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Abstract: in this paper we consider a continuous subjective expected
utility model with a connected space of consequences (CSEU, for brevity). This
class of models has recently received attention (see Wakker (1989)). Like in
Savage (1954), we consider a finitely additive probability measure on a
o-field of events. The aim of the paper is to show that in such a Savagean
set-up the appropriate condition to impose on the set of acts to get a CSEU
model is to require the existence of certainty equivalents. While quite
intuitive, several technical difficulties had to be solved in order to make
this argument rigorous, as emerges in the appendix. Nevertheless, the resulis

of the paper are clear and easy to understand.



1. Introduction

In this paper we consider a continuous subjective expected utility model
with a connected space of consequences (CSEU, for brevity). This class of
models has recently received attention (see Wakker (1989)). Like in Savage
(1954), we consider a finitely additive probability measure on a c¢-field of
events. The aim of the paper is to show that in such a Savagean set-up the
appropriate condition to impose on the set of acts to get a CSEU model is to
require the existence of certainty equivalents. While quite intuitive, several
technical difficulties had to be solved in order to make this argument
rigorous, as emerges in the appendix. Nevertheless, the results of the paper
are clear and easy to understand.

We now give a more detailed overview of the paper. Let CEC_ be a simple act
which has ¢ as consequence if the true state is in E, and ¢’ otherwise. A
constant act which is indifferent to E is called a certainty equivalent for

c C

CEC,. Suppose that all simple acts like cEc_ have a certainty equivalent. As
shown in section 3, this happens if and only if the space of consequences is
connected and the von Neumann-Morgestern utility function is continuous.
Moreover, it is shown that the existence of certainty equivalents induce a
number of interesting topological properties in the space of consequences. In
section 4 we show that, under some conditions, the existence of certainty
equivalents is equivalent to the existence of an integral representation with
a continuous vN-M utility function. Secondly, and most importantly, we obtain
a monotone convergence theorem for non simple acts. Besides its technical
interest (indeed we are working with just finitely additive measures), this

result permits to calculate more easily the value of the integrals involved in

Savage's representation theorem for non simple acts. In fact, this value can



be calculated as the limit of a sequence of integrals of appropriate simple
functions.
2. Preliminary notions

In the state space Q we consider a co-field &, whose elements are called
events. As a particular case we can have 4=P(Q), the power set of Q. Let € be
the space of consequences and ¥ be the set of all functions f:Q+€ such that
' (E)ed for all ECE. We call acts the elements of F. Of particular importance
will be the set of simple acts ¥, i.e. the acts with finite codomain. Among
them, we denote by CEC, the ones that have ¢ as consequence if weE and ¢ if
weE. Moreover, (A: denotes the constant act which has ¢ as consequence for all
welld.

On ¥ we consider a preference relation <. We assume that < satisfies axioms
P1-Pa of Savage’s theory in the form reported in chapter 14 of Fishburn
(1970). Obvious modifications are required since we are considering a o-field
4 and not directly P(Q). The preference relation < induces in a well-known
manner two orderings < and <’ respectively on & and Q. In particular from Pl
and P3 it follows that < is a weak order on €. The relations ~ and 5‘ on &
are defined in the wusual manner. If ¢’ c"e6, let (c’,c")=(c€€:c’<*c<'c"},
(e,c’)={cef3:c<*c'}, (c’,a)={ce‘€:c’<*c}. These subsets of © are called the open
intervals. & can be topologized by taking as a base the collection of all open
intervals. €/ denotes the quotient space generated by the equivalence
relation =. Let [eleG/= be the equivalence class with representative cet. We
endow G/~ with the quotient topology. It is easy to check that this topology
has as a base the subsets of the form ([c’LIe"]}), (&,[c"]) and ([c’l,s).
Equipped with this topology, &/= becomes a completely normal Hausdorff space

(cf. Alo™ (1971)).



Finally we state Savage’'s representation theorem for simple acts. In the
rest of the paper the term probability measure will always refer to a finitely

additive set function.

Proposition 2.1 (Savage). Let < be a preference relation on ¥ obeying
P1_Pb' Then there is a probability measure P and a real-valued function u(-)
on €, called von Neumann-Morgenstern utility function (vN-M for short), such
that:

(i) for every pair of events A,B it holds

A<’B if and only if P(A)<P(B);
(ii) for every O=c=P{A), there is an event B, with BcA, such that P{B)=c;
(iii) for every pair c’,c"e€ it holds
< if and only if u(c’)<ule");

(iv) u(-) is unique up to linear positive transformations;

(v} let {Ai}?:1 and {Bj}r;=1 be two measurable partitions of Q and f,ge¥

such that f‘(Ai)=ci for i=l,...,n and g(BJ)=c; for j=l,...,m. It holds

f<g if and only if E?:lu(f(Ai)]P(Ai)<):r;=1u(g(Bj))P(Bj).

Remark. We conclude with a remark on notation. Let fe¥ and let X=f(Q). By
definition, X is a finite set. 1In correspondence with every xeX, let
wxef‘fl(x), i.e. © is an element of f (x). Set F(f)={wx:xeX}, ie. I'f) is
constructed taking a representative from each set £ l(x). As to point (v) in
proposition 2.1, we clearly have }:?:1u(f(Ai))P(Ai)=zw€rmu(f(w))P(f'fl(f‘(w))).
In the following we will always use the r.h.s., and not the l.h.s.. Moreover,
for convenience, instead of writing each time [(f), we will simply write the

r.h.s. as }:wEQu(f(w))P(f‘—l(f(w))).



3. Further axioms and their implications

Besides Pl-Pb we will make use of two other axioms:

A: let c¢’,c"€€. Then for every Eed there is a consequence c such that

* -
A : there is a palr (_:,EEG' such that for all ce¥, cf ¢t c.

A8 is just the certainty equivalent assumption. The next proposition makes

its role clear.

Proposition 3.1 Let Pl_Ps hold. Then the following fwo statements are
equivalent:

(a) A holds;

(b) € is a connected space and the vN-M utility function of

proposition 2.1 is continuous.
Proof: Appendix.

The important case of rmonetary consequences is covered by the next
* *
corollary. Let x,yeR. A preference relation < is called monotone if x<y

whenever x <y w.r.t. the natural order in R.

Corollary 3.2. Let & be an interval of R and < a preference relation on ¥
which induces a monotone < on . Under Pl—Pb the following two statements are
equivalent:

(a) Ag holds;

(b) the vN-M utility function is continuous.

Proof: Appendix.



As has a number of consequences on the topological structure of &/=. To see
them, we introduce some further notation. Let m:6G-6/= be the projection of €
onto the quotient space &/=. By definition w is continuous. Let <* be the
linear order on €/= defined by [c'l<*lc" if and only if c’<‘c", for c’,c"eb.
Finally, let u":€/~>R be defined by Ic’l<*c"l if and only if
u#([c’])':u#([c"]], for [e’l,[e"]leC/=. Clearly u¥om=u. The existence of ul-)
ensures the existence of u#(-). Recall that a function is closed when the

images of closed sets are closed.

Proposition 3.3. Let Pl—Pé hold. Suppose AS holds. Then
(i) The function u':€/2R is closed.
(ii ) /= is a locally compact, connected, separable and
metrizable space.
(iii) Every closed subspace of &/% is a complete separable metric space,

i.e. a Polish space.
Proof: Appendix.

The space G/= is locally compact under AS. The role of Ag is to ensure the

compactness of G/=. This allows a strengthening of proposition 3.1.

Proposition 3.4. Let Pl_Pa hold. Then the following two statements are
equivalent:
(a) A and A hold;
8 9
(b) & is a connected space, &/~ is a compact space and the vN-M

utility function of proposition 2.1 is continuous.

Proof: Appendix.



4. Representation of non simple acts

In this section we first prove that, given Ag, axiom As is a necessary and
sufficient condition for the existence of an expected utility representation
with a continuous vN-M utility function. Then, and most importantly, we give a
monotone convergence theorem for non simple acts. It has some technical
interest because we are working with finitely additive measures and order
structures. But here it is important because the definition of integral we use
in next proposition 4.1 is difficult to apply since it considers a supremum
over a large class of simple acts. Instead, the convergence result gives an
easier way to figure out the value of these integrals. For, given a non simple
function f and a sequence of simple acts that satisfy the hypoteses of the

proposition w.r.t. f, then J- u(f(w))dP can be calculated as the limit of the
weld

integrals of the simple acts in the sequence. And the integrals of simple
functions are easily obtained. Furthermore, lemma 4.4 below will provide a way
to construct a sequence of simple acts with the desired properties.

To do all this, we need a further axiom.

~

A7: let Aed, {cff(w) given A, for all weA} implies c<f given A,

while {czf(w) given A, for all weA} implies czf‘ glven A.

Remark. Aj is a weakened form of Savage's dominance axiom P?' This
weakening is allowed by Aq. Hence, we have a sort of trade-off between
dominance and boundeness requirements. Here we prefer the latter. Axiom P_, and

its variants are discussed at lenght in Schervish and Seidenfeld (1983).

We now introduce the notion of integral we use. By proposition 2.1, for two

simple acts h,h’ we have (see the remark on p.3 for notation):



h<h' iff T uth@)P(h™ (hw)) = § _ u(h’ )P (W),
For fe¥, let us define

V_(f)-‘-SUp{}:wEQu(h(w))P(h_l(h(w))) for all he¥ such that hﬁf‘}
V+(f‘)=inf‘{zwegu(h(w))P(h_l(h(w))) for all he# such that hzf}.

If V(f)=V'(f), then the common value is denoted by J- ul(f(w))dP. Moreover,
well

set F'={fe¥ : V(f)=V'(f)<w}.
The next result contains the expected utility representation of non simple

acts with continucs vN-M utility functions.

Proposition 4.1. Let Pl—Pb, A7 and Ag hold and let f,ge¥. Then the
following two statements are equivalent.
(i) $=%', € is connected, and there exists a probability measure P and a
continuos function u(:) such that

f<g if and only if J. u(f(w))dP < J. u(g(w))dpP.
weld weld

(ii) AB holds.
Proof: Appendix.
We now give the monotone convergence theorem for non simple acts.

Proposition 4.2. Suppose Pl_Ps and A_’—AQ hold. Let {g_}a_o1 be a sequence
1 1=
of acts in ¥, and let ge¥F such that:
* E * * *
(i) gl(w)< - - < glw<g 1(m)*: - - < glw) for all wefl;
~ ~ i ~ i+ ~ ~

(ii) 1grgm{sggg(u(g(w))-u(gi(w))}=0.

Then lim_ Ju(gi(w))dP=Ju(g(w))dP.

Proof: Appendix.



The proof of this result rests on the next two lemmas. Let f,g be two

*
simple acts such that f(w)® glw) for all weQ. By lemma 14.1 of Fishburn (1970)
we have fzg. The following lemma shows that under A7 the same is true for two

non simple acts.

Lemma 4.3. Let P1_P6’ A_}—Ag hold and let f,g be two acts. If f(w)z‘g(w) for

all we, then f=g.
Proof: Appendix.
Next we give the other lemma needed to prove proposition 4.2.

Lemma 4.4. Let P1_Pe,’ AT—Aq hold and let fe¥. Then there is a sequence
{f‘i}o_:'=1 of simple acts such that:

{a) fif,fjf,f for all i<j;

(b) £ ()<'TW) for all wed;

(c) I;Tm{sggg(u(f(w]]-u(fl(w])}=0.

Moreover, if a sequence {fi}oio_1 of simple acts satisfies (a), (b) and (cJ,

then 1jm [u(F (@)dP=[u(r@Nap.

Proof: Appendix.

10



Appendix
Proof of proposition 3.1. Before begining the proof we recall that every
simple act f induces in a weil known manner a lottery Pr on 6. Simlilarly <
induces a weak order <" on the set P of all induced lotteries on €. For these
notions we refer to ch.14 of Fishburn (1970). Finally, given c’,c"€€, we

denote by A . the lottery giving ¢’ with probability A and c with
probability 1-A.

The proof is divided in three steps.

(i) In this first step we prove that AS implies that u(-) is continuous. By
axiom Ps there is a pair ¢’,¢" such that '<e". Let us put u(c")=0 and
u(e’)=1. Let c%elc",c’l. Let V(u(c’)} be an open neighborhood of u(c®).
w.l.o.g., we can suppose V(ul(c”))=(a,B), with a<ulc”)<B. Suppose
ule")<a<B<ufc’}. We consider only this case because the other can be handled

~M

analogously. By As’ for any Ae(0,1) there is ce(c",c’) such that PC~ A We
C C

have, by construction, ulc)=A. Hence there exists a pair c.c, such that
a<u(cl]<u(c°)<u(c2)<[3. Therefore, u(McV(u(c®)), where I‘={ce'@:c1<‘c<‘cz}. This
proves that wu{-) is continuous at any point c’ele",c’]l. This is enough to
prove the desired result.

(ii) In this second step we prove that As implies that € is connected. It
is known that to show this we have to prove that there are no jumps in & and
that every subset of & which has an upper bound has a supremum (cf. Kelley
(1955) p.58 for chains; it easy to check that this is true also for a
preorder}. The first part is trivial. For the second, let us consider a subset
AcG. By hypothesis A has an upper bound. Let B={cet§’:c3‘*ca for all caEA}. B is
the subset of all upper bouns of A. Pick caeA and cbeB. By As for every

lottery A there is a c such that P =" A . On the other hand it is
C (o] c c C
a b A a b

11



known that for every c’elc ,cb) there is a unique a€(0,1) such that
a

P =" « . So {c.:P =" a }=(c,c) Let A={xel0,1]: c,eB}. A has an
" b A C?t c Cb a b B A B
a a

infimum if and only if B has an infimum. In fact, suppose that AB has an
*
infimum A’ and suppose there is a c'eB such that ¢'< Cyse There is «a€l(0,1)

such that P =" o« . By hypothesis aeAB and so oazA’. But ozA’implies  that
[ < c
a b

a

*
a >" N {cf. Fishburn (1970) theorem 8.3) and so ¢’> Cyis
~ e 2

‘a b “a b
contradiction. The converse is easy to check. Now, AE is a subset of the
connected space [0,1]. AB has a lower bound and so, by Kelley (1955) p.58, it
has an infimum. Therefore, B also has an infimum.

(iii) In this last step we prove that {b) implies (a). Let & be a connected
space and ul'} a continuous function. Let cl,czet‘p’ with cl<'cz. Since (cl,cz)
is a connected subset of &, then u((cl,cz))={u{c):cl<*c<‘c2} is a connected
subset of R. So we can write u((cl,czl)=(a,|‘3), with o¢=inf(u(c):cl<¥0<’cz} and
B=sup{u(c):cl<*c<'c2}. o« and B exist because u(cl) and u(cz) are,
respectively, a lower and upper bound of {u(c):cl<*c<'c2}. We prove that
oc=u(c1). Suppose, on the contrary, that oc>u(cl). Let V(u(cl)) be an open
neighborhood of u[cl) such that x<« for all er(u(cl)). Let V'(cl) be any open
neighborhood of c in €. Then for some ceV’(cl) we have c>c1. Hence u(c)>u(cl)
and so ulc)»a. This implies u(c)eV(u(cl)) by the construction of V(u(cll).
Thus u(V'(cl)} is not contained in V(u(cl)). Since V’(cl) was arbitrary, this
contradicts the continuity of u(-). Hence a=u(c1), as wanted. Similarly,
B=u((:2). Now, let %e(0,1) and let r=3u(cl)+(1—a')u(cz). Since we have proved
that u[(cl,cz))=(u(cl),u(c2)), there exists cre(cl,cz) such that u(cr)=r'. Let

V:P-R be the linear functional arising in the von Neumann-Morgenstern

representation theorem. It is known that V(P )=a'u(c1)+(1-7)u(cz)=V(P vP ).
C C C
r 1 2

12



Therefore P ="P ¥P . Now, let A be a simple act and suppose that
[+ [ [ C <
r 1 2 1 2

P(A)=y. Let B be the set of all events B such that P(B)=y. We have proved that
there exists a c?e(cl,cz) such that Pc z"PC 7Pc . By definition we have
e 1 2

P ="P P if and only if c?% B for all events BeB (cf. theorem 14.3 of
C C c c c
T 12 1 2

Fishburn (1970), called reduction thecrem). In particular, we have cyﬁc Ac
1 2

Since y was arbitrary, this completes the proof. m

*
Proof of corollary 3.2. Since < is monotone, it is antisymmetric.

Therefore €/x=6 and the natural topology of R coincides with the one induced
»
by <. Moreover, u(-) is defined on a connected space because € is an

interval. So (b) implies (a) by proposition 3.1. Finally, (a) implies (b} by

proposition 3.1. ®

Proof of proposition 3.3. (i) We first prove that AS implies that u(-} is
closed. Let f,ge¥. Pfan is the lottery giving Pr with probability a« and Pg
with probability 1l-c. Pl_Ps imply that one of the Herstein and Milnor (1953)
axioms holds on P (cf. Fishburn (1982) theorem 2.1 and Fishburn (1970)

pp.203-205). This axiom says that for every F‘f ,Pf ,Pr belonging to P the
1 2 3

sets {oc:Pf Oin Z"Pf} and {B:Pf 1’3Pf f"Pf} are closed in [0,1], and so in R.
1 3 2 103 2

In particular, this means that {y:P <" y <"P } 1is closed in [0,1] for
c ™~ cC c ™~ c
102 2

every cl,cz,c3eG’ (recall that P 3P and ¥ describe the same lottery).
% %
*
Let ¢’,c¢"e€& with ¢’< ¢". Let us put ulc’)=0 and ulc")=l. We have already shown
that AB implies that for every lottery |y , there is a consequence cele’,c”]
LoR 4
such that P =" ¥ . Furthermore it is known that, without loss of generality,
< C <

we can put ule)=y (cf. Fishburn (1970} <ch. 14). It follows that

13



{y:P <" y <"P J}={ulc):P <"P <"P "}={u(c):c’<'c<'c"}={u#(c):c’g‘cf*c"}.

c'~ ¢ ¢"~ ¢ ¢~ c~ ¢ ~
Since {x:PC,ﬁ"C,yC',S"PC,,} is closed, it follows that {u(c):c’s.cs'c"} also is
closed. Therefore, the image of every interval [c’,c¢"] is closed. A similar
reasoning shows that the image of every closed interval (¢,c] and [¢,3) is
closed. Finally, let B be any closed subset of € and let 3 be the family of
closed intervals. The family {GSE/~ : G°e3} is a base for 6/~ Hence, we have
B=('|.1EI{Bi : ield}). Since u*() is one-to-one, we have
u#(B)=u#(n. B )= u#(Bv). Since u#(B_) is closed for all iel, we can

wer 1 her i i
conclude that the image of each closed set is closed

(ii) By definition n is continuous. So if € is connected, then also G/= is
connected. It is also easy to check that &/= is locally compact. Moreover,
by the existence of u*(), €/= is separable.

We know that w is closed. Therefore, u#(-] is a continuous and closed
function on &/=. Since u#(-) is one-to-one, we conclude that G/= s
homeocmorphic to a subset of R. Therefore, since metrizability is a topological
invariant, the order topology on &/% can be metrized by means of the metric
d([c],[e’])=]ulc’),ulc")|, with c,c’€€ (see Dugundji (1966) p.186).

(iii) Let C be a closed subspace of €/~. Let {[cl]}t’:=1 be a Cauchy sequence
in €/~ By the definition of the metric d(-), {u“‘([cll)}f’=1 is a Cauchy
sequence. Since u#(-) is one-to-one, u#(-) is a closed map. Hence, u#(C) is
closed in R, and so is complete. Therefore, there exists deu#(C) such that
l}r_pmu#([ci]#d. Since u"(-) is one-to-one, there exists [cle6/% such that
l%rymd([c], [ci])=0. Hence C 1is complete. Since &/= is a separable metric
space, it is second countable. Hence every subspace of €/% is a second

countable metric space, and so a separable metric space. =
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Proof of proposition 3.4. We first prove that (a) implies (b). From
propositions 3.1 it follows that & is connected and that the vN-M utility
function is continuous. By proposition 3.3, under As the quotient space /% is
connected. By Kelley (1955) p.58 this implies that every subset of &/= with an
upper bound has a supremum. If we add Ag, it follows that (@/x.<#) is a
complete chain. By Kelley (1955) p.162 the space €/~ is compact.

Now we prove that (b) implies (a). Since &/~ is compact, (G/x,<#) is a
complete chain and so it is easy to check that Ag is satisfied. By proposition

3.1, AS also is satisfied m

Proof of proposition 4.1. Point (i) implies point (ii} by proposition 3.1.
We now prove the converse. Suppose AS holds. We begin by proving the "only if"
part in (i) and that =F". let fe¥ and set B =(he¥ : h<f} and B'=(he¥ : h>f).
By Ag we have gftcf‘g for all cet. Hence for every fe¥F and every wel we have
g{f‘(w)f_*g. Thus, by A éff‘f (:: In particular, éghgé for all he¥. By
proposition 2.1 we have u(g]sZwEQu(h(w))P(h_l(h{w)))su(c_:) for all hEBf and all
heB'. By the completeness axiom of the real numbers (see e.g. Royden (1988)
p.33) this implies that there exist both sup{zwegu(h(w))!’(h_l(h(w))) for all
her} and inf{ZwEQu(h(w))P{hfl(h(w))) for all heB'). Moreover, these are
finite because u(-) is bounded. Now, let f,geF with f<g, as in (i). By now we

know that c<f<c and c<g<c. From lemma l14.4 of Fishburn (1970). it follows that

there is a unique Afe[0,1] such that x’Pf and a unique A®e[0,1]1 such that

1 =

o

C?\iz'Pg. Clearly A'<A®.. There is a rational number A such that AF<A<Ag. It is

known that A'<’ A <’ A%, By point (ii} of proposition 2.1 there is an event
c C

C

e
[t
1o

Aed with P(A)=A. From the definition of <" it follows f< A <g. By As there is
C [

15



~

a consequence c¢ such that c® A .
c c

Hence f<e¢<g. Therefore h<c for all her,

while c<h for some heB_ (indeed ceB ). This implies that:
(%) sup{szQu(h(wnp(h“(h(u)n for all heB ) <
sup{):wEQu(h(w))P(h_l(h(w))) for all heB'}.

By (%) for every pair f,ge¥ we have f<g if and only if V(f)<V(g). In a
similar way it can be proved that f<g if and only if V+(f)<V+(g). Mcreover, we
have already seen that both V'(f} and V' (f) are finite. Therefore, if we show
that V'(f)=V (f) for all fe¥F, then we prove both the "only if" part and that
F=%". Clearly V*(h)=V7(h)=):w€Qu(h(w))P(h_l(h(m))) for all hef. Let us define a
functional V on ¥ by V(h)=szQu(h(w))P(h_l(h(w))) for all hef.Hence V' and V~

are both extension on ¥ of V. We mantain that these extensions are equal. For,

*

let & ={cet : PC%“CAC for some AeOn[0,11}. Let c,c’EE’r with ¢< c¢'. By
r

definition there is a pair A,A’e@n[0,1], with A<A’, such that Px"c?\c and
C

P =" A’. Take A"=(A+A’)/2. Then P <" A"<"P ., Therefore, by point (ii) of
< c C c

¢’ ¢ ¢

proposition 2.1 and by As there is a c"ei’;r such that c<'c"<*c'. Hence E’r is
dense-in-itself. Set I‘={V(::) : ce@r}. Let c,c'e@r with ¢~ ¢’. Then ulc)=ulc”)
and so V(e)=V(c’). This implies that there is a one-to-one correspondence
between ' and Q@n[0,1]. So I is countable. Moreover, I is dense-in-itself. By
theorem 1 p.31 of Birkhoff (1948} there is an increasing function k:R+R such
that k(l“]=€DnEk[V(é]),k(V(;))]. Suppose V'#V . Then for some feF we have
Vv(£)2V (f). Suppose V' (F)<V (). Then k(V (f))<k(V(f)). Since éfffé, we have
V*(f),V_(f)e[V[(::),V((’_;)]. There is a rational number qe@n[k(V(t::)),k(V(:t;))] such
that  k(V'(F)<q<k(V(F).  Since  k(D)=Gnlk(V(C)k(VICD], there is a c €6
such that k(V[cq))=q. Since k(-) is increasing, from

k(v*(f))<k(V(cqn<k(v‘(f)) it  follows v*(f)<V(cq)<v‘(f). But v*(f)<V(cq)

implies f<c , while V(c )<V (f) implies f>c . This contradiction shows that
q q q
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V'(F)=V(f) for all fe¥.

To complete the proof we have to prove the "if" part. Let f.f’,ge¥ with
f’<f and fxg. By theorem 2.5 of Fishburn (1970) f’sg. Therefore, from the
definitions of V' and V it follows that f=g implies that V'(f)=V'(g) and

V(f)=V (g). Since we proved that F=F", we conclude that

J

U(f(w))dP=J u{g(w))dP. To sum up, we have proved that:
wel

if f<g, then J-
wel)

u(f())dP = J ulg(w)dP.
wel

well

ulf(W)dP < J ulg(w))dP
well

if f~g, then J’
well

A simple contrapositive is now enough to complete the proof. =

Proof of lemma 4.3. let f’,g' be two acts such that ;"(m)fg’ for all wef.
Since (€,<‘) is complete, the codomain of f' in & has a supremum ¢’. By
definition ;"(w)fg' for all wel. By A? we have f’sg’ and so f’<g’ (a similar
reasoning can be found in Schervish and Seidenfeld (1983) p.411). The same
holds when > takes the place of <. Therefore, a simple consequence
respectively of this and of A7 is: (1) ;"(w)zg’ for all we® implies f'~g’

(11) ;x;(w) for all weQ implies ;zf.
{Recall that f"(w] and f:(w) are, respectively, the constant acts on f’(w) and

f(w)). Now, let f,g be two non simple acts such that f(w)%'g(w) for all weQ.

By (ii) flw)~g for all weQ. Thus, by (i}, f=g. =

Proof of lemma 4.4. The proof is divided in four steps. In (i) there are
some preliminaries. In (ii) and (iii} we consider, respectively, [¥] and ¥ In
{iv) we prove the last part.

{i) Let [f]={g6?:g(w)z‘f(w)}. By lemma 4.3, if g’,g"elf],

then g'=g". Let <* be defined on [F1={If]:feF) by [f']<$[g] if and only if f<g.
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Clearly [f] is a function from Q to &/=.

(ii) (the basic idea of the proof comes from proposition 23.12 in
Parthasaraty (1977)). In the proof of propositicn 3.3 we have seen that G/=
can be metrized with the distance d([c’],[c"])=]u#([c']).u#([(:"])l. Let [gl be
such that felg]l and let e=1. Since B/~ is compact and metrizable, there is a
finite open cover (Ai}’?:1 of &/ such that diam(Al)=1 for i=l,....M. Let

D1=A]....,DM=AM\LF_J_1A_. {D.}P‘:1 is a partition of €/= such that diam(Dilﬁl for
1= I

i =

i=1,....M. Let D;=[g]_1(Di) and let [gll(w)=ff:1{i5£n_[g](w)}ID,(w). Since G/=
i

i
is compact, (E’/z,<*) is complete. Therefore iBED‘[g](w) exists. Moreover,
»*
iggnilg](wk [gl{w) for every weD’. Then, from A7 it follows [g1]<$[g] given
- ; ~
i

D:. Applying lemma 14.1 of Fishburn (1970) we obtain [gllgslg}. Now suppose we
have built two partiticns {mi)l}l:[‘1 and { Dl}!;""l of €/% such that diam( Dl)sl/m
= n = m

for i=l,...,M’ and diam( 1D_)Sl/m*-l for i=l,...,M".Let Df=[g]71( D) and let
+ 1 m 1 m 1

m

[g J@=F" (inf (gl  (w). Clearly Ig }<’lgl. Now let {C)° ~be the

common refinement of {mDA}"_A,1 and {D,}Pf1 g We have diam(Ck}‘—‘l/mH for
1 1= n 1 1=

- s [a] ! _ .
k=L,..,H. Let C=[gl (C) and let [gm+1](w)—)::ﬂ{lagc;c[g](w]}lcl;[w). Clearly

g 1]<$[g]. Moreover, g 1] and [gm] are constant on every Cl’(. In particular
m+1 ~ m+
»
[g Hwl< [g Hw) for all weC’ and so Ig ]<$[g ] given C’. Applying lemma
m+1 ~ m k m+l ~ m k
14.1 of Fishburn (1970) we obtain Ig 1]<$lg . So we have obtained an
m+ ~ m
. . o o] . M o M
increasing sequence {Igl} . Let Ig le{lgl}y , with { D) and { D’}
i i=1 n i i=1 n i i=1 m i i=1

the corresponding partition of &/ and Q. In particular diam( Di)SI/n for
n

1

i=1,....M. Let b =sup {[gl()} and let D be the closure of D. We have

D we D n n i

n i nl

[[g Hw),b ]= f)_ for we D, Since diam D =diam l-), we have
n nDi n i n i n i n i

diam([[gn](w),bD]}Sl/n. It follows that d([gn](w),[g](w))sdiamnf)isl/m for

n i
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LocenD1 and  i=I,...,M. Therefore sgggd([gn](w),[g](w))sl/n so that {[gil}c’:=1
converges uniformly to [gl, i.e. l}tym{sgggd([gi](w),[g](w))}=0. From the
definition of the distance d(-) and from [gllgslg] for all izl it follows
lim_{sup(u"([gl(w)-u"([g I))))=0.

(iii) Let f be any act in [gl and f]l any simple act in [gil. By proposition
4.1 {f‘l}o:':1 is an increasing sequence such that flff for all izl. Observe that
the sequence {f‘i}?=1 is not unique since it depends on the choice of f and f‘].
In € can be defined a pseudo-metric d(c’,c")=|ulc’),ulc"}|. Clearly
d(e’,¢")=d([c’],[c¢"]). Therefore we have l'}rgw{sggn(u(f(w))-U(fi(w)})=0.

(iv) Set di=sBEQ{u(f(w))-u(fi(w)). We can suppose without loss of
generality that (u(fi(w))+di)e[u(r::),u((_:]]. Under A we have ul(€)=lulc},ulc)].
Hence, for every weQ? there is a CUEG’ such that u(cw)=u(fl(w))+di. Let us
define a simple act g on £ by g(w)=cw for all wefll. By construction,
u{g(w)]=u(f‘l(w))+di for all weQ. Furthermore, since by constuction fi(w) and
g{w) are constant on the same subsets of €, we have g—l(g(w))=f11(f'i(w)).

Observe that f(w)ﬁ*g(w) for all weQ because ulf(w))=ulglw)}} for all wel. By

proposition 4.1 we have Iu(f(w))dPEIu(g(w))dP. But
- _1 —
Ju(g(w))dP—ZweQu(g(w))P(g (g(w))=
-1 -1 _
—}:wEQ(u(f‘i(w)Hdi)P(g (g(f:))))—):(JJEQ(u(fi(w))+d_l)P(f‘i (f (W)=
-1 -1
=Ll (@IPI (F (IBY | _d P (f (W)=
=d +7 __ulf (LDPIE(f (w))=d +J'u(f (w))dP.
i fweld i 1 1
Therefore, {di+Ju(fi(w))dP}ZJu(f‘(w))dP and so d_lz[J.u(f(w))dP-Ju(fi(w))dP]zo

for all izl. Since limmdi=0, it follows lir_r’lm Iu(f‘,(w))dP=Iu(f(w])dP. "
i i

Proof of propositon 4.2: without loss of generality we can suppose we have
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strict inequalities in (i). By lemma 4.4, in correspondence of every element

£ there is a sequence of  simple acts {f‘f} such  that lim
J i

1 o

Ju(f;(w))dP=Ju(gi(w))dP. For j large enough, we have
(*) '[U(gl_l(w))dP< J u(r;(m))dpsju(g‘(w))dp_
et N(i) be the smallest j for which (%) holds. Then {f‘:{m}c:_l is a sequence
of simple acts which satisfies (a), (b} and (¢) of lemma 4.4. For it is easy
. 1
to check that l}rgm{sggg(u(g(w))-—u(f‘mn(w)))}—o. Then:
lim Ju(fj(w))dp=J'u(g(w))dp_
But for all wel we have:
W<'t? <"g (wx" ‘gt (g *

gl © N(Z)~ gz © ~ gH w N(1)}~ gm wﬁ ' hy 4

Hence:

JU(gl(w))dP<Ju(f‘i{z))dPSJu(gz(w))dP<- - SIu[gi_l(w))dP<

<JU(fi_}dP£Ju(g, (W))dP=<- - -SJu(g)dP.
N{i} i+l

Therefore, lim_ Ju(gi(w)]dP=Iu(g(w))dP. .
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