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1. 1INTRODUCTION

A stochastic process is said to be regenerative if there exist
stopping times from which orwards the future is a probabilistic replica
of the original process. Such stopping times are called regereration
times, and the collection of all such times, considered as a random sub-
set of R+ = [0,=), is called a rageneration set.

Classical renewal theory is concerned with regeneraticn sets which
are discrete subsets of 1E+, that is, subzets whose points are all iso-
lated. Then, those points can be ordered, and the resulting sequence is
called a renewal process.

The present note will be devoted to those regeneration sets which

ar2 not discrete. But our aim will be to cbtain results which are directly

reiated to the classical cnes obtained in renewal theory.

In the classical case, a regenzration set G has the form

G={tEeR,: t=Y for some n €N}
+ n

*Research supported ty the National Science Foundaticn Grant
No. GK-36432.
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wvhere (Y is a renewal process. Of course, a renewal process is a

)
n'n € N
discrete parameter increasing stochastic process with stationary and in-

dependent increments. A similar result holds in general: avery regen2ra-

tion set G has the form

G={t 6'34; t = Ys for some s € R, }

where (YS)S R is an increasing process with stationary and independent
+
increments (such processes will be called additive).

This is the main characterization theorem on which everything else
depends. It is due to MAISONNEUVE [ 9 ].

Section 2 intreoduces increasing additive processes in an elementary
setting., In Section 3, the nature of a regeneration set is examined by
using the known results abcut additive processes.

The role of the renewal counting process in renewal theory is taken
over by local times. These are inverse times obtained from additive
processes. They are introduced and discussed in Section 4.

Pcterntial measures of increasing additive processes play the same role
in this theory as the renewal measure does in the classical renewal theory.
Section 5 is devoted to an account of the basic results concerning them.

In particular, it turns out that a potential measure is a constant multiple
of a renewal measure. And this in turn enables cne to use2 classical re-
newal theory to obtain limit theorems of Section 6.

Finally in Section 7 we examire the equivalents of backward and forward

racurrence times of classical renewal theory, and in Section 8 the delayed

versicn of the forward recurrence time. 3By making use of sample paths, we

are able to derive their distributions by simple arguments using renewal
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thecry. This direct derivation is made possible by MAISOMNEUVE's charac-

terization. HOROWITZ [ 6 ] had obtained them by Markov process techniques

oy first computing infinitesimal generators, then the corresponding

resolvent, and finally the transition probabilities. KINGMAN [8 ] ob-

tained the same in a special case by employing triple Laplace transforms;

his ccmputational method, in addition to being lengthy, does not generalize.
This paper is an elementary introduction to regenerative processes.

For a more careful treatment which reviews MAISONNEUVE's work in some

detsil, we refer to [3].

In general, if ¥ is a topological space, E denotes the g-algebra of

n

its Borel subsets. Some special notation: W 10,1,2,...}, ]R+= [0,=),

R, = [0,~], R = (s,»), iﬁc = (s,»].
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2. INCREASING ADDITIVE PROCESSES

Let (9,M,P) be a complete probability space, and let Y = (Yt)tE R
+

be a process with stationary and independent iacrements taking values

in §+ = [0,»]. Such a process is almost surely increasing, and we further

&2}

assume that Y, = 0 and t ~ Yt is right continuvous almost surely. We will
call such a process an increasing additive process.

It is well known that

2.1) Q) = Elexp(-3¥)] = exp(-tAN), At eR,
where
) -y .
(2.2) W' =2xa+ [ (1 -e )Ly
(0,=)

for some constant a > 0 and some (positive) measure L on the Borel subsets

of 'ﬁb = (0,»] satisfying

(2.3) [ & ADLEy) <.

Ry
The constant a is called the drift rate of Y, and the measure L is called
the Lévy measure of Y. Conversely, if a > 0 is a constant and L is a
measure on ﬁh satisfying (2.3), then there is an increasing additive process
Y satisfying (2.2}.)

If L is finite where (Y

w

i.e., 1f L{R,) < =, then Y o=at+Y

e

a compound Poisson process: the times of its jumps form a Poisscn process

with intensity L( ﬁh); and the magnitudes of the jumps are independent of
each other and of the jump times, and have the ccmmon distribution
L(B)/1L( ﬁb), B € Eb. The general case is a limit of the compound Poisson

case in the following sense.



! : c . ) 1 . - . .
For ¢ > 0§ let Yt be the sum of the magnitudes of all the jumps of Y

occurring during [J,t] whose magritudes are greater than ¢, that is, let

and let g b2 the lifetime of Y , that is, lat

(2.5) r = inf{t: Yf = 4w},
Define
J Yt -Y if t <g,
(2.6) Y? - .
Y -Y if t > .
[c— - St tZE
Theru
c
7= +7
lt Yt lt

for gll t ¢ Eq:

cy . . . . d

As c ¥ O, (Yt) increacses to an increasing pure jump process (Yt),
N . . . a . b

and (lr) decreases to an increasing continuous process (Yt). Since (Yt)

. . . a
has stationary and independent increments for each c, (Yt) also has

. P . e a, . :
stationary and independent increments. Now the continuity of (Y_) implies
[W

. - a
that ic must be of thes fomm Yt = at for some constant a > 0.

d

The process (Yf)

is called the purely disconiinuous component

t € Bg_

cy d . 4 4
of Y, and it is clear that (Yt) = (at) + (Yt). The following well known

£

. ] ciarea +fhat VE 4= < raeoca Y4 "
roposition states that Y 1is a compound Poisson proczss independent” of

b . Lo : . . .
Y ; therefore, Y is the 1imit of an increasing sequence of compound Poisson

g

processes up tc a deterministic drift term. Recall that Iﬁé = (c,»].



(2.7) PROPOSITION. a) Y© is a compound Poisson process: the times of its
jumps form a Poisson process with parameter L(Zﬁé); the magnitudes of the
jumps are independent of each other and of the jump times, and have the
common distribution L(B)/L( ic), B¢ ]IEC.

b) The lifetime g defined by (2.5) has the exponential distribution
with parameter L({«}) if this is positive; otherwise, if L({«}) = O, then
z = 4~ almost surely.

c) Given z, Yb is conditionally independent of Y©. Yb has the same
probability law as (§t/\§)t € R, where (§t) is an increasing additive process

independent of ¥© (and therefore of ) whose drift rate is a and whose Lévy

measure is the restriction of L to [0,c]. O

In particular, if L({«}) = 0, then ¢ = 4= almost surely, Y® is finite
valued, Yb is independent of YC, and Yb is an increasing additive process
with infinite lifetime whose drift rate is a and Lévy measure is
{L(B); B C [0,c] Borel}. Complications arising from the possible finiteness
of z can be lessened by thinking of Y constructively as follows. Suppose
L({~}) > 0, let L' be the restriction of L to IRy = (0,»). Let Y' be an
increasing additive process with drift rate a and Lévy measure L'; then Y'
has infinite lifetime almost surely. Let ¢ be a random variable independent
of the process Y' and having the exponential distribution with parameter
L({~}). Define

JYé(w) if t < g(w),

(2.8) Yt(w) =
l+w if t > z(w).

Then, Y is an additive process with drift rate a and Lévy measure L.



3. REGENERATION SETS

As we had mentioned in the introduction, a random set G is a regener-
ation set if and only if G is the range of an increasing additive process

(YS), that is,

(3.1) G(w) = {t: Ys(w) =t for some s > 0}.

In this section we will discuss the structure of G in terms of that of (Ys).
We are assuming that Y has the drift rate a and Lévy measure L. The fol-

lowing summarizes the results.

(3.2) THEOREM. a) If L({+=~}) > O then G is almost surely bounded. Other-
wise, if L{({+=}) = 0, G is almost surely unbounded.

b) If a = 0 and L(Zﬁb) < o, then G is almost surely a discrete set,
that is, every point is isolated. Otherwise, if either a > O or L(ﬁio) =
+ or both, G is almost surely a perfect set (that is, G has no isolated
points).

c¢) If a = 0 then leb(G) = 0 almost surely. Otherwise, if a > 0,
leb(G) > 0 almost surely.

d) If a > 0 and L('ﬁb) < o, then G is almost surely a countable union
of intervals of form [ ), and thus the interior of G is non-empty. Other-
wise, if either a = 0 or L(Iﬁb) = +» or both, G almost surely does not con-

tain any open intervals, and its interior is empty.

PROOF. a) The image G of Y is contained in the interval [O’YC-] where
z = inf{s: Ys = 4=}, The statement (a) now follows from the fact that ¢

has the exponential distribution with parameter L({«}).



b) If a = 0 and L(Iﬁ%) < o, then Y is a compound Poisson process, and
its image G is a renewal process {Tn}, and hence almost surely is a dis-
crete set. Otherwise, if either a > 0 or L( ﬁb) = ® g > Ys is almost
surely strictly increasing. For a "good" w, let t ¢ G(w). Then t = Ys(w)
for some s. Let Sn > s, sn + s. Since s - Ys(w) is strictly increasing,
tn = st(w) > Ys(w) = t; and by the right continuity of s -~ Ys(w), (tn)
decreases to t. Clearly each tn belongs to G(w) and hence t € G(w) is
not isolated.

¢) Let t € G(w) and choose s so that Ys(w) = t. Pick ¢ > 0 and define

c

Y™ and Yb respectively by (2.4) and (2.5). Since Y€ is a compound Poisson

process, it has only finitely many jumps during [0,s] and therefore
b
leb(G(w) N [0,t]) = leb{u:YV = u for some v < s}.
Taking limits, as ¢ + 0, we see that

leb(G(w) N [0,t])

as.

This proves (c).
— d d .

d) If a > 0 and L(iRO) < = then Yt = at + Yt where Y is a compound
Poisson process. Then the assertion is obvious. If a = 0 and L( ﬁb) < »,
then G is discrete and the result is again immediate. Next let L(Iﬁ%) = o,
Then, Y has infinitely many jumps (almost surely) in any open interval
(s,s + £); hence, its image G cannot contain any open intervals and its

interior is empty. O

In terms of the parameters a and L of the process Y the situation may

be reworded as follows (also see Figures 1, 2, 3 below).
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When a = 0 and L(Zﬁb) < o, Y is a compound Poisson process and its
image G is a renewal process. The distribution of the interrenewal times
is given by F(B) = L(B)/L( ﬁb), B Gié#. This is the simplest case and has
been studied in some detail in the past.

When a > 0 and L(ﬁio) < o G is a union of intervals [TO’SI)’[TI’SZ)’
[T2,S3)5... where 0 = Tj < S; < Ty <S, <T, <S5 < ... almost surely.

The lengths of these intervals are independent and identically distributed

with

(3.3) P{Sn+l - Tn >t} = exp[—L(]RO)/a].
The lengths of the intervals contiguous to G, namely the intervals [SJ’TJ)’
[S5,T5),..., are independent of the lengths of the intervals of G and are

independent and identically distributed with
(3.4) P{Tn -8 ¢ B} = L(B)/L(Ry).

Hence this case also is very simple.

The interesting problems (of a nature which classical renewal theory
cannot handle directly) come up when L(Zﬁb) = 4, Then, s ~ Ys is strictly
increasing and has infinitely many jumps in any open interval (t,t + ¢€),
€ > 0. Thus, its range G does not contain any open intervals. The com-
plement of G is a countable union of intervals of form [ ), called the
intervals contiguous to G. No two contiguous intervals have any end points
in common. G has no isolated points, that is, every point of G is a point
of accummulation of G. Moreover, G is right-closed: if (tn) C G(w) and

t ¥ t, then t ¢ G(w) also. Stochastic structure of G, therefore, is of
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much more interest in this case where L(ﬁﬁb) = 4+, Further, if a = 0,
leb(G) = 0; if a > 0, 1leb(G) > 0. Significance of this final point is
with respect to computations: If a > 0, then p(t) = P{t € G} > O for all
t, and most computations become easier (this is KINGMAN's case of regen-—
erative events [8 ]; p is then a p-function). If a = 0, then p(t) =

P{t € G} = 0 for all t > O.
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4. LOCAL TIME PROCESS

Let (Y.)

be an increasing additive process with drift rate a
ttGR+

and Lévy measure L. We define
(4.1) Lt(w) = inf{s > 0: Ys > t}, t e:m+, w € Q.

The process (Lt) is called the local time associated with (Ys).

t e R+
Qur point of view is as follows: the process (Ys) sets up a corres-
pondence between ''real time'" and "local time" so that Ys(w) is the real
time corresponding to the local time s (for the realization w). Then Lt(w)
is the local time corresponding to the real time t. If Y were a discrete
parameter process, that is, if the local time were measured in discrete
units, then Y would be a renewal process and Lt would become the number
of renewals during the real time [O,t].
The following theorem due to Lebesgue shows the relationship between

(Lt) and (YS): The essential idea of the proof is the observation that,

for every t ¢ R+,

(4.2) L, = leb{s: Y_<t}= £ Lrg,e1(¥g)ds-

For a complete proof we refer to DELLACHERIE [4 , p. 91].
(4.3) THEOREM. The local time process (Lt) is almost surely increasing,
right continuous, and has L; = 0. Further, t - Lt(w) is continuous if and

only if s - Ys(w) is strictly increasing. (YS) is related to (Lt) by

(4.4) Ys(w) = inf{t > O: Lt(w) > s}, s € R+, w € Q.
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Moreover, for any Borel measurable positive function f on R+,

w L_(w)
(4.5) éf(t)st(w)r- é £(Y_(w))ds

(here Lw(w) = lim_ Lt(w); Lw(w) < 4o if and only if z(w) =

t>
inf{s: Ys(w) = 4+ =o}< ), O

The importance of local time is based on its facilitating our compre-

hension of the structure of a regeneration set. This is because of the

following

(4.6) THEOREM. Let G be the range of (YS) and let J be the set of points

of right increase for (Lt):
4.7) J(w) = {t: Lt(w) < Lt+€(w) for all ¢ > 0}.
Then, for almost all w ¢ @, J(w) = G(w).

For the proof we refer to CINLAR [ 3], or MAISONNEUVE [ 9]. We end

this section with the following computational result.
(4.8) THEOREM. For any t, s € R+

(4.9) P{Lt < s} = P{YS > t}

except when a > 0, L( ﬁh) < o, and L has atoms. If a > 0 and L(ﬁEO) <

and L has atoms,
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(4.10) P{Lt < s} = P{YS >t}

PROOF. Since YS > t implies Lt < s we can write {Lt < s} =
fy, >t} U {L <s, Y <t} Moreover, Y(L,) > t for all t, and s > L,
implies YS > t, and by symmetry provided by (4.1) and (4.4), YS < t implies
L > s. Hence,

t —

(4.11) {Lt < sl = {YS >t} U {YS = t, Lt = g}.

If Y is not strictly increasing, Lt = s implies YS > t, and hence (4.9)
follows from (4.11). If Y is strictly increasing, either a > 0 or L(iﬁh) =
+o or both. If L( ﬁh) = »,  then P{YS =t} = 0 (see ESSEEN [ 4, Remark 2]
for a streamlined proof), and hence (4.11) yields (4.9) again. Finally,
consider the case a > 0, L( ib) < o3 then, (YS) is the sum of (as) and a
compound Poisson process. In this case also, P{YS = t} = 0 unless the dis-
tribution F(*) = L(')/L(Iﬁb) of the magnitude of a jump has some atoms.

This proves the first statement. When the conditions of the second state-
ment hold, s -~ YS is strictly increasing because a > 0. Thus, YS = t

implies Lt = s, and (4.10) follows from (4.11).

(4.12) REMARK. We will see in the next section (see Theorem (5.8)) that

when a > 0,

R({t}) =

o— 8

P{YS = t}ds = 0.

Hence, for any t e:m} and almost every s € R},

(4.13) P{Lt < s} = P{YS > t}.
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5. POTENTIAL MEASURES

Throughout this section (Y ) is an increasing additive process,

t’t G'R+
defined over a complete probability space (Q,Q,P), and having the drift
rate a and Lévy measure L.

Perhaps the most important computational role in the theory of regen-

eration is played by the potential measure R defined by

(5.1) R(B) = E[f 1,(¥ )ds] =
0

o“— 8

P{Y_ € Blds, B €2§;.

It is easy to see from (2.1) that the Laplace transform

(5.2) R = f et Rdr), A >0,
0

satisfies

(5.3) RN = 12, x>0,

where NA is as defined by (2.2).

Note that NA is the Laplace transform of a measure N on Z@# given by
(5.4) N(B) = ae,(B) + [ n(s)ds, BER
B

=+,

where €, i1s the Dirac measure concentrating its unit mass at 0, and where

the density n of N on jio = (0,»] is defined by (recall that jis = (s,°])
(5.5) n(s) = L(i{s), s € Ry.

The function n is right continuous decreasing and finite valued on (0,~].
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In general, n(0+) = limS n(s) is infinite, but n is always integrable

-0

near the origin, and in fact

(5.6) f n(s)ds = f xL({dx) + tn(t).
(0,t] O,t]
Hence, the measure N is finite on compact subsets of ﬁio.
It is clear that R also is finite on compact subsets of iﬁ;, and hence
the convolution R%# N of R and N is well defined. It follows from (5.3)

that we have

(5.7) R#N(B) = leb(B), BCR,.

The following theorem strengthens this result.

(5.8) THEOREM. If a = 0, then for every t € Ry

(5.9) [ R@s)n(t -s) = 1.

[0,t]
If a > 0, then R is absolutely continuous (with respect to the Lebesgue
measure), and possesses a continuous function r as its derivative. Then,

for every t € IHJ

t
(5.10) ar(t) + f r(s)n(t - s)ds = 1.
0
PROOF. First, suppose a > O. Then (5.4) and (5.7) imply that aR(B)

< leb(B), which shows that R is absolutely continuous. Thus, R admits a

bounded function r as its derivative, and this r can be chosen to satisfy,
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in view of (5.7), the equation (5.10) for every t e:m+. The function n is
integrable near the origin (see (5.6) for this), and r is bounded. Hence,
their convolution defines a continuous function, that is, the second term
of the left side in (5.10) is a continuous function in t. Hence, r must be
continuous.

Next, consider the case a = 0. Then, (5.7) implies that (5.9) holds
for (Lebesgue) almost every t > 0. That this implies the same for all t

is put next as a separate proposition. ]

(5.11) PROPOSITION. If (5.9) holds for almost all t > O, then it holds

for all t > O.

PROOF of this innocent looking assertion is very treacherous. The
first complete proof was given by KESTEN [ 7 ]. Somewhat shorter proofs
may be found in ASSOUAD [ 1] and BRETAGNOLLE [2 ]. Theorem (5.8) and the

proof of the case a > 0 are due to NEVEU [10].

(5.12) COROLLARY. R has atoms if and only if a = 0, n(0+) < «, and L has

atoms.

PROOF. If a > 0, R is absolutely continuous. If a = 0 and n(0+) = o,

then

R({t}H)n(0)

| A

f R@ds)n(t - s) =1
[0,t]

implies that R({t}) = 0. 1If a 0 and n(0+) < », then Y is a compound

Poisson process and R is the renewal measure corresponding to the distri-
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bution F(*) = L(*)/n(0+). Now the result is evident. a

Next we consider the connection between R and the local time process
(Lt) associated with (YS) (see (4.1) for the definition). It follows

from (4.2) and (5.1) that

(5.13) E[Lt] = R([0,t]), t ER,.

Moreover, by the generalized version of the Fubini's theorem applied to

(4.5) we have

(5.14) E[{ £(Y_)ds] E[{ £(t)dL ]

[ £(£)R(dt)
0
for any positive Borel measurable function f defined on.i&# with f(+=) = 0.

We close this section with a computational result of some importance.
The potential measure R plays the same role in the present theory as the
renewal measure does in renewal theory. Indeed, R can be expressed as a
renewal measure in a number of ways. The following is one which is very
useful (see the next section for another such representation).

Let ¢ > 0 be such that n(c) > 0, and define the processes (Y:) and

(YZ) as in (2.4) and (2.5). Let

(5.15) S = inf{s > 0: Y; > 0} = inf{s: YS -Y > c};



and
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_ b - _ c -
(5.16) GC(B) = P{YS € B}, FC(B) = P{YS ¢ B}, B C]§+.

It follows from Proposition (2.6) that S has the exponential distribution

c
with parameter n(c); Y

is independent of Yb and S, and has the distribution

S S

HC = L/n(c) on 'EE. These and other facts listed in (2.6) yield the

following: For A

(5.17) g
C
(5.18) 7
C
A
(5.19) Gc

Now let RC be the

(5.20)

Then, the Laplace

(5.3),(5.18), and

> 0,

/ ] e L(dy)/n(e);
(c,

E[exp(—AYg)J

= E[exp(-AY )] =

|
jam)
(@]
(]

= El[exp(-1Y3)]

=f n(c)e_n(c)udu exp{-u[ra + f (l - e_xy)L(dy)]}
0 (0,c]

n(e)lnte) + ra + of (1 - e Lay) 17!

n(e) AN + n(c)Hz]_l.

renewal measure corresponding to Rc’ that is,

A A=
transform of RC is RC = (1 - FC) 1. This fact along with

(5.19) proves the following important observation.

(5.21) PROPOSITION. Let ¢ > O be such that n(c) > 0. Then,
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The preceding proppsition shows that R is (up to a constant multipli-

cative term) the renewal measure of a delayed renewal process. This

delayed renewal process (Tn)n= 1,2,... is given by

(5.22) T =Y s n=1,2,...,

where Sn is the instant of the nth jump of Y whose magnitude exceeds c.

In fact, noting that n(t) = E[S], we may reword (5.21) as follows:

(5.23) E[Lt] = E[S]E[Nt]

where Lt is the local time at t, Nt is the number of jumps with magnitude

greater than c that Y makes before reaching the real time level t, and

the Sn+ - Sn are the local times between these jumps.

1
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6. RENEWAL LIMIT THEOREMS

Let (YS) be as in the previous section and let R be its potential
measure. The potential measure plays the same role in the theory of
continuous regeneration as the renewal measure does in the theory of
discrete regeneration (which is usually called renewal theory). 1In fact
R itself is the renewal measure of a delayed renewal process:

Let S;, S,,... be the points of a Poisson process with parameter 1
independent of (Ys), and put T, = Y(Sl), T, = Y(Sz),..., Then, (Tn) is
a (delayed) renewal process and a simple computation shows that its renewal

measure is exactly R, that is, for every B € ig s

(6.1) R(B) = E[f 1.(v )ds] = B[ ] 1.(T)].
0 n=1
Note that the expected value of the "interrenewal times" Tn+l - Tn is
(6.2) m=a+ i xL(dx) = a + I n(s)ds.
Ry Ry

The following renewal limit theorems are, then, simply restatements
of the classical limit theorems (see, for instance, FELLER [5] for proofs

and also for the definition of direct Riemann integrability). We exclude

(6.3) CASE: a = 0 and n(0+) = L(Ry) < =

for reasons of simplicity. This is the case where the range of Y is that
of a renewal process and falls in the classical renewal theory case. We
will omit the proofs of the following two main theorems (only note that R

has no atoms when case (6.3) is excluded; see Corollary (5.12) for this).
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(6.4) THEOREM. Suppose Case (6.3) does not hold. Then R has no atoms and

(6.5) lim R(t + B) =

t>o

leb (B)

=l

for any finite interval B CZR+. In particular, if a > 0, for the density r

of R we have

(6.6) lim r(t) = %

t > oo

(6.7) THEOREM. Suppose (6.3) does not hold. If n(«) > 0, then

(6.8) lim R=xg(t) = g(=)/n(x)

t >

provided that g(«) = limt » 8(t) exists. If n(«) = 0, then

-

(6.9) lim Rag(t) = = [ g(s)ds
t> ® o9
provided that g be directly Riemann integrable.

Next is a refinement of Theorem (6.4).

(6.10) THEOREM. Suppose (6.3) does mot hold and

(6.11) v = [ x?L(dx) < .
(0,«]

Then m < « and

(6.12) lim {R([0,t]) - i} = v2/2m2.

t> o



PROOF. By (2.10) we have Rx N equal to the Lebesgue measure. If
vZ < o  then m < « obviously, and the total mass of N is N(IE+) = m

(see (5.4) and (6.2) for this). Hence,

(6.13) R([0,t]) = = = Rxg(t)
with

CN((£,®) 17
(6.14) g(t) = m = - { n(s)ds.

Now g is monotone decreasing and is integrable with

(6.15) [ g(t)dt =
0

8=
o“—— 8
/]
=]
7~
/]
p—a
o
[45]

Il
B~
<

N

Thus g is directly Riemann integrable, and (6.9) applies to yield the

desired result.

23
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7. BACKWARD AND FORWARD RECURRENCE TIMES

Let (YS) be an increasing additive process with drift rate a and
Lévy measure L, and let G be the regeneration set associated with it,
that is, G = {t: Ys = t for some s}. The points of G are to be thought

of as points of regeneration. Then, for w € Q,

(7.1) wt(w) = inf{u > t: v € G(w)} - t

is the waiting time from t until "the time of the next regeneration,' and

(7.2) Vt(w) =t -~ sup{u < t: u € G(w)}

is the elapsed time since '"the last regeneration.'" In terms of the process

(Ys) and its local time (Lt)’ we have

(7.3) V =t -Y

In the case where G is a discrete set (that is, if Y is a compound
Poisson process, or in terms of the parameters of Y, if a = 0 and L(ﬁ%) <o),
then G = U [Tn] where (Tn) is a renewal process. In this case, the back-
ward and glrward recurrence times are easy to examine (and are already

studied in some detail). We will omit this case from further consideration

by making the following

(7.4) ASSUMPTION. Either a > 0 or L( ]EO) = 4+ or both.

The process (Vt) is right continuous; V, = 0; t > Vt increases

t €1R+
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with slope one over all intervals contiguous to G; Vt = 0 for t € G where
G is the closure of G. In the converse direction, if the process (Vt) is
known, the regeneration set G is obtained as follows: The set {t: Vt =0}

is the closure G of G, and G is obtained from G by removing from G those

points t € G which are the left end points of intervals contiguous to G.

The process (W )

e e:m+ is right continuous; Wy = 0; t - wt decreases

at rate one over any interval contiguous to G; if [S,T) is a contiguous
interval, WS =T - S and WT_ = 0; if t belongs to G then Wt = 0; or con-
versely, if wt = 0, then t ¢ G.

This section is devoted to computational issues regarding (Vt) and
(Wt).

The method of the computations below rests on the following observa-
tion: If the waiting time Wt(m) is greater than ¢, then t belongs to a
contiguous interval whose length is greater than c.

Let ¢ > O be such that n{c) > 0; and let U and T be the left end
point and the right end point of the first contiguous interval of G with
length strictly greater than c. In other words, if S = inf{s: YS-—YS > cl,

we have U = YS—’ T = YS. It follows from Proposition (2.6) that U and
T - U are independent and have the respective distributions GC and HC de-

fined by (5.17) and (5.19). We utilize these facts to obtain the following.

(7.5) THEOREM. For any t > O, b > 0, and ¢ > O,

t-b
P{V.>b, W >c}= [ R@un(t+c-u).
t t 0

(7.6) REMARK. Integral over an empty set is zero. Regarding the limits

of integration, we note that whether the end points are included or not
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makes no difference, since R has no atoms under Assumption (7.4) by

Corollary (5.12).

PROOF. We will prove the theorem for ¢ > 0. Having done that, the
proof for ¢ = 0 follows from the monotone convergence theorem applied to

the right side written for N + 0 (note that n(t + ¢, - u) increases

k
with k since n is a decreasing function).
For ¢ > 0, if n(c) = 0 then both sides vanish. Therefore we assume

that ¢ > 0 and n(c) > 0. Let the probability on the left be denoted by

f(t). Conditioning on T, by the regeneration property at T,

(7.7) P{V_>b, W > c|T} = £(t = T) on {T < t},

and therefore,

(7.8) P{Vt > b, wt >c, T

| A

t

t} = | F (dwf(t - v),
0

where Fc = GC *HC (see (5.18) also). On the other hand,

(7.9) P{Vt > b, W_>e, T> t}

P{U<t-b, T>t+cl

t-b
{ G, @nH_((t + ¢ - y,=]) = 6_ »h(t)

where

(7.10) h(u) = l[b’w](u)Hc((u,w]) = L[y e @ 0+ e)/nle).

Putting (7.8) and (7.9) together we obtain
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(7.11) f=G *h+F «f
c c
which is a renewal equation. It is well known that its solution is

*
o

(7.12) f=R %(G *h), where R =
c c c

lo~18

n=0

The desired result that f(t) Rx h(t)n(c) now follows from (7.10), (7.12),

and Proposition (5.21). O

(7.13) COROLLARY. For any t > 0 and ¢ > 0,

t

P{Wt > ¢} = { R(du)n(t + ¢ - u).
(7.14) PROPOSITION. Let
(7.15) p(t) = P{Wt = 0}.

If the drift rate a is zero then p(t) = 0 for all t > 0. Otherwise, if

a >0, p(t) > 0 for all t > O and

(7.16) p(t) = ar(t)

where r is the density of the potential measure R.

PROOF., If a =0 then R*n(t) = 1 - p(t) = 1 for all t by Theorem (5.8).

If a > 0, by (5.8) again, R has a continuous derivative and (5.10) shows

that p = ar as claimed. There remains to show that p(t) > 0 for all t.
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Applying the regeneration property at t, we have

(7.17) p(t + s) = P{thrs = 0}

> P{W_=0, W = 0} = p(t)p(s).

On the other hand, as t + O,

(7.18) 1 -p(t) = f R{du)n(t - u) f r(u)n(t- u)du > 0;
[0,t] (0,t]

since r is continuous and n is integrable near zero. So, p(t) - 1 as

t > 0. This fact along with (7.17) shows that p(t) > O for all t.

(7.19) REMARK. We in fact showed that, when a > 0, p(t) is a continuous

strictly positive function on R+ with p(0) = 1.
The following puts together (7.13) and (7.14):

(7.20) PROPOSITION. For any t > O and B CR,

t
P{W_ € B} = p(t)e (B) + [ R(du)L(t - u + B). O
0

Proof is evident. Next is a similar result for (Vt):

(7.21) PROPOSITION. For any t > O and B € R,

t
P{Vt € B} = p(t)eO(B) + é R(du)n(t - u)lB(t - u).
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PROOF. If W_(w) = 0, then t € G(w), which implies that t € G(w),
which is the same as Vt(w) = (0. Hence, {Wt = 0} Cl{Vt = 0}. Therefore,
for b > 0, Theorem (7.5) gives
R(dwn(t- u)

(7.22) P{vt > b} =P{V_ >b, W_ >0} = (t-u).

rt
|
rt
Ot

1, e

As b + 0, 1[b c>°](t - u) increases to 1_ (t - u). By the monotone con-
bl

R

vergence theorem, then, (7.22) implies also that

(7.23) P{Vt > 0} = R({du)n(t-u) = P{Wt >0} =1-p(t).

Ot

The result desired now is immediate from (7.22) and (7.23). 0

We sum up these computations in the following theorem; the proof is

evident and will be omitted.

(7.24) THEOREM. For any t > 0, and any Borel measurable positive function

f on R+ X R+,

t [o<]
E[£(V_,W )] = p()£(0,0) + J R(du) [L(t - u+ dx) £ (t - u,x).
0 0

Next is a formula for the probability that the regeneration set G has
no points in the interval (s,t]. For any u € (s,t] this event is equal to

{Vu >u-s, W >t- u}. Thus, the probability sought is, by Theorem (7.5),

(7.25) P{G N (s,t] =9} = [ R@Wn(t - v).
[0,s]
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We end this section with a discussion of the limiting behaviors of Vt
and Wt as t » ». This is largely an application of the renewal limit
theorems of the previous section. In particular, recall that m (defined

by (6.2)) is the mean rate of increase of Y.
(7.26) THEOREM. If m < = then for any b > 0 and ¢ > 0

. 1
lim P{Vtib, W, > c} ==

f n(s)ds.
t> o b+

c
PROOF. Since m < », n(x) = 0 and (6.9) holds. We apply (6.9) to the

formula provided by (7.5) after noting that g =1 n{*+c) is directly

[b,=]
integrable. The latter fact follows from the monotonicity of n coupled

with the integrability of g:

f g(s)ds = f n(s)ds i_f n(s)ds = m < o, O
0 b+c 0

As a corollary, it is interesting to note that, when m < «,

(7.27) p(t) = P{wt = 0} = P{Vt =0} » - t > =,

which also follows directly from the facts that p(t) = ar(t) and
r(t) > 1/m as t » = by (6.6).

Next we consider the case m = 4+,

(7.28) THEOREM. If m = = then for any c > 0

1im P{Wt > c} = 1.

t >
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PROOF. Consider R([t,t+c+b]) for b > 0. Conditioning on Wt we

obtain, since t + Wt is a regeneration time,

R(t + [0,c+b]) = E[f 1

: t4—[o,c+b](Ys)dS]

o

C
é P{W_ € dx}E[g 110, e b - x] (¥5)ds]

| v

Cc
/ P{W_ € dxJR([0,b])
0

| v

= P{W_ < cIR([0,b]).

When m = +~, R(t + [0O,c+Db]) - 0 as t » «» by Theoren (6.4); hence,

P{Wt <c}l>0as t >, O

(7.29) REMARK. It is now easy to see that Theorem (7.26) holds for m = ®

o

also provided that we interpret _ = 1 there.

(7.30) REMARK. Note that, when m < ®, the measure N given by (5.4) has
total mass N(Iﬁ;) = m. It is then easy to see from Theorem (7.26) that,

for any compact BCIR+,

(7.31) lin P{W_¢ B} = i—N(B).

t >

As should be expected, we will see in the next section that N is an

invariant measure for the 'Markov process (wt)" even when m = =,
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8. DELAYED PROCESSES
In this section we will discuss briefly those regeneration sets
which do not contain the point O necessarily. Let G0 be a perfect re-
generation set defined over the probability space (QO,EO,P) and which
includes O almost surely. Let
(8.1) Q= i+x R0, H= R, QHO, P? = 4xp;

and for w = (x,wo) € @, put

J x + G9(w®) if X <
(8.2) G(UJ) l ¢

if x = 4o,

1f Y% is the increasing additive process defined over (QO,QO,P) whose
range is GO, then for each w€ Q, G(w) is the range of the process

Y ), o
t't €R,

defined on (Q,E) by

(8.3) Yt(w) = x + Yg(wo) if w= (x,00).

It is clear that, over the probability space (Q,E,P¢), (Yt) is an increasing
right continuous process with stationary and independent increments whose
initial distribution is ¢.

Throughout the following we write P* for P¢ when ¢ = €, where €. is

the Dirac measure putting its unit mass at x. We define the local time

process (LS) as before, by formula (4.1), but for the present Y. Define

(8.4) W =Y - t, t GIR+.
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Then (Wt) is a right continuous Markov process. In fact, it can be
shown to be a Hunt process if we had the proper machinery set up. Let
(Pt) be the transition semi-group of (Wt), that is,

(8.5) P (x,B) = Px{wt ¢ B}, x ¢R,, BCR,.

(8.6) PROPOSITION. We have

Jex-t(B) if t < x,
Pt(x,B) =
tF(t-—x,B) if t > x
for all t € R+ and B ¢ IR, where
t
(8.7) F(t,B) = p(t)e,(B) + { R(s)L(t -~ s + B)
0

in the notations of Section 7 for the process YO.

PROOF is immediate from the observation that, if W, = x, then Wt =

x -t for t < x, and at x there starts an ordinary regeneration set cO.

o
Consider next the a-potential operators U of (Wt) defined by

o

(8.8) Ut (x) = EX[[ &%
0

f(Wt)dt], x € IR

for any non-negative Borel measurable function f on iR+. Then,

o

(8.9) UG = [ 7% [P (x,anEde,
0



and carrying out the integrations involved we obtain

(8.10)

U (x) = £%(x) + e T [af(0) + [ L(dz)£%(z)]Ir%
0

where R® is as defined by (5.2) (see also (5.3) and (2.2)), and where

fa(x) _ e—at

o~ N

f(x - t)dt, x CR

For arbitrary initial distributions ¢ we have

(8.11) 42, (B) = P¢{wt e B) = [ $(am)P_(x,B)
R
+
and
7 —at
(8.12) $UE = E¢[£ ™ £ )at] =

[ 6 (ax)U%E (x).
Ry

We close this section by showing that the measure N defined by (5.4)

is the unique invariant measure for (Wt) (up to multiplication by a constant

(8.13)

of course). A measure Vv is said to be invariant for (wt) or for (Pt) if

VP (B) = [ v(dx)P (x,B) = v(B),

BER,.
(8.14) THEOREM. The measure N defined by (5.4 ) for the process (Yg) =
(Yt - YO) is the unique invariant measure for (Wt).
PROOF. Let f be a bounded Borel measurable function with a compact
support.
NPt(f) =

To show that N is invariant, it is sufficient to show that
N(f).

Now by Proposition (8.6),

34
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(8.15) NP (f) = [ N(ax) | P (x,dy)£(y)

= [ N@x)P(t-x,f) + [ N@x)f(x~t)

[0,t] (t,=)
= NxF(t,f) + f n(x)f(x- t)dx.
(t,y=)
Note that
F(t,f) = £(0) + R* g(t)
where
g(t) = [ L(t + ax)[£(x) - £(0)].

This, together with the fact that N#*R is equal to the Lebesgue measure

by (5.7), implies

t

(8.16) N*F(t,f) = £(0O)N([0,t]) + [ g(t - s)ds
0

t t
= £(0)[a+ [ n(s)ds] + [ du [ L(dz)[f(z-u) - £(0)]
0 0

(u,=)

t
= af(0) + [ du [ L(dz)f(z - u)
0 (u,®)

t
= af(0) + f L(dz)?.f(z— u)du + f L(dz).ff(z-u)du.
(0,t] 0 (t,=) 0

On the other hand,

z
(8.17) [/ nxfx-t)dx = [ L(dz) [ f(x - t)dx.
(t,) (t,=) t
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Putting (8.16) and (8.17) into (8.15), we obtain

Z Z
NP (£) = af(0) + [ L(dz) [ £(s)ds + [ L(dz) [ f(s)ds
(O’t] 0 (t,°°) z-t
z~-t
+ f L(dz) f f(s)ds
(t,=) 0

Z
af(0) + [ L(dz) [ f(s)ds
(0,=) 0

]

af(0) + [ n(s)f(s)ds = [ N(dx)f(x) = N(f).
(0,%)

Hence N is an invariant measure.
To show uniqueness, let v be an invariant measure. Then Vv (f) = th(f)
for all Borel measurable non-negative functions f. It follows from (8.9)

that

(8.18) U™ (£) = v(f)

for all a > 0. In particular, for

(8.19) fx)=e ", x>0,

we have, by using (8.10),

(8.20) (0 =T (x) = e ™ = ™% 4 T n® _ ot

M L oTOXRl Ay



37

Hence, for f defined by (8.19), letting vA denote v(f), we see from

(8.18) and (8.20) that
(a - k)vx = o - avaRa(ka),

or equivalently,

(8.21) W R = av®RY.

Since this holds for all a and X positive, denoting the constant av*r®

by c, we see that

(8.22) wh = ce @7 = N,

Hence, v is a constant multiple of N. This completes the proof. 0



