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Suppose atunction F of nreal variables is given. Is it possible to write
F as a tunction of tfewer than n variables? More particularlv. what is the
smallest number of variables on which the value of F "really” depends? We
mention two contexts in which this question arises.

First. Mount and Reiter [8. 9] have proposed a model of computation
inwhich a network ot processors. consisting of a set of processors connected
by a directed graph. computes as follows. Each processor p receives the
values of its inputs. sav. x'...x%, from outside the network. or from
immediately preceding processors. and computes, in one unit of time, the

|

value of a function v = f_(x'...x%). Here s < r. r a given parameter. x'

p

can be a vector of some tixed dimension, sav. d. and fp bhelongs to a

specified class 7 of functions. Each processor sends the value of the function

It computes 1o every Successor. i.e.. to everv processor to which it is directly
connected. or to outside the network.

A network of this kind is said to compute a tunction
E: Elxlizx...xEN - Z in time t if there is an initial state of the network such
that when the values e ... e™ are constantly ted into the network starting
from time (. the value of Frel..... eN) appears for the first time as output of
the network at time t.

The question is. How long does it take to compute a given function F?

The complexity of F relative to the class of networks characterized by r and

7 1s the minimum over all such networks of the time needed to compute F.



(It the time is infinite. then F is said to be not computable by networks in
the class characterized by r and 7.)

A lower bound on the complexitv of F depends on the number
of variables on which F "reallv” depends.

In the case where the sets El are finite Arbib and Spira {2} have
given a general (i.e.. no special assumptions about F are made) lower bound
on the number of variables on which F reallv depends. using the number of

elements in certain subsets of the sets E'. called separator sets. We seek

an analogous lower bound tor the case in which the sets E! are infinite.
more specifically when thev are differentiable manitolds. When these sets
are infinite the counting arguments of Arbib and Spira are not applicable.
Instead we formulate the concept of separator setin terms of an equivalence
relation induced on each of the sets E! bv the function F and obtain an
analogous lower bound tor the complexity of F in terms of the dimensions
of certain quotient spaces discussed below.

Our exploration of this problem makes formal use of the equilibrium
form of privacv preserving message exchange processes. sometimes referred
to as privacy preserving mechanisms. (See Hurwicz [4] and references cited
there.) In order to make this exposition self-contained we digress to provide
a briet account of the hasic elements of a privacy preserving mechanism.
Following that we present briefly the concept of communication complexity

of a function in 4 distributed computation.



Privacy Preserving Mechanisms

There is a finite number N of economic agents each of whom has a
space of characteristics. Let E! denote the space of agenti's characteristics
( such as her preference relations). Itis assumed that the information about
the joint environmente = (e ..... eN) is distributed among the agents so that
agent i knows onlv her characteristic el

There is given a tunction b Eix...xEN + Z. called the goal tunction

that expresses the goal of economic activitv. For example. for each e =
{e ... eN) in Elx...xEN. F(e) is the Walrasian allocation (or trade) when
e is the vector of characteristics. Agents communicate by exchanging
messages drawn from a message space denoted M. The final or consensus
message. also called the equilibrium message. in the environment e 1s given
by a correspondence

Wi El L BN oM
Equilibrium messages are translated into outcomes by an outcome function
h: M- 7.

A mechanism = = (M. 4. h) is said to realize the goal function F
(on E ) if for all e in E.

F(e) = h (u(e)).

The mechanism (M. g, h) is called privacy preserving if there exist



N(eN)'

ae) = ulelynu? (e

This condition states that the set of equilibrium message complexes
acceptable to agent i can depend on the environment only through the
component el which is. according to the assumption made above. everything
that i knows about the environment.

From now on we focus on the case in which the characteristics of the
agents are given by real parameters. It has been shown (see Hurwicz {4} and
references given there) that the inverse image of a point m in the message
space M is arectangle contained in the level set F~ l(h(m)). This fact. in the
presence of appropriate smoothness conditions. allows one to compute a
lower bound on the dimension of the message space of a privacy preserving
mechanism that realizes F. (see [5] or Hurwicz [4]). In the smooth case, the

dimension of the message space is a measure of its informational size, which

isin turn an important indicator of certain costs of communication entailed
bv the mechanism,
Communication Complexity

The dimension of the message space of a privacy preserving mechanism
that realizes F is closelv related to the number of variables that must be

communicated hbetween processors in a distributed computation of F. The

latter problem has been studied under the name communication complexity
of F. Abelsonf1] first studied this question in the following setting.

We state the problem for two processors. A function



F:rNCI )an(z) -7 is to be computed bv two processors. where processor 1
(Pl) has the value x = (xl.....xn(l)) in its memory and P2 knows v =
The processors are in two-way communication. FEach
processor computes something on the basis of the variables whose values it
knows and communicates the result to the other. This process continues

iteratively until one of the processors has the value of F at the point (x.¥).

The communication complexity of F is the minimum number of values
of variables. (real numbers). that must be communicated in total between
the two processors in order to compute the value of F. This number depends
on the number of variables x'. and yi on which F "really” depends.

The relation between the size of the message space of a privacy
preserving mechanism that realizes F and the communication complexity of
F is given by the equation dimension M = K+ . where K is the communi-
cation complexity of F. (Mount and Reiter [9]). (Of course, processor P,
is identitied with agent 1 and the sets El and RV} are identified.)
Separator Sets and Quotients

We return now to the main line of exposition and present our
formulation of the concept of separator sets for a function in terms of an
equivalence relation induced on each ol the sets El by the tunction F.

To begin with, this is stated set theoretically without topological or

smoothness conditions on the sets E'. The quotient constructions are quite



elementary when smoothness conditions are ignored. This makes parts of
the construction more transparent. Furthermore. when the Elare differen-
tiable manifolds the set theoretic constructions are used to establish the
existence of certain required functions. for which appropriate smoothness
conditions can then be veritied.

The cardinality conditions used in the counting arguments of Arbib
and Spira are replaced by universal mapping conditions. Specificaliy. for a
tunction F: E! X e X EN ~ 7 we establish the existence of a collection
of sets EI/F. l=i=N.
functions

qi B S El/E
and a tunction

F*:(EV/F)y..x (EN/F) - Z
that together satisfv the following conditions. First. the compaosition

F* o qlx...qu) = F.

and second. it there are functions

pi CED L X
and

HU Xy XN -7
tor which

He (plx xpi\) = F. then there are (one can construct) unique functions



pi cxl (Ei/'F). | <i< N.
such that

Joe pi = g
and

H = F *e (pl X e ¥ rN)-

These conditions state that the quotient object (El/F)x...x(EN/F) 1S
universal. a concept to be discussed further. (The term ‘universal object’ is
used in category theorv to describe objects that allow any object of the
category to be specitied by identitving a mapping to (or from) the universal
ohject [ 7 ]).

If the sets El are finite. then the cardinalitv of the set Ei/F i$ an
upper bound on the cardinality ot the corresponding Arbib-Spira separator
sets. Furthermore. each separator set in Elis the image of a subset of El/F
under some thread of qi. Bv a thread of qi we mean a function ttrom Ei/F
to E! such that qiot is the identitv function.

Next we assume that each E! is a differentiable manifold with
appropriate smoothness. If in some coordinate system (x;....x,) around a
point in E! (sav) it were possible, sav. to ignore the coordinate x; and still
to evaluate F. then knowledge of the coordinates (x....x, ;) would be
adequate. at least locallv. That is. F would depend on no more than the first
t-1 variables. In this case the manifold E! can be replaced. locally. by the

quotient induced by the equivalence relation (x |....x,_[.X;) = (X . X X" y)



it and onlv if

F(xl““‘xt—l*xt) = F(x[.....xt_l.x’ -
However. it is possible that even if in a given coordinate svstem no variable
can be eliminated. a change of coordinates can be introduced that leads to
a reduction of the number of variables required to compute F. Therefore,
we seek a4 "good” coordinate system hv looking for a "good” quotient. The
equivalence relation we use is "=",

In the case of smooth manitolds the quotient using the relation "="
mayv not have the structure of a smooth manifold tor which the quotient map
is differentiable. On the other hand. when such a structure does exist. then
separator sets are again the image of subsets of the quotient under threads
of the quotient map.

In any case conditions are imposed that ensures that the quotient
object. (EI/F)X...X(EN/F). is a topological manifold. In that case. the
dimension of the quotient manitold counts the number of variables
required.

When the smoothness conditions imposed include the existence of
certain local threads. then this quotient object satisfies the universality
conditions. We do not know that there is such a universal object that is as
smooth as the original product Elx...xEN. Possibly Godement’s Theorem
([10]. p.LG 3.27) might resolve this ditficultv.

If the gquotient map is one-to-one then no reduction in the number of



variables is possible no matter what coordinate svstem is used.

An algebraic characterization of the number of variables required to
compute a given function F is obtained trom a theorem of Leontiet [6]. also
used by Abelson [1] to construct a lower bound on the communication
complexity of F in a distributed system. The conditions we use for the
construction of a "good” quotient of E! where F:Elx...xEN - R, are rank
conditions on the bordered Hessian BH. The matrix BH has rows indexed
by coordinates x; from E!, and columns indexed by F and by the coordinates

Y tfrom sz...XEN with the (x,.F) entry being (aF/sx;)and the (x;.v;) entry

I
. ) . : .

heing (a“F/axia_vl-). The Hessian, H. is the sub-matrix of the bordered
Hessian that consists of the columns other than column F.

If at each pointx ot E! the matrix BH |, hasrankrand H |y @lso has

S T2 o w Af 2 -N

rank r at each point x of E* and each point v of E“x..xE"". then the
quotient of E! under the equivalence relation "=" is a manifold ot dimen-

sion r.

For example. consider the function K(x.x" .v. v ) =

2 F 22

Xv o+ x’zy + 22Xy S+ 2x TV = (v + Z_V’Z)(x +ox 2 ) where the
variables are all scalars.

No variable can be eliminated and still permit the function to be
evaluated in terms of the remaining variables. Indeed, no linear change ot

coordinates can reduce the number of variables required. This is indicated

bv the fact that the Hessian H. of K has rank 4.
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However. the (nonlinear) change of coordinates given by

= (x+x )

n = (y'+2}’2).
permits K to be written in terms ot onlv two variables. namely.

Kix. x"vov ) = ¢n.

The matrices H'x.) and BH |, both have rank equal to L.

Next consider an example given bv Abelson [1] in connection with
communication complexity. Let

o(X.Y) = Ek _ 0 _vkxlk + xk_v]k )

where

Here it is assumed that processor P knows X and processor P, knows Y.

[t is not possible to eliminate any of the 2N vartables X.Y in the
computation of @  But. no matter what the value of N. (N=z3). only
three real numbers need to be communicated between the two
processors to permit ¢ to be computed. This can be done. tor
instance. by having processor P send the value of x| to P, and P,
send the value of v, to P|. Then. knowing the value of x;. P, can compute
the first term of ¢. and send it to P|. who has computed the second term of
¢. knowing v . and then can calculate the sum.

In this example, the matrices BH and H do not have the same rank.

11



for N=3. Here the quotient object exists as a differentiable manitold of
dimension N. but this fact is derived directly from the equivalence relation
"=" and not from the ranks of BH and H.
Universal Objects and Revelation Mechanisms

We have noted that the quotient manifold serves as a universal object.
The concept of universal object comes trom category theory. However our
use of universal objects and their properties does not require the panoply
of category theorv. To specify the objects. we use a special type of privacy
preserving mechanism in which the message space is a product. We use an
elementary form of mechanism in which each agent uses the space of his
parameters as his message space. i.e. a revelation mechanism. A slight
generalization. which we call an adequate revelation mechanism. allows the
possibility that not all the individual parameters are revealed. If mecha-
nisms of this tvpe that realize a particular function have a universal object,

then such a mechanism is called the essential revelation mechanism, and it

is uniquelv determined to within isomorphism. This universal object
(mechanism) exists when the Hessian conditions (and some smoothness
assumptions) are satisfied. and it is the differentiable manitoid version ot
the product (El/F)x...X(EN/F). The universal ohject gives a lower bound
on the number of variables each agent must reveal in order to permit the
function F to be evaluated. that is, the number of variables on which F really

depends.

12



The remainder of the paper is organized as follows. Section 1
contains the set theoretic constructions used subsequently. Definitions of
F-equivalence. of adequate and essential revelation mechanisms are given.
It is established (Lemma 1.1 and Theorem 1.1) that the essential revelation
mechanism for a given function is the smallest adequate revelation
mechanism for F. Moreover. it is the (unique) adequate revelation
mechanism that serves as a universal object in the category of adequate
revelation mechanisms.

Section 2 deals with the case where the sets Ei {or Xi) are smooth
manifolds and F is smooth. Simple conditions are given that ensure that the
guotient sets are topological manitolds.

The matrices used in the analvsis are defined. and the concept of
differentiable separability is defined. The main results concerning
universality of the essential revelation mechanism for a function are
established.

The result on adequate revelation mechanisms in Section 2 require a
slightly altered version of Leontief’s theorem. This is related to a result
announced by Abelson{1]. The four propositions Lemma Al and Theorems
A2. A3, and A4 present the material. Thev and their proofs are given in
Appendix A. Appendix A includes an example of the constructions required.

Section 1. Initial set theoretic constructions

Notation. If Xi' I=<j<n. are sets, then X<—j> denotes the set

13



X]x LY Xj—l ¥ Xj'*’ k)(...)(Xn. It XEX.]- and it z =

czp) e X ;.. thenx [; z denotes the element

n) - e |
e Zg) of Xyx ... x Xn'
F-Equivalence

Definition_L.1: Suppose that X;. l<isn. and Y are sets. suppose that

F:IIln X:=Y is a function. and suppose that 1 <j<=n. Two points x and X’ In

Xj are F-equivalent in Xj it for each ze‘X<_‘i>, F(x /|
[t is elementary that F-equivalence in Xj is an equivalence relation on
points of Xj‘ Denote by (XJ-/F) the collection of F-equivalence classes of
Xj' Set gi equal to the quotient map trom Xj to (X.]-/F).
The following lemma establishes the sense in which the set
(X I/F) X oo X (Xn/F) is the smatllest product set through which F factors.
Lemma 1.1: Suppose that X |.....X . and Y are sets and suppose that
F:XIX...xXn»Y is a function. There is a unique tunction
F*:(XL/F)X...X(XH/F)»Y that makes the Diagram 1.1 commute.
{Displav Diagram 1. 1]
Furthermore. it Z|.....Z are sets. and if there are functions g;: X;»Z;. l=i=n.

and a function G:Z lx---xln*Y that makes Diagram 1.2 commute. then there

are uniquely determined maps g*...g*

g* . g*Z~(X;/F). that make

Diagram 1.3 commute,

[Display Diagram 1.2]

14



[Display Diagram 1.3]
Proof of Lemma 1.1.

We tirst show that it g;:X;»Z; and G:Hln Z,~>Y are functions that make
Diagram 1.2 commute. then we can tactor the map Hln g; through the
product Hln (Xi/F). It zaZi. choose x. x’ "Xi such that gi(x’ ) = gi(x) = Z.

For each weX _

e SELE(w) =

(g (w ) gy wio gy (Wi peegptw e s

Then Fix [; w) = Gg;(x) [; ew)) = Glg;(x') [; gw) ) = F(x' [;w). It
tollows that for each 1. q;i(x) = q;(x"). Theretore setting g*,(z) = g;(x)
defines a function g* trom Z; to (X;/F). It is clear that Diagram 1.3
comimutes.

To see the uniqueness of the maps g*,. note that it h*:Z~(X;/F).
l<i=n. are maps that make Diagram 1.3 commute when used in place of the
maps g *., then for each z¢Z; and each x¢X; so that g;(x) = z. itfollows that
gF(z)=g*(g{(x))= qj(x) = h*(g{(x)) = h*(z)&

Adequate and Essential Revelation Mechanisms

Definition 1.2. Suppose that X, .l=isn. and Z are sets and sup-

pose that F:X x..xX»Z is a function. An adequate revelation mechanism
realizing F is a triple (g x ... x g My x .. x M. h) that consists of:
(i) a product of sets Ml Y o ¥ Mn'

(i1) a collection of functions gi:Xi ~M.. l<i<n,

(iii} a function h:M | x ... y M ~Z. such that for each

15



(Voo ¥p) e X1 X o x Xn. I*‘(_vl. V) = h(gi(yl). N gn(yn)).

Lising the notation of Lemma 1.1. the triple
(Qpexqg. (X /Fx (X /F). F*) is an adequate revelation mechanism

called the essential revelation mechanism.

It (glx...xgn. M lX""‘Mn' h)is an adequate revelation mechanism. then

M lX'"XMn is an adequate revelation message space. The map g x--xgp is

the message function of the adequate revelation mechanism.

Universality of the Essential Revelation Mechanism

The following theorem is a restatement of Lemma 1.1 in terms of ade-
quate revelation mechanisms. It establishes the sense in which the essential
revelation mechanism is the smallest adequate revelation mechanism. It
states that not only is Mlx...XMn the product with the smallest cardinality
that can be used as the message space for an adequate revelation mecha-
nism. but it is also the case that for every other product space that acts as
a message space for an adequate revelation mechanism that realizes F there
is a product map onto M x..xM. This is a characteristic of a universal
object in the sense of category theorv. Theorem 1.1 states that the essential
revelation mechanism is a universal object in the category of adequate

revelation mechanisms.

Theorem [.1. Suppose that X;. I<i<n, and Z are nonempty sets and

suppose that F:X x..x X, »Z is a function.

16



(i) The triple (qv...xq (X /F).x(X,/F). ") is an adequate
revelation mechanism that realizes F:

(ii) The message function for any other adequate revelation mecha-
nism factors through (XI/F) Y. (Xn/F):

(ii1) The set (X l/F)x...X(Xn/F) is the smallest set in cardinalitv that
can be used as an adequate revelation message space for a mechanism that
realizes F:

(iv}) Finallv. the essential revelation mechanism is the unique
adequate revelation mechanism (to within isomorphism) through which all
adequate revelation mechanisms that realize F factor.

Section 2. The topological case.

When the X; are topological manifolds and when F is continuous. 1t
is in general not true that the sets (Xi/F) are manifolds. Even a high degree
of smoothness of F is insufficient to guarantee that (X;/F)is a topological
manifold. However. when the (X,/F) are Hausdorff. a fairlv simple
condition on the Jacobian of F coupled with a global separation condition
does imply that the (Xi/F) are manifotds. When these conditions are
satisfied. the essential revelation mechanism has the structure of a manifold.
and the dimensions of the (Xi/F) can be used to establish a lower bound on
the number of variables. i.e. the number of functions in a coordinate system.
that must be passed to a central processor in order to compute F. This

number indicates the complexity of the function F.
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[n this section we introduce the concept of differentiable separability,
which is the Jacobian condition that will be used. We then give simple
global conditions on the function F to ensure that the sets (X;/F) are
topological manitolds. We begin with some concepts from differential

geometry (c.t.[3]).

Definition 2.1. Let X and Y be differentiable manifolds. Let &:X-Y

be a differentiable mapping. If at a point peX the mapping ¢ has maximum
rank. and if dim X = dim Y. then & is said to be a submersion at p. If ¢ 15 a
submersion at each point of X. then ¢ is a submersion.

It a map g:X~Y is a submersion. then it is known(c.t. [3.p.9]) that the
map can be linearized (rectified). That is. it dim(X)=n. dim{Y)=m, and if
peX. we can choose coordinates X |.....x, at p in a neighborhood U of p. and

coordinates v...... v...in a neighborhood of g(p) so that for each gel. g(q)

Next we introduce a collection of matrices that are generalizations of
matrices used bv Leontief in [6].

Suppose that EL....E" are Euclidean spaces of dimensions d(1).....
d{n). such that the space Ei. I<i<sn has coordinates x;= (X; |....X] d{i))'
Assume that (P e Pn) is a point of Eix...xEn. and assume that Ui s an

open neighborhood of the point p,. 1 < i< n. We assume that F is a real

valued C--function defined on U lX"'XL'n'

18



We reguire four matrices.

(I): The matrix

BH(FXl RS .Xi d(l).xl 1= = ‘\l'l d(l'i) \l'f‘l |- - .Xn d(ﬂ)) =

BH(F:x;x . ;) is a matrix that has rows indexed by x; ....x; dii) and

columns indexed by F. x| ....x; dii-1 %+ 1 1%n d(n): The entry in the

i u)[h The entrv in row x; .. and In

X( row and in the F column is aF/axi iU

u-

.
1sa“f-/5xi aX:

column x u N we

1w

The matrix BH(F:x;:x is a tvpe of bordered Hessian because it

<ei>)

consists of a matrix of second derivatives bordered bv a collection of
columns of first derivatives.

(I): The matrix H(F:x;:x ;) is the submatrix of BH(F:x;x . ;.)

that consists of the columns indexed by x ue{l.....-l.i+ l,...n} and

u v

lev=d(u). In other words. we derive H from BH by eliminating the column
indexed by the tunction F.

In case that the number of Euclidean spaces is two, so that
F:ElezaR. we use a slightlv less cumbersome notation. Suppose that E!

has coordinates (x] ..... y and EZ has coordinates (_v1 ..... yq). then we use as

*p

row indices for BH(Fix....x v ... _vq} the variables x..... Xp and as column

indices F.v....v . The (xi,F)[h entry in BH(Fux . ..x

q .yl .....

D yq) is aF/ax; and
the (x;.v )th entry is a?'F/axi 8V,

i j

The matrices BH(Fux;ix ;. )and H(Fixjix ;) are matrices of func-

tions in the coordinates x.....x, of Elx...xEn. The conditions we place on

19



the matrices BH and H require that some. but not all, of the variables are
to be evaluated at a point. When that partial evaluation takes place we
indicate this by adding an asterisk to the H or BH. Specitically.

(I11): The matrix BH*(F: ;i x _ 5 )[x. po s ]
is the matrix that results from evaluating the variables x .., | .X; [-X
of the entries of BH(Fix;:x ;) at the pointp_ ;. =

(PP |-Pj 4 {----Pp). The matrix BH *(Fux;x

X i %P o5 J1satunction

of the variables Xj qeeees Xi d(i) alone.

Similarly, the matrix H*(F:x,x XiP . ] is the submatrix of

<-i>)[

BH *(Fixyx o )fx;.p . |derived by deleting the column indexed bhv F.

Ditterential Separability

Definition 2.2. Suppose that X .....X are ditferentiable mani-

folds. where for each | =< i= n. X, has dimension d(i). Suppose that p, ¢ X,
I = 1< n, and suppose that for each i. ¢; y.....d; d(i) is a coordinate svstem in
an open neighborhood U; of p;. Suppose that Fur™ X;=R is a C2-function.

Assume that for I<isn. ¢, = Ilo; j maps U, into an open neighborhood V; of
the origin 0 ot a Euclidean space El=RY0) 4nd that ¢; carries p; to 0;. We

assume that E' has coordinates Xi aeeees i d(i) The function F is said to be

differentiably separable of rank (r|...r ) at the point (p...p ) in the

coordinate SYSIEM ¢ |s.. by d(n) if for each l<i<n. the matrices

BH(F . (Hebt)"l: X and

P X))t e

H*(P‘-(Hmt)']:xi [-eeen Xid(i {Xi'() have rank riinaneighhorhood

<—i>]

20



and it ry=dim(X;) for each l<isn. then we will say that F is differentiably

separable at (p.....p] .

The tollowing lemma notes that the ranks of the Hessians used in the
previous definition are unchanged by coordinate changes. The proof Is a
simple computation.

Lemma 2.1, Suppose that for l=i<n. X; and Y; are C2-manifolds and

2_diffeomorphism. Assume that g "Y;»R and

suppose that hy:Y» X, isa €
F:HlnXieR are C2 functions such that g=0h,-F. Suppose that
(qp.....qp)<n Y, and let hi(g;) = (p;). It Fisditferentiably separable of rank

(T |eeeTp) @U(P [Py ). then g is differentiably separable of rank (r..... 1)

We can now define the term differentiably separable tfor a function
defined on a ditfferentiable manifold.

Definition 2.3, If Xi.lsign. are Cz—manifolds. the function

F:Xlx X Xn—»R is ditfferentiably separable of rank (I o sTy) AL the point

the coordinate svstemoy . ... . o d(n)-
The Number of Variables On Which F Realiv Depends
It F:X | x ... x X R is differentiably separable of rank

(r(h)....r(n)) ata point (p.....p,). then it s possible to write F as a function

21



of variables {v, |...v r1yY Yo r(n)}' This assertion. Lemma 2.2,
is a restatement of Theorem A.4. The proot of Theorem A.4 can be found
in Appendix A together with an example ot the construction.

Lemma 2.2. Suppose that for l<i<n. X; Is a C** Lmanifold. k=2, As-
surme.

(i) F:X | xox XoR is a 87 Ltunction.

(1) (P« ... . py) Is a point on X | x..x X .

A necessary condition that F can be written in the form
n)).Where (}'i oo Vi d(i)) is a coordi-
nate system on X;. is that F is differentiably separable at (p....p,) of rank
(s(1).....s(n)) where for each 1 < j=< n.s(j) = r(j). Conditions (i) and (1) are
also sufficient for F to be written in the form
Gy ey Py Ya 1V r(n)}“ for a CX-function G in a neighborhood
of & point (py. ... . py). if Fis ditferentiably separable of rank exactly
{r(l).....riny) at (pl. cee pn).
Rank Conditions and Construction of an Essential Revelation Mechanism
for F.

LLemma 2.2 suggests that in the case of a ditferentiable function F
satisfving the rank conditions stated in the lemma. it is possible to construct
an essential revelation mechanism whose message space is a topological

manifold. We now carry out the construction suggested by the lemma. The

main result is given in Theorem 2.1 and in Corollary 2.1.1.
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Detfinition 2.4. Suppose that X,. I<i=n and Z are CX-manifolds and

suppose that F:Xx..x X ~Z is a differentiable tunction. The triple

(2. .- .2 - Myx..x Mo h) that consists of spaces Myx..xM . maps
Qo8 22X oM UL = 1 < nand tfunction h:M x..xM »Z is an adequate

Qk-revelation mechanism that realizes F if:

(1) each of the spaces M; is a K manifold.
(i) cach of the functions g; .1 =i=n.and hisa CK_differentiable
function.

(iii) each g.. | < i< n. has a local thread at each point of M;.

Definition 2.5. Suppose that F: X x..xX~Z is a differentiable map

from a product of differentiable manifolds X...X to a differentiable

manifold Y. The function F factors_through a_product of manifolds
Z x..xZ it there are submersions g.:X,»Z;. and a differentiable mapping
h:iZ x..xZ ~Y such that the diagram in Diagram 2.1 commutes

[Diagram 2.1}.

It has not been established that the essential revelation mechanism 1s
an adequate CX.revelation mechanism. because the construction given in
Theorem 2.1 ignores all topological and ditfferentiable structure. The
general outline of the method we use to put a structure on the (Xl-/F) is
straightforward.  We first show that when the rank of the matrix
BH(F:x;:x _ ;. )is the same as the dimension of X;. thenfor each two points

x and x' in X.. there is an element v ¢ X _ .. such that F(x. y) » F(x". v).

>

23



Theretore. the set {Xi/F) is X;. We next appeal to the generalization of a
theorem of Leontiet and Abelson given in Lemma 2.2. This lemma shows
that it the rank of BH(F:x;ix ;. ) at a point is ;. then in a neighborhood
of the point there is a coordinate SVStemx; j.....x; dii) and a tunction G such
that the subset that consists of the coordinates F(.\'l [eenes X, d(n)) =

(}((x]- Jeeees X; o) -fi Xois ) We can use the remaining set ot coordinates in X]—

to determine a subspace § of X; by setting x = {..... Xid(i) = (). The

1r+1
set $1s a submanifold of Xi and the restriction of F to the space S x X<-i>

has the property that BH(restriction(F):xi poeeeX X )} has rank the

5 S =
dimension of S. On S. the restriction of F separates points (at least in a
neighborhood) and therefore the map from S to (Xl-/F) is one-to-one. Some
technical tiddling with quotient topologies makes the quotient map. locally.
a homeomorphism. Therefore. at least locally. the space (XE/F) has the
same structure as S. The rest of the discussion is devoted to adding enough

restrictions to ensure that the local argument can be carried out globally on

X IX"'XXI’]'

Theorem 2.2. Suppose that X.. 1 <i < n.is a Euclidean space of
dimension d(1) = 1. Suppose that for each | < i< N. U; is an open neighbor-
hood ot the origin (); of X, and suppose that F isa C3-function differentiably
separable at each point (p,....p,) € U x..xU,. Then there is an open
neighborhood U of p; such that for each pair of points x and x" in U, x » x".

there 1s & point w ¢ U such that F(x. w) = F(x'. w).

< -1
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Proot. The matrix H(F: x: v)[(, 0) has rank d(i). by assumption. Set

X = Xj.oset X ;

1 TS Y. set dim(X

c_is) = N.oand set m = d(i). We can
change coordinates in X and Y separatelv to coordinates z in X andw in' Y
so that the new matrix H(F:z:w)[0,0} has a ] in the ZixWj position. l=j=m. and
zero in all the other positions. The Tavlor series expansion for

F(zy. ... .z W. ... owy) then has the form F(z. w) =

m-
FIO.0y+ uez+ v ow+wasz+ zTQz + WTQ’ w + P(z* w*)[z. w] where
() and O’ are square matrices. u and v’ are vectors in R™ and RN respec-

T denotes the transpose of the column

tivelv. v’ -« w denotes inner product. z
vector z. and where P(z* w*)[z, w] is a cubic polvnomial in the variables
(21. e T W W) with coefficients that are continuous functions on
Uy V evaluated at some point z*<U and w *cV. These coefficients of P are
bounded on a ball that is a compact neighborhood ot (0. 0)eU" x V', L' cU
and V' =V. Then for z.z' ¢ U’ and weV'. |F(z.w)-F(z.w) | =
lu=(z-z' )+ws(2-7’ )+zT()z' +P(z° *w *)z' .w]-Plz*w*)[z.w] |.
The vector {(z-z' ) » ) and the w is to be chosen in the set V' . Set
z’ TQZ’ -ZTQZ = K.setu.v = L. and set (z-z7) = v. To complete the proof.
it will sutfice to show that the function

weev + P(z *w %)z . w] + Plzx.w*)[z.w] + K+ L
is not constant on the ball V', For this it will suffice to show that the func-

tion Q =w.«v + P(z * w *)[z.w]-P(z* w#)| zw] is not constant on

the ball V. The function P(z' *.w’ *)[z' .w]| P(z *.w *)[z.w] i1s a homogeneous
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cubic L a, 5 z& wf in the variables W.aWy With coefficients {a,
glz.z ww' )} that are functions bounded on U'xV'. Setw = tv. The

powers of the constants z ...z, can be combined with the coefficients a,

m

g and therefore QO = t]\'iz + a(t) 3. where the a(t) is also bounded as a

function of t. If a(t) = 0 identicallv in t. then because v = (}, different values
. . . 2

ot t produce different values of Q. It a(t} = (), and |\'|2 + a(t)t= = c{acon-

20,2 - .
stant). then a(t) = (¢ - [v|“)/t7. and therefore a(t) is not hounded as t

approaches (). Therefore Q is not a constant.i

We now give conditions on a function F that s
difterentiably separable of rank (rj...r so that each of the sets
{X;/F). with the quotient topology. has the structure of a Y manifold of

dimension rs. Under these conditions the set theoretic essential revelation

mechanism is a topological essential revelation mechanism.

Detinition 2.6. It X;. I =i = n. are topological spaces. then a real

valued function F:X x..xX ;R induces strong equivalence on X;. if the

following condition is satisfied for each x x" ¢X;, such that x » x":

if there is an open neighborhood U of a point qeX _ ;. such that

Fix {ju) = F(x’ [ uw) tor each uel). then F(x [y z) = F(x' [ 7) tor all
<-1>

It is relatively easv to find classes of functions that induce strong
equivalence. Suppose the X, are Euclidean spaces with coordinates x; .

Ly
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f<i<n. l<j<d(i). It foreach | <i=<n.8(i) = (8(i 1).....8(i d(1))) is a
sequence of nonnegative integers. denote by xiﬂ(i) the monomial

X; 13“ ) X d(i)ﬁ(i d(i)). and denote by x A l)...xnﬁ(”) the product of the

monomials xiﬁ(i). Write F( xj...x, } =
ZB(])_ () As(1ya(my(x)) XZB(Z)...XHB(H). where the Ag(x,) are
polvnomials inx ). Thenforx;.x" | in X . F(x x__|,) = F( [X<.1 ) for

Xo.|» Inanopensetin X__ .1t and only

L[Aglx 1) - Aglx’ )] XZB(Z)...XnB(n) = () for the x5....x, chosen arbi-

trartlyv in an open set in Xox..xX . However. a polvnomial vanishes in an
open set if and only if each of its coefficients is zero. Therefore if

F(x]..\'<_l>) = F(x’ [Xeo|>) for the x chosen in some open set. it

<-1>
tollows that tor each 8. Aglxy) - Ag(x’y) = 0. That is. F induces a strong

equivalence relation on X .

Theorem 2.3. Suppose that X;. 1 <i=nare ¢t maniftolds of dimen-

stons d(1).....d(n). respectivelv. Suppose that F: X x.x X »Risa C*function
that is differentiably separable on X x..xX, ot rank (r(l)....r(n)) where
each r=1. Assume that F induces strong equivalence in X; for each i It
(i) the spaces (Xi/F) are all Hausdorff.
(i1) quotient map ¢;:X~(X,;/F) is open for each l=i=n,
then. for each lsi<n. the space (X;/F) {with quotient topology) is a topologi-
cal manifold (i.e. a C“—manifold). Furthermore, the quotient map

q;:X;=(X;/F) has a local thread in the neighborhood of each point.
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Proof. Suppose that p;* ¢ (X;/F). I =i<n. Choose a point p; < X,

I < i=n.such that gq;(p;) = p;* Because the function F is differentiably
separable of rank (r(})..... r(n)) at the point (pl.....pn). it follows from
Lemma A.3 that for l=izn. there is an open neighborhood U ., of p_ ;4

in X __;..anopenneighborhood U; of the point p;. and a coordinate system
Xj = (X e X; d(i)} in Xi such that xi(pi) = (0.....00) and a (“S-function G
defined in a neighborhood of the origin. such that F(x] ..... Xp) =

GUX; ey r(i)) [; z) for each z ¢ U_ ;.. Denote by §7% the set of
elements (x; j...x; r(i)'” ..... () that lie in Us. Choose in 8% a compact
neighborhood Si of (0.....00) (in the induced topology on S*i)' The map 4;
carries the set U, to an apen set ot (Xi/F) because we have assumed that g;

is an open map. We have assumed that the equivalence relation induced on

X .- by Fis strong. therefore the equality

1o Xy P e Paginriy fi2<is) =

GilX; joeeee xir(i))for each(xi Jeeee xid(i))m L'i. Therefore.qi(Ui) = qi(S*i).

The set §*, was constructed so that g; is one-to-one on S*. By
assumption. the space (X]-/F) is Hausdorft. therefore the restriction of g; to
§; is a homeomorphism from §; to a neighborhood N; of p*;. Denote by s;
the inverse of q; in N.. It follows that the point p*; ¢ X; has a neighborhood

N, that is homeomorphic to a neighborhood of the origin of the space R,

Furthermore. the tunction 8 is a thread of g; on the set \l
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The following corollary states that the essential revelation mechanism
is a Cessential revelation mechanism. In this case. under the assumptions
made about F. each C”-adequate reveiation mechanism tactors through the
CVoessential revelation mechanism.

Corollary 2.3.1 Suppose that X,. I sisnare C*-manifolds and that

Xi has dimension d(i). Assume that F: X lx---xxn*R is areal valued function
on F that satisfies the following conditions:
(i) there are integers (r{1)..... r{n)). | = r(i) = d(i). such that at each

point (PpeePpy) € Xl*"'XXn' F is ditferentiably separable of rank

(it) for eachi. the map g;:X;+(X;/F) is open and (X,;/F) is Hausdortf.

(i1i) for each i. F induces a strong equivalence relation on X;.

Then the triple (g x..xq,,- (XI/F)X...X(XH/F). F*) where:

(1) each (X;/F}) is given the quotient topology.

{2) the maps qi:Xi-»(X!-/F) is the quotient map.

(3) F*u(X l/F)x...x(Xn/F)aR is the function such that
F*(q](xl). g x ) = F(xl ..... xn)for each (X X ) eXlX...xX .
is an adequate Yrevelation mechanism that realizes F. The space (X;/F)
has dimenston r(i). Furthermore. it a triple (g )x- XLy le...xzn, G)
is such that g X7y GiZ x..xZ;~R. and the triple is an adequate
revelation mechanism that realizes F. then there are continuous maps

g*:Z.~(X;/F) such that the diagram in Diagram 1.3 commutes. with Y = R,
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Proof. We have alreadv shown in Theorem 2.3 that the triple
(qyx.xq - X ] /F)y...x(Xn/F).F *).is an adequate revelation mechanism that
realizes F. Supposethatz*iezi. Denote (gl{w) ..... gi_l(w).gH l(w) ..... gn(w))
Choose an element x *;¢X; such that

by g_ ;. (w). tor each weX_ ;..

. 5 ‘ ' * e .8 ‘ dx ¥ = . . = *,
. Suppose that x' . x™ ¢ X, such that g;(x*;) = g(x' ;) = 2%

Then for each weX<_i>‘ F(x*i _|'i w) = G(gi(x*i) -'-i o isW)) =
Glgj(x ;) [ 2. 5(w)) = Fix'; [, w ). Therefore g;(x*) = g;(x"j). Set

g*(z%) = q;(x*;). Because the map g;:X;»Z; has a thread in the neighbor-
hood of each point. there is a neighborhood N of the point z*; and a thread
$;*N=Xi o such  that gi(si(z*)) = gy{z*) ftor each z¥cN. Then
g*i(z*):qi(sj(z*)). Because bhoth g; and s; are continuous. it follows that

the map g*, is continuous
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Appendix A,

[.eontief and Abelson Theorem

Suppose that F(x ...x~) is a function of N variables which has
continuous partiat derivatives to order d. For each sequence
a = (a(l)...a(N)) of nonnegative integers. denote by |a| the
sum ol L)+...+a(N)., We denote by D(x]a(l)...xNa(N):F) the derivative
aIQ‘F/ax}a(”...BXNQ(N). d> |al|. Set 6“F/8xi0 = F.

Notation. If F is a function of one variable and G is a real valued
function of a vector x. then (F « (G)(x) denotes the composition F(G(x)).

The tfollowing statement is a classical result sometimes referred to as

the "General Theorem on Functional Dependence” ¢.t.| 1]

Theorem A.t. Suppose thatx = (X }....x) andv = (v |....v ) are sets
of real variables and suppose that F(x.v) and G(x) are real valued
C!-functions defined on a neighborhood U of the point (p.d) = (Pj.c-e.Py-
{1-----4p) that satisty the following conditions.

(1) D(xy¢ F) ...D(xp: F)

D(xl: G)... D(x.: G)

m?
is a matrix of rank at most one,
(ti) at p. D(xlz G)y=0.
Then there is a function C(w. v). w a real variable. such that
F(x. v} = C(G. v) in some neighborhood of (p. q).

Proof. Because of assumption (ii). the equation w - G(x|....x
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has a unique solution in a neighborhood U’ of (p.q). That is. there is a

function c{w.x4.....x

> m) such thatw = G(c(w.xz ..... N ) XX ) and such that

C(G(xl ..... Xm)e X9aX =Xy, Set (f(\\'.xz ..... X, .¥) =

m) m

F(c(w.xz ..... Xm)e X2 X V). Then [)(xj:(f) = D(x:F)[)(xJ-:c)+D(xj:F)

for j>1. Because \&':G(c(w.xy....xm).x2 ..... Xm)- it follows that
0 = Di(x;:G) D(xi:c) + D(x]-:G) for j > |. Further. by condition (1). there
is an 0 so that D(xi: F) = nD(x]-: G)tor 1 <jy=<m. Therefore D(xl-: C) =

s)[D(x]:G) D(Xizc) + D(x]-:G)] = {). Hence the function C is independent of

the variables Xyeon X and we can write C(w.XH..... xm.y) = (C{w.v). Then
C(G(xl ..... X)) = F(C(G(xl.....xm). X3eoeee X ) X9 X V) =
F(xi.....xm._\f).‘

L.eontiet’s Theorem
Leontiet proved the following result in [6].

Theorem A.2. Suppose that F is a function of the variables

X oo X eV [« e Ve Set Fpo= Dix;0 F). l<ism. Assume that (p.q) =
(PP UGy 18 @ set of values for the variables (x ...y ;....vp). A
necessary and sufficient condition that there exist functions C(w.y....v )

and Gxg....x such that F(x.v) = C(G{x).v) in a neighborhood U of the

m)
point {p. q) is that:
{i) for each | <i. j = m and each | <k < n, (a/ayk){Fi/Fi} = 0.

(il) for some |. Fj(xl. e xm)(p. qr = 0.

Proot. Form the matrix
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F*m |

where F*. = l){xl-: F(x: q)). For the point q. D(xj: F)(v) = Dix;: F(x: g)).

J J
Condition (i) implies that the derivative D(yk:F'i/Fj) = {). Thus the ratio
Fi/Fj is independent of v. Also at (p:q). F*;/ F*j = Fi(x.q)/Fj(x.q). It
tollows that F *i/F*j = Fi/Fj for all (x.v). Therefore the matrix M has rank
at most one. Further. by assumption. F_]-(p.q) = 0 for some j. The previous

theorem shows that we can write F(x. v) = C(G(x). v).B

Corollary A.2.1. A necessary and sufficient condition that there exist

functions C{w.v) and G(x) such that F{x.v) = C(G{x).v) in a neighborhood
of {p.q) is that the matrix BH(F:x:v) have rank at most one in a neighbor-
hood of (p. q) and D(xj: Fi(p. q) = (. tor some |.

Proof. The necessity of the given rank condition has already been
demonstrated. Set Fj = D(xj:F). Theorem A.2 shows that in order to prove
the sufticiency of the rank condition on BH(F: x: v). we need only prove that
D(vy: Fi/Fj) = 0 for each i.j. and k. But D(y: Fi/Fj) =
Dty Fp) Fy - Diyyes Fp) Fy)/ sz. By assumption. a(F |....F
(D(x]yk: Fr... I)(xm}--k: F))t (M[ denotes the transpose of M). Thus

aD(x;:F) = D(x,v . :F) = D(y:F;) for each i and k. Therefore D(_vk:Fi/Fl-)

= O for all k. &
Corollary A.2.2. Suppose that F(x:v)is a C2-function in the variables
X = (X|...Xy) and (y|..v,). A necessary condition that there exist

functions C(u.v), A(x). and B(v) such that F(x:v) = C(A(x).B(v)) is that the
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matrices BH(F:x:v) and BH(F:v:x) each have rank at most one. Further.
assume that tor some l<j<m and some l<k=n. D(x.l-:F)(p.q) « (} and
D(v).:F)(p.q) » 0. then the matrix rank conditions are also sutficient for the
existence of C. A, and B such that F = C(A. B).

Proot. Because BH(F:x:v) has rank at most one and D(xj:F) + (0 tor
some j. it follows from Theorem A.2 that F(x:v) = C(A(x).v) for some A and

C. To complete the proof. it will suffice to prove that C(w.v} satisties the

5 as the x:°

conditions of Corollary A.2.2 using ¥ i

sandw as x;. For conve-
nience of notation. assume that D(x,:F)(p.q) # 0. Then C{w.v) =

F(h(w. x5. ... X

> Ky )e X9 e Xyt . Theretfore D(y'j:C) =

D(}'-I-:F(h(w_x?_ ..... X)X X ) V) and D(w_\fj:C) = D(xlysz) D{w:h). By

hvpothesis there 1s a @ such that D(xl_\_*i:F) =8 D(yi:F) for each |. Therefore

D(wy]-:(f) = @[)(yi:F) D{w:h) = ¢ D(yi:(f) D(w:h). Therefore. by Theorem

A2, Clwy) = Giw.B(v)) if tor some Vi and tfor w() = F(p:q). D(_vl-:C(w._\))

(p:q) =+ 0. However, from the proot of Theorem A.2. C{w.v) =

F(h{w..\'z.....xm).xz ..... Xm'¥) where h(F(xl ..... Xid)Xoe X)) = X It wl =
F(p:q). because C(w.v) is independent of the variables x5....x .. it tollows

that C(w”._v)zF(h(F(p:q).pz ..... Pmv) =F(piy).Theretore
D(v;:Cy=D(vi:F(piv))=0 for some j.i

Corollary A.2.3. Suppose that x; i l<i<r. l<jed(i) are r ordered

sets of variables. Denote by X; the set of variables (X[ eeeeeX; d(i))' Assume

thatp=(py..... pp) =P P d(ry) is a point. Necessary conditions that
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L l=s]=<r

in some neighborhood of the point p there exist functions G. A]

such that F(xl. pooeeXp d(r)) = G(Al(xl) ..... Ar(xr)) is that each matrix

Our results on adequate revelation mechanisms require a shightly
altered version of Leontiet’s Theorem. This version is closely related to a
result announced by Abelson(c.f.[1}). We begin with a lemma.

Lemma A.L. Suppose that X and Y are Euclidean spaces ot dimen-

A necessary condition that there are functions A j(x ...

functions G{{W ... W v v ). IsisNosuch that Fixp..x

that the matrix BH(F ... Faixg, XV oY) has rank less than or equal
to r at each point of UyV.

Proot. Because Fi(x....x ) = GiA ALY vy ) itfollows

m--

that D(x;: F)) = L _"D(AG G)) Dixjt Ag) and D(xj v Fy) =
) D(vi A Gy) D(xi:AS). Each of the columns is a linear combination ot the

r columns {(D(x,:A).....D(x :A-))[. l<icr. where the superscript t de-
IR 1

m

notes the transpose.  Therefore the matrix BH[x. v} has rank at
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most r.&

The next theorem shows that for a product of Euclidean
spaces. it F is a differentiably separable tunction of ranks
(r|...r,). then the rank r; give the number of variables required from the
space X, in order to compute the tunction. The theorem is stated tor the
more general situation of a sequence of functions F ...k because the
proof of the more general assertion is complicated only by the notation and
the conclusion is applicable to the case of the vector function that computes

a Walrasian equilibrium when there are more than two commodities.

Theorem A.3. Suppose that X and Y are Euclidean spaces of
dimensions m and n. respectively. Suppose that X has coordinates xj....xp
and that Y has coordinates v...y,. Assume that peX. qeY. that U is a
neighborhood of p. V is a neighborhood of q. and that F.. 1 =i =< N.is a
ck* Liunction. k » 2. from U x V to R, Then.

(i) a necessary condition that there is a neighborhood WxV of a point
(p'.q)eR" ¥ V. CX_tunctions. k » 2.

ONIW Wy yv)) defined on

W x V. and Ck-f'Llncti011s Al( xl.....xm) ..... Ar(x l.....xm) defined on

li ¥ V such that Fi(xl.... Xy ¥
ALK s X))V e vy for = 1 = N, is that the matrix

BH(F [ F X ex v _vq) has rank less that or equal to r at each point

of U X V.
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(i) It BH(F .. .Faoxox vy ) has rank at most r in the

neighborhood UxV.and if H*(F . Faix X 0¥ v )X g] has rank r at

each point of Ui, then there is a point (p’.g) in RT x Y. a neighborhood

Wy V' of (p'.q). a neighborhood U’ xV’ ot (p.q). CK.functions Gy OGN
defined on WxV' . and ("k—functimm Al(xl ..... Xm) "‘Ar(xl ..... Xp) defined on
a neighborhood of p. such that on U x V7. Fi(xxp v yvy) =

GiA (X Xy Jooen AL X )e ¥ eV ) 1< 1< NoTor each

(XX ) e Uand (vv ) e Voo

m) q

The proof shows how to construct the functions A; and Gj'
An Example of The Coordinate Construction

As an example. we carry out the constructions for the function
F(x]X0.x30 v vovavy) =
NPV F Y E YY) glvg Y 3y ng) ¢ xR vy vy ¢
x32(y2 + v3- v vy). It is relatively easy to see that F can be written in the
form

it x2) o , S
VI R NT) (g T XgTI R Xy xp T X

2 2
VIValRp mXp + X7 e x3T) = vy vzy +va(z) F xg) -y gglzg - 2g).

We tirst construct the matrix BH(F:x:v).

BH{F:x:v) =
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Y1tY4+tY 1V, 1+y, 0 1 Y1
(YotYa—y ¥ ,t —Yat2x,(lty,) 1 1+2%, -—Y{+2%,y,
2X) (Y1 +Y37Y1V4))

l2x3[y2+y3-yly4} —2X,Y, 2%+ 2% 4 —2%,Y,

Ly

the matrix BH(F:x:v) has rank at most 2. and for the point

(X X930V v gvgvg) = (000000 111 D) = (pog). BH*(F: xzv)fx. g] =

3 2 0] 1 1
2 X5 -2 X4 2><:3 2 X3 —2x3

Itis an easy exercise to check that BH * has rank 2 in R3. Furthermore. the

matrix H*(F: x: v)[p. q] =

2 0 1 1 l
-1 1 1 -1 ‘
0 0 0 0 |
has rank 2,

Theorem A.3 states that there are two functions A and B with
variables X oo+ X3, and a tunction C of two variables such that F = C(A.B).

To construct A and B. we tirst compute the derivatives D(yi:F), l<i<d4. The

derivatives are D(v :F) = x| + x,z + X Vg Xovy + x22y4 - x32_v4. D(v,.F)

=Xy + x32 ) D(_\'3: F) = X] Xy + )(22 + x32. and D(_\'4: F) =
X[V -8y xzz_vl - x32_v1. At the point q these derivatives are D(v:F)

= 2\[ - \2 + 2X22 - \32 [)(\2 I‘) =X + \32 I)(\'; F) = X + X9 + ij +

x32 . and D(_V4: F) = Xp Xy + x22 - x;z. The 2 x 2 submatrix of H* whose
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entries are in the first two rows and columns has rank 2. This is equivalent
to the observation that the functions D{v:F) = 2x - x5 + 2)(22 - .\'32. and
Di{vy:F) = x9 + x32 . are independent at the point p. It is the conclusion of
the theorem that the functions D(_\'I:F) = 2x1 - Xy + 2)(22 - x32. and D(_Vz:F)
= X5 + x32, can be used as the functions A and B. To check this. setw =
2X | =Xy + 2x22 - .\'32 cand wy = xy + x32. We can solve these equations for
xy and x5. using the Implicit Function Theorem [3.p.7]. because we have
alreadyv observed that the necessary rank condition is satisfied using the first
two rows and first two columns of H *(F:x:v)[p.q]. In this case. of course, the
solutions are easilv written down. That is. X9 :wz-x32. and X =( 1/2)(w1 +Woy-
2w22+4w2x32—2x34). The tinal computation in the proot of Theorem A.3
shows that if we substitute these functions in the original function F. we
derive the function a function G(w w5y [.....v ) that is independent of the
variahle X3 Indeed. G(u--'].wz:_\-'l. ¥o. V3. vg) = (W l)/2 + (\&'2_\:'1)/2 +
WoVy + (wly'3)/2 + (3\\-"2}’3)/2 + (\\'l}'ly'4)/2 - (Wz_\‘l_\"4)/2. It we set A} =
x| <Xy + 257 %37 and Ay = x5 + x37. then G(A L Ayiv . . ¥y) = F.
Proot of Theorem A.3.

We now turn to the formal proof of Theorem A.3.

Proof. Condition (i) has already been established in Lemma A.l.
We turn to the proof of (ii). Because the matrix

Vs _\‘q)[x.q] hasrank rinthe set U, there is neighbor-

hood U’ of p and an (r x r)-submatrix of
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XoIV e _\«'q)[x.q]thathasnonzerodeterminameverywhere

in U'". We can assume. without loss of generalitv. that the rows of the
submatrix are indexed by x....x, and that the columns are indexed by

(FQ( 1) Va(l )). e (Fa(r)- ."B(r))- The functions of x = (X....x,). Ay =

p

D(_\'B( 1): Fa(l))( X4 ) ... A = D(yﬂ(r): Fa(r))(x. q) are (‘k—functions of

r

(X|. ... . X;y) in & neighborhood of p. Setz| = A (X ... Xy ). onZp =

m)
A (X x ). Because l)(xj:A]-)(p):D(xjyg(j):Fa(i))(p.q). the matrix with
(i.j)[h entry D(xi:Ai)(p.q) has rank r. Therefore. the Implicit Function

Theorem [3] shows that there is a neighborhood U * of p, and K functions

B2 o2 X X g e hr(zl T S xm)thataredefinedon U *such
that

(Eq.4.1) 7 = Ai(hl ..... hr Xep 1o Xm)
f<i<r. in the set Li*, Then hi(A XX g e Ar(xl ..... X)X p g oo Xm) =
X. l<i<r. for (Xpee xp) e LU#* Set (}!-(wl ..... WXy oo XV jeee¥p) =
F.(hp(w W Xy e Xpg) ho(w ... W Xp Xm)- ¥ _\-'q).
l <i< N. Because Gi(Al"“'Ar Xp 4 Xm- V] Vot =
Fi(hl(AE ..... ApXpy jeeXm ) DA Ar\r+l*““xm)'xr+l ..... XV oe¥p) =
ST SRS S vn). inorder to complete the proof of the assertion it will

sutfice to show that each of the functions G; is independent of the variables

Xpg |-Xpy- The hvpothesis of (ii) asserts that the column vector
(D{x l:Fi) ..... D(xm:Fi))T is alinear combination of the columns of the matrix
H*(F | Foxexgiv ey xglin the neighborhood U *xV. because BH
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has rank at most rin UyxV. and H* has rank rin U *. Therefore. the column

'F-)T is a linear combination of the columns indexed by

(D(x :F ). Dix o F

(Fo(1)-¥a( 1)) (Fq(r)-¥g(r)) in the neighborhood U*V. Itfollows. that tor

cach I <i<N. and I <t<m Dix:F) =z _ (1 Cr DixgrA ). where the O

IS

are functions on U * ¢ V. Furthermore. if one differentiates Eq 4.1 by gt tor

r+1 < j < m. it follows that 0 = Y. _ "D{x;:A;) D(x::h,) + D(x;:A;).
| =1 t 1Tt 1

r D(Xt:Fi) D(xj:ht) + D(xj:Fi) =

r . : ' =
| ("l" D(X[‘ A\)] [)(\(]_ ht) + ES:l Cl" [)(Xl. AS) =

Theretore. it r+ 1 <j<m. I)(xi:Gi) = 2=

[r[zg =

CANC. = 0E

) lr[x _ lr D(xt: AS) D(x_i: ht)+l)(x-} . i

t
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