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ABSTRACT

The paper deals with a one-shot prisoners’ dilemma when the players have
an option to go to court but cannot verify their testimonies. To solve the
problem a second stage is added teo a game. At the first stage the players are
involved in the prisoners' dilemma and at the second stage they play ancther game
in which their actions are verifiable. In such a setup the information about the
actions chosen at the prisoners’ dilemma stage can be revealed through strategic
behavior of the players during the second stage. A mechanism for such revelation
in the extended game is described. It provides an existence of a unique sequen-—
tial equilibrium, which may be obtained by an iterative elimination of dominated

strategies and has a number of desirable properties,
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Prisoners’ dilemma, a non—cooperative game whose nickname is attributed to
A.W. Tucker, is probably the most noterious example in the game theory. One can
find its discussion in practically any book which touches upon the game theoretic
concepts. An extensive description of the game may be found, for example, in such
monographs as Luce and Raiffa (1957), Rapoport and Chammah (1970), Kreps (1990),
Fudenberg and Tirole (1991), Myerson (1991).

The popularity of the prisoners’ dilemma can be explained by the fact that
it represents a classical example of a contradiction between individual and col-
lective interests, moreover such pattern of interaction may serve as a quite
realistic description of many economic and social conflicts. A "rational” choice
of an individual player, if he acts unilaterally, results in a loss of efficiency
compared the outcome of an optimal choice for this player under possibility of
enforceable cooperation between the players. Because of that, cooperation is
always desirable from the game theoretic point of view. In economics, instead,
cooperation between agents may lead to inefficiency to prevent which many
countries introduce antitrust laws. Nevertheless, even such legislation does not
rule out certain types of agreements. A specific example of that kind will be
considered in the next section.

Since the first presentation of the prisoners’ dilemma there have been many

attempts to "solve" it, i.e. to find a way for cooperation. Most of these
endeavors are summarized by Tsebelis (1990}. Different efforts can be split into
four groups.

The first group of arguments relies on belief that there is no such thing
as the prisoners’ dilemma in real life, and such a model arises as an inappropri-

ate representation of the conflict. For example, Stinchcombe (1980) asserts that

people do not try to maximize their goals, and therefore do not follow
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rationality assumptions adopted by game theory. As a result prisoners’ dilemmas
are being solved without people even realizing that they were faced with such
problems. Similar views are shared by many proponents of evolutionary biology,
where it is frequently assumed that in the priscners’ dilemma the players are
concerned about issues other than just self-interest (see Maynard Smith, 1982).
As a result the payoff matrix has to be modified and cooperation becomes
attainable through individually rational behavior. Another branch within the
first group can be represented by Howard’s (1970) metagames theory. Howard allows
for certain mental experiments which bring cooperation about. His theory is
criticized as irrational on the grounds that the mental experiments carried out
by a player do not have any causal effect on the rival, and when this mental
illusion is set aside the players still make their choices independently, thus
there is still neo reason for them to cooperate. The theories of this group either
refute prisoners’ dilemma per se or offer a solution which is not satisfactory.

Another approach suggests introduction of communication with monitoring and
binding contracts. The players may sign a binding contract which leads to such
a modification of the conflict that cooperation is a Nash equilibrium in the
modified game (see, for example, Myerson, 1991). Just communication or signing
a contract is not enough — it must be binding. The latter can be ensured by exis-
tence of an authority which can monitor players’ actiomns and impose obligatory
sanctions when the deviations from the terms of the agreement occur. If the fines
(punishments) to deviators are sufficiently large, cooperation is trivially
enforceable.

The third way to solve the dilemma is to admit that the game is played
repeatedly. Luce and Raiffa (1957) reported that in the conducted experiments on

human behavior in repeated prisoners’ dilemma, people usually cooperate in some
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periods. Later it was proven that such behavior is "irrational” in a sense that
in any finite repetition of the game the only equilibrium is for both players
never to cooperate. However, if the game is played infinitely many times or
information is incomplete (i.e. there is a small probability that the game will
stop after each round) there are conditions under which always to cooperate for
both players is an equilibrium.

Finally, Brams (1975) introduces asymmetry in informational structure of
the game, making one of the players a principal and another a follower. The
principal can commit himself to a certain strategy, while the follower adapts to
the principal's choice. If the players can almost always correctly predict
rivals' choices, then there is a place for cooperation. This solution, though
trivial, does not seem satisfactory.

In this paper we use an approach that does not precisely fit any of the
groups sketched above. First of all, we assume that the dilemma really exists and
do not require repetitions. Then we allow for a contract and existence of an
authority which can levy compulsory fines (or grant rewards) depending on the
obedience by the contract. However, the actions chosen by the players can not be
monitored by this authority, which makes the enforcement task non-trivial,
Instead of direct modification of the payoff matrix of the game, we assume that
the players are inveolved in some other activity besides their interaction in the
prisoners’' dilemma. So we try to get additional information, necessary for assu-
rance of cooperation, from monitoring the choices of the players outside the
dilemma.

More specifically, we deal with a one-shot prisoners' dilemma in which the
players have an option to go to court but cannot verify their testimonies. The

question is what kind of a mechanism can be designed to enforce cooperation in
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such a game. In search for an answer the original game is extended into a two-
stage game, where at the first stage the players are involved in the prisoners’
dilemma and at the second stage they play another game in which their actions are
verifiable. The payoffs at both stages are publicly known, and each player knows
before choosing a strategy for the second stage, what his opponent’s choice was
at the first stage. In such a setup the information about the actions chosen at
the prisoners’ dilemma stage can be revealed through strategic behavior of the
players during the second stage. A mechanism for such revelation in the extended
game is described. It provides an existence of a unique sequential equilibrium,
which may be obtained by an iterative elimination of dominated strategies and has
a number of desirable properties.

The paper does not suggest a way to resolve the dilemma once and for all.
Qur point is, rather, that in certain economic situations, in which participants
are involved in prisoners’ dilemma and cooperation is both legitimate and social-
ly desirable, it might be achieved by traditional social institutions even with-
out perfect monitoring, incomplete information or infinite repetition. Instead,
we require that the players be able to think "one period" ahead and that there
was some relationship between the prisoners’ dilemma played today and the game
that will be played tomorrow. A remarkable fact is that even a very slight
connection between the stages provides extensive opportunities for cooperation
if the court and the players behave strategically.

Both verbal and formal description of the model under consideration are
presented in section 2. Section 3 contains discussion of an example as well as
some general observations. Intuitive explanation of the solution approach is in

section 4. The main results in general form are given in section 5.



2., Setup of the Problem

Let us consider an economic situation as folleows. There are two firms. Firm
one produces a high-tech product and comes up with an idea, which is a break-
through in a conventional technology. To implement this idea a sophisticated
component is required, which firm one can not develop itself. Moreover, it does
not know precisely what the parameters of the required component should be. Seo
firm one turns for assistance to firm two, which specializes in production of
equipment similar to what firm one seeks. However, for the second firm to develop
exactly what is needed, its access to the firm's one prospective technology is
necessary. On the other hand, firm twe has to spend substantial resources on
research and development to fulfil the order of the firm one. As a result, the
two sides sign a contract, which, in particular, stipulates that for a specific
period after the component is developed by firm two, firm one will buy it
exclusively from firm two and not order the component (whose specifications are
already known by that time) from firm two’s competitors. Firm two, in return, is
obligated not to promote the new component to firm one’s competitors, since such
action would be practically equivalent to revelation of the firm one’'s
innovation.

Each firm has two possible strategies: either to stick with the agreement
or to breach it. If only one firm abides by the contract, then a deviator gets
additional profits by expanding market where it buys (were it firm two) or sells
(were it firm one), while its opponent incurs losses. In case when both sides
deviate, they both lose compared to the profit levels they would get if no viola-
tions occurred. Hence, the interaction between the firms has a nature of the
prisoners’ dilemma.

In case of a contract violation a victim can go to court. But the problem



is, that, though the court knows what profit each firm earns in any of the four
outcomes, firms' actions are not verifiable in court, i.e. the court does not
know which outcome occurred indeed. However, after the firms get their payoffs
from interaction, they may take loans from a bank, which brings a positive profit
of e per dollar. The size of the loan is determined by each firm, with the only
restriction imposed by the bank that the loan has to be backed-up in full by the
firm's assets, The court can verify how much each firm has borrowed.

The question is, whether this information suffices to develop a feasible
mechanism (i.e. a system of penalties and compensations), depending only on
verifiable information, such that a unique equilibrium behavior for the firms is
to cooperate and not to go to court. By feasibility of a mechanism we mean the
following two properties. Firstly, a penalty te a firm in any given state does
not exceed the assets of the firm in that state. Secondly, in any state the net
penalty paid by the two firms together is non-negative, i.e. there is no need in
outside subsidies to implement a court order.

To provide an answer to this question we need to formulate a model of the
problem, with which we are going to proceed.

We assume two players: I and II,- who are risk neutral and have preferences
represented by utility functions depending only on each player’s own assets.
Without loss of generality, one may identify utilities with the assets values.
The players are involved in a two-stage game.

At the first stage they are engaged in a prisoners’ dilemma, described by

the following matrix:

¢ Al, A2 Bl, B2

D c1, ¢2 | b1, D2




where rows correspond to the strategies of player I (C stands for cooperation and
D for deviation) and columns represent the respective choices for player II. For
this matrix to have the structure of the prisoners’ dilemma we need that Cl > Al
> D1 > Bl and B2 > AZ > D2 > C2,

Assume that the firms have endowments big enough for their assets to remain
positive after the first stage even if some payoffs in the matrix above are
negative, i.e. we exclude a possibility of bankruptcy after the first stage.
Mathematically that means that the utility levels, with which the players enter

the second stage are given by the matrix

C D

¢ al, a2 bl, b2 (1)

D cl, c2 dl, d2

in which all numbers are positive.

At the end of stage one the players know the outcome of this stage and the
choices made by both of them. Moreover, they receive payocffs of their interac—
tion.

At the second stage each player decides how much money to borrow from the
bank (the possible size of the loan is any amount between 0 and assets of the
firm, given by an appropriate number in (1); each borrowed dollar brings a > 0
dollars of profit by the end of the second stage) and whether to go to court or
not.

At each stage the players make their choices simultaneously and are not
aware of the rival’s decision.

If any player comes to court (accusing the opponent in breaching the

agreement)}, the court knows matrix (1) and the choices of the players at the
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second stage of the game, i.e. whether one or both firms complained; what assets
could each firm have after the first stage of the game in any possible outcome;
and the amounts borrowed by each firm. Based on this information the court orders
each player either to pay a fine or to get a retribution from the rival. Each set
of information determines a case denoted by i. If case i occurs the court rules
out that player I has to pay a fine of f, and player II has to pay g;. The
players receive compensations when the corresponding numbers are negative.

The system of punishments and rewards used by the court is publicly known
before the game starts, while the value of o becomes revealed only at the second
stage of the pame,

Summarizing the above, we have two players. We will use arabic numbers

referring to the players in subscripts. The set of strategies for player k (k

1,2) is
Ze= (P %, Sc) € P x RE*Fx SP* P 0 < x,< m},

where P = {C, D} is the first stage choice; § = {G, S} is the last decision a
player makes, namely, to go to court (G) or to stay ocut (S); and m (p;,pz) is a
payoff of the first stage given by matrix (1). Let player k choose a strategy
(Pk» Xk, S¢)- Then his total payoff is m(p;,p;) + oX¢ — qi;, where q;; is a penalty
levied by the court, depending on payoff matrix, and information about players’
choices available to court: q;,: i - R, where i € T = 7 X XX %X 8§ X §; 7m: P X
P~ RS2, m(py,p2) = (m(P1,P2), 72(P1,P2)), P1.P2€ P g = £; if k = 1 and qy = g;
if k= 2. {(We index q, f and g by i rather than made 1 an argument for notational

convenience.)?!

lsince each player’'s decisions are made sequentially the appropriate
solution concept would be a subgame perfect or sequential equilibrium. We choose
the latter one because it is stronger (See, for example, Myerson (1991), pp. 184-
185). That is why from now on whenever we say "equilibrium" we will mean a
sequential equilibrium and "equilibrium strategy" will stand for an equilibrium
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The cbjective is to develop a mechanism (to construct f; and g; for all i
€ I) such that the equilibrium strategy for the player k would be (C, o, §). It
might also be desirable to have =, (C,C) in the second place in the equilibrium
strategy above; to ensure uniqueness of the equilibrium; and te have for any o
€ R and any 1 € I, q;< n(p1,Py) + ax and £, + g, = 0,
A mechanism satisfying these and some additional properties will be

described in section 5, but let us first consider an example.

3. An Example of Mechanism Design
We would like to start with two simple observations. They have a general
nature, but are part of the preliminary assumptions of the model, hence we

include and discuss them before turning to a specific example.

Observation 1. If for k = 1,2 ranges of x, do not depend on (p;,p;), then
there is no sequential equilibrium in which players cooperate during the first

stage?.

The proof is an immediate consequence of the following consideration. If
the stages of the game are completely independent one from ancther (which is the
case if in the setup of section 2 ranges of x%, do not depend on (p,;,p,)). then
the only possible sequential equilibria for the two-stage game are those that

consist of choices which would be equilibria in the stage games were they played

strategy in a sequential equilibrium,

“It is possible to construct a mechanism which allows for cooperation
without the borrowing stage (which is the same as the assumption of x,'s indepen-
dence from (py,pz).) Such mechanism, however, can be implemented only in Nash
equilibrium which lacks subgame perfection and, hence, is not sequential.
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separately. Since the unique equilibrium in the c¢lassical prisoners’ dilemma is
deviation for both players, any sequential equilibrium of the two-stage game with

completely independent stages, should include choices of D at the first stage.

Observation 2. If (p,, ®., s¢) 1s k'’s equilibrium strategy in a sequential

equilibrium, which satisfies feasibility, then x= m(p;,pz), for some p;,p€ P.

By feasibility, for any o € R and any 1 € T, qu =< m(p;,pz) + ax,. That
allows us to write q;= a;x + by (axy), where a; is the part covered by the first
stage payoff, and b (any) is to be paid from the profit generated by a loan. To
meet feasibility requirement above, we need b; < 1 for all i and k, since a can
be arbitrary large. Next, notice that in each case of fixed n, %; and x; there
is a possibility that both players stay out of court (i.e. b;=0, k = 1, 2).
Taking into account that a > 0, this suffices to create an incentive for each
player to borrow as much as possible. At the same time %, conveys some informa-
tion about firm k's assets, which, in turn, may be used to determine punishment
for the firm. This information is, however, discrete and can signal about one of
the four states. In equilibrium player k chooses a signal which is the best for
himself under a given system of punishments and selects the highest value of x,
compatible with that signal. This is exactly what observation 2 says.

Since observation 2 is so "obvious for the players", from now on we will
ignore a possibility for a player k to announce x# m{(p,,pz), for some p;,p,€ P*.

The above implies that for a given w (matrix (1)) the court has to deal

3This will add significantly to simplicity and clarity of exposition without
any loss of generality. Of course, if we drop this assumpticn, a mechanism has
to be adjusted accordingly. All results will still, however, hold.
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with not more than 48 cases (in the other 16 situations no one goes to court and,
hence, for all these i's f; = g, = 0.) Restrictions applied by the bank together
with the structure of m reduce this number further down to 33.

To work out a desired mechanism we can simplify the representation of the
game by splitting the second stage into 4 subgames, corresponding to the 4 out—
comes of stage one. We can consider each subgame separately, since the players
are by that time fully aware of what had happened at the first stage, while the
court order depends on the first stage outcome only through the second-stage
decisions of the players.

Let the matrix (1) be as below:

C D

c 10, 10 4, 12

D 12, &4 5, 5

We will denote the subgames of the second stage as follows: the subgame
corresponding to the outcome (C,C) of the first stage will be called II.A; to
outcome (C,D) — II.B; to outcome (D,C) — IT.C: to outcome (D,D) — II.D. Extensive
form representations for these subgames are shown in figures 1 - 4,

Let us explain the figures. Each node of the tree is denoted by two num-
bers: a latin number indicating who moves at this node, and an arabic number
showing the number of the node within the tree. Information sets are shown by
ovals. Branches corresponding to equilibrium moves are drawn in bold. There are
two numbers at each end node of the tree: the upper one designates a payoff to
player I, and the bottom one stands for a payoff to player II, if the game ends
at this node. The payoffs will be explained later, after the mechanism is intro—

duced.
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It is convenient to represent the mechanism in the form of a table, which

prescribes punishments to the players for each possible case.

Table 1
X X, sy 5 £, & X1 X2 | s ) g
4 4 G G 4+3a, 2a 5 5 S G 5+5a,-2.5a
G S 2a, 4a 5 10 G G 2.50,4+ 100
S G 4+4p, 20 G ) -3.5a,4 + 3
4 5 G G 4+3w,2.5a S G 2.5a, 5w
G S -2.50,5a 10 4 G G 10+ 10¢, 2cx
S G 4+4a, -2 G N} 5, 4o
4 10 G G 2c, 10 S G 4+ 10, -4-10cx
G S a, Sa 10 5 G G 10, 2.5¢
S G 4o, Sax G S Se, Sa
4 12 G G -12-12a, 12+ 1 2c S G Sa, 250
G S -3a, 6o 10 10 G 10a, 10cx
S 4a, ba G S5a, Sa
5 4 G 4+ 5q,4+3a S Ser, Sax
G 2o, 4+4a 12 4 G 124+ 120, 2a
S 54+5q,-2.5a G 6o, 4o
5 5 G 4+4+3a,4+3a ) 4+ 10c, -4-100
G 2.5a,5+5a

The mechanism above determines the payoffs as in the figures 1 — 4 and as
a result the equilibrium strategy for the second stage of the game (Since this

equilibrium is obtained by backward induction, it can be extended to a sequential
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equilibrium,) Notice that, whatever happens at the first stage, the optimal
behavior for each player is to truthfully announce his payoff received from the
prisoners’ dilemma and go to court only if according to his announcement he was
cheated against. This property makes the players’ behavior at the second stage
internally consistent. Another nice characteristic of the proposed mechanism is
that this is a pure strategy equilibrium, i.e. beliefs of the players in any
information set are unambiguous, which eliminates the problem of their
concordance.

Needless to say, a feasible mechanism with such properties is not unique.
To see whether it helps to achieve cooperation in prisoners’ dilemma let us
address the first stage of the game, the extensive form of which is represented
in figure 5. Since for player I € dominates D, in any sequential equilibrium
player II believes with probability 1 that he is at the node I11.2. Thus, for
(C,C) to be played in a sequential equilibrium, one needs a to be at least .5.
If this condition is satisfied we have a unique, feasible, pure strategy
sequential equilibrium for the two-stage game, in which the players cooperate in
the prisoners’ dilemma phase,

Having finished with this example, we still have several questions to
answer., Is the mechanism described an optimal one, i.e. can we change it to relax
the constraint on a? (It will follow from the corollary to the proposition 4 of
section 5 that we can ensure cooperation with the payoff matrix as in the example
for any @ > 0.) When will a similar mechanism work for general case? When can
cooperation be obtained as part of a mixed strategy sequential equilibrium? These
issues, as well as the problem of construction of an optimal mechanism of such
type, will be dealt with in section 5. But before addressing these problems, let

us discuss the basic intuition underliyng the idea of the proposed mechanism,
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4. A Bit of Intuition, Or Where Strategic Considerations Come From

As was mentioned above, one can always achieve cooperation in the example
considered in section 3 (though not through the system of punishments described
there.) Why and how does it work? What is the intuition underlying the numbers
in Table I?

To shed some light on these and similar questions let us consider the case
when both players cooperate in the first period (the logic for the other cases
is similar.) Why should the players truthfully choose the loan amounts and not
go to court? Suppose that player I decided to frame his opponent, so he borrowed
only 4, pretending that he had been cheated against and went to court. Player II
obviously borrowed 10 and stayed home. The court sees the signals and realizes
that one of two things had happened: either player II cheated but pretends that
he cooperated, or player I wants to mimic a victim while in fact he is not (which
is the true case). Since the court cannot distinguish between these two scenarios
it has to work out a system ruling out both of them. This objective can be
accomplished by the following decision. First of all when the loans are 4 and 10
the player who gets 10 receives exactly the same punishment as he would have
received if borrowed 12 (more precisely, the difference between the two fines
should be such that it is still better for player II to borrow 12 rather than
10). That makes it unprofitable for player II to pretend. On the other hand, the
player who borrowed 4 gets nothing (or any other amount, possibly negative, which
makes him better off had he announced 10). This makes cheating for player I
unprofitable. So we are done. Notice that this mechanism does not presume full
revelation of the true state, but ensures a desired outcome through strategic
behavior. Thinking in a similar fashion we can find the conditions that rule out

false signaling in other cases as well.
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The next step is to combine all these interrelated restrictions together.
It might be done in many ways, since each case admits certain flexibility in
punishments. Having in mind that we would like to ensure cooperation for the
possibly widest range of parameters, one can easily construct a mechanism which
is optimal in that sense. Being fully aware of what and how to do we are ready

to proceed with the last section.

5. Mechanism Design for the General Case
Let us turn back to the first stage payoff matrix of the general form,
given by (1). Even in that case one can always construct a mechanism, which

brings about sequential equilibria for the second stage subgames satisfying

desirable properties.

Proposition 3. For any payoff matrix (1) there is a mechanism with the
following properties:

a}) it implements sequential equilibria for the second stage subgames;

b) equilibrium for each subgame is a unique pure strategy equilibrium,

¢) sequential equilibria, compatible with this mechanism, are such that,
whatever had happened at the first stage, the players want to reveal their true
payoffs, and go to court if and only if according to what they reveal they were
cheated against;

d) the mechanism is feasible.

Proof. The game trees, describing desirable mechanism, are presented at figures

6 — 9. The cases are numbered according to the following table:
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Table II
X Xy 51 Sy i X X5 5 Sy i
bl c2 G G 1 dl d2 5 G 18
G 5 2 dl a2 G G 19
S G 3 G ) 20
bl d2 G G 4 S G 21
G S 5 al c2 G G 22
5 G 6 G 5 23
bl a? G G 7 5 G 24
G s 8 al d2 G G 25
5 G 9 G 5 26
bl b2 G G 10 S G 27
G S 11 al a2 G G 28
S G 12 G 5 29
dl c? G G 13 S G 30
G S 14 cl c? G G 31
S G 15 G S 32
dl dz2 G G 16 S G 33
¢ s | 17

If the trees as in figures 6 - 9 can be obtained through a choice of f, and g;,
then an equilibrium for each subgame is achieved by iterative elimination of do-
minated strategies, and hence is a unique, pure strategy sequential equilibrium.
Part c) follows directly from the form of the equilibria, so the only two things
left to be shown are existence of appropriate f;’s and g;'s and feasibility.

It is clear that this problem is equivalent to solvability of a system of
linear inequalities: if for a given non-terminal node n m, is the number of
choices available at this node, then we need m—-1 inequalities to ensure the

right choice at n (not all of such inequalities for all n's are independent), and
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for every end—nocde we need three inequalities to guarantee feasibility, namely
£, + g =2 0 and q < 7 (p;.pp) + axy, where q; equals to f; or g;. This system
happens to be solvable and one of the solutions is presented in table III below

(where t is a number between 0 and 1, close to 1).

Table 111
i f; g i f; 9 i f, g,
1 bl+atbl c2+atecd 12 ab? ab2 /2 23 al/2 ac?
2 -ace/fe ce+ac2 13 bl+adl ce+ac2/2 24 b1+aal max{-bl-aal,
alc2-a2)/2}
3 bi+abl ~ab1/2 14 -ac2/2 c2+ac2 25 aa’l ad2/2
4 bt+atbl c2+atd2 15 d1+adl -adl1/2 26 aal/e ad?
5 -ad2/2 c2+ad? 16 b1+atdl c2+qtd2 27 aal/2 max{-aal/2,
a(d2-a2)/2}
[ b1+abl -abl/2 17 -ad2/2 d2+ad2 28 aal aal
7 abl/2 c2+aa2 18 d1+ad1 -ad1/2 29 aal/2 aaz/2
8 max{-aa2/2, c2+ata2 19 ad1/2 c2+aa2 30 aal/2 aa2/2
a(bl-a1)/2}
9 abl aa2/2 20 | max{-c2-ata2, cl+atal 31 cl+aci ac2/2
a(dl-b1)/2)
10 -b2-ab2 b2+ab? 21 di1/2 aad/2 32 acl/2 ac?
11 -c2-atbl c2+atb2 22 al+aal acl/2 33 bi+atct -bl-atcl

A direct check shows that the mechanism given by Table III satisfies the

desired properties. ®

Proposition 4. In a unique, pure strategy sequential equilibrium that has
the properties specified in proposition 3, both players cooperate in the
prisoners’ dilemma stage if the following conditions are satisfied:

a > (b2 - ¢c2 - a2)/a2,
a > {(cl - bl - al)/al,

and either o > (d2 - 2¢2 - bl)/{(cl + ¢c2) or e > (dl - 2bl - ¢2)/(bl + b2).
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Proof. If one takes into account the analysis of proposition 3 and looks at
figure 10, it is clear that the conditions above are equivalent to the first

stage choice of (C, C) by iterative elimination of dominated strategies. ®

Corollary. Cooperation at the priscners’ dilemma stage is attainable for
any a > 0, if the following relationships hold:
c2 + a2 =2 b2,
bl + al = ¢l,

and either 2bl + ¢2 = dl or 2c2 + bl = d2.

Proof follows immediately from proposition 4 and the fact that under the
corollary conditions the right hand sides of the inequalities in propositiocn &4

become negative,

Since the conditions specified by the corollary hold fer our example from
section 3, we could conclude that it was always possible to achieve cooperation
having such prisoners’ dilemma matrix. This also means that the mechanism

proposed for that example in section 3 was not optimal.

Proposition 5. The mechanism presented in Table III is optimal in a sense
that one can not relax the restrictions on a, given in proposition 4, and still
have a unique pure strategy sequential equilibrium; which is feasible and in
which the players cooperate in the prisoners’ dilemma stage; take loans up to
full amount, revealing their true first stage payoffs; and go to court if and

only if according to what they reveal they were cheated against.
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Proof. It follows from figure 10, that to relax restrictions on a, given matrix
(1), one should simultaneously minimize
£33, -f15, -8B11» -816, f11, B33 (2)
subject to restrictions on choices in the second stage subgames and feasibility.
It is easy to see that under such constraints, the minimal values for the

parameters in (2) are attained in the mechanism presented in Table III. ®m

Propositlon 6. There is no mechanism which allows for cooperation and
satisfies the properties stipulated in proposition 3 if
either e € min{{(cl - bl - al)/al, (dl - 2bl - ¢2)/(bl + b2}},

or @ = min{(b2 - c2 - a2)/a2, (d2 - 2¢2 - bl)/{(cl + ¢2)}.

Proof. As could be seen from figure 10, the conditions above imply that for at

least one player defection dominates cooperation. W

Proposition 7. If conditions of neither proposition 4 nor proposition 6
heold then there is a unique sequential equilibrium, where the players randomize
between cooperation and defection at the first stage and for the second stage

play according to prescription of proposition 3.

The proof 1is obvious.

Corollary. There is always (for all a > 0) a possibility for cooperation
if
bl + al = ¢l or 2bl + ¢2 = dl

and c2 + a2 = b2 or 2c2 + b2 = d2.



22
Proof follows from the fact that under these conditions, only negative a could
satisfy inequalities of proposition 6. That means that either proposition 5 or

proposition 7 hold, which implies possibility for cooperation.

Let us conclude with a remark about the assumption of risk neutrality, made

mostly for simplicity in section 2.

Remark. The results of propositions 4 - 7 (together with their corcllaries)
hold for any players who have utility functions strictly inereasing in wealth,
repgardless of their risk attitude. This is true, since these results are based
on dominance arguments only. Alsc, if the players are risk neutral then « may be
viewed not only as a sure net rate of return, but alsc as expected profit per

each borrowed deollar.
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