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ABSTRACT

In general, the result of the elimination of weakly dominated strategies depends on order. We find
a condition, satisfied by the normal form of any generic extensive form, and by some important games
which do not admit generic extensive forms, under which any two games resulting from the
elimination of weakly dominated strategies (subject to no more eliminations being possible) are
equivalent. We also extend our condition and result to the case of climination by mixed strategies.
The result strengthens the intuitive connection between backward induction and weak dominance.
And, under our condition, some computational problems relating to weak dominance, which are

generally complex, become simple. JEL Classification Number: C72



L INTRODUCTION.

As is well known, the result of the iterative removal of weakly dominated strategics can
depend on the order of removal.' 1In this paper, we define the Transitivity of Decision Maker
Indifference (TDI) condition, which is satisfied by the normal form of any generic extensive form, and
by some important games which do not admit generic extensive forms, including discretized versions
of first pricc auctions. We show that under TDI any two games resulting from the iterative
elimination of weakly dominated strategies (subject to no more eliminations being possible) are
strategically equivalent. That is, the two games differ only by the addition or removal of redundant
strategics and a renaming of strategies.

Because TDI is satisfied for the normal form of an extensive form game for generic
assignment of payoffs to terminal nodes, for almost all such games, the order of removal by weak
dominance is irrelevant. We will argue that this result strengthens the intuitive connection between
backward induction in the extensive form and weak dominance in the normal form.

Finally, we use our result to make a comment on the work of Gilboa, Kalai, and Zemel [1991]

concerning the complexity of iterative weak dominance.

1L THE LITERATURE.
A number of previous papers have explored this issue. Gilboa, Kalai, and Zemel [1990] give
conditions on a dominance operator that are sufficient for the order of elimination not to matter.

These conditions are satisfied by strong dominance, but not by weak dominance.”

'Let s, and r, be strategies for player i. Given opponents’ stratcgy set W, s; weakly dominates
r, if m(s.t)em(rt,) Vi,eW, and mi(s;t;)>n(r;.t;) for some t;eW,, where =, is player i's payoff
function.

Gilboa et al. also consider a version of weak dominance which does not require the strict
incquality. We shall rcfer to this as very weak dominance. They claim that, with some additional
conditions (which are satisfied by both weak and very weak dominance), order of removal under a
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Rochet [1980] considers the following condition:

(D m,(s) = m(t) = m;(s) = m;(t) for all i,jeN, sLEMS;,

where N is the set of players, S, is the set of strategies for player i, and =; is player i’s payoff function
(see Section IV for formal definitions).

Rochet shows that if a game satisfying (1) is dominance solvable (when one eliminates all
weakly dominated strategies at cvery stage), then the same outcome is obtained regardless of the
order of elimination of weakly dominated strategies. Furthermore, Rochet shows that any normal
form game derived from an extensive form of perfect information satisfying the extensive form
analogy to (1) (i.c., satisfying that one player is indifferent over two terminal nodes only if all players
are) is dominance solvable with the same outcome as determined by backward induction on the
extensive form. Rochet shows by example that this need not be the case when the extensive form
does not satisfy this condition.> Our results do not depend on dominance solvability, and TDI is
weaker than (1). In Section III we give an example of a game satisfying TDI but not (1). We

consider the relationship between weak dominance and backward induction in Section VI.

relationship dom will not matter if
[x dom y and y dom x] = [x and y are payoff equivalent for all players].

This claim is false as stated, because for weak dominance the antecedent never holds (since it can
never be the case that x and y each weakly dominate the other) and so the condition is vacuously
satisfied, but order can clearly matter. Their claim is correct for very weak dominance. The analysis
of very weak dominance can be used as the basis for results similar to ours, although Gilboa et al.
do not actually do this. Gilboa et al. note that their condition is satisfied for zero sum games under
very weak dominance.

3See also Moulin [1986, Chapter 4.2] on Rochet’s robustness result, dominance solvability (using
weak dominance), and the relationship between (1) and extensive-form games. Moulin [1984] gives
conditions for a game to be dominance solvable (using weak dominance) and shows that for a certain
class of games, dominance solvability (using weak dominance) implies Cournot stability.
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Gretlein [1983] works with games in which each player’s preferences over the set of possible
outcomes (i.e. payoff vectors) is strict. In such games, Gretlein shows that the set of outcomes that
results from iterated elimination of weakly dominated strategies (subject to no more eliminations
being possible) is the same regardless of the order of climinations. This condition is stronger than
(1), and so a fortior stronger than TDI*

A final point distinguishing our work from Rochet’s and Gretlein’s is that their results only
consider domination by pure strategies. In Section V we extend our analysis to removal of strategics
that are weakly dominated by mixtures of other strategies. Once again, we find that for generic
extensive form games, and some important games which do not have a generic extensive form, order
does not matter.

Finally, we believe that our proof of this result is particularly straightforward.

I1I. TRANSITIVITY OF DECISION MAKER INDIFFERENCE.

The normal form of a gencric extensive form game always satisfies condition (1): for
7,(s)=m,(t) to hold, it must be that s and t reach the same terminal node. But then m;(s)=m(t) for
all jeN. So, even under condition (1), establishing that the result of iterative elimination under weak

dominance does not depend on order is of considerable use. However, there are important games

‘Also, note that Gretlein's result states only that the set of outcomes is the same, not that the
games that remain after iterated removal are in any sense equivalent. The following two games have
the same set of outcomes, but are certainly not strategically equivalent.

2 2
6,2 2,6 6,2 1,1

1,1 4,0 4,0 26

In situations where iterated weak dominance is the only condition of interest, the difference
between these two games is not very important. If however, one is interested, for example, in Nash
equilibria of the game which results from the iterative removal, then it is important to know that
different orders cannot yicld games which differ as these two do.

3



not satisfying (1) to which we would also like our results to apply.

As an example, consider a first price auction. To make this a finite strategy game, assume
that players receive signals about the value of the object which are drawn from a finite set 0 (the
analysis to follow does not depend on the manner in which signals are related across players), and
that players arc restricted 1o make bids which are integer multiples of a penny up to some (large)
maximum. Then, each player’s strategy space is the set of all maps from signals in Q to allowable bids,
and so is finite. Let 1, and s, be two strategies for some player i which differ only in that for some
signal weQ, ri(w)<s,(w), i.e. let r; and s; differ only in that for some signal, r; specifies a smaller bid
than s;. Consider any strategy profile t_; for the other players such that the largest bid possible under
t_; is less than r,(w). Then, n_(r,t_)=n_(s;,t_). To see this, note that when i’s signal is not , his
behavior is the same under r; and s. When i's signal is «, players other than i do not receive the
object, and so receive a payoff of 0 in cither case. However, n;(r,t_)#m(s;.t_;). Thus, this game does
not satisfy (1).

The condition failed in this example because, once a player has lost, he is indifferent over the
amount by which he loses. For almost all specifications of how signals map to valuations, this is the
only way in which i can be indifferent between pure strategy profiles (r,t_;) and (s;,t_;) -- by having
those two strategy profiles differ only in how much i loscs by when i loses. We formalize this in the
Appendix. So, while a unilateral change of pure strategy by player i can change his payoff while
leaving his opponents indifferent, the opposite cannot occur: i cannot be indifferent about this
unilateral change while affecting his opponents’ payoffs. Thus, while the game does not satisfy (1),

it does satisfy the following wcaker condition:

(2} m(rs.) = mts_) = m(nss) = m(ts_y) for all ijeN, r.t;eS;, s_€S_;.



The agreement of player i's payolfs across two different strategy profiles only implies agreement for
the other players if the strategy profiles differ only by the action of player i.

We shall refer to (2) as the Transitivity of Decision Maker Indifference (TDI) condition and
will show for any finite player game satisfying TDI, any two games which are achieved by the iterative

removal of weakly dominated strategics (subject to no more removals being possible) are equivalent.

Iv. FORMALITIES AND THE MAIN RESULT.

We work with finite strategy, finite player, normal form games. Players ieN={1,...,n} have
finitc strategy spaces S, Payoffs are given by n:II,S;~R". The payoff function = is extended to
mixed strategies in the standard way. Wc assume, without loss of generality, that 5,n5,=o for all
i,jeN, i%j. So, without ambiguity, we can drop the player subscripts on the strategy names. Let
S=U,xS, For WcS, let the strategies in W that belong to i be denoted by W;=WnS;. Say that WS
is a restriction of S if ¥i, W,#2. Note that any restriction W of S generates a unique game given by
strategy spaces W, and the restriction of = to II;,yW;. We will denote this game by (W,x). We

similarly define W_;=IL,W,. A typical clcment x_;eW_; thus specifics a strategy x;eW, for cach j=i.

Definition: Let W be a restriction of S, and let r.5,€S,. Then r; weakly dominates s; on W, written
r, WDy, s;, if m(rx_)em(s,x_;) Vx_€W_; and m(r;,z_)>n;(s;z_;) for some z_eW_;. s is

weakly dominated on W if there exists ;e W, with r; WDy, s,

Note that under this definition we do not allow weak dominance by mixtures of other strategies. We
extend our results to dominance by mixtures in Section V.
The next definition defines "W is a reduction of S" to mean that W can be reached from S

by iteratively climinating weakly dominated strategies.



Definition: Let W be a restriction of S. Then W is a reduction of S if W=8\X' ... X™ where Vk, X*<S

and vxeXX, 3zeS\X,..., X* such that z WDgy1 xi X W is a full reduction of S if W is a

reduction of S and no strategies in W are weakly dominated on W.

Definition: Let V and W be restrictions of S. V is equivalent to a subset of W if there exist one-to-

one maps m;V,~W,, i€N, such that n(x)=n(m,(x,),...m(x,)) VeV,

Observation 1: The relation "cquivalent to a subsct of” is transitive.

Definition: Let W be a restriction of S, and let r,8,€S;. Then r; is redundant to s; on W, written

r; REy s, if m(rx_)=n(s;x_;) Wx_jeW_,
The next definition defines "W is obtainable from W" to mean W can be reached from W by
iteratively eliminating strategies that are cither weakly dominated or redundant. In this elimination

process, only one strategy may be removed at cach iteration. Formally, we have:

Definition: Let W be a restriction of S. Then WcW is obtainable from W if W=Wkx!,....x™ where

vk, x*eW and 3z*eWw'....x* such that either z* WDy 1 ke x* or zF REg 1 ki X, Wis

one—step obtainable from W if the above holds with m=1.

Lemma A: Let W bc obtainable from S, let ieN, and let 5,5 \W,. Then there exists t,eW; with

i (t,.x

okttt

Jam,(s,x ;) Vx_,eW_,



Proof: Since s;¢W,, s; was eliminated by some r;eS;. At that time, at least W was left and so
m(rX ) 2mi(spx_;) Wx_;eW_,. Ifr; is a not a member of W, then it itself was climinated along the

path to W. Using the finiteness of S; and the transitivity of > we are done. [ |

Lemma B: Let (S,x) satisfy TDI, and let W be a reduction of S. Then W is obtainable from S.

Proof: We show that W', the set of strategics remaining after one round of elimination of weakly
dominated strategies, is obtainable from S. Repeated application of the argument yields the result.
Label the elements of S\W! in some arbitrary order x',...,x%. For each k=1,...,q, there is z*eW! for
which z* WDg xt. Let i be the player to which z* and x* belong. Since z* WDg x*
vy e(SW!,...x* ), m(Zhy_)2m(xy_;). Using TDI, either z* WDg 1 et x* or z* REg,1 X,

Since zFeW!'cSw!,...x*, S'....x* is one step obtainable from S\x'....x*!, and we are done. |

Lemma C: Let W be a restriction of 5, let W be obtainable from W, and let V = Wiy be one-step

obtainable from W. Then there cxists V obtainable from V with V equivalent to a subset of

A

W.

Proof: Since W is obtainable from W, we can write W=Wx!,...x™, where Wix!,..x* is one-step
obtainable from Wix!,...x*"! for all k. Proceed to remove strategies x,....x™, in order, from V as long

as thcy arc weakly dominated or redundant on the set remaining.  Let x* be the last valid such

1

removal. If k = m, we have arrived at Wiy and so we arc done. Otherwise, x**! is either weakly

dominated or redundant in Wix'....x¥, but x**! is neither weakly dominated nor redundant in

Wiy, x!,... x5

Case (i): If x**! is redundant in WAx!,...x*, then it must be that y is redundant to x**! in
y



Wix!,..x*. Thus Wix!..x*x*! and Wiyx!,...x* are equivalent, and the remaining eliminations,
x¥*2 ..x™, are valid, subject to a renaming of strategies. In this way we obtain from V a set V which
is, up to a renaming of strategies, W.

Case (if): If x**! is weakly dominated on Wix',..x%, then it must be that y WDy .1« X1,

By Lemma A, there is zeW,\yx',...x* such that m(z.x_)2m(yx_;) Vx_,6(W«',...x*).;. But, then

k+1 . k+1 -
z; WDg1 o X7, and therefore z; WDg, 1 o« X7, a contradiction. |

Jk
Theorem: Let (S,n) satisfy TDI, and let X and Y be full reductions of S. Then, X and Y arc the

same up to the addition or removal of redundant strategies and a renaming of strategies.

Proof of Theorem: By Lemma B, we can write Y=Sy',...y", where Siy',...y"* is one-step obtainable
from Sy',..y*"!, Vk=1,..m. We proceed by induction. By Lemma B, X is obtainable from S.
Assume that a set equivalent to a subset of X is obtainable from Sy',...y* ' where ke{1,.,m}. Since
S\y',....y* is one-step obtainable from Sy',...y*”!, Lemma C and obscrvation 1 apply to show that a
sct equivalent to a subset of X is obtainable from Syy',...,y*. Thus, a set equivalent to a subset of X
is obtainable from Y.

Since Y was a full reduction, any set obtainable from Y differs from Y only by the removal
of redundant strategies. So, after the removal of some redundant strategies, Y differs from a subset

of X only by a renaming of strategics. Reversing the roles of X and Y, we are done. | |

V. MIXED STRATEGIES
The results of the previous section dealt solely with eliminations by pure strategies. In this

section we extend our analysis to mixcd strategies. If W is a restriction of §, let € A(W,) indicate



that r, is a mixed strategy using only pure strategics in W,

Definition: Let W be a restriction of S, let s,€S, and Iet r;€A(S,\s;). Then r; weakly dominates* s; on

W, written r, WD*, s, if m(rx_)zm(s,x_;) Vx_;eW_; and m;(r;,z_;)>m(s;,z_;) for some

}

z_,eW_,. s,eW, is weakly dominated* on W if there is r;e A(W,\s;) with r; WD*y, s,

Definition: Let W be a restriction of S, let s;€S,, and let r;eA(S;'s;). Then s; is redundant* to r; on

W, written s, RE*y, r;, if n(r,x_))=n(s;x_) Wx_eW_,.

Consider the following game:

2
L C R
T 2,1 2,3 0,2
1 M 03 31 0.2
M’ 14 1.4 1.4
B 1.4 0.3 0,2

R is weakly dominated by 2L +%:C. The game satisfies TDI, but clearly order of ¢limination under
WD can matter: If one first removes B, then S\B is a full reduction, while if one first removes R,
then B and M’ can also be removed. But, {TMM'}x{L.C,R} and {T,M}x{L,C} are clearly not
equivalent games. So, to get an order independence result, we need to strengthen TDI

The game illustrated has a highly non-generic featurc: R is weakly dominated by 2L +%2C,
but by no other mixture. Consider different assignments of payoffs in this game, subject to existing

ties in payoffs for cach player being maintained (each player receives 4 different payoffs in this game,



and so these assignments correspond to elements of R®).

For all such assignments, the cquality of payoffs in the third row will remain, and so in
particular, given M’, any mixture of L and C will give the same payoff as R. However, for almost all
such assignments, onc of two things will occur: either there will be a mixture of L and C which strictly
dominates R on {T,M,B}, or there will be no mixture which even weakly dominates R on {T,M,B}.
In particular, the set of payoff assignments yielding a mixture of I. and C that weakly dominates R
on {T,M,B} but not yielding any mixture that strictly dominates R on {T,M,B} is a lower dimensional
subspace of R®. If one allows perturbations which do not respect some of the existing ties, then the
situation in this game becomes even lcss likely. Generalizing this argument to general games is
notationally tedious, but straightforward.

So, even allowing for some "structural” ties in payoffs, for almost all games, if there is
,€A(W)s,) with 1; WE*, s, then there is another strategy t;eA(W,\s,) which strictly dominates s;
except versus those opposition strategy profiles s_; on which all elements in the support of t; give the
same payoff to i as does 5. As long as such a t; exists, TDI guarantees that we will not run into

problems. Our extended TDI condition imposes the condition that such a t; always exists:

Definition: (S,n) satisfies TDI* if for all restrictions W and for all s,eW,, r,eA(W,%s;), we have
r; WD*y s, = 3t,e A(W)ls;) s.t. (i) t; WD*y s, and (ii) Vs_;e W_,, m(t,s_;) = m;(5;,5_;) = ®(q;5_;

= nt(s;,5_;) Vq,;€W,'s; which are in the support of t.

Fix a normal form and a set of payoff ties. Arguing along the lines above, for almost all
assignments of payoffs satisfying the sct of ties, TDI* will be satisfied. Thus, in particular, TDI* will
be generically satisfied for the normal form of any given extensive form and for the discrete first price

auction.
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Under TDI', the analysis of section IV goes through fairly directly. One simply rereads
section IV, replacing the original definitions of wcak dominance, redundance, and TDI by their

starred counterparts and allowing mixed strategies where appropriate.’

VL. WEAK DOMINANCE AND BACKWARD INDUCTION.

In its purest form, backward induction consists of working from the end to the beginning of
a game, itcratively removing actions which are strictly dominatcd given the information available when
that action is taken.

A normal form strategy which is consistent with reaching a particular information set and
which takes a strictly dominated action at that information set is weakly dominated by one which
differs only by taking the dominating action at that information set. So, any sequence of removals
of actions by backward induction in the extensive form corresponds to a sequence of sets of removals
of strategies by weak dominance in the normal form.

This relationship between backward induction in the extensive form and weak dominance in
the normal form extends to their respective motivations. Backward induction is basically about
making decisions as if they matter: since the choice of action at an information set doesn’t matter if
the information set is not reached, the decision must make sense given that the information set is
actually reached. Weak dominance has very much the same flavor: it is not enough to justify a choice

between two strategies on the basis that the two strategies yield the player the same payoff given the

3In particular, in Lemma A, allow t; to be a mixed strategy, i.e. replace "t,eW;"” with "t;e A(W,)".
The statement and proof of Lemma B should be read with the starred definitions and with the
extended TDI condition. In addition, the third sentence of the proof should be changed to read, "For
each k=1,....q, there is z*e A(W') for which z* WD*; x*, and thus by the extended TDI condition,
there is 2 ¥e A(W') for which 2% WD*x* and =,(2%,y,)=n,(y.) = m,(ty_)=m(x"y_,) Vtesupp(z*)."
Then 2* should be used in place of z¥ in the remainder of the proof. Lemma C and the Theorem
need no changes other than a substitution of the starred definitions.
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predicted play of the opponents, rather the choice must also make sense given play by the opponents
such that it actually matters.®

Thus, at an intuitive level, there seems to be an intimate relationship between backward
induction and weak dominance. However, a problem with this relationship is that the order of
removals under weak dominance can matter, while backward induction is deterministic. What is it
about these two concepts that leads one to be deterministic and the other not?’

Consider a pair of strategies r; and s, which are consistent with reaching information set h and
which differ only in that the action that s, specifies at h is dominated at h by the action that r;
specifies at h. Under weak dominance, when i compares r; and s;, she excludes from consideration
all strategy profiles for her opponents under which she is indifferent between r; and s, Under
backward induction, she excludes from attention those strategy profiles for the opponents under
which h is not reachable, and for these strategy profiles, not only is i indifferent between r; and s,
but her opponents are indifferent as well. Weak dominance and backward induction thus differ in
that under weak dominance a player might exclude from consideration an opposition strategy profile
which leaves her indiffercnt between r; and s, but which does not leave her opponents indifferent.

We claim that this distinction between weak dominance and backward induction is the reason
that weak dominance is sensitive to order while backward induction yields a deterministic result (even
in thec more powerful form suggested in footnote 7). To see this note that the force of TDI is
precisely to rule out opposition strategy profiles which weak dominance has the player exclude from

consideration but backward induction does not. And, under TD], the order of removal under weak

°On the general relation between normal and extensive form motivations and implementations
of solution ideas, see Mailath, Samuelson and Swinkels (1993).

"The set of outcomes that survive backward induction remains deterministic even if we allow
iterative elimination in any order of dominated actions at information sets, i.e. even if the elimination
process does not start at the end of the tree and move up.
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domination becomes irrelevant. The robustness of backward induction to order and the
nonrobustness of weak domination is not evidence that these two concepts are fundamentally
different, but rather the result of a fairly simple difference in the type of strategy profile for the

opponent which the two concepts force a player to exclude when making a choice between strategies.

VII.  WEAK DOMINANCE AND COMPLEXITY.

We close with a simple comment on how our results interact with thosc of Gilboa et al.
[1991]. They point out that, in general, computational problems involving weak dominance are hard.
In particular, given a full reduction of a game, the question remains whether different choices earlier
in the sequence of weak dominance removals might have led to a strategically different result. To
figurc out all the strategic implications of weak dominance, one must thus check all possible orders
of removal, which cannot be done in polynomial time. Gilboa et al. interpret this result as casting
additional doubt on the use of weak dominance as a solution idea.

Consider, however, games which satisfy TDI, or some other condition such that order does
not matter. Then, once one has arrived at a full reduction one knows that no other order could have
resulted in a strategically different game. Since finding a full reduction is a polynomial problem, for

an important class of games wcak dominance becomes less suspect.®

#See Gilboa et al. [1991] for a formal development of this material, in particular, see Section 4.3
for a proof that a full reduction can be computed in polynomial time.
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Appendix
In this section we formalize the argument that the discrete first price auction generically
satisfies TDI. Think of the auction as being generated by first fixing a set of players 1,...,n, a set of
names of signals Q={w',..,w™}, a measure p on Q", and map V:Q"~'xQ-R giving the value of the object
to player i when the other bidders receive signals ©_;€Q"”' and i receives signal ;€Q (notation aside,
having different sets Q for different players presents no difficulties). Since V; assigns a value to each

of m" different signal profiles, the functions V; can be associated in the obvious way with an element

of R™®. Assume that the V, are chosen according to some Lebesgue measurable distribution on

R™". Now, fix a pure strategy profile s_; for the players other than i. Given this behavior of the

other players and any pure strategy s, for i, let p,(w,s(w)) be i’s probability of winning when signals

are o and bids are according to s. The expected payoff to i from following s, is thus

Ti(s5.)= 3 p(@)p(w,S(@)(V (@) -5(w)).

wel®

This expression depends on V; only directly {p and p; do not depend on the value assignment), and
50 it is a linear function of V,. Consider two pure strategics s; and t; for i and a pure strategy profile
s_; for i’s opponents. Suppose that w;(s;5_)=m;(t,s_;)-

Case (i): Jo such that p(w)>0 and piws(w))*pw.ti{w)s_(©_)). Then the equation
n,(s,5_;)—m(t,s_;)=0 has non-zero coefficient on V() and so is satisficd for a set of V; which
is a lower-dimensional subspace of R™".

Case (ii): Vo such that p()>0, p;(w.s(w))=pi{ w,t(w)s (0 ). If5;(w;)=t(w;) for all v, then clearly
n(s,s_)=n(t.s_;). Suppose s;(&;)»t,(®,) for some &. W.lo.g., assume 5,(&;)>1,(8;). Let
w_; be such that p( 8 ,,w_;)>0. By assumption, i’s probability of winning facing s_,(w_;} is the
same with 5,(®,) and t,(&,). But, then the highest bid for thc opponents under _; must be

cither less than ,($ ) or greater than s,(&,;). In either case, player i's change from s,(6;) to



t,( &) does not affect the payoff of players other than i.

In the situation of Case (i), TDI need not hold, but this is only possible for a zero measure
st of values V. To sce this note that there are a finite number of such s;t,s_; combinations, and
so the sct of V, for which a payofT tic is possible is a finite union of zero-measure sets, and so zero
measure. In the situation of Case (ii), TDI holds. Therefore, TDI holds in this game for all but a

measurc-zero set of possible assignments of values to signals.
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