strategies underlying Q, and o; weakly
dominates s, on €2 if and only if @; weakly dominates s; on the pure strategies underlying 2.
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Thus. for any sequence of sets of this form. vne can consider a sequence in which
at each stage a strategy is removed if and only if a pure strategy in its support
is removed. except that when no more pure strategies are removable. one round of
removing weakly dominated mixed strategies occurs. This new sequence will vield
the same result. So. for sequences in which the removal of a pnre strategy implies
the removal of every mixed strategy using that pure strategy. the “order does not
matter” result depends only on the order of removal of pure strategies. Thus it is this
order to which we restrict attention in the analysis that follows. We later outline how
the analysis can be extended tu sequences in which pure strategies may be removed
while leaving behind sume mixed strategies using those pure strategies.

We begin Ly extending the definitions from Section IV to mixed strategies and
by strengthening the TDI condition. We wish to construct a proof similar to that of
Theorem 1. Recall that in that proof. we mapped each V/ into a subset of W} . Here.
we wish tu do the same. However. because we are allowing eliminations of a pure
strategy by a mixed strategy. it may happen at some stage that the strategy that sume
s; € V/ was mapped into disappears because 1t 1s. for example. redundant to some
mixture over W/, To accommodate this. we must expand our notion of equivalent to
a subset to allu“ members of V7 to be mapped onto mixed strategies in W;. Recall
also. that it was important in Theorem 1 that the images m?(V7) could be thought
of as coming frum V by weak dominance. redundance or substitution. Since m? (V)
itself may include mixed strategies. vur definitions must thus include the possibility
of a mixed strategy eliminating or replacing another mixed or pure strategy.

DEFINITION 7. For all 7 € N. let V, be a nonempty finite subset of A(S;) U S,
and let V = ;. n Vi. Let 0.7y € A(S;) U S;. Then

(i) oy very weakly dominales® 7, on V. written o; VW DU 7 i Vy 5 €11V, =
V. i T\'i((fzx”f, 1’) Z Tn'i(’Ti."; 2‘)( and

(ii) oy weakly dominales® 7, on V. written oy WD{, 7, if oy VWD{ 7, and In
addition for sume ~' , €V, wi(a:. v ;) > m(n.vl )

As in Section IV. 7, € V; is very weakly dominated™ on V if there is 0; € A(VAT)
where o, VIW D, 7;. and similarly for weakly dominated®. Recall that V] itself may
contain mixed strategies. We abuse notation slightly by taking A(V;) to be that
subset of A(S;) which can be implemented by randomizing over the elements of V.
So. if S, = {L. M. R}. and «, is the mixed strategy given by o;(L) = a,(M) = 1/2.
then A(a,. R) consists of all mixed strategies that place equal weight on L and M.

DEFINITION 8. A weak dominance® or very weak dominance™ involving o; and 7
on Vis nice if for all v, € V . w505 7v.,) = mi(m. v ;) implies w(oy. v ) = (7.7 4

f !

We define NW D7, nicely weakly dominated® on V. and NVW ;.. nicely very
weakly dominated® on W, in the obvious way.

13



OBSERVATION 4. For all # € N let W, be a nonempty finite subset of A(S;)U.S,.
and let W = U p Wi Let 0,1 € A(S) U S;. For all 7 € N, let V] be a nonempty
finite subset of A(W,) U W, and let V = Uz(I\ Vi;. Then o, (N)VW /X, 7, implies
a; (NYVW DS 7.

To see that niceness is inherited. note that by the definitiun of nice (very) weak
dominance® on W. m(0,.y ) > w7 y.y) for all y 5 € [ee ps Wae Souif w0y wos) =
77, w ) for some w_; € [[re a; A (Wy), then 7oy i) = m(r.y ) for all y ; in
the support of w ;. But. then because of niceness. 7(0;.y ;) = (7, y ) forall y ; in
the support of w 4, and so 7(oy.w ;) = T(T,w i)

For a restriction W of S. a reduction of W by (nice) (very) weak dominance*
is defined as in the previous section to be a set that can be obtained from W by
iteratively eliminating (nicely} (very) weakly dominated® pure strategies. Similarly.
a one-at-a-time reduction of W by (nice) (very) weak duminance® is a reduction of
W by (nice) (very) weak dominance* in which unly one pure strategy is eliminated

at each round.

DEFINITION 9. For all i € N, let V; be a nonempty finite subset of A(S,) U 5,.
and let V =, » Vi. Let 0;.7; € A(S;)US;. Then o, 18 redundant™ fo 7; on V., written
o, Ry roif forall v 5 € V oy w(0y.v.,) = w (7. v ). A strategy 7, 1s redundant® on 'V
if there is 0; € A(V\7) with o, [, 7.

DEFINITION 10. (S.7) satisfies TDI* if for all restrictions W and for all s,. if
s; is very weakly dominated®* on W. then it is either weakly dominated® on W or

redundant® on .

We were able to state TDI in terms of a simple condition on the payoffs to pure
strategies in a game. The same condition on payoffs is not enough to imply TDI*.

Consider G3.

11
L C R
21 ) 23| 0.2

I M |03 ]31 )02
A 1414 | 14
14103 |02

Fig. G3.

C3 satises TDI. but TDI* fails because 1 is very weakly dominated® on S\/3 by
1L+5C . but R is neither weakly dominated* nor redundant* on S\ B. Furthermore. a
stlendthenmg of TDI is clearly necessary because. as this game illustrates. even when
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TDI holds. the urder of elimination under W D* can matter: if one first removes 3.
then S\ B is a full reduction of S by weak dominance®. while if one first removes /7.
then 3 and M’ can also be removed. But. S\B and {7 A} x {L.C} are clearly not
equivalent.

(3 has a highly non-generic feature: K is weakly dominated™ by %L + %C, but by
no other mixture. Consider different assignments of payoffs, subject to existing ties in
payoffs for each player being maintained (each player receives four different payvoffs.
so these assignments correspond to elements of 3t*). For all such assignments. the
equality of payoffs in the third row will remain. and so in particnlar. any mixture
of L and C will give the same payoff as R versus M’'. However. for almost all such
assignments. one of two things will vccur: either there will be a mixture of L and C
that strictly dominates* # on {1 Al. B}. or there will be no mixture that even weakly
dominates® R on {1'. M. B}. In particular. the set of payoff assignments yielding a
mixture of L and C that weakly dominates® R on {7, M. B} but not yielding any
mixture that strictly dominates* R on {T', M, B} is a lower dimensional subspace of
R8. If one allows perturbations that do not respect some of the existing ties. then
the situation in this game becomes even less likely.

So. even allowing for some “structural” ties in payoffs. for almost all games. if
there is o; € A(W\s;) with o; VI¥ ;. s,. then there is another mixed strategy
1 € A(W;\s;) that strictly dominates™ s; except versus those oppuosition strategy
profiles s_, on which all elements in the support of 7; give the same payoff to ¢ as
does s;. For such strategy profiles. TDI is enough to imply TDI*. So. if a game
satisfies TDI. then it will generically satisfy TDI* as well. Thus. in particular. TDI*
will be generically satisfied for the normal form of any given extensive form and for
the discrete first price auction. See Appendix B for a formal statement and proof of
this result.

For games satisfying TDI*. weak dominance* is equivalent to nice weak domi-
nance*. so the analvsis of Section IV gues through fairly directly:

LEMMA A* Let W be a reduction of 'V by (nice) very weak dominance™. Then
W is a one-al-a-time reduction of 'V by (nice) very weak dominance™.

Proof. As in the proof of Lemma A. B
OBSERVATION 5. ; NVW D}, s, if and only if either o, NW L. s; or o, Ry ss.
DEFINITION 11. Let W and V be restrictions of 5.° V is equivalent™ to a subsel

of W if there exists a one-to-one map m such that Vi € N and Vs, € V;, m(s;) €
A(W,) UW; and Vs € [T Vi, 7(s) = w(m{s1), ..., m{sn))-

9Recall that by the definition of restriction. W and V' contain only pure strategics.



DEFINITION 12. Let W be a restriction of S. and Vi € N, let V; be a non-empty
subset of A(S,)US;. Let V = U Vi. Let VO = W. Then. the set V is a reduction of
W by (nice) weak dominance®/redundance*/substitution™ if V can be obtained from
VY by performing a finite number of iterations of the following process: obtain Vit
from V7 by for some i € N either (i) letting V7! = Vi\7/. where 7] is (nicely) weakly
dominated* on V7 by an element of A(VI\7). or (ii) letting VJ'! = VI\7/. where 7/
is redundant* on V7 to an element of A(V7\77), or (iii) letting V7! = (VI\1] U g,
where ¢, € A(W;\V/ and o, is redundant* on V7 to 7/

Note that any set V obtained from a restriction W of S by (nice) weak domi-
nance*/ redindance* /substitution® is a finite set of pure or mixed strategies with at
least one strategy for each player. and that only the substitution™ operation creates
new strategies.

LEMMA B*. [Let W be a restriction of S, let T be a reduction of W by (nice)
weak dominance*/redundance®/substitution®, and let v € A(W;) UW; for some i.
Then there exists v € A(T}) such that o' (nicely) very weakly dominates™ ~ on T.

Proof. Let ~ € A(W,)U W,. Since T is a reduction of W by (nice) weak domi-
nance* /redundance* /substitution*. there exist sets 7%, 7 .. T™ such that 1o =W
and 1™ = T and each T7'! is obtained from 77 as in the definition of a reduction
by (nice) weak dominance* /redundance*/substitution®*. The Lemma is satisfied for
70 because v € A(T?). su v itself serves (if v € 5;. then the mixed strategy which
places weight 1 on 5; serves). Assume that the Lemma holds for 7. Then there exists
~ € A(T7) such that ' (nicely) very weakly dominates* v on 77. If 4/ € A(174).
then ~ serves and the Lemma holds for 771!

Suppose that v’ ¢ A(77""). Then v places positive weight on the strategy 7 that
was eliminated when 771! was obtained from 77. If 7/ was eliminated by (nice) weak
dominance® or redindance® (no strategy added) by some ¢ € A(17\7/). then let ~"
be the strategy that places weight 7' () + (o) (/) on strategies ¢ € TINT I T
was eliminated and replaced by redundant® strategy ' € A(T/‘lf't—\Tij). then let +" be
the strategy that places weight 7'(0) on strategies o € 17\7] and weight +/(7/) on
¢'. Then 7" € A(T?'') and 4" (nicely) very weakly dominates 7 on 77*!. The result
follows by indnction. W

Let x, € S,. and let ;. p; € A(S,) be such that py(x,) = 0. Then. define o,{z; —
pi} as the mixed strategy v given by Yi(s:) = ou(ss) + ou(x:)pils,) for s, # z,. and
v,(x;) = 0. That is. o, {z, — p;} is ubtained from o; by redistributing the weight on
T; according to p;.

LeMMA C*. Let W be a restriction of S, let W be a reduction of W by nice very
weak dominance®, and lel V be a reduction of W by (nice) very weak dominance™.
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Then there exists V. equivalent® to a subsel of W, where V is obtainable from V
by the iterative removal of strategies that are either (nicely) weakly dominaled™ or
redundant *.

Proof. The proof is similar to that of Lemma C. There are two main differences.
First. in Lemma C. each V}* was mapped onto a subset of WF. In this case. each V" is
mapped onto a subset of mixtures over WF. Second. because of the mixed strategies.
the step at which we show that z*'!

Since W is a reduction of W by nice very weak dominance™, by Lemma A* we
can write 1V = Wzl .. r". where for k = 1,....m, W* = W\z!, ... 2% is a (one-at-
a-time) reduction of W\z' ... 2% ! by nice very weak dominance*. Let W° = W"

We proceed by induction. For some j € {0, ...,k — 1} assume that we have V7 and
m/ such that

(1) VI C V can be obtained from V' by iteratively eliminating (pure) strategies
that are either (nicely) weakly dominated* or redundant*.

(2) m? is a one to une map such that Vi € N. Vs, € V2 omi(s) € AW U W/
and Vi € T, & Vi, =(8) = a(m’(t1).....m7(1,)). and

{3) m?(V7) can be obtained iteratively frum V' by eliminating strategies that are
either (nicely) weakly dominated* or redundant*® or by substitution™.

Su. while V7 remains a subset of pure strategies, its image in W7 may involve
mixtures. Given V7 and m/ satisfying (1) — (3). we will exhibit V7' and rm’*!
satisfying (1) — (3). This will thus establish the Lemma. since conditions (1) —(3) are
satisfied for j = 0 by taking V°® = V" and m® as the identity map.

So. given V7 and m?. let us construct V31 and m?'!. Let 7 be the player to whom
/1! belongs and let p; € A(W7H!) be a strategy that nicely very weakly dominates*
' on Wi Then. by Observation 4. p, nicely very weakly dominates® z7'! on
m? (V7).

So. by Qbservation 3. either p; nicely weakly dominates® 277! on m?(V7) or p
and 27 '! are redundant® on m? (V7). Assume p, and x?"'are redundant* on m’(177).
Then. for each s; € V7, m/(s,){z?"" — p,} is redundant* to m?(s;) on m? (V7). Now.
it may turn out that there are sets of strategies in V;” all elements of which are mapped
into the same strategy when x7'! is replaced by p;. If so. then these strategies are
redundant* on V7. Construct V/ "' by removing all but one of any such set. and let
VIt =V for k # i For s, € VIt define m?'1(s;) = m/(s;){z""" — p;}. while for
k#i and s, € V7, let m?'!(s;) = m?(s:). Then. (1} — (3) are clearly satisfied. In
particular. m/ ' 1H{V7'1) is obtained from m? (V7)) by substitution* and (if more than
one strategy in V7 is mapped onto the same strategy when 7! is replaced by p;) by
redundance*.

Assume next that p; nicely weakly dominates® 271! on m/ (V7). Let o; € m? (V)
have a,(z7*') > 0. We claim first that thereis y; € A(m? (V7)) such that v;(z7+!) = 0.
and such that ~; (nicely) weakly dominates o;. To see this, note first that o; is nicely
weakly dominated* by n, = o,{27'" — p;}. By Lemma B*. there is ¢; € A(m/ (V)

can be eliminated is more intricate.
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which (nicely) very weakly dominates® 1, and therefore (nicely) weakly dominates™
a,. Let © be the set of elements of A(m/(V?)) which (nicely) very weakly dominate™
m. © is non-empty since it contains 7;. It is also clearly compact. So. there is
v; € arg max,,: o f{0y), where

f(()ci) = Z T(-i((li,é i)-
& [ (Vi)

Clearly =; (nicely) weakly dominates* o,. and is in A(m? (V7). Assume (x/+1) > 0.
Then. since p; nicely weakly dominates® 27! on m/ (V7). v{#/*' — p;} (nicely)
weakly dominates® +; on m/(V7). And. by Lemma B*. there is y1; € A(m? (V7)) which
(nicely) very weakly dominates® v;{x?'' — p;}. But. then p; € ©, and f(1;) > [(7).
a contradiction,

Let Y; = {s; € V/|m/(s,){(2’t") > 0). By the previous claim. for each s; €
Y. there is v, € A(m?(V7)) such that 5 (nicely) weakly dominates® m’(s;). and
such that ~;(z/1') = 0. But. then it must be the case that +(m?(Y:)) = 0. and so
(m?) () € A(V,\Y,). So. define V/'' = VY, Vi = VJ for k # i, and define
mi+! as the restriction of m? to V? ” By the preceding argument, each s; removed
from V/ was (nicely) weakly dommated* by a mixture over V7 '! and each o, removed

Jll)

from mJ(LJ) is (nicely) weakly dominated* by a mixture over m’''(V/" ). and su

(1)-(3) again clearly hold. ®

PROPOSITION 2. Let X be a full reduction of S by nice weak dominance”, and
let Y be a full reduction of § by (nice) weak dominance® Then, after the removal
of redundant® strategies. Y is cquivalent to a subsel of X.

Proof of Proposition. As in the proof of Proposition 1. B

As befure. we have:

THEOREM 2. lLet X and Y be full reductions of S by nice weak dominance®.
Then, X and Y arc the same up to the addition or removal of redundant™ strategies
and a renaming of stralegies.

Proof. As for Theorem 1. B

COROLLARY 2. Let (S.7) satisfy TDI*, and let X and Y be full reduclions of
S by weak dominance®. Then, X and Y are the same up to the addition or removal
of redundant ™ strategies and a renaming of siralegies.

We now sketch how the analysis of this section can be extended to allow nicely

weakly dominated*® pure strategies to be eliminated withont necessarily eliminating
all mixtures that use those pure strategies. Let 2°.Q1....Q™. where Q¥ = A(S). be a

18



finite sequence of rounds of elimination of nicely weakly dominated™ mixed strategies
such that " is a full reduction of S by nice weak dominance* !” For each k. let W*
be the set of pure strategies s for which there is a mixed strategy in F that puts
probability 1 on s. Then. a fairly straightforward induction argnment establishes
that any strategy in ¥ that uses a pure strategy not in W* is nicely very weakly
dominated* on QF by some mixed strategy using only elements of W*. Counsider the
sequence {¥*} obtained by removing from each 0¥ any mixed strategy using a piure
strategy not in W¥*. By the previous assertion. this is a valid sequence of removals
by nice very weak dominance*. By Observation 5. any removal that was not by nice
weak dominance® was redundant®. and so the proof of Proposition 2 establishes that
™ if it contains no nicely weakly dominated® strategies. depends on the order of
removals only up to redundancy* and renaming. So, we must show that U™ contains
no nicely weakly dominated* strategies. Consider any strategy o € Q™\W™. By the
assertion, o is nicely very weakly dominated* by some mixture over W™. Since O™
is a full reduction of S by nice weak dominance*. ¢ is not nicely weakly dominated™.
and so by QObservation 5. ¢ is redundant® to some mixture over ™. But then. a
strategy in {¥"is nicely weakly dominated® on Q™ if and only if it is nicely weakly
dominated® un U™, which. since Q™ is a full reduction of S by nice weak dominance*.
establishes that U™ is also a full reduction of S by nice weak dominance*. establishing
the result.

V1. WEAK DOMINANCE AND BACKWARD INDUCTION

In its purest form. backward induction consists of iteratively removing actions
that are strictly dominated given the information available when that action is taken.

A normal form strategy that is consistent with reaching a particular information
set and takes a strictly dominated action at that information set is weakly dominated
by one that differs only by taking a dominating action at that information set. So.
any sequence of removals of actions by backward induction in the extensive form
corresponds to a sequence of sets of removals of strategies by weak dominance in the
normal form.'!

This relationship between backward induction in the extensive form and weak
dominance in the nurmal form extends to their respective motivations. Backward
induction requires that the action chusen at an information set must not be strictly
dominated when the oppunents play in such a way that the infurmation set is reached.
Weak dominance requires that a chosen strategy not be strictly dominated by another
strategy when the opponents play in such a way that the choice between these two

9Decaling with infinite sequences of removals introduces issues which we would prefer not to deal
with here. although the main ideas of this analysis translate directly.

11(lazer and Rubinstein (1993) start from this observation in defining “guides,” which are essen-
tially prespecified orders in which to check weak dominance.

19



strategies affects the decision maker’s payoffs. So. each is about making decisions
under the (possibly counterfactual) hypothesis that the opponents have not chosen
in a way such that the decision “does not matter.”'?

Thus. at an intuitive level. there seems to be an intimate relationship between
backward induction and weak dominance. However. the order of removals under weak
dominance can matter. while backward induction is deterministic.'® This raises the
possibility that backward induction and weak dominance differ at some fundamental
level that we have failed to understand. What is it about these two concepts that
leads une to be deterministic and the other not?

We claim that the distinction between weak dominance and backward induction
comes down to a fairly minor difference in what the two concepts mean by “does not
matter.” For backward induction. “does not matter” means “makes the information
set unreachable.” while for weak dominance. “does not matter” means “makes the
choice irrelevant fur the decision maker’s payoffs.” Of course. if the information set is
not reached. the choice is irrelevant for the decision maker’s payoffs and every other
player's payoffs. Thus. in backward induction a strategy profile for players other than
7 is excluded in player i's decision making process only if. regardless of the decision 7
makes. the profile gives the same payoffs to all players. So. eliminations in backward
induction are eliminations by nice weak dominance and thus are order independent.

Thus. the fact that backward induction is deterministic while weak dominance is
not does not reflect some fundamental difference in their motivations, but rather the
fairly simple difference between nice weak dominance and weak dominance.

The connection between backward induction and nice weak dominance allows us
to strengthen some of the results of Rochet (1980). Rochet shows that for extensive
form games with perfect information satisfying an extensive form version of (1). the
unique backward induction payoff is the same as the unique payoft from iterated weak
dominance in the normal form. which is the same as the unique proper equilibrium
payofl. This result extends to games satisfying an extensive form version of TDL
To see this. note that an extensive form game with perfect information that satisfies
TDI has a unique backward induction payoff. Since backward induction eliminations
correspond to nice weak dominance eliminations. by Proposition 1. any full reduction
by nice weak dominance ur weak dominance yields the unique backward induetion
payofl. Since any proper equilibrium is a backward induction solntion. any proper
equilibrium also has the same payoft.

In addition. Proposition 1 shows that if an extensive form game has a unique
backward induction payoff. then any full reduction by nice weak dominance or weak

120)p the general relation between normal and extensive form motivations and the implementations
of solution ideas, including a discussion of counterfactual reasoning in normal form games, sec
Mailath ef al. (1993).

BThe set of outcomes that survive backward induction remains deterministic even if we allow
iterative climination in any order of dominated actions at information sets, i.c. even if the elimination
process does not start at the end of the tree and move up.
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dominance alsu contains only that payoff, and any violations of TDI are non-essential
in that they do not affect the vutcome of iterated weak dominance.

VII. WEAK DOMINANCE AND COMPLEXITY

We close with a brief comment un how our results interact with those of Gilbua et
al. (1993). They point out that. in general. computational problems involving weak
duminance are hard. In particular. given a full reduction of a game. the question
remains whether different choices earlier in the sequence of weak dominance removals
might have led to a strategically different result. To figure out all the strategic
implications of weak dominance. one must thus check all pussible orders of removal.
which cannot be done in polynomial time. Gilboa ef al. interpret this result as casting
additional doubt on the use of weak dominance as a solution idea.'

Consider. however. nice weak dominance in general games or weak dominance in
games that satisfy TDI or some other condition such that order does not matter.
Then. once one has arrived at a full reduction. one knows no other order could have
resulted in a strategically different game. Since finding a full reduction is a polynomial
problem. nice weak dominance avoids some of the computational problems of weak
dominance and so for an important class of games weak dominance becomes less
suspect.'®

APPENDIX A

In this section we formalize the argument that the discrete first price auction
generically satisfies TDI. Think of the auction as being generated by first fixing a
set of plavers 1....n. a finite set I3 of admissible bids. a set of names of signals
Q = {w!' ... w™}. a measure p on 2", and maps V; : Q"' x @ — N giving the
value of the object to player 7 when the other bidders receive signals w_, € 2" !
i receives signal w; € {1 (notation aside. having different sets Q for different players
presents no difficulties). Since V; assigns a value to each of m” different signal profiles.

and

MSee Samuelson (1992} on another concern with the concept of iterated weak dominance. namely
that it cannot be grounded by assuming that it 1s common knowledge that plavers do not play
weakly dominated strategies,

158ce Gilboa et al. (1993) for a formal development of this material. In particular. see Section §.3
for a proof that a full reduction can be computed in polynomial time. The reader may also wonder
whether checking TDI is a polynomial problem. The answer is ves, because checking where the
antecedent of the TDI condition holds involves checking, for each player 1. % S| Si—1]15 .|
possible equalities (this is the number of #, 5; s ; triplets) and then for each such equality. checking

n — 1 further equalities, which is clearly a pohynomial problem.
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the function V; can be associated in the obvious way with an element of ™. Each
player’s strategy space is the set of all maps from signals in €2 to bids in /3. and su is
finite. Fix a pure strategy profile s ; for the players other than 7. Given this behavior
of the other players and any pure strategy s; for i. let p;(w. s(w)) be i’s probability
of winning when signals are «w and bids are according to s. The expected payoft to 7
from following s; is thus

8.5 1) Z plw)pi(w, s(w)) (Vi(w) = s:(wy)) .

w2

This expression depends on V; only directly (p and p, do not depend on the value
assignment). and so it is a linear function of V,. Consider two pure strategies s; and
{; for i and a pure strategy profile s_; for ¢’s opponents. Suppose that 7,(s,.5..;) =
’fTi(l( L} i)

Case (i): 3w such that p(w) > 0 and p;(w. s(w)) # pi{w, ti{w;). s :(w 4)). Then the
equation 7, ($;. 5 ;) — ™ (4. s_;) = 0 has nonzero coefficient on V;(w) and so is satisfied
for a set of pussible value assignments V; which is a lower-dimensional subspace of
R

Case (ii): Vw such that p(w) > 0. ps(w. s( ) = (w tl(w) s s{w ). Hplw)>0
implies s,(w;) = Li{ws). then clearly 7w(s;.s ;) = w(ti.s ;). Suppuse p(w) > 0 and
5;(w;) # ti{wi) for some w. W.lo.g. assume s; (Lu) t;(w;). By assumption. i's
probability of winning facing s (0 ;) is the same with s;(;) and f,(w;). But. then
the highest bid for the opponents under & ; must be either less than t;(w;) or greater
than s;(w;). In either case. player 7's change from s,(;) to (,(@;) does not affect the
payoff of players other than 7.

Note that there are a finite number of s;. ¢;. s_; combinations. and so the set
of V; for which the sitnation of Case (i) holds is a finite union of lower-dimensional
subspaces of ]’ . In the sitnation of Case (ii). TDI holds.

APPENDIX B

In this appendix. we formalize the notion that TDI generically implies TDI*. We
first need tu furmalize the idea of generic payoffs subject to any given set of pavoff
ties. Tou do this. retain the previous notation for players and strategies. bnt add for
each player 7. a finite set (), and two functions. ¢; : S — O; and p; : O; — . In games
as we have cunsidered them so far. 7; is the compaosition of ¢; with p,. Note that any
given p; can be thought of as a member of R 9. Genericity statements can then be
made at the level of p,. We interpret (; as a set of descriptions of economic outcomes
player i may receive in the game. ¢; describes which outcome is associated with each
strategy profile in the game. and finally p; describes i's utility vver outcomes. In
this interpretation. if ¢;(s) = @,(t). then from player i’s point of view. s and t lead
to identical outcomes, and so whatever his utility function over outcomes. he will
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be indifferent uver s and {. On the other hand. if ¢;(s) # ¢;(¢). then the cutcomes
associated with ¢ and ¢ are distinct. and so 7 is indifferent over s and ¢ only if his
utility function happens to be indifferent over ¢;(s) and ¢;(t). For example. in a
private value auction. the elements of J; might describe whether 7 won the object or
not and how much was paid. p; would then capture information about 7’s attitudes
toward money and the object. For any such utility function. i is indifferent over
strategy profiles in which he dvesn’t win. but only for very specific realizations of
price will i be indifferent between lusing and winning.
These preliminaries out of the way. we can state and prove our main result:

THEOREM. /%z N.and for each i € N. fix S;,and ¢;. Assume that TDI is salisfied
at the level of outcomes. That is, assume that forall 1,5 € N v t; € S;.and s ;€S .

jS(T'i. S ;,;) = (,')l(t-i.s l) = Qj(?'1,|‘i z) = Oj“’i- 5 i)'

Let F be the set of p such that TDI* fails. Then, CI{(I') has empty interior, where
Cl(.) indicates closure.

Proof. Let W be a restriction of §, and let £; € S;\W; for some i. Let C(.)
indicate the carrier of a mixed strategy. We will show that the set of p; such that ¢,
is VW D}, by some o; with C(o;) = W; but {; is neither K} nor WDj,. by any
with C(7;) = W, has closure with empty interior. Since there are a finite number of
(W, t;) pairs. this establishes the result.

Assume that 35 ; € W, such that Vs; € Wi, ¢i(s;, 8 ;) = ¢;(t:.s ). Then. by
TDI. ¢, will also be constant. and so regardless of o; (with C(o,) = W), and regardless
of p. (o5 ) = 7(t;.s ;) will hold. So. no failure of TDI™ relative to ¢; and W could
ever be traced to s_;. So. without loss of generality. assume that W has been chosen
in such a way that A s ; € W ; such that Vs; € Wy, ¢:(s:.5 1) = ¢ilti s 4)-

Define A, as the set of all p; such that ¢; is not VW D* on W by any o; with
Clo;) = W,. Define Ay, as the set of p; such that {; is strictly dominated un W by
some o, with C{e;) = W,.'% Note that A, is open. since if g; strictly dominates
t; on W for p;. then it continues tu do su for all p) in a neighborhood of p;. Let
Ao U Agrie = A Then. any failure of TDI* is contained in the set A" So. it is
enough to show that CI(A7) contains no open sets.

Let p; € A", We will examine two cases.

Case (i): Assume that for some Y ; CW ,, ¢;(W; x Y.;) C ¢:(t; x Y_;). Then. let

a € arg  max  pila’),
' (tix¥_y)

and let  ; € Y, be such that ¢;{¢;.7 ;) = a. Generate p. from p, by increasing
pi{a) by any small positive amount. and otherwise leaving p; unchanged. 'Then.

16A strategy o, € A(S,) strictly dominates s, € Sy on W if for all s ; € W, 7i(o,.8..) >
mi(si. 8 1)
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Vs, € Wi, ol (o(si.m_i)) < pl(ei(ti, 7_;)) with strict inequality at least once. since
for at least sume s; € W;. ¢i(s,.7 ;) # a. But. then for any o, having C(o;) = W,.
w0 ) < w41 ), where 7' is the payoff function for ¢ generated by ¢; and p.. So.
for pi, t; is not VIV D" on W by any o; with C{oy) = W, and so p} € Ap,. Further. this
remains true of any perturbation p! of p such that a = argmaxarc g, .y ;3 05 (@'). and
so for all p! in a neighborhood of pf, p!' € A,,. That is. p} is in Int(A,,). where Int(.)
indicates interior. Thus. any neighborhood of p; has non-empty intersection with
Int{A,,}. Since CI(AYN Int(A,,) = @, this implies that there is no neighborhood of
p; contained in CI{A7).

Case (ii): Assume that for each Y ; C W ;. o;(W, x Y ,) € ¢t X Y ;). Let o,
be such that C(o;) = W, and such that Vs ; € W . 7w(0:.5.,) > “t(lz. 5..;), where
7, 1s the payoff function generated by p;. Pick some a € ¢ (W; x W)\ (8, x 17 4).
Generate p} from p, by increasing p;(a) by any small positive amount. and otherwise
leaving p; unchanged. Then. 7i(a,. s ;) > 7.{t;,s ;) for any s_; € W _; such that a €
0:(W;x s ;). of which there is at least one. while Vs _, € W ,, w/(0;,s ;) > mi(t;. s 1)
Let W', be the subset of W ; such that Vs, € W', wl(o;.8.,) = 7t s.4). I
W . is empty. then we are done. Otherwise. choose b € ¢, (W; x W' J\gi(t; x W)
Generate p) from p) by increasing pi(b) by a small positive amount. and otherwise
leaving p! unchanged. Then. #/(o;. ¢.;) > 7/ (t;,s_,), for any s. ; € W' such that b €
o(W;x s ). of which there is at least one. “hlle Vs e W' 7l{a,8 )2 wl{tis ;)
And. by making p!(b) — pi{b) small enough. the strict inequalities for s , in W \W',
will be retained. Proceeding in this way. we generate p;' arbitrarily close to p, under
which &, strictly duminates {; on W ;, and so pi" € Agpiy. Since Ay, 1s open. we
have again shown that there is no neighborhood of p; contained in CI{A"). B
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