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Abstract

Mailath, Samuelson, and Swinkels (1992) introduce the normal form informarion
set. Normal form information sets capture situations in which players can make certain
decisions as if they knew their opponents’ had chosen from a particular subset of their
strategies. In this paper, we say that an extensive form game represents a normal torm
game if, for each such situation, the corresponding choice in the extensive form is made
with the player knowing that the opponents have chosen from the relevant subset. We
show that normal form games exist that cannot be represented. We develop an algorithm
that generates a representation whenever one exists and present a necessary and sufficient
condition for a normal form game to be representable.
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[. Introduction

Introductions to game theory typically begin with the concept of a normal (or strategic) form
game. It is then observed that a more detailed representation of the strategic interaction is available, the
extensive form. For example, information sets in the extensive form provide information about when
players move and what they know when they move. Those who have argued for confining analvsis to
the normal form, such as Kohlberg and Mertens (1986), take it for granted that the extensive form
provides more information about interactions than the normal form, but argue that this extra information
is strategically irrelevant.

In Mailath, Samuelson, and Swinkels (£992) (hereafier MSS), we showed that the normal torm
provides a detailed description of the information structure of a strategic interaction. We argued that the
distinguishing feature of extensive form information sets is strategic independence: it is not that the choice
of an action at an information set need not be made until that information set is reached that is important,
but rather that the choice of action, whenever taken, "matters” (i.e., affects the outcome of the game)
only if that information set is reached. We used this idea of strategic independence to detine a pure
strategy reduced normal form structure called the normal form informatrion ser.! Roughly. a normal
form information set for player i is a subset of player i’s strategies and a subset of the other plavers
strategies with the property that i’s choice from his subset "matters” only if the other players choose from
their subset,

For any single normal form information set of a reduced normal form, there is an extensive torm
game with that reduced normal form and a corresponding extensive form information set (MSS, Theorem
1). At this extensive form information set, the player has explicitly available to him the information that
his opponents are playing from the relevant subset of their strategy profiles. However, it is not always
possible to represent @/l normal form information sets, and hence the informational structure ot the
normal form, in a single extensive form game (MSS Example 7).

MSS raise the question of when such a representation is possible. That is the topic of this paper.
If such a representation exists, then we can use the analytically convenient extensive form. If no such
representation exists, then it may be necessary to confine analysis to the normal form, not because the
extensive form contains irrelevant information, but because it conceals information.

Our basic notion of a representing extensive form can be described as follows: [f @ particular
choice between normal form strategies does not matter unless the opponents are plaving within some

subser of their strategy profiles, then in a representing extensive form the player can defer that choice

The {pure strategy) reduced normal form of a game is obtained by deleting, for each player, any pure strategy
that is a duplicate of another pure strategy.
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representation algorithm. Section VI defines the condition of generalized nested or disjoint (GND) and
proves the Representability Theorem: a normal form is representable if and only if it satisfies GND.
which holds if and only if the representation algorithm is successful. Section VII provides conditions
under which the representing extensive form is "generic," in the sense of having distinct payott vectors
at different terminal nodes. Section VIII contains some remarks on the playability of representing

extensive forms. Proofs are in the appendices.

II. Preliminaries

We denote the set of players by N = {1,..n} and player i’s pure strategy space by §;,1 = 1...n.
The set of strategy profiles is given by S = S, x..xS§_. Player i’s payoff function is written 7;:S — .
with T = (m,.,7,). A set of strategy profiles S and a payoff function = determine the normal form
game (S,m). A subset of player i’s strategy space will often be written X;. Typical pure strategies for
player i are denoted r;, s;, and t;. As usual, a subscript —i denotes N\{i} and a subscript —I denotes NI

We reserve C and D for proper containment, using €& and 2 when there is possible equality between

sets.

Definition 1: Two strategies s, v, agree on X _; if w(s;,s_)) = m(t;,s_;) vs_;€EX_,. The ser X, E5§,
agrees on X _; if every s;, t, € X, agree on X _;. The normal form game (S,7) is a pure straregy
reduced normal form game (PRNF) if for all i, no strategy s, €S, agrees with any element of
S;\{s;} on S,

The PRNF of a normal form game (S’,7") is that PRNF (S,7) in which each equivalence class
of strategies in S defined by agreement on S”; is represented by a single strategy 5;€S,. It ;€5 is
contained in the equivalence class s, €S;, we write 0;Es;. We do not distinguish between PRNFs that
differ only in the strategy labels.

The strategy space of the extensive form game T is denoted ST, We will use Greek letters tor
pure strategies in ST. If (S,x) is the PRNF of I, the normal form of I' can be written as (8T, 7). where
7(0|,-.0,) = 7(s},...8,) for 6, Es;. Define H; to be the set of information sets in T" belonging to player
i For an information set h of T, denote the set of strategies in ST consistent with reaching h by Sth).
Define S¢th) = {sES:aaESF(h) s.t. 0;Es; vi}. The sets ST(Y) and S(Y) are defined analogously for
arbitrary subsets Y of nodes of I'. Denoting the set of player i's normal form strategies consistent with
reaching h and which specify the action a at h by SI-:(h,a), then S;th,a) = {s,€S5;:30,€ Sli"(h,a) .t 0; €584

All other extensive form notation is from Kreps and Wilson (1982). We restrict attention to finite
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of beliefs over S_\X_;. We can thus think of player i’s choice in X as one of choosing behavior on

X _; and behavior off X _; independently.
MSS prove the following:

Theorem 0: The strategy subset X of the PRNF (S,7) is a normal form information set for plaver i if
and only if there exists an extensive form game with PRNF (S,m) with an information set h for

player i such that S(h) = X.

Thus, for any single normal form information set, there is an extensive form which has a
corresponding extensive form information set. In the next section, we analyze an example which shows

that this need not be true for cellections of normal form information sets.

III. A Game With No Representation

We begin with an example showing that even with a very unrestrictive notion of representation,
and a very simple normal form game, representability can fail. It turns out that every normal form game
that cannot be represented contains a structure similar to this game.

Abreu and Pearce (1986), in a discussion of axiomatic foundations of solution concepts, introduce

the following game:

2
L R
T a a
(G1)
1 B a b

We first look for choices where a player can say, "this choice will not matter unless my opponents are
playing within some subset of their strategy profiles.” The relevant such choices are captured by the
normal form information sets X = {T,B} x{R} for player | and Y = {B} x{L,R} for player 2.

It is easy to find an extensive form game that represents X; i.e., a game in which, at the time
player 1 chooses between T and B, he knows that player 2 has not chosen L (the first tree in Figure 1).
It is similarly easy to find an extensive form game which represents Y (the second tree in Figure 1).

At a minimum, for a single extensive form to capture both players’ strategic independences, and
hence represent {G1), normal form information sets X and Y would both have to be represented. Neither
of the trees in Figure 1 accomplishes this. The first extensive form in Figure 1 contains an intormation

set at which player 2 chooses between L and R, but this information set does not give plaver 2 the



-7-

If new definitions restrict attention to information that is explicitly known to players, then we
believe that the impossibility result will survive: Each player must have made his choice before the other
can know that his choice matters. A redefinition may allow (G1) to be represented by introducing "4s
it" considerations, but we think the normal torm information set and subgame already do this in the
appropriate way. We explore representability precisely to determine when the "as if" knowledge of
normal form strategic independences can be transtormed into explicit knowledge in the extensive form.

Finally, note that the game (G1) is not rectangular (i.e., #(T,L)} = n(B,L) = «(T,R), but 7(B,L)
# w(B,R)). Rectangularity is an important feature of PRNFs of extensive form games with pertect
information (Gurvi¢ (1982)).)  An example showing that rectangularity is not sufficient tor

representability is provided by the following:

2 2
¢ r i r
a b T d b {G2)
i 1
c c d e
L R
3

The relevant information sets are S;x {¢L,Rl,Rr} for player 1, S§;x{TL,TR,BR} for player 2, and
S,x{T¢,Bf,Br} for player 3. The game is not representable (Theorem 6). This game has the flavor ot
a three player Abreu-Pearce game, in that each player needs both of the others to have moved betore he

knows whether his information set has been reached.

IV. Representability

Not all extensive forms with a given pure strategy reduced normal form (PRNF) represent that
PRNF. A representing extensive form must also capture the information structure (implied by the normal
form information sets) of the PRNF.4 In this section, we develop our notion of representability.

We begin with weak representability: a player can always defer a decision in the extensive form

until he explicitly knows all the information that he could act as if he knew in the normal torm (this will

3We thank Hervé Moulin for drawing our attention to Gurvi¢ (1982).

“This interest in the informational structure of the normal form separates our work from that of Thompson
(1952), Dalkey (1953), and Elmes and Reny (1991), who examine extensive form transformations that yield new
extensive form games without altering the PRNF.
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is not forced to choose between the elements of X;. This is captured by requiring that there is an action

at h for the player that preserves all his options in X;, i.e., an action a with XiES(‘n,a).5

IV.2 Strong Representability
It is entirely possible in the situation just described that there is another action a” € A¢h) such that
S(h,a’) contains some but not all of X;. Thus, under weak representability, we only give the player the
option of deferring a decision between the elements of X;. A stronger notion of represent would require

that the player not choose between the elements of X; until the extra information is available.

Definition 4: Ler T be an extensive form game with PRNF (S,7). We say T strongly represents (S )
if for each h€H;, each XN, with XSS} and X_;CS_;(h), and for all a€ A(h), either
X,E8,th,a) or X;NS;(h,a) = &.

Consider again an information set X at which a player can decide "as if” he has more information
available than is given to him by h. We now require that when choosing at h, the player cannor choose
between the elements of X;. This is captured by requiring that every action a at h satisfy either

X,E8,(h,,a) or X;NS.(h,,a) = &. Every strong representation is a weak representation.®

IV.3 Informarional Dominance
Strong representability is an attractive notion. Unfortunately, strong representations do not
always exist. Moreover, in many cases where there is no strong representation, there is still a satisfactory

weak representation:

5We have motivated weak representability as not forcing players to make decisions with less information than
they could assume to be true in the normal form. But suppose that the elements of X; agree on §_;(h). Then, a
decision over the elements of X; cannot affect payoffs, and so it seems less compelling to require that X; S S(h.a}
for some action at h. However, in this case the logic of the extensive form, independent of any representability
considerations, implies that if X;MNS;(h,a)# &, then X;=S;(h,a) (see Lemma A4 in Appendix 2). Since
X;NS;(h,a) = & must hold for some a (because X; < S;(h)= U.EAm)Si(h,a)), the requirement of Definition 3 is
automatically satisfied in this case.

et T be a strong representation. Let h€H;, XEN; with XES(h) and X_;CS_;(h). Then, since
UaEA(h)Si(h,a)zsi(h), there is a € A(h) with X;NS;(h,a)# &. But, then by strong representability, X; & S;(h,a),
and so I' 1s a weak representation.



¢ d f g a b d e
Figure 2—Note that L corresponds to {s' s>} and R 10 {s°.s%}.

strategies agree on a subset of S_;(h), for some h€ H;, and there is an action at h that is consistent with

at most one of the strategies. Game (G4) and the extensive form in Figure 3 suggest that this is not

always desirable.

(G4

|74}
%]
e o |

Figure 3—L corresponds to {s,s°} and R to {s!,s*,s%}.

Let h be player 1’s first information set in Figure 3. Then, Sth) = S. Thus, the choice of L

gives up the alternative of s! before player 1 has all the information player 1 could have had (namely,



Figure 6

We formalize this with the following definition:

Definition 5: Let ' be an extensive form. Suppose h,h’ €H;, h'xh, Sfi(h)=SEi(h’), and a” € A(h’).
The sequence of actions ending in 3’ is informationally dominated if there is an action a” at h and
K, <S;(h,a") such thar
(D5.1) §;(h’,a")CK,, and
(D5.2) {fﬁEHi is an information set following a" such that S_i(h)=S_i(ﬁ). then there

is an action a at h such that K, S Si(ﬁ,ﬁ).
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not be a partition of Z;. As we will see later, a PRNF is strongly representable if and only if it is weakly
representable and ¥,(Z) partitions Z, for all i (Theorem 7).

Cur discussion of (G4) and (G5) then suggests a representability notion in which one can never

split apart elements of ¥;:

Definition 7: Ler ' be a weak representation of (S,m). We say T parsimonious!v represents (S.m) if for

each h€H; and each a€ A(h), S;(h,a) is a union of elemenis of ¥,(S(h)).

Figure 2, Figure 4, and Figure 6 are parsimonious representations. Figure 3 and Figure 5. in

which informational dominances appear, are not. This is no coincidence:

Theorem 2: (T2.1) A weak representation is a parsimonious representation if and only if it has no
informational dominances.
(T2.2) If a game has a sirong representation then any parsimonious represenration of the

game is also a strong represeniation.

If both a weak but not parsimonious representation of a game and a parsimonious representation
of a game exist, then the parsimonious representation is clearly preferable. In addition, we later prove
that any time a game has a weak representation, then it also has a parsimonious representation (Theorems
3, 5, and 6). These observations suggest to us that parsimonious representability is the "right” notion.

The reader may wonder why our definition of parsimonious representation did not have e¢ach
action at h equal to some element of ¥.(S(h)), and instead allowed for unions over elements of ¥,(S(h}).

Consider the following game:

2
L R
T 3,3 3,3
1 M 0,0 1,1 : (G6)
B 4,2 2,0

For this game, ¥,(S)={{T},{M},{B}}. Thus, if we required 1’s choices at S to be elements of
¥ ,(S), the only allowable parsimonious representation (with no redundant strategies) would be Figure 7.
There are, however, many orders in which player 1 could decide among {T,M,B}. For example, player

1 may first decide whether to use T, and then, if T is not chosen, decide between M and B. giving the
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2
r! r* r’ .
st la|b | d|f
s* a b e f
1 s c c d f ©7
st c c e f

Among player 1's normal form information sets are $; xXS,, S;x{r',c>,r’}, S;x{r',r’}, and $,x{r}.
The information set §; XS, ignores the fact that when choosing from S, player 1 can proceed as if he
knew that r* had not been chosen. The information set S, x {r',r>,r’} obscures the fact that, because
S, x {r',r*} and S, X {r}} are information sets, player 1’s decision can be described as an ex post decision
contingent on observing {r',r?'} or . The description of player 1’s decision problem that captures a//
of the information that player 1 can take to be available when deciding is provided by the information
sets S, x {r',r*} and $; x{r’}. The distinguishing feature of S, x {r',r"} and S, x{r’} among plaver 1's

information sets is formalized as follows:

Definition 8: The normal form information set, X;x X _;, for player i is strict if (1) there does not exist
Y _; with X, XY _; being a normal form information set for player i and Y _CX_; and (2) for
some s,LE€X; and s_;€X_;, w(si,s_i);évr(ti,s_i).“ The extensive form information set h is

strict if S¢h) is strict.

For any non-strict information set X € N;, it follows immediately from Definition 6 that ¥ (X}
= X,. Thus, in a weak representation, at any non-strict information set, one choice of a ptayer must be
to defer all decisions. In a parsimonious representation, afl choices at any non-strict information set must
correspond to retaining all options. These observations suggest that non-strict information sets play no
significant role in a representation. As we shall see, every parsimoniously (and hence weakly)
representable game has a parsimonious representation that involves only strict information sets.  In
particular, the representation algorithm generates such a game.

How might one construct a representation for the game (G7)? The first information set in any

(two player) extensive form corresponds to S, xS,. Since player 1 does not have S| xS, as a strict

UThis is to rule out, for example, §; x {r'} as a strict information set in (G7).
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reached at which neither of these can be done, then the algorithm is a failure, while otherwise the
algorithm successfully generates an extensive form game.!?
We now present the algorithm. If X; is set of strategies for player i, then we define (X)) =

{s_,€S_;w(.,s_;) is constant on X;}. If X; is strict then X_,NI(X,)=D.

Definition 9: The Representation Algorithm is given by the following procedure:

Initial Step: Create an initial node w, and define T(w)=S,X.. XS§,.

Recursion; If this is the first application of the recursion step, let ¢ = {w}. Otherwise, let ¢ be the
collection of new nodes generated by the most recent application of the recursion step.
Associated with each node {€® is T() =T (D) X..XT_({), where T,(HES, for each i,

Foreach { € ¢, define M($) = {i : T(DET,(HXY_,, forsome Y_,, where T,({) xY _,
€ N, is strict}. The set M({) is the set of players who can make a decision at {.

Choose i€ M({) if M({) is non-empty, and let X! denote the unique strict normal torm
information set such that T,({) = Xf and T(p) € X5.13 Player i is the player who moves at
¢ Give player i one edge from { for each element T}E\I'i(Xf), with each edge leading to 2
distinct new node, and label the edges by the corresponding T;.

For the node 5 reached from { by the action T} € ¥,(X%), define T(n) = TixT_,({). To
interpret T, note that for any node ¢, if player j has moved prior to {, then T;({) is the name of
the most recent action taken by j. If j has not moved prior to ¢{, then T,({)=S,.

If M(}) = &, then {is a terminal node and no player makes a decision there.
Halting: Let & be the collection of nodes generated by the most recent application of the recursion step.
The algorithm halts if and only if for every node {€®*, M($) = @. Since (S.7) is finite. the

above process must stop in a finite number of steps.

Evaluation: The algorithm is a success if, for each terminal node {, T ($) € I(T,({)) for all .

120ne aspect of the algorithm that is not captured by this example is the assignment of nodes to information
sets. WE provide an example involving nontrivial information sets immediately following the formal statement
of the algorithm.

13The uniqueness of X$ follows from Lemma A7 in Appendix 3.
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which contains §; x{r"} is S, and so X¢" =S. Now, ¥,(S) = {X!,X7} (because X! is an information set
tor 1 with XéCS2 and similarly for X-). Thus, at the node ¢, player 1 chooses between X} and X%.
leading to two nodes 7 and 7 with T(¢') = XIx{r7}, and T = X*x{r"}, r=123 See

Figure 11.

Figure 11

Now, M(&!) = & and ! receives a payoff of d, MY = @ and 13 receives a payoft of ¢.
However, M({'D) = M%) = M) = M) = {1}. Now, x¢' = x¢ = X!, and ¥.(X!) =
{{s'}3.X7}. So, 1 chooses between s’ and X? at these two nodes. Similarly, 1 chooses between X; and

s*at 2 and 3. Denote the two nodes following " by ¢!%7 and %7, for x,7 = 1,2. See Figure 12.

Then,

T = {syx{rl}, T = Xix{r'},
T = {s'hx{r, T = Xix{r} = X,
TR = X3x{?} = X3, TP = {4 x{r),
T(¢'?) = X} x{r’}, and T(S) = {4} x{}.

279
E)

In four of the new nodes (¢'!!, 112, 222, and {*2?), the last choices of player 1 have led to a
single strategy, so that no further choices can be made and payoffs can be assigned. Since M(X? x{c'h)
= . player 1 cannot refine X3, but a payoff of d can be assigned to {*'1. Similarly, M(X}x {r*}) =
& and t123 is assigned the payoff c. This leaves the two nodes, 2'2 and {12, with T('%) = T(:**)

= X3, The unique strict information set containing X3 is X3 itself, and so at each of these nodes playver



Figure 13

It is easily verified that the collection ¢, is precisely the set of information sets represented in the
extensive form generated by a successful application of the algorithm. In addition, any weak
representation contains an information set corresponding to each element of &, (see Lemma Al2 in
Appendix 6). Moreover, every information set in a parsimonious representation is related to a normal

form information set in &, as follows:

Theorem 4. Ler T be a parsimonious representation of (S,7). Let hEH, for some \. Then either:
(T4.1) Sth) € Q,,
(T4.2) h is not strict and hence no decision is made ar h (i.e., S;(h,a) = S5;(h) va€ Ach)). or
(T4.3) his strict and follows an information seth’ € ; for which S_;(h) = S_;(h") and §;(h.a)

is a union over elements of ¥,(0’) for all a € A(h).

Hence, for each player i and h € H, either (T4.1) S(h) is an element of &, and so h also
appears in the representation generated by the algorithm; (T4.2) no options are given up by any action
at h; or (T4.3) there is h' (with S(h")E ¢)) preceding h, such that player i has learned nothing between
h' and h, and such that the choices i makes at h correspond to choices he would make at h’ in

representations generated by the algorithm.'* Figure 8 is an illustration of the last possibility. Thus,

More precisely, the choices i makes at h correspond to the choices he would make at the extensive form
information set that corresponds to S(h’) in representations generated by the algorithm.
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The necessity of GND is less obvious. For any particular X in Z, there is no reason to believe
that a node corresponding to X will appear in any weak representation. The proof of necessity involves
finding, for any X &€ =, and any representation, a node y with the properties that the player i moving at
y (if any) has S/(y)=X,, while the remaining players have Sj(y)QXj. Since y is a node in a
representation, either someone moves at y, in which case (D11.1) will be the satisfied for the player who
moves, or y is a terminal node, in which case (D11.2) must hold for S(y) and thus for XS S(y). The

tormalization of this argument in Appendix 6 allows us to prove:
Theorem 6: [f (S,m) is weakly representable, then ¥ is GND.

Thus, if the algorithm fails, we have reached a node that is essentially an n-person Abreu-Pearce
game: a node where some player must move and yet no player can. Theorems 3, 5, and 6 together

constitute:

The Representability Theorem: The following are equivalent.
(i) (S,m) is weakly representable,
(i) (S,w) satisfies GND,
(iii} the representability algorithm is successfui on (S,m); and

(iv) (S,m) is parsimoniously representable.

Remark: It is easily verified that if the definition of Z is medified such that for each player
except some particular player i, \IszSj, then GND is always satisfied. Correspondingly, it the
representation algorithm is modified such that the first step is that all players apart from 1 choose
simultaneously over all their strategies, then the algorithm will always terminate successfully, generating
a game which represents i’s strategic independences. Thus, we can always represent the decision problem
of a single player. There is then a strong sense in which the force of both GND and the representation

algorithm involves the weaving together of separate players’ decision problems.

VIII. Strong Representability

We return now to the notion of strong representability. We first show how the previous analysis
can be adapted to this representability notion. We then turn to the connection between strong
representations and extensive form games which are "generic” in the sense that for any two distinct

terminal nodes z and z°, 7(z) # 7(z’).
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[X. Playable Representations

We conclude with some remarks on another stronger but more speculative notion of
representability, namely that the extensive forms be playable.!® Intuitively, a game is playable if
allowing players to condition their decisions on the time that they are asked to make a choice does not
convey any additional information.

To illustrate the difference between representability and playability, consider the foilowing game:

2 2
4 r' £ r
4 a a ¢ d f (GY)
: r b c r e f
L R
3
3

Figure 14

The only information set in player 1's complete collection is §; x {£'L,r’L,£’R}. Similarly, for player
2, we have S, X {Rl,¢R,Rr}; and for player 3 we have S. This collection of information sets saristies
GND. Applying the algorithm to this game yields the extensive form representation in Figure 14.

If this extensive form game is played in real time by soliciting decisions from players when their
information set has been reached (and players know this process), then at least one of players 1 or 2.

when asked to move, can infer from the time at which he is asked whether he is the first of players 1 or

16We thank Elon Kohlberg for drawing our attention to the issue of playability.
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While playability is an intriguing and plausible requirement, we have not pursued it here because
it is not common to restrict attention to playable extensive forms,!” and such an investigation is beyond

the scope of this paper.

17"Non-playable extensive form games have appeared in, for example, Kreps and Wilson (1982, figure 8)
and Kreps and Ramey (1987, figure 2).
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Now suppose an extensive form game with nature, I', represents game (G1). The argument
proceeds in three steps. First, suppose that the game is such that for each player i,information set h for
i and nodes x and y, if x € h and there exists a strategy profile s for the players and two realizations
and w, for nature such that given s, node x is reached if nature chooses w, and node y is reached it
nature chooses w,, then y is also in h (i.e., no player can condition choices on the reatization of nature).
Then we can construct an extensive form without nature by collapsing nature’s moves at each information
set into a single move and attaching expected payoffs to terminal nodes. This new game will have
precisely the same information sets for players 1 and 2 as the original and also the same PRNF. We then
have an extensive form game without nature that represents game (G1), contradicting the first part of the
proof. Say that player i can condition on nature at information set h if, at h, player i can exclude some
realizations of nature. Thus, there must exist a player i in T and an information set at which i conditions
on nature,

The extensive form I" must have an information set corresponding to either h* of hY that follows
4 move by nature on which player 1 or 2 (respectively) can condition. If not, we can construct a new
extensive form game by arbitrarily fixing the behavior of players at all information sets at which they can
condition on nature. This new game will still have information sets corresponding to hX and hY. will
have the same PRNF as I", and has only information sets at which players do not condition on realizations
of nature. The previous paragraph again yields a contradiction. Thus, one player, say 1, must have an
information set corresponding to hX that follows an information set h at which some player conditions
on nature.

Since player i conditions on nature at h and hX follows h, there are four strategy profiles st s,
s3. and s* such that for some of the realizations of nature’s move in N' (the set of realizations which
make h reachable), all four strategy profiles reach hX and s! and s* give outcome A and s> and s* give
outcome B, and such that, averaging over all moves by nature, w(s') = m(s®) = a and 7(s’) = =(s*) =
b.'® Denote by N! the set of realizations for which s! and s? reach the same terminal node, and s° and
% reach the same terminal node. Furthermore, for at least one of the realizations of nature’s move,
«"@ NP there is an information set h> # h reached by all four strategy profiles 7, 7=1, .4, with st and
s? yielding a different outcome from s* and s*. [If not, then all the payoffs following nature’s reaiizations
not in N yield the identical payoffs. But then these realizations could be eliminated and payoffs rescaled,
yielding a game in which no one conditions on nature, a contradiction.] Call these outcomes C and D.

Denote by N2 the set of realizations for which s' and s® reach the same terminal node, and s and s*

181f it was known that the extensive form only had as outcomes a or b, then the argument in this paragraph
could be simplified, but other outcomes (inciuding the zero vector} may also appear in the extensive form.
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Proof: Since T;E ¥,(Y), there exists XEN; such that X€Y, X_,CY_; and X;=T,. Suppose the lemma
is false and define Z, = {s5;€Y;:3s]€X,, s, agrees with s} on Y_;}. Then X,CZ, Letr,s;€Z;. Then
there exist r},s; € X, with r} agreeing with r; on Y_; and s} agreeing with s, on Y _;. Since X is an
information set, there exists t; € X, agreeing with r; on X _; and agreeing with s; on S_\X_;. Since Y
is an information set, there exists t; € Y; agreeing with t; on Y _; (and so t;€Z.) and agreeing with s, on
S_\Y_;. Infact, t; also agrees with s, on Y _A\X _; (since t; agrees with t; on Y _;, t; agrees with s; on

S_)\X_; and s; agrees with s; on Y _;), so that t, agrees with 5, on S_\X It is easy to check that t,

agrees with r; on X_;. Thus, Z;xX_, is a normal form information set with Z.xX_. €Y. This

contradicts the assumption that X, =T, € ¥,(Y). |

Lemma Ad: Ler h be an information set for i in an extensive form with normal form (S,w). with
Sth)=X. Lera be an action at h and let 5,€ X, be such that s, €5,(h,a). Then, ;€ Sth,a) for all
t. € X, which agree with s, on X _;.

Proof: Suppose ;€ X, t; agrees with s; on X_;, but t;# S;(h,a). There is some behavior strategy 7, tor

1 which makes h reachable and 7, €t;. Similarly, since s, € S;(h,a), there is some behavior strategy ¢, for

i which makes h reachable, takes the action a at h, and ¢;Es;. Let p; be the behavior strategy which

specifies the same actions as ¢; on and after h and as r; elsewhere. Since t; and s; agree on X_,, p, €t

But this contradicts the assumption that t, & S;(h,a). u

Lemma AS: Ler h,h'€H, for some i with h'>h. Assume that S_;(h)y=S _(h") and thar S;(h’°) is a union
over elements {T!,.,TX} © ¥,(Sh)). Then, ¥(St")) = {T!,.. TX}.

Proof: Consider first any TX such that the elements of T agree on S_.(h). Then, the elements of T*

agree on S_;(h’), and so since Tk S;(h’), ¥,(S(h’)) contains some element T'K with TS T'*. Consider

now T¥ such that there is Y_,CS_;(h) with Tka_iENi. Again, since TkQSi(h‘), V(S(h’)) must

contain some element T'% with TFS Tk, Conversely, let T'€ ¥,(S(h’)). Trivially, T"€S§;(h). Thus. it

the elements of T” agree on S _;(h)=S _;(h’) or if T" X Y _; is an information set for i with Y _, TS _,(h"),

then some element of ¥;(S(h")) contains all of T'. This establishes the result. |

Lemma A6: Let T' be a parsimonious representation of (S,), and ler h,h’ €H, be such that h’>h, and

S_h)=S_,(n"). Leta’€AM’). Then S,(h’) and S;(0’,a’) are unions over elements of ¥ (S(h)).
Proof: Let h=h%<h!<.<hK=h’, be the sequence of information sets for i between h and h’, let a,
k=0,..,K—1 be the action at h* which leads toward h¥*!, and let a¥=2". Note that S_;(h*)=S_,(h) for

each k.
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(Only if) Assume T is a parsimonious representation. We will show that I" has no informational
dominances. Let h, h’ and a’ be as described in Definition 5. Then, by Lemma A6, §;(h’.a’) is a union
ot elements of ¥,(S(h)).

Let K; satisfy §;(h’,a") C K; & §;(h). Then since S;(h’,a") is a union of elements of ¥ (S¢h)),
there is TTE ¥.(S(h)) such that TTCKi. We will show that any behavior strategy for i that makes h
reachable, must involve i giving up some elements of K; at an information set where he knows no more
than he knows at h. This will establish that no K; can satisfy Definition 5, and thus that T has no
informational dominances.

Note first that not all elements of K; can agree on S;(h) (if they did, then each element of K,
agrees with every element of §,(h’,a"), and so by Lemma A2, X;€5,(h’,a"), which is a contradiction).
Choose s, €S _.(h) such that not all of K; agrees ons”;.

Consider any behavior strategy o; for i that makes h reachable. Let h" » h satisfy

(1) h" € H; is reachable given g;,

2 sI;ES_),

3) K,s8§,(h"), and

4 there does not exist h™’>h" satisfying (1)-(3).

Conditions (1)-(3) are satisfied by h and I' is finite, so such an h" exists. Because TT C K, €
S;(h"), Lemma A2 implies Szi(h")=S£i(h). Now, assume that a" = o;(h") has K;=S§;(h",a"). The
information set h"” cannot be the last information set for i reached by (ai,o:i), because K; € S;(h".a")
and not all elements of K; agree on s*.. Leth’" > h" be the next information set for player i reachable
by (oi,a:i). Then h*** clearly satisfies (1)-(3), contradicting the choice of h".

So, for any behavior strategy ¢, which makes h reachable, there is some point where i gives up

some element of K, knowing no more than he did at h. Thus, T has no informational dominances. W

Appendix 3: Proof of Theorem 3
Lemma A7: If X and Y are distinct normal form information sets for player i\ with X;=Y, and
X_NY_,#&, then either X, x(X_;NY _)) is a normal form information set for plaver i or
X_NY_,SI(X;). Hence, neither X nor Y can be strict.
Proof: Suppose it is not the case that X_,NY _.SI(X;). If r,5;€X;, then there exists {{ €X; such that
t agrees with r, on X _; and t; agrees with s; on S_\X_;. Moreover, there exists t; € X; such that t;
agrees with t; on Y _; and t; agrees with s;on S_\Y _;,

t, agrees with s; on S_MX_;NY_;), and so condition (D2.2) of Definition 2 is satisfied. |

This implies t; agrees with r; on X_;NY _; and
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Observe that

(1) for information sets h € H; that have no predecessors for i, X,(h)=§,,

(2) for all hEH,, X;(h) = U{T,€¥,(X(h))}, and

(3) each information set h’ for i that is an immediate successor for i to h and the action a €

¥,(X;(h) has X;(h")=a.

Induction then shows that £,(s;) is non-empty for each s; €S;: At each information set h€ H;, for
i which has no predecessors for i, observations (1) and (2) imply the existence of an action a with ;€ a.
Choose some such action. Now, consider any information set h’ for i1 such that at i’s most recent
predecessor h, an action a was taken with s;€a. Then, by observation (3), s;€X;(h"). But, then
observation (2) implies the existence of an action a’ at h’ with s;€a’.

Let ¢ €L(s), and let { be the terminal node reached by 0. Then, s&€T({) and so the payoft
assigned to ¢ is w(s) (this payoff is unique since the algorithm is a success). Thus T (g)=m(s) for all
oEL(s). So, in particular, for each s;, all elements of Ii(s;) agree on U, o5 E_(s_j. and
Zs,)NE(s]) = & ws;#s;€S,. Assume that we knew that for all i, Ushies_iE—i(S—i) = Sfi. Then.
we can replace each I(s;) by a single strategy which we can call 5;. Clearly the game that results from
this operation is (S,).

To show that the PRNF of I' is (§,m), it thus remains to show that there exists s;€S, with
0,€Z(s). For an arbitrary element o, of S, we will show that

@ # N{gh):h€Hlo)}.
This is enough, since s; € N{o;(h):hE€H(o))} if and only if 0, EL,(s)).

We proceed by induction, Fix an information set h’ €H,, and let o,(h’) € ¥,(X(h’)) be the action
taken at h’, Let hl,...,hmGHi be the immediate successors for i to h” which are reachable under o..
Assume that for j=I,..m, there is SI€N{gh):hE€H(s), h=h}>®  We will find
L€ N{oh):h€H,(0), hxh’}.

Let YJ = X(W), j=1,..,m. By the specification of the algorithm, each YJ is strict, and for each
i. Yl = o(h") = Y,. Lemma A7 implies that for all j,k € 1,.,m, either Y/=Y* or Y? and Y¥ are
disjoint. The way in which the algorithm groups nodes together into information sets precludes Y/ =YX
it j#7k. By Lemma A8, there is thus t;€Y; such that t; agrees with s} on Yj_i, j=1,..,m.

We wish to show that t,€ M {g;(h):h € H,(¢;) h=h"}. Once again we proceed by induction. Note
first that t; € o;(h’) (since o;(h’)=Y;). So, let hzh” have h€H(0;), and assume that 1, Eg;(h). We will

show that for any immediate successor h" for i to h with h* €H;(0)), {,E o;(h).

010 get the induction started_. note that, _for ea;hj = 1,..m, when B has no successors that are reachable
under g;, then trivially, there is S €Y, with & € g;(IY}.
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',...,aK be 4

Proof of Theorem 4: Let h%h! . h¥ be any sequence of information sets and let a%a
sequence of actions for player i with h® having no predecessor for i and with h following h* ! and a* ',
k = 1,.. K. Because all of player i’s information sets appear in some such sequence, it sutfices to show
that Theorem 4 holds for all h¥ in this sequence.

Let h¥ be the last information set in this sequence such that S;(h¥) = S.. Then for all h* « h¥',
S.(h*,a¥) = S, (by Lemma A9.2). If h* is strict, it is in ¢; (by (D10.1)) and thus (T4.1) holds. If h¥ is
not strict, {S;} = ‘I'i(Si(hk)) (by Lemma A9.1), and because I' is a parsimonious representation, every
a€ A(h*) must satisfy S(h¥,a) = S;. Thus, either (T4.1) or (T4.2) holds for all h* < h¥'.

At B, S. & ¥.(hk"), since otherwise h¥ ! would also satisfy S;(h* *1) = S, a contradiction to
h*' being the last such information set. Hence, h* is strict (Lemma A9.1) and since S;(h%) = S., we
have S(*) € &, (by (D10.1)).

Now let k” be such that S(h¥') € Q. Let hk” » h¥' be the last information set after h¥' such that
S_,%") = S_.(0¥). Fork’ < k < k", if h¥ is strict, then Lemma A6 implies that h¥ satisties (T4.3).
It h* is not strict, then (as before), h¥ satisfies condition (T4.2).

Ath¥", it must be that Si(hk",ak") = TT for some T’-: S ‘Ifi(S(hk”)), since otherwise, by Lemma
A2, hK'*1 also has S_-l(hk"“) = S_i(hk'). Let k¥>° > k' be the last information set in the sequence
such that S;(*"") = T}. (The information set h* *! has S;(0%""*!) = T7, so k™" exists.) Then. for k"
< k < k77, arguing as before, it hX is not strict it satisfies condition (T4.2) and if it is strict, then it
satisfies (T4.3). Finally, h*" must be strict (since otherwise h*"'*! has S.(h* "1 = T, by Lemma
A9.1, a contradiction to the choice of k), and hence S;(h¥ ") € ¥,(S(h*")). Since I' is a parsimonious
representation, S;(hk") € ¥(SEX)), and so S(*) € &, satisfying (T4.1).

Repeating this argument shows that every information set in h®,_, h¥ satisfies the conditions of

Theorem 4, establishing the result. |

Appendix 5: Proof of Theorem 5
It suffices 1o show that for every node { of the tree generated at each step of the algorithm. $({)
€ Z. Since S(w) = S € Z, where w is the initial node, it suffices to show that if S({)EE, 1 moves at
¢, and 7 immediately follows {, then S(n) € Z. Now, because the algorithm causes 5 to toltow {, it
must be that $({) = X;xX_; and S(y) = Y, xX_,, where Y,E¥,(Z) where Z, = X, X_, & Z_,,

Z2€Q,, and S(n) C Z. Then from the definition of Z, S(n)E=. |
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T,€¥(Sh”) has X;<T,. Since X;=5;(h’"), T,€S5;(h’) must hold, giving X;=T, and again establishing
the result. B

Lemma Al2: IfT is a weak representation for (S,7), then for each element X of &y, there is h€ H; such
that Sth)=X,
Proof: First, consider any X € §, for which X;=§;. We first argue that there is h€H; with §;=S,(h)
and X_; N S _;(h}y # &. For this it suffices to find an information set h for player 1 that has no
predecessor for i (ensuring S;(h) = §;) with s:i € S_,(h) for some sii € X_;. Assume there is no such
h. Then, s>, € S_;(h) for any information seth € H,. But, thens”. € I(S)), contradicting that X was
strict. Hence, we have S;(h) = §; and S_;(h) N X_; # &. The strictness of X and Lemma A7 then
imply that X = S(h).
The proof is now extended to all elements of &, by repeatedly applying Lemma All. |

Proof of Theorem 6: Suppose I' weakly represents (S,w) and X*€Z. Then, for each i, either XT =
S, or IZ'EY,, X"SZ!, X EV,(Z). By Lemma Al12, for each Z, there exists h' such that Sthi)=Z',
Fix such a Z' for each i with X} # S,

Claim 1: If X] # S, there exists hixh' and an action a at h' with S;(h\,a)=X7}, and such that
S_,h)=S_,d)=2Z1.. Further, h s strict.

Proof: A simple induction using Lemma All. o

Fix such an h' for each i for whom X’i' # S, Let P(X™) be the set of nodes x in T satistying the
tollowing two properties:
(P1) Let x’ < x, let i be the player who moves at x*, and let a” be the move at x’ that keeps x
reachable. Then:
(PL.i) If X;=S,, then §,(x’,a") = §;
(Pl.) If X;#S; and if hi is not reached before x, then hi is reachable given x” and a’.
(P2) If X;#S,, and the path leading to x first reaches h' for some i, then at every node x’ with

hi < x’ < x, the action a’ at x” that keeps x reachable satisfies §;(x’,a”) = Xf.

Clearly, the initial node is in P(X*). Because the set of nodes is finite, we can choose y© €

P(X") such that y* has no successors in P(X").
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strategy profile s € X, there is a behavior strategy profile ¢ €s which reaches y*, and a behavior strategy
profile p € s which reaches b, If b has been excluded prior to y*, then because it was not excluded by
player j, it must be that ¢_; but not p_; is consistent with reaching h. Lemma Al then applies, so that

—

W is not strict, which is a contradiction to Claim 1. r

Claim 5: XI=SJ-(’hy*)
Proof: Clear from (P2) and Claim 4. _

Claim 6: S®)EQ;

Proof: If S(h*™) is not strict, then by Lemma A9.1, {X;} = ‘I'j(S(hY*)). Since I' is a weak
representation and X; = $,(*") (Claim 5), some choice a at h¥” has X} € S a) =S, H=X]. By
(P2), this contradicts that y* has no successor in P(X"), so S(h¥™) must be strict. In addition. by
construction X; € ‘Ifj(Zj) (with Z) € %) and S(hY™) € Z) (because B < y* (Claim 4) and hence S(h¥")
S S(W) € Z)). Then, by D10.2, S®¥)€ES; , —

Since X* S S®MY™) (Claim 2), x;=sj(hY‘) (Claim 5), and S(WW5 e g, (Claim 6), X" satisfies (11.1)
and we are done.
]

Appendix 7: Proofs of Theorem 7 and Theorem T2.2
Proof of Theorem 7: (If) Since GND holds, the algorithm is a success. But, at each step of the
algorithm, each edge corresponds to a single element of ¥;(S(h)). Since these elements do not overlap,
the algorithm has generated a strong representation.

(Only if) Let I be a strong representation. Then, since every strong representation is a weak
representation, GND is satisfied. Assume ¥,(Z) is not a partition for some element of ¢, and some i.
Then in particular, there is s; a member of two distinct elements X; and Y, of ¥(Z). By strong
representability, X;UY;< S(h,a) for any h€ H; with S(h)=Z and a with 5, € S;(h,a). But, then Lemma
A10.3 applies to show that the next information set reached from this action also has both X, and Y, in
¥.. Continuing in this way, there is never any way to separate the X; and Y,. But, the elements of
X;UY; cannot all agree on Z_;, otherwise X; = Y, (by Lemma A3). So, X, and Y; must be separated

at some point, which is a contradiction. u
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€ N, with W, © Y, and Y C X. Then there again exists T, with is W,.ET, &€ ¥,(X). By strong
representability, W < S(h,a) or WNS(h,a) = &, completing the proof.
|

Appendix 9: Proof of Theorem 9
Rectangularity follows from the observation that the set of strategy profiles that reaches any node
must have a cross product structure. Consider any information set in h, and action a at h, and assume
that a contains some but not all of some element T, & ¥,(S(h)). Let s; be an element of T, which is in a.
and t; an element of T, which is not in a. Then, s; and t, must agree for some s_;€5_,(h). But, some
terminal node following a must contain (s;,s _;}, while some node not following a must contain (t.s_y).

These nodes must then have identical payoffs, contradicting the hypothesis. |
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