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Abstract

Refinements of the Nash equilibrium concept difter in which indifferences between strategies they
select for evaluation. In this paper, we suggest that "structural” indifferences, or indifterences that arise
out of the structure of the payoffs of the game independently of opponents’ strategies, are worthy of
special attention. We define an order over a player’s strategies, called the szructural order, by ranking
strategies according to expected payoff under a belief about opponents’ play and requiring that {only)
structural inditferences be evaluated by appealing to higher-order beliefs about opponents’ play. This
order is robust to trembles in payofts and beliefs and ranks strategy r; ahead of s, it and only if r; receives
a higher payoft along every sequence of trembles that converges {in a certain sense) to the beliefs. We
use the structural order to define an equilibrium concept called the structural indifference respecting
equilibrium (SIRE). A proper equilibrium is SIRE but not conversely. We show that the lexicographic
probability system used to describe beliefs about opponents’ play when defining SIRE can always be taken
to have disjoint supports. Finally. we argue that SIRE can be viewed as a normal form extension of the
sequential equilibrium concept.
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1. Introduction

A Nash equilibrium is not strict it some player has multiple best responses to his opponents’
equilibrium strategies. Such an equilibrium can require a player to tortuitously choose one of infinitely
many best responses. Why does the player choose precisely the best response needed to support the
equilibrium?

This question is at the heart of the equilibrium refinements literature. If a player has multiple
best responses to his opponents’ equilibrium strategies, then equilibrium refinements test choices among
these best replies by appealing to beliefs about how the opponents would play if they did not tollow their
equilibrium strategies. These beliefs explicitly appear in most extensive form refinements. Blume,
Brandenburger and Dekel (1991b) (hereafter BBDb) have shown that the normal form refinements of
trembling hand perfection and properness can also be viewed as implicitly working with beliefs about out-
of-equilibrium behavior.

We will refer to the process of justitying a choice from multiple best replies as evaluating the
indifference. The point of departure for this paper is the question ot whick indifferences should be

evaluated. Consider the following game:

2
L R
[ T 3.3 2.0
(G1)
0.0 2,2

In the Nash equilibrium given by (B.R), player | has multiple best responses, being inditferent between
T and B (and hence any mixture of the two). A common argument is that player [ should then choose
between T and B by appealing to beliefs about player 2’s hehavior assuming that player 2 does nor play
R with probability one. Any such beliefs attach positive probability to L, at which point T becomes a
strict best reply. In light of this, we would conclude that player | chooses T, upsetting the equilibrium
(B,R).

Now consider the following game, which is obtained by "replacing” (B,R) in (G} by a 2x2

game with unique Nash equilibrium payoffs of (2,2).

In the equilibrium given by (“AM+%B,'2C+ %R}, player 1 again has multiple best replies, being
inditferent between all of his (pure and mixed) strategies. One could again argue that player 1 should
appeal to beliefs about player 2’s strategy that place some probability on L, upsetting the equilibrium

(since such beliefs necessarily imply that the simultaneous use of M and B is an inferior response).



L C R
T 2,2 2,0 2,0

1 M 0,0 4.1 0,3 (G2)
B 0,0 1.3 3,1

We find this argument [ess convincing here. One standard interpretation of equilibrium mixed
strategies derives them as the limit of pure strategies in a sequence of games with incomplete information
about payoffs (Harsanyi {(1973)). In these incomplete information games, each type of player 1 has a
strict best response. The equilibrium (*2M+ '4B,%4C+ 4R) then appears as the limit of strict Nash
equilibria in a sequence of games of incomplete information. As a result, it is not obvious that the
equilibrium (2M+ 4B, A C+ 4R) should be rejected.

It we allow indifferences to be broken by payoff perturbations, as the previous paragraph
suggests, then it appears as if any pure strategy Nash equilibrium can be “justified” (Fudenberg, Kreps,
and Levine (1988, Proposition 1}), including (B,R) in Game (G1). However, we are unwilling to allow
such latitude in choosing perturbations. Instead, we require payoff perturbations to preserve any payoff
ties that appear in the original specification of the game. We think it is important to restrict analysis to
generic games. By generic, however, we mean generic in the assignment of utilities to economic
outcomes for some player. This genericity allows the possibility that two or more strategy profiles may
lead to identical economic outcomes for some player. In such a case, payott ties will appear in the
normal form that are "generic" ties and should be respected when constructing trembles. '

A similar argument can be constructed with belief rather than payoff uncertainty. In particular,
suppose there are some player 1 types who believe player 2°s strategy is close to 4C+ AR but places
slightly more probability on C, making M a best reply; and other player | types who believe that player
2’s strategy places slightly more probability on R, making B a best response. We again have strict (with

probability one) equilibria approaching (2L +Y:B,%4C+'%R). We might interpret this as reflecting a

'Payoft trembles are thus intended to reflect uncertainty concerning how players assign utilities to
economic outcomes. The identification of these outcomes themselves is less likely to be subject to
uncertainty. The ties generated by identical outcomes then should not be broken in perturbed games.
Fudenberg, Kreps and Levine (1988) devote the bulk of their analysis to perturbations of extensive torm
payotfs that necessarily do not affect ties in the normal form that are created by identical outcomes in the
extensive form.
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situation in which players are reasonably certain of the strategies their opponents’ might play (i.e..
reasonably certain of supports of distributions), but are not certain of the precise mixture played by
opponents. |

More generally, we believe that inditterences caused by opponents’ mixed strategies are more
fragile than those caused by payoft equalities. We will say that two strategies are structurally indifferent
for player i, given a strategy profile for the other players, if and only if the two strategies give player
i precisely the same payoft for every pure strategy profile in the support of the opponents” strategy. This
paper then asks: What are the implications for equilibrium play in normal form games if we require
players to use beliefs about out-of-equilibrium play that evaluate only structural indifferences?

We examine structural indifference in normal form games, and hence require a way of describing
out-of-equilibrium beliefs in such games. We use the lexicographic probability systems of Blume,
Brandenburger and Dekel (1991a,b). We are especially interested in the special case of lexicographic
probability systems known as lexicographic conditional probability systems. in which the supports of the
probability distributions describing a player’s alternative theories of opponents’ behavior are disjoint.
In many cases we think these are the most natural descriptions of alternative theories of behavior.

We use lexicographic beliefs to induce two orders on strategies. In each case, the basic ordering
technique is to place better replies ahead of inferior replies. If there are indifferences between strategies,
an appeal is made to a higher belief level to resolve the indifference. In the lexicographic ordering (used
by Blume, Brandenburger and Dekel (1991a,h)), every inditference is so evaluated. [n the structural
ordering, only structural indifferences are so evaluated. The structural ordering has two desirable
features: First, unlike the lexicographic ordering, it is robust to small tie-preserving perturbations in
payoffs or small "level-preserving” perturbations in beliefs. Second, the structural ordering ranks strategy
r; ahead of s, if and only if r, receives a higher payott along every sequence of strategy trembles that
converges (in 4 certdin sense) to the lexicographic beliefs.

We use the structural ordering to detine an equilibrium concept, the Strucrural Indifference
Respecting Equilibrium (SIRE). There are three interesting properties of SIRE. First, if a/l inditterences
are structural, then SIRE coincides with properness. In the presence of indifferences that are not
structural, SIRE is weaker than (but implied by) properness, because properness insists that all (rather
than only structural) indifferences be evaluated. Second. unlike properness, any SIRE induced by a
lexicographic probability system remains a SIRE when the lexicographic probability system is converted
to a lexicographic conditional probability system in a natural way. Finally, SIRE induces a sequential

equilibrium in every corresponding extensive form. In fact, SIRE is in some sense the normal form
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analog of sequential equilibrium, having an attractive interpretation using strategic independences
(Mailath, Samuelson, Swinkels (1993), hereatter MSS).

It is common, particularly in normal form games, to define equilibrium concepts in terms of
trembles.  Our work with lexicographic probability systems does not represent a departure trom this
tradition. Both the lexicographic and structural orderings over strategies can be obtained as the limits
of sequences of trembles, and we characterize the limiting operations involved.

The next section introduces notation and basic concepts. Section 3 reviews the basic features of
lexicographic probability orderings. Section 4 examines the lexicographic and structural orders. Section
5 introduces the Structural Indifference Respecting Equilibrium. Section 6 investigates the properties of

SIRE. Section 7 examines trembles and Section 8 concludes.

2. Preliminaries

We examine finite normal form games. We denote the set of players by N and player i’s (pure)
strategy set by 5, i € N. The set of strategy profiles is given by S = ILc\S;. A set of strategy profiles
§ and a payoff function m:S - R~ constitute the normal form game (S,7). A subset of player i’s pure
strategy space will be denoted X;. Denote the set of probability distributions over a set X by A(X).
Typical strategies for player i arer;, s, and t;. A subscript —i denotes N\{i} and a subscript —I denotes
NAL

An essential ingredient in our approach to equilibrium analysis is the examination of ties in the

normal form payoffs. A tie in payofts creates a structural indifference:

Definition 1: Strategies r, and s. are structurally indifferent for playerionY_, € S_,if. vs_, € Y ..

T(1.8 9= m(s.8_0).

We use the term structurally indifferent to emphasize that the indifference is due to the structure of payoff
ties in the game, and is not simply the result of a fortuitous randomization by the other player(s). In
generic games, these payotfs ties represent identical economic outcomes. Because players are more likely
to be certain of economic outcomes than opponents’ randomizations, structural indifterences are likely

to be particularly important.

3. Lexicographic Probability Systems
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In order to describe beliefs about out-of-equilibrium play, we use the notion of a Lexicographic
Probability System (LPS) introduced by Blume, Brandenburger and Dekel (1991a) (hereafter BBDa).*
Consider a finite state space € . In a game theoretic context, the appropriate choice for Q is §,, S |, or
S, depending on the context. For example, the state space when describing player i’s beliefs about
opponents’ play is the space of strategy choices for the other players, S ;. Where convenient, we (like

BBDb) will define the concepts for an arbitrary state space @ .

Definition 2: A Lexicographic Probability System (LPS) on Q is a K-tuple p = (0%..,0% "), for some
integer K, of probahility distributions on @ . A Lexicographic Conditional Probability System (LCPS)

is an LPS with pairwise disjoint supports.

BBDb interpret an LPS p as tollows (page 82} "The first component of the LPS can be thought
of as representing the player’s primary theory of how the game will be played, the second component
the player’s secondary theory, and so on.” [f the LPS is in fact an LCPS, then we can interpret p' as
the player’s belief over Q given the information that a state (strategy combination if § = S_,) not in the
support of p® occurs. Similarly, if the player is told that this theory is also incorrect, then p* is his belief,
and so on. We believe LCPSs are a particularly attractive notion of alternative theories, because an
LCPS makes an appeal to a higher level belief only when forced to by an event outside the support of
the current level belief.

Each player i has an LPS p_, describing his or her beliefs about S ;. A collection of beliefs for
all players, (o |,...0 ), is 4 belief system. We (like BBDb) will consider several restrictions on the
belief system held by players, motivated by standard game theoretic considerations. To do this, we need
an additional piece of notation. Given an LPS p and a vector r = (r', .. i N&E (0, N* ', write r0p for
the probability distribution given by (1 —r')o® + rY{(1—-r)p' + (1 =19p" + [ - + (1 =¥ )pk-*
+ "R 1L I {r(n)} s a sequence satisfying r(n) € (0,1)* ! and r(n) = 0 as n— oo, then r(n)Tp
is a sequence of distributions that "captures” the hierarchy of beliefs described by the LPS, in the sense

that strategies are ranked the same way by the LPS p and the sequence of probability distributions

*BBDa provide an axiomatic characterization of LPS based on subjected expected utility theory.
BBDb characterize trembling hand perfect and proper equilibrium in terms of LPSs. This section recaps
the material from BBDa and BBDb that we need. An alternative approach to describing beliefs about out-
of-equilibrium play is provided by Myerson’s (1986) conditional probability system (which are isomorphic
to the LCPSs detined in Definition 2). A discussion of these and other approaches to describing out-of-
equilibrium behavior is contained in Hammond (1992).
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{r(m)Up}s.,. The following example illustrates this (as well as the structure of LPSs), while a formal

statement of this relationship between LPSs and trembles is given by Lemma 2 in Section 7.2.

Example 1: Consider a three player game. with 8§, = {T.B} and S, = {L,R}. Suppose that player 3’s
beliefs about player 1 and 2’s behavior are given by the LPS p , on S ., where

pl(T,L) = 1,

p!4(T,R) = 2/3,  pl.B.L) = 1/3,

p24(T.R) = 1/2, o 4(B,Ry = 1/2,
with all other terms zero. Notice that p!, is not a product measure on S, xS,.

Now consider the sequence (r'(n),r’(n)) = (1/n,1/n). Then we obtain a sequence of probability
distributions given by:

(r(mCp_)(T,L) = (1-n D (T.Ly + n {(1-n""'(T.L) + n"%*(T.R) = 1-n"",

(r(m}Cp_)(T,R) = n~'(1—n "W2/3) + n *(1/2),

(r(n)[ 1p_.}B.L) = n (1 —n H(1/3). and

(r(in)lp H(B.R) = n {1 —n"H(1/2).
Then the sequence of probability distributions (r(n){p .} captures the hierarchy of beliefs described by
p..» in the sense player 3 "lexicographically prefers” (Definition 4 in Section 4 below) strategy r, € S,
to s; € S, if and only if the expected value of r; given beliefs (r(n)Up_;) is higher than the expected
payoft ot s, for all sufficiently large n. (This is Lemma 2 in Section 7.2).

Alternatively, consider the sequence given by r'(n) = (3n—2)/n" and r*(n) = 4/(3n—-2).> These
again give a sequence of probability distributions (r(n)0p ,) that capture the beliefs described by p_..
In this case, we have (r(n)Up ;) = o, X g, where 6(T) = l—n ', ’(B) = n', ¢%L) = 1-2n"" and
o3R) = 2n ', Because this sequence r(n) allows (r(n)[Jp_.) to be written as a product measure, we say

that the beliefs given by p_. satisfy strong independence (see below). |

We consider the following assumptions:

(1) Common Prior Assumption: There exists an LPS p on S such that for all i, p_, is the marginal on
S,ofp’?

“See the proot of Proposition 2 in the Appendix of BBDb for details of how these sequences are
derived.

“The marginal of an LPS (p°....0% ') is the LPS whose «* probability distribution is the marginal of
p*. k=0, . K—1.
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(2) Strong Independence: There exists {r(n)}, r(n) = 0, such that r(n)Jp is a product measure for all

5

n.-

(3) Full Support: For all i and s_ €8 _,, there exists & such that phis ) > 0.

The first condition is the usual requirement that ditferent players have the same beliets about the
behavior of other players. We denote the lexicographic belief system that players other than i hold on
S; by p;. The second condition ensures that player i believes that the other players are independently
choosing strategies. Note that p*, need not be a product measure on S_, for x = | (consider p'. in
Example 1 above). The third condition ensures that a player can evaluate the relative likelihood of any

two strategy profiles chosen by the other players.

4. Orders

We now examine orders over strategy spaces induced by belief systems. Two orders are of
interest, the lexicographic order and the structural order.® In the lexicographic order (studied by BBDa
and BBDb), two strategies are first evaluated using a player’s first level beiief about his opponents. If
one strategy receives a higher payoff under this beliet, then it is ranked ahead of the other in the
lexicographic order. If they are indifferent under this belief, than they are evaluated under the second
level belief. This process of appealing to higher level beliefs continues until a payoff difference appears,
with this ditference sufficing to rank the strategies (and the strategies being inditferent it no such level

exists).

Definition 3: Given a lexicographic conditional probability system p, define

k(r,s) = max {k: E m(r.s_)p5(s) = E T{(s.s_Jpu(s_ ), k=0..k-1}.

1<ksK g5 s €S,

*This is equivalent to requiring that the non-Archimedean probability measure equivalent 10 p is a
product measure. Different notions of independence for lexicographic probability systems are discussed
in BBDa and BBDb (see also Battigalli (1992) and Hammond (1992)), with strong independence being
the most stringent. This is the appropriate notion of independence for analysis of refinements like
trembling hand perfection and properness.

“Okada (1988) also defines an order over strategies. saying that strategy s; lexicographically dominates
t, with respect to q”; if's; =, t, (see Definition 4 below) for every lexicographic probability system p_, that
has the following properties: p{ = q; for all j # i, p; has exactly two belief levels for each j #i, and
p; has full support for each j # i. Okada shows that pertect equilibrium strategies are lexicographically
undominated with respect to the equilibrium but the converse can fail.



Note that k{r;,,s;) = K if

Y mrs ety = Y ws.s)et(sy),  for all k.
e85

s_E8_ s_ES

Definition 4: Given a lexicographic conditional probability system p, the lexicographic ordering > on
S, is given by
4.1y r, »_ s if k(r,s;,) < Kand, for ¢ = k(r,.s).
E wi(rps_i)pti(S_i) > E Wi(siﬁs_‘,)pii(s‘i)a

s ES_ s €5

(4.2) r, ~. s, it k(r,s) = K, and

4.3) rz s forr,s € 8§,if r, ~ 5,01 > s,

We have argued that not all indifferences were created equal. This motivates our definition of
the following order, which we call the structural order. The structural order resembles the lexicographic
order in that cases of indifference can prompt an appeal to a higher level belief in order to evaluate two

strategies, but under the structural order this occurs only if the two strategies are structurally indifferent.

Definition 5: Given a lexicographic conditional probability system p, the structural (partial) ordering
z¢ 0n S is given by r; > s it
3.1) r, s, and

(5.2) for all ¥ < k(r,s;), r; and s; are structurally indifferent on the support of p*;.

Note that while > is a complete (or total) order, =, in general will only be a partial order. In particular,
if two strategies r; and s; have equal expected payofts according to p°; but are not structurally indifferent
on the support of p%, then they are not comparable under =. If two strategies r; and s, are not
comparable under =, then for some k, the expected payotts to r, and s, are equal under alt p*, for x <
k, while r; and s, are inditferent but not structurally indifferent on the support of p*,.

The next result, which follows immediately trom the definitions, provides one reason why we find

z, an attractive theory ot how players might use levels of beliefs about play to evaluate indifferences over
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strategies: = is robust to both trembles in beliefs about opponents’ play and trembles in payofts that

preserve ties,” It is easy to construct examples showing that neither result holds for =..

Proposition 1: (1.1) Fix an LPS p. There exists € > Q such that r, =4 s, (given p) if and oniy if v. =
s, (given o) for all LPSs o satisfying supp(¢*) = supp(p®) und sup, s | (s ) —p"(s.))]
< ¢ forall «.

(1.2) Fix payoffs w. There exists € > Q such that r, =¢ t. if and only if 1, =, t, on any game with

pavoffs ©* satisfying |w—7"| < € and w(s) = 7(s) = 7Hs) = Wi(8").

The failure of z¢ to be complete requires discussion. In decision theory, preferences are taken
as fixed. In contrast, a player’s preferences over his or her strategy space in a game are to a large extent
endogenous. They are determined by the player’s analysis of the game and beliefs about the opponents’
play. The incompleteness of =g does rnor mean that the player cannot compare two strategies that are
incomparable under >, Rather, it reflects the idea that the player is not able to evaluate an indifference
that appears in one level of beliefs by simply going to the next level. Some other means of evaluating
the two strategies may then come into play. We do not view >; as being a complete description of a
player’s evaluation of a game, just as any theory that fails to identity a unique strategy for each player
in every game is incomplete. We do view >; as a good candidate for how the player will use beliets
about oppenent’s play to evaluate strategies.

There is an obvious completion of =g that is in the spirit of >; Define a new indifference
relation as r; ~¢ s if either r, ~ s, or r, and §; are not comparable under =,. If r, ~ s, then r, and s
have equal expected payotts under p*; for x < k(r,,s,}. The relation ~ in conjunction with >, yields

a complete relation denoted =g in the obvious manner: r; »¢ s, if r, ~J s orr; = 8.

The next example
shows that this relation need not equal =, tor any LPS, and the subsequent discussion shows that > need

not be transitive.

Example 2: Consider the game (G3). Suppose a lexicographic conditional probability system {L.C,R}
is given by p(L) = p%(C) = "2 and p}(R) = 1. Note first that AB >, C.D >, E », F. and that A and

"Notice that in Proposition (1.1), the supports of the distributions that characterize the successive
levels of belief in the tremble o must agree with those of the LPS, though there is room for (smail)
differences in probabilities within those supports. This is a generalization of our suggestion in the
introduction that players may be reasonably certain of which strategies their opponents will possibly play,
i.e., certain of supports, but uncertain concerning distributions within supports. Notice also that the
payott trembles in Proposition (1.2) preserve any ties in normal form payoffs.



L C R
A 1 1
B 2 1 0
C 0 | 0

1 (G3)

D I 0 1
E ~1 -1 -1
F -1 -1 -2

B, and C and D are not comparable under =, Completing this order as suggested above yields A ~
B C ~{D > E > F. Itisthen straightforward to verity that any LPS that yields A ~, Band C ~
D must never (i.e., at no level) attach positive probability to R. However, if R is never allocated positive

probability, it must be that E ~ F. preventing any LPS from generating the order >, |

BBDa provide an axiomatic foundation for decision making that implies that agents have
preterences that can be represented by an LPS and > . It is important to understand the relationship
between x¢ and the axiomatic foundation discussed in BBDa. The preferences represented by > violate
Axiom 1 in BBDa (which requires that the decision maker’s preferences be a complete order). It may
appear as if the potential failure of > to be a complete order is irrelevant, since > can be extended to
the complete order »;. However, this extension may force transitivity to fail. Consider again (G3).
BBDa’s axiom 1 requires a complete preference order on the space of aff mappings trom the state space
{2 into the space of outcomes.® In the game theoretic context, 2 is S_; and the space of outcomes is
payotts. Hence, in order to be consistent with Axiom 1, >; must continue to be a complete and transitive

order when (G3) is augmented to include the strategies G and H, where:

L C R
G 1 0
2 1 1

*More specitically, they take as their space of outcomes objective probability distributions with finite
support over some set of pure consequences.
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We then have A >} G ~; H »; B. Since A ~{ B, =z is not transitive.

5. Equilibrium
Qur examination of equilibrium refinements builds on the idea of a lexicographic Nash

equilibrium. BBDb define a lexicographic Nash equilibrium as:

Definition 6: A belief system (o ,,...0_y} is a lexicographic Nash equilibrium if for all 1,
(6.1) p%(s_) = II05(s)
(6.2) pi(s) > 0=s5 > t VHES,.

A lexicographic Nash equilibrium is a hierarchy of beliefs with the property that a single product
measure gives the first level beliefs of all players and the strategies contained in these first Ievel beliefs
are best replies.” It is straightforward that a lexicographic Nash equilibrium is a Nash equilibrium and
that for any Nash equilibrium, there is a corresponding belief system (in fact, there are generally many)
that is a lexicographic Nash equilibrium. For example, p can be chosen so that tirst level beliefs match
the Nash equilibrium behavior and there are no higher level beliefs. We could use our order > to define
an identical concept by replacing (6.2) with pl(s) > 0 = ¥L,ES,, either s; =, t; or §; and t; are
incomparable under =.

Equilibrium retfinements require that an equilibrium survive when restrictions are placed on the
beliefs that support it as a lexicographic Nash equilibrium. As a first step, we might strengthen (6.1) to
the requirement that (p_,, ,o_y) satisfy the common prior, strong independence, and full support
assumptions. BBDb (Proposition 7) show that the result is an equilibrium concept equivalent to perfect
equilibrium.

As a next step, we might require that there be some consistency between beliefs and the way that
players who hold these beliefs compares strategies. These restrictions can be viewed as restricting out-of-
equilibrium behavior as well as equilibrium behavior. In the normal form, this means that the
equilibrium must not only identify a strategy for each player, but must also say something about how
players rank, or would choose from, their remaining strategies contingent upon not following equilibrium
behavior. To describe this ranking of remaining strategies, we need an order on € that reflects the

relative likelihood of states in Q .

°The common prior and full support conditions are not imposed.
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Definition 7: Given an LPS p on @ and w,’€Q, write w =, o if

min{x : p*(w ) > 0} < min{x : p*w’) > 0}.

The order =, captures the ranking on states induced by the order in which these states appear
in the levels of the belief systems. As usual, the strict version of this order is obtained by w >, w’ if
w =, holds but w’ =, « does not. Similarly, w =, 0’ if w =, w’ and & =, « both hold. The
order = is a complete and transitive order on €.

We then capture restrictions on belief systems with:

Definition 8: The belief system (o_,,..,0 \) respects an order = if, tor all i, forall r,, s, € §.,

I. »§ = T > §.
1 1 I’

1 1

It p respects x, then p respects preterences in the sense of Definition 4 of BBDb. If p respects
an order », then whenever r, > s, the beliefs held by the other players are that player i is infinitely more
likely to play r, than s,

We now define an equilibrium concept based on the requirement that players resolve indifference
by appealing to higher order beliefs, and that beliefs be consistent with the resulting ranking of strategies.
However, we require that players only evaluate indifferences that are structural, which is to say that we
require beliefs to respect the order >;. The following section, in the course of exploring this equilibrium

concept, identities how it would difter it we required beliefs to respect >,

Definition 9: The beliet system (o ,,..,0_x} is a Structural indifference Respecting Equilibrium (SIRE)
if it is a lexicographic Nash equilibrium that satisfies the common prior assumption, strong independence.

and full support, and respects x.

6. SIRE
(6.1) Strategic Independence
Our original interest in SIRE was motivated by its being a normal form extension of the extensive

torm sequential equilibrium concept. MSS introduce the idea of a normal form information set:

Definition 10: Two strategies t, and r, are structurally indifferent for every player on X _; it vj, m(t,s )

= m(r,s ) vs ;€X ;. Theset X € S is normal form information set for player i if X = X, xX_, and
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v 1, 8 € X, 34E€X such that t; and r, are structurally inditterent for every player on X _; and t, and s,

are structurally inditferent tor every player on §_\X .

It X is a normal form information set for player i, then when player i is evaluating strategies in
Xi, we can think of the player as separately choosing an X_ -equivalence class of strategies (i.e., those
strategies in X; that are structurally inditferent on X _)) and an S_j\X_,-equivalence class (i.e., those
strategies in X, that are structurally inditferenton S _\X ). The optimality ot a particular X _-equivalence
class depends only on player i's beliefs over X_; (since for any two X -equivalence classes, one can
choose a strategy from each that are structurally indifferent on S _\X ;). Similarly, the optimality of a
S_\X_-equivalence class depends only on the beliefs over S \X_.. We can thus think of player i’s
choice from X; as one of choosing behavior conditional on X ; and behavior conditional off X ,
independently.

Extensive form information sets exhibit a similar independence property, in that decisions at
different extensive form information sets can be made independently of one another. This is no
coincidence. MSS show that for every normal form game and normal form information set, there is a
corresponding extensive form game containing a correspending extensive form information set.
Furthermore, a normal form game contains a normal form information set for every extensive form
information set appearing in any corresponding extensive form.

MSS introduce an equilibrium concept called normal form sequential equilibrium that essentially
requires optimal play at every normal form information set. Let p,|, denote the conditional distribution
p5(.| X) for the smallest x for which supp(p)) X, # &, and similarly for p .|,. Then MSS’s definition

of normal form sequentiality is equivalent to:'®

Definition 11: A belief system p is a normal form sequential equilibrium if p satisfies the common prior
assumption, strong independence, and full support and, for any normal form information set X for player

i, o |x is a best reply to p /4.

Normal form sequential equilibrium is the normal form counterpart of sequential equilibrium, in
the sense that a strategy profile and belief system is a normal form sequential equilibrium it and only it
it induces a sequential equilibrium in every corresponding extensive form game (MSS, Theorems 7 and

8).

"“This immediately follows from Definition 11 of MSS and the equivalence between trembles and
LPSs that is described in Section 7.
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The equivalence between extensive form and normal form sequentiality exploits the fact that if
strategies s; and t; give equal payoffs (to all players) whenever the opponents choose from some set
S.AX_,, then player i can make the choice between s, and t "as it" opponents have chosen from X ..
From player i’s perspective, it is only necessary to require ties in player i’s payoffs. This will lead us

to SIRE, which is a natural extension of normal form sequentiality.

Definition 12: The set X © S is strategically independent for player i it X = X,xX ,and Vr,. s, €
X,, 3 4,E€X, such thatt; and r; are structurally indifterent for player i on X | and t, and s, are structurally

indifterent tfor player i on §_\X .

The following is then immediate from the definitions:

Proposition 2. A belief system p is a SIRE if and only if p satisfies the common prior assumption, strong
independence, and full support, and, for any X strategically independent for player i, p;| is a
best reply to p || .

Hence. SIRE strengthens normal form sequentiality by replacing normal form information sets
with strategically independent sets." It is immediate from Definition 11 and Proposition 2 that any
SIRE is a normal form sequential equilibrium, and hence induces a sequential equilibrium in every

extensive form.

Corollary: If a belief system p is a SIRE of the normal form (S, ), then the outcome of p is a sequential

equilibrium outcome of every extensive form with normal form (S,7).

(6.2) Proper Equilibrium
BBDb show that if we require that players resolve afl indifferences by appealing to higher order
beliefs, then we obtain proper equilibrium. It is then no surprise that SIRE is closely related to proper
equilibrium. Rather than using trembles, it is possible from Proposition 8 (BBDb) to define properness

as follows:

""Note that the acronym SIRE serves equally well for Strategic Independence Respecting Equilibrium.
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Definition 13: The belief system (p_,....0. )} is proper if it is a lexicographic Nash equilibrium that

satisfies the common prior assumption, strong independence, and full support, and respects =, .

The requirement that the belief system respect = forces each player to evaluate all indifferences,
including those generated by opponents’ randomizations.
Our next theorem shows that SIRE and proper ceincide if all indifferences are structural. and that

otherwise proper is a stricter requirement than SIRE because proper evaluates more indifferences:
Definition 14: A belief system p is pure if for every player i € N and every «, supp(pf) is a singleton.

Proposition 3: (3.1} The belief system p iy a SIRE if it is proper, but the reverse implication can fail.
(3.2) Suppose the belief system p is pure. Then p is proper if and only if it is SIRF.,
(3.3) If p is SIRE, then g% cannot attach positive weight to a strategy weakly dominated by
another pure strategy.
Proof: (3.1) That a proper equilibrium is SIRE tollows immediately from r, >¢ s, = r, > 8. The
equilibrium ('2M+ '2B,'AC+ '4R) in (G1) is SIRE but not proper.
(3.2) Let p be pure. Then two strategies have equal expected values under p*; if and only if they
are structurally indifterent on the support of p=;, so that r; > s, e, = §.
(3.3) Suppose s, is weakly dominated by r;. If the domination is strict, then s; must yield strictly
lower payofts than r;, so s; cannot receive positive weight in p%. So, suppose s; and r; yield the same
payoffs on some X ;€S . It the support of p?; is not a subset of X , then s, has a strictly lower payotf
than r;, so s; cannot receive positive weight in pf. Finally, if the support of p°; is a subset of X_;, then
r; and s; are structurally indifferent on the support of p°; and the two strategies are compared under p!..
Either s; has a strictly lower payoftf than r, under p'; or they have the same payoft, in which case r; and
s; must be structurally indifferent on the support of p!,. But now, r; and s; are compared under p~,, and

SO 0. |

(6.3} Lexicographic Conditional Probability Systems
LCPSs are a particularly attractive notion of alternative theories. One of the advantages ot SIRE
is that is that any SIRE generated by an LPS can also be generated by an LCPS. In contrast, BBDb use
the game (G4) to show that the restriction to LCPSs precludes both a characterization of properness and

existence of lexicographic Nash equilibrium (when the LCPSs must respect =, and have full support).
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L C R
T 1,-1 ~1,1 I,—3
1 (G4)
B 1,1 1, —1 0.2

This game has a unique Nash (and hence trembling hand perfect and proper) equilibrium;
(("2,'%2),02,%.0)).  Player 2’s beliefs about player 1 are completely described by 1's equilibrium
distribution. A player I LPS p, that is consistent with the equilibrium play and respects > is p3 =
(*2,'2,0) and p) = (0,%,%). Note that p° and p' have overlapping supports. An LCPS must specify
(0,0,1) at the second level, forcing player 1 to strictly prefer (under =) T to B, which is inconsistent
with equilibrium. SIRE, on the other hand, would not force player | to evaluate the indifference between
T and B since T and B are not structurally inditterent on {L,C}.

To see that the restriction to LCPSs is without loss of generality as far as SIRE is concerned,

define the following:

Definition 15: Denote by p the LCPS obtained from the LPS p by defining p*() =
5 S VU, supplp ) tor all «.

Note that p° = p°, so that the LPS and LCPS must agree at the first level.

Proposition 4: The LPS p is a SIRE if and only if the LCPS p implied by p is a SIRE.

Proof: Suppose r; z¢ §; and suppose 1, and s, are structural indifferent on supp{(p*,) for x < k, and are
not structurally indifferent on supp(o*;). Then the signof ¥ p*,(s )[m(r.s ) — 7,(s,.5_))] equals the sign
of Lp*i(s Mmr,s_) — m(s;,s )] for « < k. Thus, the ordering >, implied by p ; agrees with that
implied by p_,. [ |

7. Trembles

It is common to explain out-of-equilibrium behavior, both in normal and extensive form games.
in terms of trembles. BBDb show that the lexicographic order can be formulated in terms of sequences
of probability distributions or trembles, in the sense that the lexicographic order induced by an LPS is

identical to the ordering by expected payottfs induced by a sequence of trembles that “converges” to the
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LPS in a certain sense (Lemma 2 below). This section introduces an alternative notion of convergence
of a sequence of trembles to an LPS. We then use this convergence notion to show that the structural
order can also be formulated in terms of sequences of trembles., We restrict attention throughout to
lexicographic probability systems satisfying the common prior, strong independence, and full support

assumptions.

{7.1) Probability Sequences
A probabiliry sequence, P, is a collection of independent probability distributions {{P?}.%,,i€E N},
such that each P? is a completely mixed probability distribution on S,. Given a probability sequence P,
we define P* and P?; in the obvious manner, i.e., P¥(s) = ILc(Pi(s) and P°(s ) = IL_P%(s;). Let P,
= {P%} and P, = {P?}.

We now introduce two senses in which a probability sequence can be equivalent to an LPS.

Definition 16: The LPS p_; on S_; and probability sequence P ; are fimit equivalent if for all iEN,
s .t ES .

P it .
$ > t. e lim (’1)=0

-1 2., 1 e Pfi(sii)

and

PPiIA- _’px"i|,\-’ VK’
where A" = supp(p?)) and A* = supp(p*)\U, A", If P_, is limit equivalent to p ; for all i, then P is

limit equivalent to p, written P =, p.

Note that a probability sequence can be limit equivalent to many difterent LPSs, but to only one
LCPS. In fact, a probability sequence is limit equivalent to an LCPS if and only if it is limit equivalent
to every LPS implying that LCPS (see Lemma [ below). This is important because, as we saw in
Proposition 4, SIRE can be defined using LCPSs.

The second notion of equivalence is the one used by BBDb:

Definition 17: The LPS p on S and probability sequence P are tail equivalent, written P = _ p, if there

[}

exists n’ and a sequence {r(n)} with r(n)&€(0,1)*"" and r(n) = 0 such that P* = r(n)dp for n > n’.
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The proof of the following is obvious from the definitions, and describes the relationship between

limit and tail equivalence tfor LPSs and LCPSs:"

Lemma 1: (1.1) A probability sequence P is limit equivalent to the LPS p if and only if P is limit
equivalent to the LCPS p implied by p.
(1.2) Tail equivalence implies limit equivalence.
(1.3) A probability sequence P is tail equivalent to a LCPS p if and only if P is limit equivalent

L]

to p and there exists 0’ such that for all n = n’,

ani| c=ht

R vk,

1l,\"

where A* = supp(p"®)).

Example 3: To illustrate the differences between limit and tail equivalence, consider again Game (G4).
Suppose Pi = ((n—4)/(2n), (n+2)/(2n). 1/n). Now, {P3} is limit equivalent to any LPS (p%,p)) =
((2,%,0), (p.q,r)) for which r # 0. In particular, P% is limit equivalent to both (('2,'2,0), (0,0,1)) and
((Y2,%.,0), (0.%.%4)). On the other hand, P% is tail equivalent to (('2.'%,0).((0,%,'%)) but not to
((‘2,'4.,0), (0,0,1)). The expected payotf to T under P is less than the expected payottto B for all n =
4, and retlecting this, B » T under the LPS ((*42.%2,0), (0,%,%)) (see Lemma 2 below). However, T
and B are not comparable according to >, Consider now the sequence of probability distributions Q8
= ((n+2)/(2n), (n—4)/(2n), 1/n). While the sequence {Q5} is also limit equivalent to any LPS (0%,01)
= {("2,'%,0), (p,q,r)) for which r # 0, it is tail equivalent to (('2,'2.,0),((%,0,'4)) but not to (('2,'4.0),
(0,0,1)). The expected payotf to T under Q% is greater than the expected payoft to B for all n = 4, and
reflecting this, T >, B under the LPS (('%,'%2,0), (%.,0,%)). As Proposition 5 will make clear, the
existence of two probability sequences both limit equivalent to the LPS ((*%2,'2,0), (0,0,1)) implying

different rankings over strategies is central to the incomparability of the two strategies under ;. |

(7.2) Lexicographic Order
The following proposition (a minor extension of BBDb (Proposition 1)) indicates that it P is tail

equivalent to p, then P precisely captures the lexicographic order on the strategy spaces.

Lemma 2: Suppose p is an LPS satisfying the common prior, strong independence, and full support

assumptions. Suppose P is tail equivalent to p. Then there exists n” such that, for all i,

*Since p* is an LCPS, the A*in Lemma 1 are as defined in Definition 16.
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r, > 8 ifand only if TP(s Yw(r,s ) > LP(s_)ms,s;) foralln > n'.
Proof: The proof of Proposition 1 in BBDb applies here with the modification that (using their notation)

n” is chosen so that n > n® implies r'(n) < r* vn>n", where r* solves (1 -)B + r'W > 0. |

(7.3) Structural Order

A lexicographic order induced by a lexicographic probability system p ranks r, ahead of s, it and
only if r; receives a higher payoft than s; along some probability sequence that is tail equivalent to p.
This implies that if r, receives a higher payoff than s; along some probability sequence that is tail
equivalent to p, then r, receives a higher payoff than s; along every probability sequence that is tail
equivalent to p. Tail equivalence thus places significant structure on a probability sequence. Our next
proposition shows that a result similar to Lemma 2 holds for the structural order and [imit equivalence.
Hence, we can formulate the structural order entirely in terms of sequences of trembles, with no
distinctions between types of indifference appearing in this formulation. The distinction between
structural and nonstructural indifferences arises naturally out of the notion of limit equivalence.

There is an important difference, however, between tail and limit equivalence, and
correspondingly between the lexicographic and structural orders. In contrast to tail equivalence, two
probability sequences that are limit equivalent to the same LPS p can disagree in their expected payott
rankings of strategies (as illustrated in example 3). The next proposition states that the structural order
induced by an LPS p ranks r; ahead of s; it and only if r; receives a higher payott than s; along every
probability sequence that is limit equivalent to p. Note that, unlike for the lexicographic order and tail
equivalence, every cannot be replaced by some. While tail equivalence implies limit equivalence, there
are probability sequences that are limit but not tail equivalent to p, and the structural order requires more
stringent conditions than the lexicographic order to rank strategies. The structural order can then decline

to rank strategies that are ranked under the lexicographic order.

Proposition 5: Suppose p is an LPS satisfving the common prior, strong independence, and full support
assumptions. Then for all i, v, > s, if and only if for all P =, p there exists 0" such that
YP(s_Omlr,s.) > YP(s_)m(s,s_) foralln > n.
Proof: The result is trivial for r, and s; structurally inditterent on S_;. So suppose r; and s; are not
structurally inditferent on § ;. Let k be the largest index satistying: r; and s; are structurally indifferent
on supp(p®;) for x < k. Let A® = supp(p”). A* = supplp* N\, A, for all «.
(=) Suppose P =, p and r, >y s.. Thenr, has a strictly higher expected payoff than s, under p*,.

Define C = Yo% (s D[m(r.s ) — m(s.s )] and B = max|m(r.s ) — m(s.s )|. Note that A* # &,
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so that e(n) = P*(A¥/p*(A%) is well detined. Since P is completely mixed, e(n) # 0. Choose n” so
that for n > n’ and for all s_, & U, _.supp(p”). P"(s..) < Ce(n)/(3B{S ;). Since p =, P, there is an

n" such that forn > n",

Y s Mm(rs )~ mlses ) — ) Y PG DIm(r.s )-w(sys I < €3

5 EAF 2 €AY

Set n” = max{n’,n"}, Since r; and s, are structurally inditferent on supp(p”;} for ¢ < k,

Y PLs Jlwros ) — w(s.s )] = Yy P (s Dl (r.s_) — m(s,.s. )]

s_=E U__ isupp!p'_‘}

= z Pni(S"i)[’Iri(l'i,S i) - W;(Si,s_ 1)] + Z Pfi(s_;)[ﬂ-i(rias i) - Wi(siss,i)]

s EA' s_ &, supptol)

> Y PUs )Imfris ) — wis,s ) — Ce(n)/3

s €AY

> enC — C/3 — C/3) = em)C/3 > 0.

(<) Suppose for all P =, p and for n sufficiently large,

Y PG JImrs ) — wisps )l > 0. (1)

We suppose r, » s; does not hold and derive a contradiction. If r; > s, does not hold, then:

Ep‘,i(sf.l)[ri(ri.sfi) - m(s,.8 ) =0 foral « < k, and

(2)
Y Al (s ) — msps )] < 0.
The definition of k and (1) implies:
E Po(s Jmfr.s ) — ws.s )] + E P(s Hwdr.s ) — wis.s ) > 0.
B_EAL s Bl suppist)
Dividing by P*.(A*) and taking limits yields
Z pk—i(s.;)[ﬂ-i(r;ss_;) - “T;(S;ss.;)] = (0.
s EAT
Combining with (2) yields
Y ots )m(r.s)-mls,8.)] = 0. (3)

s_EAT



21
We now argue that there exists a probability sequence Q that is limit equivalent 1o p but reverses
the inequality in (1}, which is a contradiction.

Define ki(s;) = min{x:pi(s;) # 0} and k_(s_;)

min{x:p*(s_} # 0}. Note thatk = k_i(s.)

vs .€ A*. Since p is strongly independent, there exists t{n)€(0,1)* ', r(n) > 0 as n — oo, such that

rin)0p = ILr(n)Up);, = IL(r(n)Tp,). Fixing s_,ES ;, and letting k, = k(s)), k_; = k_(s_;), we have
et @pses ) = [ r'm-rml - m)eys) + @)l

j#i

G LR SRV R ESL R O I8 | §

(We follow the convention that r'(n)..r°n) = 1.) Dividing both sides by r'(n)-r*-(n) and taking n to
infinity shows that
pis.) = alk k)<L o), @
J=i

where k' is the vector (k),.; and

[1r'@-r* @)
ek k_ )y =lim |22 | = 0.
e oe rl(n)...rk-‘(n)

Let A¥ = {$;€8; (3.8 ;) EA for some s ;}. Defineu(s_)) = a(k (s ).k (s ) X[mr.s.)

-] i

— m(s,,s_,)] and consider the function q;;r[_tvg?‘fi' — R, given by, tor p ; = (P, p, E?R'}‘:
=1 ]

®p ) = ), (H pj(s,.))u(s_l).

5 Eat \j=i

kis)
i

From (3) and (4), &(p ;) = 0. where D,-'(Sj) =p (Sj)- Since u{s ;) # 0 for at least one s_,EA*, &

is not identically zero on any neighborheood of p’. Fix 6 > 0 and p° such that |p* — p°| < 6 and $(p")
# 0. Definep = (pj....p.p}.p....p%). forj = 1., N, so that p* = p. Let j” be first index such that
d(p’) = 0. Since 1 —-N)p" ! + Ap) is affine in X and ®(p"") # 0, there is a AE R such that p* =
(1=Mp" ' + Ap'" satisfies ®(p’) < Oand |p’ — p*| < &. Since pi(s) # 0, pi(s) # 0 for all 5;€ A}
and j. Setting

Z pja(sj)] h X

{sIE;‘\::k:(sl]ﬂJ';

Y pj’(sj)] .

{S_EA:‘:kls_;z(l}

we have ®(8,p},...0p%) = —n, < 0. and B, > 1 as 6 > 0.
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We now define a LPS tor player j, 0,(.:8), as follows. First set g}“r’(sj;(s) = ﬁjpf(sj)a and o3(s;:6)
= pi(s) for « # ks;). By construction, Loj(s;8) = 1. If Loj(s;6) # | for some x 2 1, then adjust
o}(s;;6) for s; with ki(s;) = 0 so that ¢3(.:8) is a probability distribution. The necessary adjustment is
feasible for 6 small.

Consider, for fixed 8, the probability sequence {P(.;6)} given by Pi(.;6) = r(n)[1e(.;5). We

now argue that for n sufficiently large,

Y P dlmirs ) = wis,s ) < 0. 2

This is clearly equivalent to:

z(rl(n)"'rk(n))ilp—ni(s,i;a)[?ri(rps ‘,) - ﬂ—i(si-s_i)l < 0
Using the fact that k;(s)) = min{x:p(s;) # 0} = min{x: ¢i(s;) # 0} and the definition of P{(.;4), the lett

hand side converges to

) Ho}-‘-’(sj)] ok (s )k (s DImlrs ) — mis.s )l = —m, < 0,

s_‘EA* IEL]

and so (5) holds for n sufticiently large.
Let Q7 = P{™(.;1/m), where {n(m)}.,. is an increasing sequence with the property that (5)
holds when 6 = 1/m and n = n{m). It is immediate that {Q7} is limit equivalent to p and reverses the

inequality in (1). This is the desired contradiction and so r; > s, |

8. Conclusion

The motivation for this paper was a suspicion that all indifferences are not created equal, in the
sense that players might be "more inditterent” in cases of structural indifference. We have pursued this
by examining the structural order and structural indifference respecting equilibrium, each ot which
requires that structural inditferences only be broken by appealing to higher order beliefs. We regard the
properties of SIRE, such as its relationship to sequential equilibrium and the ability to work with
lexicographic conditional probability systems, as an indication that structural indifferences embody
interesting phenomena.

We close with a tinal example illustrating the distinction between =g and the order implied by a

particular SIRE. (Notice that any SIRE implicitly involves such an order.) Consider the following game:

2
S 5° I
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L C R

5 A 1,1 0,0 0,0

5 B 0,0 L1 1,0

! & C 1,1 0.1 3,2
1° D 0.1 1,1 2.0

Let p be as indicated, so that

piD) =1, piL) = p2C) = .5,

(€ =1, pAR) =1, and

pi(B) = pi(A) = .5.

Then (D, .5L+.5C) is a SIRE, with

C ~ A,

D ~¢ B,

L ~;,C»R.

The choices embodied in the SIRE suggest completing the order as:

D> C>» B~ A,

However, it is easy to verify that no probability sequence limit equivalent to p can produce this completed
order, nor can any sequence of tie-preserving payoff perturbations. Any such probability sequence, for
example, must attach higher probability to C than to L, in order for the payotf to D to at least equal that
of C, but then B must receive a higher payoff than A, preventing A ~¢ B.

We take this example as an indication that one should not look to trembles to provide a complete
description of play. Instead, we view trembles as establishing necessary conditions for a theory of play,
but as leaving unresolved some issues tor which one must then turn to auxiliary considerations, much as
does any theory that fails to yield a unique prediction on all games. The structural order thus readily
groups strategies into levels of likelihood, but is not always specific as to precise probabilities within
levels. Given this lack of specificity, it is comforting that the structural order is robust to all (limit
equivalent) strategy perturbations. This suggests that the structural order successtully captures the robust

implications of any theory ot opponents’ out-of-equilibrium play.
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