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Abstract:

Contracts adopted with later renegotiation in mind may take stmple forms. In a
principal-agent model, if renegotiation may occur after the agent chooses effort, the
principal protects against unfavorable renegotiation by “selling the project” to the agent
via a sales contract. If only singleton (single-scheme) contracts are feasible, the
equilibrium initial contract must be a sales contract if the principal’s renegotiation
position will be inherently inferior in the sense that (a) the agent will have the bargaining
power; (b) the principal will not observe the agent's effort, and (¢) the agent has the
talent, i.e. a rich set of feasible efforts, to exploit contractual nuances, Reinegotiation
necessarily occurs, and it yields (second-best) efficient atlocations. Even when menu
(multiple-scheme) contracts are available, if the selection of a scheme from a menu
entails any cost, then the final contract is a singleton and equilibrium renegotiation
occurs. If there is any complexity cost to specifying a menu, the initial contract must also
be a singleton; it is necessarily a sales contract if the agent has talent. A weak forward

induction refinement criterion is used to obtain these results.
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1. Introduction

Optimal contracts in many environments tend to be unrealistically complicated.
The discrepancy is often attributed to the cost of writing complicated contracts, or the
presence of asymmetric or unverifiable information. These explanations, which maintain
that observed contracts are (constrained) optimal, have well-known difficulties. For
example, it is often implausible that the cost of writing an obviously missing clause
should be greater than its value. And the presence of asymmetric information generally
leads to more, not fewer, complications. since then an optimal contract should specify an
elaborate revelation mechanism.

However, a contract may not be optimal in any straightforward way if its designers
expect it to be renegotiated. Some contracts are indeed expected to be renegotiated. For
example, the tinancial contracts between a start-up firm and its initial backers are
expected, by all parties. to be renegotiated: either the firm will be successful and
exchange the initial contracts for more favorable securities, or they will be renegotiated in
a bankruptey proceeding. This paper’s theme is that sometimes contracts designed to be
renegotiated will be simple. In particular, when the renegotiation process and
information structure inherently favor one party, the other party may obtain the best
protection against unfavorable renegotiation by insisting on a simple contract.

The idea is explored in a moral hazard, principal-agent model along the lines of
Holmstrom (1979) or Grossman and Hart (1983). The difference is that contract
renegotiation is possible after the agent chooses effort, but before its consequence is
realized. The main result is that if the principal’s position in the renegotiation stage is
inherently weak, then ex ante, she should insist on a sales contract, the familiar contract
which transters the project’s random profit to the agent for a price. A sales contract
makes the princtpal’s income a constant function of all contractible signals, and the
agent’s income independent of any contractible signal except the project’s profit. This,
together with its requirement that the agent receive all profit in all events, rather than a

possibly varying share, make a sales contract simple to write and enforce.



The principal’s renegotiating position in the model is inherently weak in two ways.
The first 15 informational. due to her inability to observe the agent’s effort. The extent to
which this is important depends on the richness of the set of possible efforts. The second
inherent weakness of the principal’s renegotiation position is its lack of bargaining
power, due to a renegotiation process in which the agent makes ultimatum offers
(subsequent to, or at the same time as, he takes his unobservable effort). Thus, the
principal is especially vulnerable to renegotiation, and this causes her to find an initial
sales contract attractive. By giving her an income independent of the agent’s effort, a
sales contract gives her a solid base from which to bargain. an unswayable knowledge of
her payott if she refuses to renegotiate.

In the first version of the model, a contract is a single scheme specifying an income
for each party as a function of the contractible signal. In the equilibrium of central
interest, the parties agree initially to a sales contract. The agent then takes an effort and
proposes a scheme which together form an allocation that is efficient in the (second-best)
sense of, e.g., Holmstrom (1979) or Grossman and Hart (1983). (Henceforth. an
unmodified “etficient” is meant in this second-best sense.) The principal infers from the
agent’s proposal that he took the efficient effort, and agrees to substitute the proposed
scheme for the sales contract. Any scheme the agent might prefer, such as a first-best
scheme, would be rejected by the principal because she would infer from its proposal that
the agent shirked, i.e., chose an effort which makes his proposal worse for the principal
than the initial sales contract.

This equilibrium has three interesting features: (1) its efficient outcome, (2) the
equilibrium-path occurrence of renegotiation, and (3) the initial adoption of a sales
contract. The same features are exhibited by other plausible equilibria, ones which
satisfy a certain belief-based refinement criterion. The criterion requires the principal to
believe that the agent has avoided playing a dominated strategy that requires him to take
an effort and propose a contract that would give him less than his reservation utility if it
were to be accepted. Attention is restricted to equilibria satisfying this relatively weak,

“forward-induction” criterion.



All equilibria (thus refined) exhibit efficiency and actual renegotiation, features (1)
and (2). All equilibria also exhibit (3), the initial adoption of a sales contract, if the
principal’s informational handicap is sufficiently severe. It is so severe if the set of
possible efforts is of maximal dimension. so that the agent has the “talent” to freely and
minutely control the probabilities of contractible events. Such talent, together with the
ability to influence (via the forward-induction refinement) the principal’s beliefs by
making appropriate proposals, enables the agent to exploit nuances in the initial contract.
The principal is then especially vulnerable to renegotiation. She obtains maximal
protection only by insisting initially on a simple sales contract, the profitability of which
is unaffected by how the agent might influence her beliefs about his effort.

A second version of the model is also studied, one in which the definition of a
contract is breadened to include “menu contracts.” A menu contract specifies a set of
schemes from which the agent selects one that will determine the actual payments; the
agent selects a scheme after he takes his effort and any renegotiation occurs, but before a
contractible signal is realized. Menu contracts are equivalent in this setting to revelation
mechanisms for the agent, and are used in studies of informed principals (Myerson, 1983;
Maskin and Tirole, 1992). and some studies of incentive contract renegotiation (see
below). A menu is sufficiently complicated that renegotiation can be built-in. In a menu
contracts game much like that of this paper, Ma (1993) exhibits an efficient equilibrium
in which the initial contract, because it is a particular menu that contains a distinct
scheme for each possible effort, is not renegotiated.

Menus are more complicated than single schemes, and casual empiricism does not
confirm their prevalence. Though this suggests that menus be assumed infeasible (e.g.,
Huberman and Kahn, 1988; Hermalin and Katz. 1991), deoing so does not confront the
issue of why menus with at least a few distinct schemes would not be used. Such menus
should be only slightly more difticult to specify and enact than single schemes, and their
screening benefits might be substantial. Menus are thus considered here (Section 5).
However, to reflect their additional intricacy. the use of a menu is assumed to entail a
small extra cost. The main question is then whether relatively simple singleton contracts,

and very simple sales contracts, still necessarily arise.



Two kinds of menu costs are considered. The first is a ““selection cost,” tncurred
only when a menu contract is enacted, which is due to the agent having to decide and
verify his selection of a scheme from a menu. The second kind of menu cost is a sunk
“complexity cost,” incurred at the time a menu is agreed, which is due to the cost of
specifying more than one scheme. Both kinds of cost are assumed to be arbitrarily small.
Nonetheless, all equilibria (again, refined) are efficient. Both kinds of menu cost imply
that renegotiation must occur, and that the final contract is a singleton. Complexity costs
further imply that the initial contract is a singleton, and that it is a sales contract if the
agent has talent.

That completes the summary of results. Most of them depend on a renegotiation
process in which only the agent can propose a new contract. Only then is the principal’s
inherent bargaining position so peoor that she should initially insist on a sales contract.
Besides its role in making this theoretical point, the assumption that only the agent can
make renegotiation proposals is plausible in some applications. It can either be the
exogenously given renegotiation process, or one that 1s determined by law, For example,
in a chapter 11 bankrupicy proceeding used to renegotiate a firm'’s financial contracts,
only the firm, and not its creditors, is allowed to make proposals.] A related possibility is
that the renegotiation process may be specified in the initial contract. If this is feasibie,
the model indicates conditions under which the equilibrium initial contract will specify
both a sales agreement, and a requirement that the agent make any renegotiation proposal

{see Section H).

Related Literature

A small literature studies renegotiation in moral hazard settings. Hermalin and Katz
(1991) consider a model in which the principal observes the agent’s effort, but the effort
choice is unverifiable to a contract enforcer. Since information is perfect in the
renegotiation subgame played after the agent takes his effort. its outcome is the first-best

efficient scheme given the effort. The game in which the agent makes ultimatum

1 E.g., White (1989). Management has the sole right to file reorganization plans in the
first 120 days. and extensions are common.



renegotiation offers has an equilibrium in which a sales contract is adopted and
renegotiated, and the resulting allocation is first-best efficient.? The difference in this
paper is that the agent’s effort is unobservable; this makes the first-best unattainable, the
analysis more intricate, and some results stronger (e.g. the necessity of a sales contract if
the agent has talent).

In Fudenberg and Tirole (1990) and Ma (1991), the principal also does not observe
the agent’s effort. However, the principal is not at a bargaining disadvantage — she is
the one who makes a renegotiation proposal. She finds a menu useful for screening the
different “‘types” of agent (the possible efforts he might have chosen). Menus are used,
and would be used even if they entailed a small extra cost. Equilibrium initial contracts
which are renegotiation-proof menus exist; in all equilibria, the agent uses a mixed effort
strategy, and the outcome is not (second-best) efficient. These models do not address the
central 1ssues of this paper, the appearance of simple contracts and equilibrium-path
renegotiation.

Ma (1993) is more related, as it too concerns an agent who makes ultimatum
renegotiation proposals, and a principal who does not observe the agent’s effort.
Contracts are menus, and they are no more costly than singletons. The main result is that
all equilibria satisfying a refinement criterion are efficient, which is analogous to the
efficiency result of this papf:r.3 However, the analysis focuses on a renegotiation-proof
menu; no reference 1s made to sales or other singleton contracts, nor to equilibrium
renegotiation. Thus, Ma (1993) too does not address the prevalence of simple contracts
and actual renegotiation.

Two other papers argue, along different lines and in very different models, that
contractual simplicity may result from the possibility of renegotiation. First, Spier (1992)
shows that if one party must pay the court costs of enforcing the initial contract if

renegotiations break down, then that party may offer a contract that is non-contingent

2 This is Proposition 3 in Hermalin and Katz (1991); the sales contract appears in its proof.
Huberman and Kahn (1988) and Demski and Sappington (1991) obtain similar results.

3 The two efficiency results are not identical because the model here is somewhat more
general and, more importantly, the refinement criteria differ. See Section 5.



and, consequently, will not be challenged in court.® Second, Dewatripont and Maskin
(1992) show that the possibility of renegotiation may cause the parties to not collect the
information that would make certain events verifiable, thus leading to an endogenously

small number of contractible contingencies.

Cuiline of the Paper

The environment is described in Section 2. The game without menu contracts is
described in Section 3, together with the equilibrium concept (perfect Bayesian refined by
a weak forward induction criterion). In Section 4, equilibria are shown to be efficient, to
entail renegotiation, and to require, if the agent is talented, the initial adoption of a sales
contract. In Section 5, menu contracts with small selection or complexity costs are
introduced. Selection costs are shown to imply that the final contract is a singleton and
renegotiation occurs; complexity costs are shown to imply further that the initial contract
1s a singleton, and it is a sales contract if the agent has talent. Extensions are discussed in

Section 6. Technical details and some proofs are in the Appendices.

2. Preliminaries

The Environment

A principal may hire an agent to make her enterprise productive. The agent’s effort
1s unobservable to the principal and to any enforcer of contracts. The contractible
consequence of his effort is a signal, which has a finite number of realizations,
i=1,...,n. With no loss of generality, the agent’s effort is taken to be the probability
distribution of the signal. Thus, an effort is denoted as ¢ = (ey...., ¢,)), where ¢; is the
chosen probability that the signal will take on value i. The set of possible efforts, E, is a

subset of A, the set of probability vectors in R". We assume £ holds at least two efforts,

* Another argument in Spier (1992) is that simple contracts may arise not because of
renegotiation, but because a privately informed party who makes the initial offer can
stgnal that he is a high type by offering a non-contingent (no-insurance) contract. Allen
and Gale (1992) also give a signaling explanation for contractual simplicity.



is compact, and each ¢ € E is strictly positive. Thus, E is finite or intinite, and the set of
possible signal probabilities is bounded below by a positive number.

The signal is sutficient for performance. Conditional on { and e, profit (expected,
gross of the agent’s compensation) is independent of e, and is denoted as ;. Expected
profit given e is the product - ¢, where x = (1 ,..., ®,).

A (compensation) scheme is a vector, s = (5155 5,,), which specifies for each
signal 7 the principal’s payment s; to the agent. The set of schemes is S, and S = R is
assumed; thus, liability constraints are assumed slack (this is discussed in Section 6).

An allocarion is a scheme and an effort, (s, ¢). The principal is assumed, for the

sake of simplicity, to be risk neutral. Her expected utility is the expected profit of the

enterprise less the expected payment to the agent:

Ps,e)=(m—s)-e. 2.1)
The agent’s utility is u(x) — c(e) if he is paid y and chooses ¢. Function u is strictly
increasing on K. It is also strictly concave: the agent is risk averse with respect to
money. Function ¢ measures the utility cost of effort; it has domain £ and is continuous.
The agent’s reservation utility is Al Large payments are assumed to adequately
compensate him for any effort: ¥ e R exists such that u(¥) — c(e) > A for each e € E.
Scheme s generates a vector u(s) = (s )...., u(s,)) of possible utilities. Allocation

(s, e) gives the agent the expected utility
A(s,e) = ufs)-e - cle). 2.2)

His optimal expected utility from scheme s is

A(s) = max A(s, e). (2.3)
ec E

The optimal effort correspondence is

E(s) = argmax A(s. e), (2.4)
ec E

and it is nonempty because £ is compact and A(s, ) is continuous.



The Principal-Agent Problem

The standard principal-agent problem arises when the parties can commit to a
scheme before the agent chooses effort. In the usual treatment, the principal offers the
scheme to the agent as an ultimatum offer. An allocation (s, ¢) is then an equilibrium
outcome if and only if it gives the agent at least his reservation utility, and ¢ is his optimal
effort given s. These allocations maximize the principal’s payoff subject to the individual

rationality constraint (IR) and the incentive constraint (IC):

*

(P) P = maximize P(s, ¢) subject to
sed.ecE

(IR) A(s,e)>A and

(IC) e e E(s).

Program (P) has a solution, and every solution satisfies IR with equality (e.g., Grossman
and Hart, 1983). To avoid triviality, assume P > F, where P is the principal’s utility if
the agent rejects the scheme.

Solutions (s™, ¢™) of (P) are Pareto optimal in the set of allocations defined by §, E,
and IC; such allocations will be referred to as (second-best) efficient. A scheme or an
effort that is part of an efficient allocation will also be called efficient.

Lemma 1 shows that “ex post random schemes” are of no value in (P). These
schemes are random vectors 5 that take on realizations, after the agent has choosen effort,

in the set of schemes §. (In the lemma, E is the expectation operator for 5.)

LEMMA 1: /5 is a nondegenerate ex post random scheme, and

e € argmax FAG.d),
de E

then t & S exists such that e € E(t), A(t,e) > EAG, ¢), and P(t, e) > EP(5, ¢).

PROOF: Let ¢ be an upward perturbation of the certainty equivalent, f € R”, defined by

u(?) = FEu(s). See Grossman and Hart (1983) for details. W



Strict Inducibility
Say that s induces e if e € E(s), and that s strictly induces e if E(s) = {¢}. Foreach
(strictly) inducible effort e, a scheme can be found with respect to which e is (uniquely)

optimal for the agent. The following regularity assumption will be useful.

ASSUMPTIONT: Every inducible effort is strictly inducible.

This assumption holds if c(e) is strictly convex, since then A(s, €) = u(s).¢ — c(e) is
strictly concave in ¢, and each inducible effort is strictly induced by every scheme that
induces it.

Assumption I generally holds even if ¢ is not convex, Intuitively, inducibility but
not strict inducibility is a knife-edge property of an effort ¢, destroyed by perturbing the
cost ¢(e) either up or down. Proposition 0(iv) in Appendix A shows that Assumption L is
satisfied generically if £ is a finite set.

The consequence of Assumption I that will be useful is the following.

LEMMA 2 For any scheme s € S and effort ¢ € E(s), every nei ghborhood of s contains
some t such thar E(t) = (e} and A(r, e) = A*(s).
PROQF: Scheme s and effort e satisfy

AT(s) = Als.e) = A(s,d) foralld = e. (2.5)

From Assumption 1, scheme § exists such that

*

AT(S) = AG.e) > AG, o) foralld ze. (2.6)
tor any number k. and a sufficiently small § > 0, a scheme 7 is defined by
w(t) = ok + u(f'!-)) + (1 —6)11(51-).

Note that 755 as 8- 0. Hence, § can be chosen small enough to fit 7 into any given

neighborhood of 5. Ford # ¢, (2.5) and (2.6) imply,

Al o) —AlLd) = JATE) - AG, )] + (1-O[A*(s) — AG, )] > 0.

Thus. £(1) = {e]. Setting k = A"(s) - A™(}) vields A¢. ¢) = A™(s5). W
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Contracts

Two kinds of contract are considered. A singleton contract specifies just one
scheme, s € S. A menu contract specifies a nonempty, compact set of schemes, mc S. If
a menu contract is adopted, the agent must select one scheme from the menu to be the
actual scheme that will be used — he makes the selection after he has taken his action
and any renegotiation has occurred. Menus are considered in Fudenberg and Tiroie
(1990), Ma (1991, 1993), Maskin and Tirole (1992), and Section 5 of this paper.

Two kinds of singleton contract (scheme) are of special interest. The first is a wage
contract , which pays the agent the same amount regardless of the realized signal: s; = 5
for atll i. Because the principal is risk neutral, wage contracts are first-best efficient. We
assume that first-best efficiency is unattainable, i.e., that wage schemes do not solve (P).
It follows that efforts which minimize ¢ are also not efficient.

The second special kind of singleton contract is a sales contract. The sales contract
with price p, denoted as r(p) = (r | (p)...., 1, (7)), transfers the profit of the enterprise to the

agent for price p:
ripy=m;—p foreachi=1...n. 2.7)

A sales contract gives the principal an income, 7, — r,(») = p, that does not depend on the
signal i. It gives the agent an income that is a linear function of profit m;, and does not
depend on other information the signal might contain: r,(p) = rj{p) if ;; = ;. This is
what makes a sales contract relatively simple. The crucial feature of a sales contract is
that it makes the principal’s payoft independent of her beliefs about the agent’s effort:
P(r(p), ) = p for all e. The optimal sales contract has price P, the principal’s payoff in

the principal-agent problem:
F= r(P*). (2.8)

An Example

The following example will be useful. In this example the signal is equal to profit.

It can be good, m,, or bad. m, < m,. Inthis example only, “effort” refers to the probability
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of 7, (rather than a probability vector). It can be low, e, or high, ¢,, where

O<ep<ey<landcley)< c{ep). A scheme takes the form s = (sg, sp). Hence,

P(s.e) = e(rcg— sg) + (1 —e)my,—sp),

it

A(s, e) eu(sg) + (1-e)u(s,) — cle).

The efficient allocation, (s*, €*), is assumed unique, with e” = €y

Figure [ illustrates. Points in the box are schemes (sg, sp). The agent’s expected
utility increases to the northeast, and the principal’s to the southwest. The locus of wage
contracts s the agent’s 45° line. The locus of sales contracts is the principal’s 45° line.

The indicated IC curve is the locus of schemes at which the incentive constraint
binds, i.¢., at which A(s, ¢,) =A(s, e;). Schemes below the IC curve induce the agent to
work hard by rewarding him with a large bonus if the observed profit is Ty Schemes
above the IC curve, such as the wage contracts, induce low effort.

The steeper indifference curve in Figure 1 gives the agent his reservation utility
when he chooses high effort; it is defined by ehu(sg) + (l-epuls,) = A+ c(e;). The
flatter indifference curve gives him A when he chooses low effort.

The principal must offer the agent a scheme below the IC curve if she wants him to
choose high effort. Given that the offered scheme induces high effort, the agent accepts it
only if it is above the steeper indifference curve. The shaded area is thus the set of
schemes which are acceptable to the agent and induce him to take high effort,

Assuming the agent takes high effort, the principal’s isoprofit lines are steep, with
slope —¢,/(1-¢,), and increase to the southwest. Her best scheme in the shaded area when
the agent takes high effort is therefore s™. The optimal sales contract, #*, is the sales
contract on the same steep isoprofit line as s'; its price P* is indicated on the right axis.
Both 5™ and r* give the principal payoff P*, assuming the agent takes high effort. This
payoff should be compared to that obtained by inducing low effort, which is achieved by
offering the indicated wage contract 5. The corresponding payoff to the principal is the

A A &, - . . .
indicated P. Since P < P", inducing high effort is optimal.
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3. The Renegotiation Game

Program (P) relies on the the parties being able to commit to not renegotiate the
agreed scheme later, after the effort is chosen and before the signal is realized. In order
to study what may happen when this commitment is impossible, an explicit renegotiation
process is defined. Two will be considered, differing in whether menu contracts are
feasible. The description in this section is of the game in which they are not feasible;
menu contracts are deferred to Section 5.

The game starts when the principal offers a contract to the agent. If the agent
accepts it, play moves into a renegotiation subgame. This subgame starts with the agent
choosing an effort and proposing a new contract. The principal, unaware of the agent’s
effort, chooses between the agént’s proposal and the initial contract. Given that only
singleton contracts are feasible, a contract can be identified with the scheme it specifies.
The scheme specified in the principal’s offer is denoted r, and the ensuing renegotiation
game is I'(+). The scheme specified in the agent’s renegotiation proposal is denoted s.
The extensive form is shown in Figure 2. As will be clear, its most important feature is
that the agent, not the principal, makes the renegotiation offer.

A strategy for the principal is an offer r, and an acceptance rule ap(r, s) giving her
probability of accepting the agent’s proposal s when the initial contract is . The agent’s
strategy is an acceptance rule a,(r) giving his probability of accepting offer r, and a
proposal s(r) and an effort e(r) in each subgame T'(»). The principal chooses between r
and s according to her beliefs about the agent’s effort. Her belief function, B(e | r, 5), is a
probability measure on £ conditional on the agent accepting r and proposing s.

A perfect Bavesian equilibrim (PBE) is a profile of mixed strategies and a belief
function satisfying three conditions. First, the strategies must induce a Nash equilibrium
on each subgame. Second, the belief function must be consistent with Bayes’ rule and
the agent’s strategy, whenever possible. Third, the principal’s acceptance rule must
maximize her expected utility according to her beliefs. Given a PBE, let A°? and P*Y
denote the equilibrium payoffs, and A“(r) and P*I() the equilibrium payoffs of

subgame I'(r). A PBE is efficient if the equilibrium payoffs correspond to solutions of
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program (P), i.e., are A and P*, Lemma 3, proved in Appendix B, shows that a PBE with

these payoffs is in fact Pareto optimal within the set of perfect Bayesian equilibria.

LEMMA 3: PBE payoffs satisfy P4 <P*, A1 2 A, and A*? = A whenever P°1 =P*. For
any r accepted by the agent with positive probability, P*(r) € P* and A“(ry = A. For any

r satisfying P(ry = P*, A% < A.

The next lemma shows that wage contracts cannot be renegotiated. Any contract
the agent might propose which he prefers to a wage contract must give him an expected
payment greater than the wage. The risk neutral principal therefore prefers paying the
wage 1o accepting the proposal if she has ‘rational expectations” about the agent’s effort,

which she does in equilibrium.s

LEMMA 4: Wage contracts are not renegotiated: if r is a wage contract and s # r, then in

every PBE the principal surely rejects s in favor of v (i.e. ap(r, 5) = 0).

PROOE: Letr;=w forall /. Consider a perfect Bayesian equilibrium of subgame I'(r).
Let s be an equilibrium offer of the agent in this subgame, and let a = ap(r,s). Suppose
@ > 0. Because the principal finds s acceptable, effort ¢ exists such that s.e < w, and (s, e)

is an equilibrium choice of the agent. The agent could have offered r instead of s, and so,
a(u(s)-e) + (1—a)u(w) — cle) = u(w) —cle).

Since u 1s strictly concave and a is positive, this implies that 5-¢ = w, with the inequality

strict unless s = . Hence,s=+. B

A Refinement Criterion
The subgames I'(r) are essentially signaling games in which the agent’s proposal
signals his effort. Equilibria therefore abound. Some, however, require the principal to

believe, off the equilibrium path, that the agent has played a dominated strategy. These

5 This “no-trade theorem” resembles that of Milgrom and Stokey (1982). Since a wage
contract etficiently shares risk. it is common knowledge that one party must lose by
renegotiating a wage contract (even though e is not common knowledge).
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equilibria would not survive a refinement criterion based on twice removing dominated
strategies, first for the agent and then for the principal. A weaker criterion is formulated
here, one which requires the principal to not believe the agent has chosen a certain kind
of dominated strategy. The criterion embodies a weak notion of forward induction.®

At issue is an agent strategy which accepts some r with positive probability, and in
I'(r) plays a pair (s, €) such that A(s, ) < A. Such a strategy 1s dominated. The
dominating strategy depends on whether the agent can obtain A with r. If he cannot, i.e.
ifA™ () < A, then a domunating strategy rejects ». Alternatively, if A*(r) >A,a
dominating strategy accepts r, but then proposes r instead of s, and chooses an effort

in E(r). If the principal believes, at the information set indexed by (r, 5), that the agent

has not played such a dominated strategy, she must assign all probability to the set
Es) ={ec ElA(s,e)2 A}, 3.1)

This motivates Criterion C (for want of a better name).7
CRITERION C: For all contracts » and s, B(E(s) 1 r,5) =1 whenever E(s) # (.

The unmodified term equilibrium henceforth refers to a PBE satisfying Criterion C. The
existence of equilibria is shown in Section 5.

This criterion is illustrated by the following strategies and beliefs in the two-by-two
example. According to them, the principal always believes the agent has shirked, and the
agent does in fact shirk:

the principal believes the effort is e, after any (r, s), and
accepts s if and only if P(s, e;) 2 P(r, e, (3.2a)

in each I'(+), the agent chooses e, and proposes the wage
contract s, that pays him w(r) = e(rg+(1- e ps (3.2b)

6 Forward induction is discussed, e.g., in Kohlberg and Mertens (1986), Cho and Kreps
(1987), van Damme (1992), and Dekel and Ben-Porath (1992).

7 The criterion is most sensible at the (r.s) pairs where it will be used. At these pairs,
P(s,e) > P(r,e) foralle € Ks), and so it is consistent for the agent to believe the
principal will accept s.
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the agent accepts r if and only if u(w(r)) — clep) 2 A; and (3.2¢)

the initial offer of the principal is the wage contract § (shown
in Figure 3) that gives the agent A if he chooses e, (3.2d)

For some parameters, (3.2) defines a PBE.® Yel, the beliefs in (3.24) violate Criterion C.
Suppose the agent proposes the s in Figure 3. The principal is supposed to infer that the
agent chose ¢,. However, E(s) = ley), since A(s, e;) > A> A(s, e;). Criterion C therefore
requires the principal to believe the agent chose e, if he proposes s. Believing the agent
chose e, is tantamount to believing that he played a dominated strategy. If the initial r
cannot give the agent his reservation utility, then accepting r, proposing s, and choosing
e, is dominated by simply rejecting r. If r can give the agent his reservation utility, a

dominating strategy accepts » and does not propose a new contract (or re-proposes #).

4. Singleton Game Results

The results of this section are that when only singleton contracts are feasible, then
(1) all equilibria are efficient; (2) renegotiation must occur; and (3) equilibrium initial

contracts are necessarily sales contracts if the agent has “‘talent.”

Equilibria Are Efficient

Equilibria are efficient because Criterion C implies that the the principal can make
profitable initial offers which the agent cannot refuse. In particular, the agent must accept
certain sales contracts. Referring again to Figure 3, consider sales contract /(p). Suppose
that in subgame ['(#(p)), the agent proposes the indicated s. As we have seen, Criterion C
requires the principal to believe the agent chose high effort if he proposes 5. The

principal consequently accepts s, as it is below the steep isoprofit line through r(p). Thus,

8 APBEis defined by (3.2) if for each r, the agent prefers (w(r), e¢) to (s, ey), where s is
any contract the principal would accept in ['(), i.e., any s for which efsg+(l— ep)s, <
9["q+(1‘ e, )r,. This is the case, for example, if #(y) = In(y), and ‘

cley) —cley) (eh(l - e;)J
R — )| I ra—

€p— ey 0[(1 - eh)

Even with this inequality, e, is efficient if T, 1s large.
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proposing s and choosing ey, gives the agent more than A; thus, he accepts r(p). The

principal’s equilibrium payoff hence exceeds p, as she can obtain that by offering r(p)

and not renegotiating. This is true of any p < P*, and so her equilibrium payoff is P".
The next lemma (proved in Appendix B) is used to generalize this argument. It

gives a way of finding proposals for the agent which the principal cannot refuse.

LEMMA 5: Any neighborhood of a non-wage contract t contains an s such that
(i) AT(s) > A", and
(i) P(s,e) >P (1, e) for all e satisfying A(s, €) = A%,

A conscquence of Lemma 3 is that a scheme having the properties of the s shown in

Figure 3 exists. Lemma 6 proves this, and the efficiency proposition follows.

LEMMA 6: Let (5™, ") be efficient, and consider any p < P*. Every neighborhood of s*

contains some s such that (i) A*(s) > A, and (i) P(s,e)>p forall ¢ e E(s).

PROOF: As the first-best is assumed unachievable, s is not a wage scheme, Lemma 2
then implies that near s™ exists another non-wage scheme, r, such that £(r) = {¢"} and

Alz, e*) = A(s*, e*) = A. This ¢ can be choosen so close to s that, for some € > (0,
P, e )> p+e. (4.1)

Correspondence E’(-) is u.h.c. Thus, using (4.1) and E(r) ={e¢"),a neighborhood N of ¢

ex1sts such that forall s e N,

P(t.e)> p foralle e Es). 4.2)

From Lemma 5, s € N exists such thatA*(s) > A™(1), and P(s,e) > P(¢t, e)forall e

satisfying A(s, ¢) > A™(1). This is the desired s, using (4.2) and A*() = A. W

PROPOSITION 1: Every equilibrium is efficient.

PROOE: Fix an equilibrium, and let p < P*. Lets be as in Lemma 6. By (1), E(s) # (.
Criterion C and (i) imply that the principal will accept s over r(p). Thus, by (i), the agent

has a way of obtaining more than A in F(r(p)) (proposing s and choosing ¢ € E(s)). He
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therefore accepts r(p). Hence, P> p. This is true for all p < P*, and so P¢9 > P*,

Lemma 3 now implies the result, Pf9 = P* and A®9 = A. W

Renegotiation Occurs

The second set of results concern the necessity of renegotiation. The first is that the
principal cannot simply offer an efficient s™ initially, because efficient schemes are
renegotiated to inefficient ones. This is true of any PBE in the two-by-two example, as
Figure 4 shows. If the initial contract is the indicated s*, then regardless of her beliefs
about the agent's effort,” the principal will agree to renegotiate into the shaded lens. This
is because her expected payment to the agent is larger with s* than it is with any s in the
lens, holding the agent’s effort fixed.' Thus, by proposing a scheme in the lens and
shirking, the agent can obtain more than A. This observation implies that in any PBE, the
agent accepts s~ if it is initially offered. But after accepting it, the agent shirks and
proposes the indicated wage contract 7, which the principal accepts.

In more general environments, Criterion C is needed to show that the principal

obtains less than P~ by offering an efficient scheme:

PROPOSITION 2: [n any equilibrium, P*s™) < P* and A€9(s™) > A if 5™ is efficient.

PROOE: Since IR binds in (P), A*(s") = A. Thus, using Lemma 5 (with ¢ = s*), scheme s
exists such that A™(s) >4, and P(s, ¢) > P(s*, e) for all e satisfying A(s, ) > A. By
Criterion C, the principal agrees to renegotiate s* tos. In this way the agent can obtain

more than A in ['(s™), and so A%4(s™) > 4. This and Lemma 3 imply PG™) < P*. W

An implication of Propositions 1 and 2 together is that in any equilibrium, initial
contracts that are efficient would be renegotiated if they were to be offered, but they are

not offered on the equilibrium path.

? I thank Albert Ma for bringing this property of the two-effort model to my attention.

10 The fact that the principal prefers (s, e;) o (5™, €;,) does not contradict the latter’s
efficiency. Allocation (s, e, 1s infeasible for program (P) because it violates IC.
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Proposition 3 below characterizes equilibrium initial contracts, shows that they too
are renegotiated, and characterizes equilibrium final contracts. The characterization is in

terms of the following program, parameterized by schemes r.

(A-r)y A" = maximize A(s, e) such that
SeES feE

(IC) ee E(s) and

(AC) P(s,e)=P(r,e).

This program has a solution for all , as is shown in in the next section. Its objective is to
maximize the agent’s utility subject to the incentive constraint IC, and to the principal’s
acceptance constraint, AC. The value A" is an upper bound on the agent’s set of Nash
equilibrium payoffs in subgame ['(r).1! If r is an equilibrium initial contract, an
equilibrium final contract is a solution of (A - r). This is part of the following

proposition, proved in Appendix B.

PROPOSITION 3: Given an equilibrium, let r be an equilibrium offer of the principal. Then,

(i) ris not awage contract;
(i) A*(r) <A, but the agenr surely accepts r;
(it0) the principal surely accepts any equilibrium proposal of the agent in T(r); and

(iv) the equilibrium allocations of T'(r) are efficient and solve (A - r).

Talented Agents Receive Sales Contracts

Sales contracts have so far appeared only as hypothetical initial offers used to prove
the efficiency of equilibria in Proposition 1. We now show that if the agent has talent in
the sense of being able to perturb the signal probabilities in any possible way, then the
optimal sales contract is the only equilibrium initial contract.

Without the talent assumption, equilibrium initial contracts need not be sales

contracts. For example, in Figure 4 any scheme on the isoprofit line through r* and s*

Mrpe proof of this is easy for a pure strategy Nash equilibriumn, since its allocation
satisfies IC and AC. The general proof is involved and not needed here.
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that is below the indicated 7 is an equilibrium initial contract. In the corresponding
equilibrium, the agent accepts such a contract and then renegotiates it to s

However, a scheme on the »™- 5™ isoprofit line in Figure 4 that is above 7 is not an
equilibrium initial contract. In any equilibrium, such a scheme would be renegotiated to
a wage contract above § (the argument is the same as for why s* would be renegotiated to
a wage contract. If an inefficient third effort ¢;; greater than ¢" = ¢, exists, schemes too
far southeast of r™ also are not equilibrium initial contracts.'? Given this third effort, the
equilibrium initial contracts can be shown to form an interval of the r™- 5™ isoprofit line
that shrinks to »™ as the interval leg, €] shrinks to ey,

Instead of taking limits, it is easier to work in the limiting case of a continuum of

efforts. First, define the principal’s cost function for inducing effort:

C(e) = mins.e subject to IC and IR.13 4.3)
seS

Say that the agent “has talent™ if the following condition is satisfied:

CONDITIONT: (i) The interior of £ relative to the simplex A is nonempty;
(if) Each efficient effort is in the relative interior of E; and

(ifiy C is smooth at each efficient effort. 14

Given Condition T, the agent can perturb any efficient effort, i.e. signal probability
vector, 2 small amount in any direction. The principal can induce these perturbations at

no first-order loss, since an efficient ¢ maximizes the differentiable function w.e — C(e).

12 An s exists to the southeast of 5™ such that Als.erp > A > Als, ep) > Als, er). Ifrisa
scheme fur to the southeast of 7, then s.e;; < r-e;;. In this case, by Criterion C, the
principal agrees to renegotiate r to s. Thus, in any equilibrium A¢9(+) > A, As equilibria
are efficient, r cannot be an equilibrium initial contract.

13 Grossman and Hart (1983) show that this program has a solution if the constraint set is
nonempty, which it is for inducible efforts. Let C(e) = = if ¢ is not inducible.

14 point ¢ is in the interior of £ relative to A if an open set U c R” exists such that

e€e UNACE. Any f ESR is smooth at a relatively interior e if it has a continuously
differentiable extension to some such /. We may assume f is actually defined on U, so
that the partial derivatives f;(e) and gradient Vf{e) can be written without ambiguity; the
upcoming arguments do not depend on the extension used (Milnor, 1965, pp. 1-7).
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Parts (¢) and (iii) of Condition T are satisfied, for example, if £ = A, the agent’s cost
and utility functions are twice continuously differentiable, and ¢ is convex. Then, a

strictly positive ¢ is induced by s if and only if multiplier y exists such that
us;) =y + ce) foreachi,

where ¢;(e) is the partial derivative. The agent’s resulting expected utility is
H(s).-e—cle) = y+ Ve(e).e -cle).

If this expected utility is A, as is true when s solves {4.3) (as IR binds), then

5= u‘l[E +c(e) =Vele)-e + c{e)]. Therefore,

Cle) = 2 e WA + cley —Vele)-e + cfe)].

i=]

Note that this C is smooth at each inducible, relative interior effort.

PROPOSITION 4: Under Condition T, the only equilibrivem initial contract is the optimal

*
sales contract v
PROQF: Let r be an equilibrium initial contract. Let (s™, ¢") be an equilibrium allocation

of I'(r). By Proposition 3(iv), it solves (P) and (A - r). The former implies that ¢” solves

(P-n) max r-e—Cle).
eck

Because (s*, e*) is efficient and solves (A -r), A" = A. Hence, dual to (A - 1) s,

(DA - ) maximize P(s, e) - P(r, e) subject to IC and
sel, eek

(IR) A(s,e) 2 A.

This program is like (P) except that r replaces 7, since P(s, e) —P(r,¢) =r.e¢ —s.e. Thus,

any allocation solving (DA - r) has an effort solving the program,

(P-ry max r.e—Cle).
ek
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A standard exercise shows that (s*, e*) solves (DA - r) becauses it solves (A - r). We
conclude that ¢” solves (P-r)aswell as (P-n).

Under Condition T, interior first order conditions for both programs are satisfied
ate". Since the constraint 2e;=11is linear, constraint qualification holds. Thus,

multipliers A and W exist such that for each i,
®—CieD) -k =0 and r-Cie")—pu = 0.

Letting p = A — 1, we see that r; = 1; — p; r is the sales contract with price p. Since AC
binds, P(s*, ¢) = Pr.e™ = p. Since (s", e*) is efficient, P(s ™, ') = P". Thusp = P", and

r 1s the optimal sales contract. I

5. Menu Game Results

Menu contracts are now introduced. The game starts with the principal offering a
menu m°. Acceptance of m© by the agent leads to a subgame I'(°) in which the agent
takes an effort and proposes a menu m. The principal chooses between m and m©, after
which — this is the new stage — the agent selects a scheme from the final contract to
determine actual payments.

The central questions are whether (a) equilibrium-path renegotiation, (b) relatively
simple singleton contracts, or (c) quite simple sales contracts necessarily arise when
menus are available. Affirmative answers require that some extra cost be borne if a
multiple-scheme menu is used. This follows from Ma’s (1993) construction, for the
game in which menus are freely available, of an efficient equilibrium in which a
renegotiation-proof, multiple-scheme menu is adopted. This menuis m™ = {s(e)l e € E;},
where £ is the set of inducible efforts, and s(e) solves the cost minimization (4.3). The
agent’s strategy in this equilibrium is to accept m initially, to not renegotiate m", to take
an efficient e, and to select from m™ the efficient scheme §*= s(e”).

However, as shall be shown, even small menu costs imply that a menu will not be
used. Two kinds of menu costs are considered. The firstis a selection cost, borne when
the agent selects a scheme from a menu. This cost could be the transportation or

opportunity cost required to make the selection, or the cost of hiring a third-party to
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verify the selection, or the agent’s computational cost of finding his optimal selection.
Selection costs are avoidable by renegotiating a menu contract to a singleton, since they
are only incurred if the agent actually selects from a menu. The second kind of menu cost
is a complexity cost of formulating, writing, reading, and agreeing to a multiple-scheme
menu. Complexity costs, unlike selection costs, are sunk when a menu is agreed, even if
1t is later renegotiated to a singleton. Both kinds of menu cost will be shown to imply
that renegotiation occurs and the final contract is a singleton, even if the costs are
arbitrarily small. With menu complexity costs, the initial contract is necessarily a
singleton, and it must be the optimal sales contract if the agent is talented.

These results are obtained using the previous section’s demonstration that efficiency
is achievable without menus. However, the derivations are not trivial; in principle, even
if menus are costly, they could be adopted in equilibrium. In fact, without a refinement
criterion, menus that have only small costs are sustained by perfect Bayesian equilibria in
which the principal believes the agent will reject initial contracts that are singletons, and

will have shirked whenever he proposes to renegotiate to a singleton.

Selection Menu Costs

A simple model of small selection costs suffices. Accordingly, the cost of selecting
from any multiple-scheme menu is assumed to be a constant £4 > 0 to the agent, and
€p 2 0 to the principal. If the agent selects scheme s from menu m and takes effort ¢, the

payoffs are
Als,m, e) = A(s, e) —e4g(m), and
P(s,m, e) =P(s, e) — epg(m),

where g(m) = 1 if mm contains multiple schemes, and g(m) = 0 otherwise. If the final

contract is m and the agent choose e, his payoff is

Alm, e) = max A(s, m, e).
Se m

Given menu m, the agent’s set of optimal efforts is E(m) = argmax A(m, ¢) # &. Each
ec E

scheme in E(m) gives him utilit A*(m).
y
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Although Criterion C could be extended to apply to menus, doing so is
unncccssary.ls'm The results below rely on those of Section 4, where Criterion C is
applied only to singleton offers. Thus, a belief restriction is needed only at singleton
offers. Say that a PBE in this game is an equilibrium if it satisfies Criterion C exactly as
it is defined — for singletons m° and m — in Section 3.

The existence of equilibrium is an issue, here and in the menuless game of
Section 4, since (1) strategy sets are infinite, (2) payoffs are discontinuous (with menu
costs), and (3) Criterion C must be met. The proof of Proposition 5 below specifies
beliefs and strategies that are an equilibrium regardless of whether menus are availiable.

First, a generalization of program (A - r) is needed. For any menu m, let S(m, e) be
the subset of schemes in m that maximize A(, ¢). Note that S(n, ) is a nonempty,
compact-valued, u.h.c. correspondence. Thus, the set S(m, ¢) contains a worst scheme for

the principal, s"'(m, ¢) € argmin P(z, ¢). The desired program is:
te S(m.e)

0 ..
(A -m) A™ = maximize A(s, €) such that
sed, eek

(IC) ee E(s) and

(AC) P(s,e) 2 P(s*(mP, ), m9, e).

The next lemma (proved in Appendix C) shows that (A - m®) has a solution, despite its

unbounded set of feasible schemes, and the discontinuous right side of AC.
LEMMA 7: For any menu m®, (A - m®) has a solution.

In the equilibrium constructed to prove Proposition 5, in subgame T'(m°) the agent

sclects s (m°, e) if he chose e and m© is not renegotiated. His equilibrium renegotiation

15 For any m°®, a strategy of the agent is dominated if it requires him to accept m°, but
then to choose ¢ and propose 1 such that A(m. ¢) <A. Thus, Criteron C can be extended
to menus merely by replacing s by m: let E"(m) ={ee ElA(m,e)> X}, and require
B(E(m)Y | m® m) =1 when E(m) # .

16 One could worry whether the equilibrium constructed to prove existence, in
Proposition 5 below, satisfies the previous footnote’s extension of Criterion C 1o cover
menus. It does, as its belief function satisfies B(E(m) 1m®, m) = 1.
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proposal and effort is a singleton and effort that jointly solve (A - m©), and the principal
accepts the proposal. The equilibrium is efficient (as before, an equilibrium is declared

efficient if the payoffs are P* and A). The full proof 1s in Appendix C.

PROPOSITION 5:  The game with nonnegative selection menu costs has an equilibrium.

Furthermore, it has an equilibrium that is efficient and entails the adoption and
renegotiation of the optimal sales contract. The game of Section 4 in which menu

contracts are not feasible has an equilibrium with the same equilibrium path.

The next proposition shows that all equilibria are efficient, and that if selection

costs are positive, renegotiation occurs and the final contract is a singleton,

PROPOSITION 6: All equilibria of the selection menu cost game are efficient. Ife4 +€p > 0,

then renegotiation occurs, and the final contract is a singleton, in all equilibria.

PROQF: The proof of Lemma 3 is easily modified to show that P/ < P" and A%/ = 4 if
P* =P", and the argument of Proposition 1 still holds to show that the agent accepts
sales contracts with prices less than P*. Hence, Proposition 1 still proves efficiency. If
menu costs are positive, only a singleton can achieve efficiency. The equilibrium final
contract is thus a singleton. If renegotiation does not occur, the initial contract must be
this efficient singleton. That is impossible, by Proposition 2. Hence, renegotiation, to a

singleton, must occur if total menu costs are positive, M

REMARK: Ma (1993) also shows (when the set of efforts 1s finite, and menus are
costless) that any PBE of this game which satisfies a refinement criterion is efficient.
Ma’s criterion restricts the principal’s beliefs at information sets (#°, m) for which
E(m®) = E(m) = {e) for some ¢, i.c., for which the agent has a unique optimal effort
regardless of whether the final contract is m® or m. At such an information set, the
criterion requires the principal to believe the agent took effort e. This, like Criterion C,
requires the principal to believe the agent is not playing a certain kind of dominated
strategy — the difference is in the kind of dominated strategy. The two criteria are not

nested: Criterion C does not depend on E(m®), and Ma’s criterion does not depend on A.
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Interestingly, selection costs do not imply that the initial contract is a singleton.
One might conjecture that the principal would not offer a menu initially, because if she
did, the agent would later extract as rent the principal’s cost €p by proposing a
non-refusable (by Criterion C) singleton, in which case the principal’s payoft could be no

greater than P* — gp. This conjecture is false.l”

Complexity Menu Costs

Complexity menu costs are conceptually straightforward, but a formal treatment at
this point would be tedious. Thus, the analysis here is informal.

Complexity costs are modeled most simply as constants, 8p = 0 for the principal
and &4 = O for the agent. These costs are borne immediately once a new multiple-scheme
menu contract is agreed, regardless of the number and nature of its schemes, and
regardless of whether it is later renegotiated. For example, if the initial contract m® is a
multiple-scheme menu and is renegotiated to another multiple-scheme menu m, and the
agent takes effort ¢ and selects s € m, the payoffs are A(s, e) — 24 and P(s, e) — 2¢p,
respectively. Both dp and 8,4 are viewed as small.

As with selection costs, Criterion C is still a reasonable restriction of the principal’s
belietfs at information sets following an initial singleton contract and a singleton
renegotiation proposal. Refer to any PBE satisfying the criterion at such information sets
as an equilibrium. A construction as in Proposition 5 proves the existence of equilibrium.
The inclusion of complexity costs does not affect the arguments used in Section 4. In
particular, the logic of Proposition 1 still implies that the agent will accept a sales

contract with price less than P*. Thus, all equilibria are efficient, with payoffs P* and A.

171 the two-by-two example, an equilibrium exists in which the initial contract is a
menu m® = {r!, 2}, where r! (+2) is on the type-e, agent’'s reservation indifference curve
slightly above (below) s*. The agent selects r! if #° is not renegotiated, except when he
takes ey, and his rejected proposal is s*, in which case he selects »2. If she belicves the
effort is ey, the principal prefers »! to 5™ to r2, and so she will agree to renegotiate if and
only if the proposal is 5™. In equilibrium the agent chooses ¢y, and proposes 5", which the
principal accepts. If €4 2 A(rl, ep) A (which is the case when €4 > 0 and rlis close
o s*), these are equilibrium strategies.
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These payoffs are not attainable, when 0,4 or &p is positive, if a multiple-scheme menu is
used in equilibrium. Thus, 84 + 8p > 0 implies that only singleton contracts occur on the

equilibrium path, and the results of Section 4 hold a fortiori.

PROPOSITION 7: All equilibria of the complexity menu cost game are efficient. If

84 + 8p > 0, all equilibria entail the renegotiation of one singleton contract to another. If

the agent has talent, the only equilibrium initial contract is the optimal sales contract r.

6. Remarks on Extensions

Initial Offer by the Agent

The analysis extends to situations in which the agent makes the initial, as well as the
renegotiation, offer. The relevant efficiency benchmark is then set by maximizing the
agent’s expected utility subject to the incentive constraint IC, and to a lower bound on the
principal’s expected profit. An efficient allocation is defined as a solution to this
problem; it generally gives the agent a utility A* greater than his reservation utility Al

Efficient perfect Bayesian equilibria in which the agent offers a sales contract, and
later renegotiates it, still exist. But efficiency is not implied by Criterion C; its focus on
contracts which give the agent A is not useful if A* > A. However, efficiency is implied
by similar, but stronger criteria. One of them requires the principal to sometimes believe
the agent chose his effort under the éssumption that his renegotiation offer would be
accepted. The principal should have such beliefs if the agent’s renegotiation offer, for
example, is preferred by both parties to the initial contract, given that the agent’s effort is
optimal for it. In this case the agent can reasonably expect the principal to accept the

offer. 13 Formally, this criterion (which implies Criterion C) is the following.

CRITERION CC: For all contracts r and s, B(E(s) | r,5) =1 if A"(s) > A(») and
P(s.e) > P(r.e) for all ¢ € E(s).

18 This criterion is thus similar to that of Farrell (1990) and Grossman and Perry (1986).
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If this criterion is substituted for Criterion C, the results extend to the game in which the

agent makes both offers. The proofs are nearly the same.

Endogenous Bargaining Power

The mode! also extends to situations in which the initial contract can specify a
bargaining process. For example, suppose it can specify both a menu, and a party who
will be able to make ultimatum renegotiation proposals. The results of Fudenberg and
Tirole (1990) imply that in any PBE, the best initial contracts that the principal can offer
which give her the right to make renegotiation proposals lead to inefficient allocations;
they induce the agent to play a mixed effort strategy, and the principal’s payoff will be
less than P*, However, the argument in Proposition | shows that in PBE satisfying
Criterion C, the principal can offer and the agent will accept an initial contract that
specifies a sales scheme with a price less than P*, if the contract lets the agent lead the
renegotiation. Thus, every equilibrium is efficient. All equilibrium initial contracts give
the agent the sole right to make renegotiation proposals. One equilibrium initial contract
specifies the optimal sales scheme r*, and it is renegotiated to an cfficient scheme. This
is the only equilibrium outcome if the agent has talent and menus have complexity costs.

This extension requires that a renegotiation/revision process specified in the initial
contract be enforceable, as is assumed, e.g., in Hart and Moore (1988), Chung (1991),
Rubinstein and Wolinsky (1992), and Aghion er. ai. (forthcoming). Seemingly, the steps
of a bargaining process, its sequence of written proposals and acceptances, could be made
verifiable and hence contractible. However, the issue is problematic. Methods for
enforcing an agreement to the effect that one party will not make renegotiation offers may
also be methods for enforcing an agreement that neither party will make renegotiation

offers, in which case the parties can commit to not renegotiate.w’20

19 1 thank a referee for bringing this possibility to my attention.

20 Aghion et. al. (forthcoming) present a way, using a hostage, by which bargaining
power can be credibly specified in a contract. But the method sometimes relies on a
court to enforce outcomes that are commonly known to be inefficient, contrary to the
motivation that renegotiation is always possible. Further remarks on contractual
commitment are in Moore (1992) and Hart and Moore (1988, especially fn. 19 and 20).
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Limited Wealth

The optimal sales contract has been assumed feasible. However. in some
applications the price it requires, ", may be greater than the agent’s wealth, and greater
than the firm’s proceeds when they are low. In this case the optimal sales contract would
not be feasible. An important question for future inquiry is whether another kind of

simple contract, such as a debt contract, then arises.
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Appendix A: Inducibility and Strict Inducibility

Proposition 0 below reveals the geometry of inducibility, and proves that
generically, any inducible effort is strictly inducible if the set of efforts £ is finite.

As a preliminary, say that e is redundant if for a finite set of strictly inducible
efforts, {e!,..., e}, the point (e, c(e)) ER”H is a convex combination of the points
(%, c(e)). Thus, e is payoff-equivalent to a mixed strategy on {el,..., e™}. This set does
not include ¢, since strictly inducible efforts are not redundant (part (i) of Proposition 0).
Redundant efforts can be deleted in any order to yield the same reduced environment, and
this new environment will be payoff-equivalent to the original.

Let ¢ be the convex hull of ¢, the greatest convex function majorized by ¢: for any
e € £, t{e) is the infimum of the set of finite convex combinations of the form Elkc(ek)
for which ¢ = Zxe*. Similarly, let 2(-le) be the convex hull of the restriction of ¢ to

E\{e}.22 Then c(e) = (e), butc(e) and ¢(ele) have no necessary relationship.

PROPOSITION Q: Assume E is a finite set B

(i) Ifee Eisinducible, c(e) = t(e); the converse holds if u is unbounded above
(ity If e € Eis redundant, it is not strictly inducible.
(i) Ife € Eis inducible but not strictly inducible, it is redundant and c(e) = t(ele).

(iv) Assumption | holds for a generic set of cost functions c.

PROQEF: (i) Assume ¢ is inducible, say by s, and equal to a convex combination of
(possibly) other efforts, e = Z?Lkek. Then c(e) < c(eX) + uls)- (e — e") for each &. Hence,
cle) < Elkc(ek). As t(e) is the infimum of such convex combinations, c(e) = 7(e).
Conversely now, assume c{e) = ¢(e) and « is unbounded above. Since E is finite, 7 is a
polyhedral convex function, and so has a subgradient everywhere in conv £ (Rockafellar

r

1970, p226). Letve R" bea subgradient of tat . Then foreach d e E,

22 jfeog convEN e}, then t{ele) = oo,

2 Evenif E is infinite, the first part of (i), the second part of () if e € ri £, and (if) are
still true. I conjecture that an analog of (iv), the genericity result, holds if £ is infinite.

24 proposition 2 in Hermalin and Katz (1991) is similar to (7).
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cdyzeldyzcle)+v.(d—e)=cle) +v-(d —e).

Hence, an s defined by s; = 1~ 1(v;) induces e (note that «: ®—R is invertable because it is
unbounded above by hypothesis, and is increasing and concave).

(i) We prove that if (e, ¢(¢)) is a convex combination Elk(ek, c(e*)), then any s
inducing e also induces each e*. A fortiori, no redundant effort is strictly inducible. So
assume s induces ¢, and set v = u(s). Then (v, =1).(e, c(e)) = (v, =1). (&, c(e)) for each £.
Multiply by A and add over £ to obtain (v, -1).(e, c(e)) = (v, —1)-E?Lk(ek, c(ery). This
inequality s not strict, as (e, c(e)) = Zlk(e"‘, c(€d). The previous inequality for et is
hence not strict, and so s induces &,

(tit) We first show the following:

If € is inducible and z e 91”“ exists such that 2. (& ¢(2) > z-(d, c(d))

forall d € E\{&}, then & is strictly inducible. (al)

Given ¢ and z, let s induce &. Then (1(s),-1) -(2’. c(e) 2 (u(s),-1).(d, cld)) for d € E\{@}.
Choose € > 0 so small that | > ez, | and (u(s;) + €2)/(1 — €2,4) < \}E’lmu(v) foreach i <n.
Then define 1 € R” by ult;) = (u(s;)) + ez)/(1 — ez, 7). Scheme ¢ st}ictly induces .

Now assume ¢ is inducible but not strictly inducible. By (al), (e, c(e)) cannot be
strictly separated from B = conv{ (d,c(d)) | d € E,d #e}. As E is finite, B is a polytope
and hence closed. Thus, (e, c{e)) € B, and so is equal to a convex combination of
extreme points (ek, (&) of B. By the proof of (i7) above, each ¢ is inducible (by any s
that induce ¢). Since B is a polytope, each extreme point (e, c(€5)) can be strictly
separated from the rest of B. Hence, (al) implies * is strictly inducible. This proves e is
redundant. Since (e,c(e)) € B, c(e) = t(ele). The argument used to prove the first part of
(1) shows that c(e) < t(ele). Hence, c(e) = t(ele).

(iv) Enumerate E as el,..., e™. Viewc as a point (c},..., ¢,y € R Let DEcR” be
the set of ¢ at which e is either strictly inducible or not inducible. We show that D
contains a set that is open, dense, and has null complement. This shows that the set of ¢

at which Assumption 1 is satisfied, ) DX, is similarly generic.
ri

View ¢(-lef) as a function fof ¢;. Thatis, forK ={1,... k-1, k+1,..., m},
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fley= min - X A suchthath;20forje K,

(;"j)je kK Jjek

Lhi=land T kel =ek (a2)
jeK JeK
if ek € conv E\[éF), and f() = oo otherwise. Now, if ¢ ¢ D, then (iiry implies ¢ = f{c ).
Hence, DX contains the complement of the graph of . The graph of f is closed because f
is continuous, and so has measure zero (Fubini Theorem for measure zero, Guillemin and

Pollack, 1974, p204). Thus, the complement of the graph of fis dense, open, and has a

null complement. It is the desired generic subset of DX, W

Appendix B: Proofs for Sections 3 and 4

PROOF OF LEMMA 3: Fix a PBE. As the agent can reject any initial offer, A%/ > 4 is

obvious, and so is A°/() 2 A for any 7 the agent accepts with positive probability. Consider
a scheme r. In I'(r), with positive probability the agent’s choice gives the principal at least
her equilibrium payeff. Hence, for some equilibrium choice (s, €) of the agent, i.e. some

(s, €) 1n the support of his (possibly mixed) strategy in ['(r),
P = aP(s,e} + (1-)P(r, e) = P,

where ¢ is the principal’s equilibrium probability of accepting s (a = ap(r,s)). Because

(s, e) 1s an equilibrium choice of the agent,

A%

aAls, e) + (1A, e)

max {aA(s, d) + (1-a)A(r, d)).
de E

Lemma | now implies the existence of scheme ¢ such that e € E(¢), A(t, ¢) = AT,
and P(1, €) > P> PYU(r),

Suppose the agent accepts r with positive probability. Then A/(r) > A, and hence
A(t,€) 2 A. So (1, e) is feasible for (P), implying that P(r, ) < P*. Thus, P/(r) < P*. As
this is true for all » accepted with positive probability, P/ < P*.

Suppose now that r is any scheme satisfying P“() = P*. Then P(t, e) = P*. If
All, e) > A, then (1, ¢) 1s feasible for (P), and hence solves it. This is impossible, since IR

binds in (P). Thus A(t, ¢) <A, and so A“Y(r) <A,
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If P = P", then P*Y(r) = P* for almost all r the agent accepts with positive

probability. The previous two paragraphs imply A°/(r) = A for such r. Hence A=A, W

PROOF OFLLEMMA 5: Let d e E(f) be an effort which minimizes ¢.e on £(¢f). For small

g >0 and § > 0, define scheme s by,
u(sf‘a) = (e +u().-d) + (1 —-5)11(11-)
= (e + A" + o)) + (1 -B)ulz).

The s we seek is 5 for sufficiently small € and 8. Observe that

u(s=%y.e — c(e)

8 + AT(D) = 8{cle)— cd)} —(1-8HA™() — A(1, e)).

A(SE'S, (3)

I

It

Thus, A*(s%) > AGs*®, @) = 8¢ + A™(1). This proves (i).

Let £E(s,t) = e E| Als,e) > A*(r)l. To prove (ii), we must show
*%-n.e<0 foree E(*, 1), (a5)
The #;’s vary, the distribution « has full support, and u is strictly concave. Thus, &> 0

exists such that, for sufficiently small e,

e+ult).d < u(t.-d-k). (ab)

&

Note that s%° — 1, and E(t, ) = E(r). Also, E(., ) is u.h.c., and the set E of possible efforts

is compact. Thus, as d minimizes r.e on E(z), we can choose (g, 8) sufficiently small and

positive so that both (a6) and the following hold:
t.d<t.e+k foree EGE, 0. (a7)

By the convexity of 11, the fact that A™() + c(d) = w(f)-d, and (a6), we have

sE = w8 + AY0) + cd) + (1 - d)u(r))

I

IA

Sul(e + u(e)-dy + (1 -8y (1))
Ot d — k) +(1-0),.

IA

Consequently, (s —1).e < 8(r.d — k - 1.¢), which by (a7) is negative for e € E(s%0 ¢).
24

This proves (a5), and hence (/). W
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PROOF OF PROPQSITION 3:

Step 1: Prove a4(r) = 1 (the agent surely accepts 7).

Because the equilibrium is efficient,
P* = P =a, (0P + (1-a,0)P. (a10)
Thus a,(r) > 0, as P> P. By Lemma 3 and a,(r) >0, P < P*; (a10) now implies
&’A(f') = 1.
Step 2: Prove PY(r) = P and A0 =A.
From Step 1 and (al0), P(r) = P*. Lemma 3 now implies A“/¢) = A.

Step 3: Prove (i) (r is not a wage contract).
If r were to be a wage contract, it would not be renegotiated (Lemma 4), and
A () =A%) = A. Hence, equilibrium allocations (r, ) of ['(r) are feasible for (P) and,

. i * . . . . .
since P*(r) = P", solve it. This contradicts the presumed inefficiency of wage contracts.

Step 4: Finish proving (if) (i.e., prove A*(r) <E).

By Step 1, we need only show A™(r) <A. Asthe agent could propose r,
A*(r) < A"™(r). Hence, by Step 2, A*(r) <A. Assume equality. Then (Lemma 5 ) s exists
such that A™(s) >K, and P(s,e) > P(r,e) foralle l_f(s). By Criterion C, the principal
accepts § in I'(r). Thus A“(r) 2 A*(s) >;, contrary to A“Y(r) = A. Hence, A*(r) <A.

Step 5: Prove A" < A

Assume otherwise. Then (?, ¢) exists such that A(P, e) > /T, P(?, €)= P, e), and
¢E E(?). Define ¢ by u(r)) = “(?i) —g, where 0 <€ < A(?. e) —A. Then Alr, e) > E,
P(t,e)>P(r,e),and e € E(t). By Lemma 2, {¢} = E(¢) can be assumed. Further, we can

assume f 1s not a wage contract.?® Define $ by

(s = ut) + A — At e).

25 Since E(.) 1s upper hemicontinuous and {e} = E(r). a neighborhood N of ¢ exists such
that for all s € N and d € E(s), A(s.d) > A and P(s.d) > P(r.d). Lets be a non-wage
contract in V, and let d € E(s), and replace (¢, ¢) by (s, d). Then {d} = E(s) can be
assumed by Lemma 2.
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Then EG) = {e} and A*($) = A. Hence, E®) = {e}. Also, P(S. e) > P(r, €) since each

31- <t. As E(-) is u.h.c., a neighborhood N of § exists such thatif s € N,
P&, dy> P, d) forallde Es). (all)

As 1 is non-wage, § is non-wage. So by Lemma 5, given that A™(5) = A, s € N exists such

that A*(s) >Z, and P(s, d) > P(@, dyforalld e E(s). The latter and (all) imply
P(s,d)>P(r,d) foralld e E(s).

Criterion C thus requires the principal to accept s. This yields a contradiction,

A%y > A%(s) >A. Hence A’ <A.

Step 6: Prove (iif) (the principal surely accepts equilibrium offers in I'(r)).

Let s be an equilibrium offer of the agent in I'(#), and let a = ap(r, 5) be the
probability with which the principal accepts 5. Because A“(r) > A™(r), s # r and a > 0.
The principal’s beliefs about the agent’s effort conditional on (r,s) are correct, since (r, §)
1s on the equilibrium path. Thus, as the principal finds s acceptable, e exists such that
(s, €) 1s an equilibrium choice of the agent, and P(s, ) = P(r, e).

Assume ¢ < 1. Since e maximizes gA(s,.) + (1-a)A(r,.) on E, Lemma 1 implies the
existence of r such thate € E(1},

Alt, e} > aA(s, e) + (1-a)A(r, e), and
P(t,ey>aP (s, e) + (1-a)P(r, e).

The right side of the first inequality is A°7() = A, and so A(7, €) > A. Since
P(s, e) =2 P(r, e), the second inequality implies P(t, e} > P(r, e). Thus, (¢, e) is feasible for

(A-r). ButStep Sand A(t,e) > A imply A(t, ) >A”". This contradiction proves a = 1.

Step 7: Prove A" = A.

Let (s, €) be the equilibrium allocation of I'(r) identified in Step 6. Since
P(s,e) 2 P(r, ), (s, e} satisfies AC, Since the agent knows when he chooses effort that s
will be the final contract, (s, ¢) satisfies IC. Thus, (s, €) is feasible for (A - r). Therefore

AT> A(s, €) =A“(r) = A. Hence. by Step 5, A" = A.
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Step 8: Prove (iv) (equilibrium allocations of ['(#} are efficient and solve (A - r).)

Let | denote the agent’s mixed strategy in I'(r), with support Supp(y) € SX£E.

By (iii), the principal accepts the agent’s offers. Hence, [ is the equilibrium distribution
of allocations in I'(r), and allocations in Supp(ls) give the agent A“/(+). Define
g(s,e)= P(s, e) — P(r, e). Consider some (s, €) € Supp(l).

By Steps 2 and 7, A(s, ¢) = A”. Since the agent knows when he chooses effort that s
will be accepted, (s, ¢) satisfies IC. Thus, (s, ) solves (A - r) if and only if it satisfies AC.
It cannot satisfy AC with slack, as AC binds in (A - .26 Thus, g <0 on Supp(y). But
the expectation of ¢ according to [ is nonnegative, since the principal accepts the agent’s
offers. Because g is continuous, this implies that ¢ = 0 on Supp(u). Thus, (s, €) satisfies
AC, and so solves (A - r). This shows that all alloctions in Supp(u) solve (A - r).

Because AGs, ¢) = A%(r) = A, (s, e) satisfies IR as well as IC. Allocations in
Supp(u) are therefore teasible for (P), and so P < P* on Supp(u). The expectation of P
according 1o [ is P*4() = P*. Thus P = P™ on Supp(}), since P is continuous. This

proves that allocations in Supp(l) are efficient. Wl

Appendix C: Proofs for Section 5 (Existence Proofs)

3
PROOE OF LEMMA 7: Let X < R be the set of pairs (s, ¢) satisfying the constraints of

(A -mY). We first show that X # J. Let (5, ¢) maximize A(-, -) on the {compact) set
mOPxE. Then e € E(s) and s € S(mY, ¢). The former is IC, and the latter implies
P(s,e) = P(s"(m©, e), e) = P(s"(mY, ), m°, ¢), which is AC. Thus, (5,¢) € X.

For this same (s, e), let "= A(s, €). Let Y be the subset of pairs (7, d) € X that
satisfy A(r,d) =2 a’. Then ¥ = &, and any solution of (A - m®) belongs to Y. To show the
existence of a solution, it suffices to show Y is closed and bounded.

To show that Y is closed, Tet {(s%, %)} be a sequence in Y converging to (s, €).
Because each (s%, &) satisfies IC and £¢) has closed graph, (s, ) satisfies IC. Because

S(m®, -) is u.h.c. with values in the compact m®, the definition of s*(m°, -), implies that

26 proof: Let (s, e) satisfy IC and, with slack, AC. Definer by u(r;) = u(s;) + €. Forg >0
small, (1, e) satisfies IC and AC, and A(r, ¢) > A(s, e). Thus, (s, ) cannot solve (A - r).
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P(s*(m°, ¢, m°, ¢*) can only jump down as & — e, that is, P(sW(mP®, ), mC, -) is a lower
semicontinuous function of effort. Hence, as each (s, ¢f) satisfies AC, so does (s, e).
Therefore (s, ¢) € Y. This proves Y is closed.

To show Y is bounded, we show an arbitrary sequence {(s%, %)} in Y is bounded.

Because u(s*). ek — c(e®) = A(s*, X)) 2 o', a constant o (= o’ + gréig c(e)) exists such that
u(sk)-e" = Q. (al2)

Rewritten and applied to (s¥, e¥). constraint AC is 5. ef <epg(m®) + sW(m", ek)ek Thus,
skoek <y (al3)

for some number y. We now show that (al2) and (al3) imply {(s%, €5)} is bounded.

As u is concave, nonlinear and increasing, there exists x <0, b = 1’(x), z > 0, and
c=u'(z) such that 0 < ¢ < b. Let a be a number greater than both #(x) — bx and u(z) — cz.
The concavity of i implies it is bounded above by a function defined by v(y) =« + by if

v<O,andv()=a+cyif y20. From(al2),
o < 1'(3“')-()'('. (ald)

For each &, let [(k) = {i | & > 0}. Using (al3),

v(sh) .k = a + b, sk + ¢ D ehsk
i 1K) Fe 1)
< a+ by+ (c—b) 2, &k (al5)
ie Ik

Let M" = max vf As E is compact, we may assume | e} converges to some e € E. Since
!
every effort in E is strictly positive, a number & > 0 exists such that ef > & for all / and

large k. Since s{,‘ > fori e I(k),

Yk 28 ¢ 2 aMh. (al6)

iel{k) fellk)
Combine (a14)- (al6), recalling that ¢ < b, to obtain
o< a+by+ (c—b)SMk.

This proves that {Mk} is bounded above, say by M. Let m* = min 5/,\ Then,
I
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a < v(ish).ék € Svimb) + (1 -S(M).

Since v(y) » —ooas y — —oo, {mk} is bounded below. W

PROOF OF PROPOSITION 5: Items (a) - (¢) below specify strategies and beliefs that form

an equilibrium of both the singleton game, and the menu game with selection costs.
For any feasible (m, e), let s(m1, €) be a scheme in S(m, e), i.e., a best scheme for the
type-¢ agent in menu m. Recall that s*(m°, ¢) is the worst scheme for the principal in S(m,

e), given that the agent’s effort is e. The following is an optimal selection rule.

(a) Agent’s selection rule: If the agent chose ¢ and the final contract is m°, he
selects s (m©, ¢) from mP. If the final contract is 1, he selects s(m, €).
For any feasible m®, let (s(m?), e(m®)) be a scheme-effort pair that solves (A - m°).
Recall that ap(m®, m) is the probability with which the principal accepts the agent’s
proposed m when the initial contract is m°.

o)‘ZT

(b} Principal’s beliefs and acceptance rule: If m = s(m then

Ble(m®) Im®, m) =ap(m® m)y=1. If m=s(m") and e € E(m) exists such

that P(s(mm, ), m, €) 2 P(s"(m°, €), m©, ¢), then (eI m®, m) = ap(m®, m)= 1.

Finally, if m # s(m®) and no such ¢ exists, then ap(m®, m) =0 and

B(- Im®, m) is any probability measure with support in £(m).
The acceptance strategy in (b) is sequentially rational, given (a). It 1s only worth
observing that because (s(m?), e(m")) satisfies AC, and s(n, ) = s(m®) when m = s(m?),
accepting m = s(m°) is optimal for the principal when she believes the effort is e(m°).
Criterion C holds because for each m, the support of the beliefs is in £(m), which 1s a
subset of I_E(m) =lee ElA(m,e)2 K}, it the latter is nonempty. (Note that E(m) = E(s) if

m = {s}.) Beliefs are correct on the equilibrium path because of the following.

(¢) In subgame I'(m®), the agent proposes s(m®) and takes effort e(m®).

To see that (c) specifies a best reply, note first that according to (a) - (¢}, the agent’s

payoff is A" in I'(m®). Suppose he plays some (1, ¢) in ['(m®). Assume m is accepted.

27 Singleton menus are written as m = s, rather than the more proper m = {s}.
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Then (b) implies that for some d € E(m), P(s(m, d), d) 2 P(s*(m°, d), n®, d) + epg(m).

This shows that (s(m, d), d) satisfies AC. It also satisfies IC. as d € E¢m) implies that

A, d), dy = A, d) = A(m, e)
= A(s(m, e), e) 2 A(s(m, d), e).
Hence, (s(m. d).d) is feasible for (A- m®). This implies A(m, e) LA(s(m, d), d) < A"’ The
agent therefore gets no less from (s{(m?), e(m®)) than from (m, €). Now assume m is
rejected. Then the agent’s payoff is at most A% (m©), which is A(s(m°, d), d) for some
d € E(m®). This (s(m®, d), d) is feasible for (A- m®), by an argument similar to the
preceeding one. Hence, A*(mo) < A" This completes the proof that (a) and (b) imply

that the agent can get no more than A" in ['(m®), and hence that (c) defines a best reply.

(d) The agent accepts m? if and only ifA"° > A,

This is optimal for the agent because (a) — (¢) imply his payoff is Am%in ["(m9).

(e) The principal’s initial offer is the optimal sales contract: m® = .

The solution (s(™), e(r™)) of (A-r") gives the agent a payoff of A”™ = 4. So by (d), the
agent accepts #~ and the principal gets P, She gets no more than P by offering

some other mY, since it is either accepted and so results in an allocation (s(m®), e(m°))
feasible for (P), or it is rejected and so gives the principal P < P*. This shows that (¢)

defines a best reply for the principal. W
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Figure 2

The extensive form of the game in which all contracts are singletons.
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