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Abstract. Let X be a topological space, u a probability measure defined on
the Baire o-field on X, and u’ a probability measure on the Borel o-field
which extends p. In the first part of the paper we deal with the relations
existing between the ranges of p and u’. In particular, we show cases in which
these ranges coincide. In the second part we apply to comparative probability
some of the tecniques previously used. In this part it is proved that if a
comparative probability relation defined on a Boolean algebra satisfies well
known conditions, namely fineness and tigthness (defined below), then the
image of any probability measure that agrees with the relation is dense in the
unit interval. This sharpens earlier results for comparative probability

relations on power sets.



Introduction

Let X be a topological space, p a probability measure defined on the Baire
o-field on X, and u’ a probability measure on the Borel o-field which extends
u. In the first part of the paper we deal with the relations existing between
the ranges of u and p’. In particular, we show cases in which these ranges
coincide. In the second part we apply to comparative probability some of the
tecniques previously used. In this part it is proved that if a comparative
probability relation defined on a Boolean algebra satisfies well known
conditions, namely fineness and tigthness (defined below), then the image of
any probability measure that agrees with the relation is dense in the unit
interval. This sharpens earlier results for comparative probability relations
on power sets.

The reader interested only in comparative probability can look just at

proposition 2.1 and skip the rest of sections 2 and 3.

2. Preliminaries

We first introduce some preliminary notions. Let X be a topological space.
The Borel o-field (Bor(X) for short) is the smallest o-field generated by the
open sets in X. The Baire o-field (Bai(X) for short) is the smallest o-field
w.r.t. which all continuous functions are measurable. A non-negative, finite,
countably additive set function defined on Bor(X) (or on Bai(X) ) is a Borel
measure (or a Baire measure).

In what follows an important role is played by t-additive Borel measures.
To define them, we make use of nets, a generalization of the notion of
sequence (cf. Kelley [5] ch.2). A binary relation > directs a set D if D is

non-void and

(i) > is transitive;
(ii) > is reflexive;

(iii) if m and n are in D, then there exists a peD such that p>m and p>n.

A directed set is a pair (D,>) such that > directs D. A net is a pair (S,>)
such that S is a function and > directs the domain of S. The set of
non-negative integers are trivially directed by =. This explains why nets
generalize sequences. A Borel measure u is weakly t-additive if whenever (ga)
is a net of open sets in X such that gach for a<B and Uagoc:X’ then

u(Uaga)=sup(u(ga)}. If we do not require Uag“=X, we say that p is T-additive.



A space X is called (weakly) Borel measure-complete if each Borel measure is
(weakly) T-additive.

A Borel measure is inner regular if p(g)=sup{u(f) : f closed} for all open
sets gcX. A Borel measure p is compact inner regular if p(g)=sup{u(k) : k
compact, keBor(X)} for all open sets gcX.

A cardinal R is real-valued measurable if there is a nonzero finite
diffused measure (i.e. giving measure zero to all singletons) defined for all
subsets of a set X of cardinality R.

A space X is called weakly ®-refinable if for any open cover of X there is
an open refinement u=U°:=lun such that if xeX there is some n for which (Ue‘lln :
xe‘lln) is non-empty and finite. Weakly d-refinability is a rather weak
property. For example, compact spaces, regular Lindel6f spaces, paracompact
spaces, and metacompact spaces are all weakly 9-refinable.

For notation and basic results on Boolean algebras we refer to Koppelberg
(1989). In what follows we do not require of the additive set functions
defined on a Boolean algebra to be strictly positive (i.e. we do not require
P(a)=0 iff a=0).

A filter in a Boolean algebra A is a subset p of A such that:

(i) lep;
(ii) if xep,yeA and xSy, then yep;
(iii) if xep and yep, then xAyep.

A filter p of A is an ultrafilter if, for each xeA, we have xep or -xep, but
not both. An algebra A of subsets of a space X is said to be perfect if every
ultrafilter of A is determined by a point of X, i.e. every ultrafilter has the
form {aeA:xoeX and xoea). An algebra A of subsets of a space X is said to be
reduced if for every pair of distinct points x,yeX there exists a set a€A such
that xea and y¢a. Suppose that A is a perfect and reduced set algebra.
Equipped with the topology of base A, X becomes a Boolean space, i.e. a
compact Hausdorff and totally disconnected space (i.e. each connected subspace

contains at most one point).

2. Results
Proposition 2.1. Let X be a topological space on which the open Baire
subsets form a base, and let y’ be a Baire measure which has an inner regular

and weakly t-additive Borel extension p". Then R(u’)=R{u").



Proof: let G(X)={gcX : geBai(X) and g open} and F(X)={ccX : ceBai(X) and c
closed}. Set TI'(X)=G(X)UF(X). Clearly, a subset is in G(X) iff its complement
is in F(X). By hypothesis, G(X) is a base in X. Let u be the restiction of p’
on I'(X). We prove that R(u) is dense in R(u").

Let 8eR(u"). By definition, there is a subset aeBor(X) such that p"(a)=8.
Suppose that a is an open subset for which there is a sequence (gx)Tzch(X)
such that a=U°1°=1g1' Then aeBai(X), and so ael(X). A similar reasoning shows
that if a was a closed subset such that a=n°l°=lf‘ with fleF(X), then ael'(X).
Now, suppose that 8=u'"(a) for an open subset a for which there is a set IcG(X)
such that |I|=?<l and a=l{f:fel}. The set I can be put into a one-to-one
correspondence with the ordinal numbers less than Rl so that can be writter
I=(fa:oc<&l} (see proposition 3.27 in Rosenstein (1982)). Let ga=U{f‘B:Bsoc<Rl}.
(ga:oc<?<l) is a monotone increasing net (cf. Kelley (1955) p.77) with respect
to set inclusion and each g, is an open subset. Clearly we have a=U(ga:a<Rl}.
By hypothesis, u" is t-additive.Thus 6=u"(a)=sup(u"(ga):cx<?<1}. Hence, for
every £>0 there exists an ordinal number «’(¢) such that for all aza’(e) we
have u"(ga)EV(cS,s]. On the other hand, we know that gaeF(X) for oc<?<1.
Therefore, 8 is an accumulation point of R(u). Similarly, it can be shown that
if a was a closed subset such that a=n{f:fel} for a set IcF(X) such that
|I|=&1, then 8 would be an accumulation point of R(u).

To sum up, we have proved that if &=p"(a) with a=l{f:fel}, ISG(X) and
|I|=?€1 (or a=p{f:fel}, , IcF(X) and |I|5Kl), then 8 is an accumulation point
of R(u). In order to extend this conclusion to all I with |I|=|G(X)| (or
|I|S|F(X)|), we must use transfinite induction. We prove only the case
|1]=[G(X)|. The case |I|=|F(X)| can be proved analogously. We have already
established that this hold for Ro. Let B be an ordinal, which is not a limit
one. In order to extend the conclusion to lII:RBd when it holds for all
|I|5KB, it suffices to repeat the reasoning used to pass from Ro to X . Now
let ¥ be a limit ordinal number. Suppose that 8=u"(a) for an open subset a for
which there is a set IcG(X) such that |I|=s‘<7 and a=l{f:fel}. By now we know
that can be written I=(fB:B<R3r}' Set ga=U{fB:f35a<&’}. We have a=U(ga:oL<R7}.
Furthermore, it holds 6=u"(a)=sup(u"(ga):oc<&7} since each - is an open subset
and p" is t-additive. Let 6a=u"(ga) for oc<?<a(. If our previous conclusion holds
for all |I|<a‘<y, we can say that & is an accumulation point of R(u) for all

o¢<R7. Now, we have already dealt with a similar situation when we observed



that for all oc<?<l the real number p.’(ga) was accumulation point of R(u). If we
repeat the reasoning we have used at that time, it is a simple matter to check
that 8=u"(a) is an accumulation point of R(u).

So far we have considered only 8eR(u") such that é=u"(a) with a open or
closed subset in Bor(X). Now suppose a€eBor(X), with a neither open nor closed.
By hypothesis, p is inner regular. So &8=pu"(a)=sup{u"(c):c is closed and cca).
For every €>0 there exists a closed subset ¢ such that &-e<u"(c)=u"(a), i.e.
for every e-neighbourhood V(8,e) there is c¢eC such that u"(c)ev(s,e).
Otherwise, 8-& should be an upper bound of the subset {u"(c) : ceC and cca}.
On the other hand, we have proved that for every e’-neighbourhood V(u"(c),e’)
there is 5€,=M(f€.). with eccf , and fe.er‘(X), such that u(f‘e,)eV(u"(c),e’).
Taking €’<2e, it is easy to verify that Se,eV(a,e). Therefore &=u"(a) is an
accumulation point of R(u). To sum up, we have proved that R(u) is dense in
R(u"). Since R(u’) is a closed subset of the real line and R(u)SR(u’), it
follows R(u’)=R(u") and this completes the proof. m

Proposition 2.2. The following are both sufficient conditions on a space X
for the open Baire subsets to be a base:
(i) X is normal;

(ii) X is locally compact.

Proof: the proposition can be proved with an argument similar to that used

on pp. 174-177 of Berberian (1965). m

The next three results are simple consequences of the previous

propositions.

Corollary 2.3. Let X be a normal or a locally compact space. Let u be a
T-additive Baire measure on X. Then p admits a Borel extension u’ such that

R(p)=R(u’).

Proof: by what proved on p.78 of Csizar (1970), p has a t-additive Borel
extension p’. Hence p’ is regular. A simple application of propositions 2.1

and 2.2 completes the proof. m

Corollary 2.4. Let p’ be a Tt-additive Borel measure defined on a
topological space X. Let p be the restriction of u’ to the Baire oc-algebra.

Then R(u)=R(u’) if X is normal or locally compact.

’

Proof: since the hypotheses imply that w’ is regular, a simple application



of propositions 2.1 and 2.2 completes the proof. m

Corollary 2.5. Let u’ be a compact inner regular Borel measure defined on a
topological space X. Let p be the restriction of u’ to the Baire o-algebra.

Then R(u)=R(u’) if X is normal or locally compact.

Proof: in view of the previous corollary, it suffices to note that a

compact inner regular Borel measure is t-additive. m

3. Applications of §2: topological conditions
Proposition 3.1. Let X be a Borel measure-complete space which is normal or
locally compact. Let u be a Baire measure. Then every Borel extension u’ of u

is such that R(u)=R(u’).
Proof: similar to the one of corollary 2.3. =

Hereditarily Lindelof spaces are an example of Borel measure-complete

spaces.

Proposition 3.2. Let X be a weakly Borel measure-complete space which is
normal or locally compact. Let u be a Baire measure. Then every inner regular

Borel extension u’ of u is such that R(u)=R(u’).

Proof: it suffices to note that by theorem 4.3 of Gardner (1975) a regular

weakly t-additive measure is t-additive. =
The following spaces are weakly Borel measure-complete:

(i) Lindeldf spaces (and so compact spaces);

(ii) Weakly 9-refinable spaces which contain no discrete
subspace of real-valued measurable power (see Gardner (1975),
theorem 3.9).

Lastly, as an immediate consequence of (ii) we have:

Corollary 3.3. Let X be an hereditarily weakly ©®-refinable space which
contains no discrete subspace of real-valued measurable power. Let p be a
Baire measure. If X is normal or locally compact, then every Borel extension

W of u is such that R(u)=R(u’).

4. Comparative probability
This section is devoted to some preliminaries about comparative

*
probability. So, let A be a Boolean algebra and < a comparative probability



relation (CP-relation, for short) defined on A. Let P be a finitely additive
(f.a. for short) probability measure defined on A. If we have
a<’b only if P(a)<P(b)  (a,beA)
we say that P almost agrees with 5*. If we have
af*b if and only if P(a)=P(b) (a,beA)

we say that P agrees with f'*.

Perhaps the main theme of the literature on comparative probability has
been to find conditions to impose on 5* in order to get an agreeing f.a
probability measure. A first set of necessary conditions is the following (O

and [ are, respectively, the zero and the unit element of A):

Al: 5* is a linear preorder.

AZ: bf:c if and only if chs*ch, where bAd=cAd=0 and b,c,deA.

A3: 0< b for all beA.

.

A4: O< I.

Following Niiniluoto (1972) we refer to a CP-relation that satisfies AI-A4
as a CP-structure. However, A1-A4 does not form a set of sufficient conditions
for the agreeing problem. Several conditions, sufficient or both necessary and
sufficient, have been proposed. A recent survey can be found in Fishburn
(1986).

Here we are interested in the following three conditions:

*
(i) A CP-relation < is fine if for every nonzero aeA there is a finite

*
partition (ai)nin_l such that ag<a for 1=i=m.

L 3
(ii) A CP-relation < is superfine if for every nonzero ae€A there

*
is a finite partition (a_)':l . such that a<a for 1=i=m.
i =

(iii) Two elements b,ceA are almost equivalent if the following two
conditions are satisfied:
(a) cf*bve for all nonzero e such that bAe=0.
(b) bf.ch for all nonzero f such that cAf=0.
If for every pair b,c of almost equivalent elements we have
b~c, we say that S* is tight.
As it is well known, Savage (1954) wused (ii) and (iii) to solve the
agreeing problem on a power set. In particular, he proved the following

theorem:



Proposition 4.1 (Savage). Let 5. be a CP-structure defined on a power set
B. We have:
(i) if 5‘ is superfine, then there exists a f.a. probability measure P on B
which almost agrees with 5';
(iit) if 5* is both superfine and tight, then there exists a f.a.
probability measure P on B which agrees with 5’;
(iii) let P be as in either (i) or (ii). Then for all real numbers 0=A=l

and for all beB, there is an element ceB such that cSb and P(c)=AP(b).

Remark. If 5* is fine but not superfine, then the almost agreeing f.a.
probability measure of point (i) does not have the property stated in point

(iii). This was pointed out in Niiniluoto (1972).

Savage’s result was extended in Wakker (1981) to arbitrary Boolean
algebras, not necessarly o-complete set algebras. Moreover, this was done

using fine CP-structures instead of superfine ones.

Proposition 4.2 (Wakker). Let S‘. be a CP-structure defined on a Boolean
algebra A. We have:
(i) if f_' is fine, then there exists a f.a. probability measure P on A
which almost agrees with 5..
(ii) if f_’ is both fine and tight, then there is a f.a. probability

»
measure P on A which agrees with <.

Therefore, Wakker (1981) generalized part (i) and (ii) of Savage’s theorem.
The purpose of next sections is to show which form takes part (iii) of
Savage’s theorem when arbitrary Boolean algebras are considered. In
particular, the main result we prove is the following theorem (R(P) denotes

the range of P):

Proposition 4.3. Let 5' be a fine and tight CP-structure on a Boolean
algebra A. Let P be the f.a. probability measure that, by proposition 4.2,

agrees with f_‘ on A. Then R(P) is a dense subset of [0,1].

Remark. The importance of results that extend Savage’s framework to
arbitrary Boolean algebras is not merely technical. For example, suppose that
a decision maker is interested in an infinite family of events (al)IEI, where,
for simplicity, we assume that the a are subsets of a given state space Q.

Suppose he wants to express in a quantitative way his beliefs about the events



in {al)lEI. To do this wusing Savage’s tools, he must consider the set

c-algebra generated by {ai}lel, and define a CP-structure on all elements of

this c-algebra. This can be quite difficult. So, it could be of interest to
know what can be done by considering just the set algebra generated by

{a}

1 1er
by {al}1€I can have less cardinality than the o-algebra. For instance, let us

This can be a significant improvement because the algebra generated

consider ©={1,2,...,n,...}. Suppose one is interested in the singletons ({i},
with ieQ. Clearly the set o-algebra generated by them is just the power set.
So it has cardinality ?(l. Instead, the set algebra generated by the singletons

has cardinality KO.

5. Some lemmas

This section contains some lemmas needed to prove proposition 4.3. Let X be
a Boolean space with base A and let P be a f.a. probability measure defined on
A. Since A is perfect and reduced, it is known that there is a unique
o-additive probability measure P’ which extends P on o(A), the set c-algebra
generated by A (see Sikorski (1969) pp. 202-204). Moreover, there exists a
unique regular and o-additive probability measure P" which extends P on
Bor(X), the Borel o-algebra of X (see Ash (1972) p.183). The next lemma

contains some properties of the ranges of P, P’and P".

Lemma 5.1. Let P be an infinitely many valued f.a. probability measure
defined on a perfect and reduced set algebra A. Then:
(a) R(P) is a dense subset of R(P").
(b) R(P’)=R(P").

Proof: since X is compact Hausdorff, there exists a unique regular and
o-additive probability measure P" defined on Bor(X) which extends P’. Since X
is compact, P" is also compact-regular and so t-additive. Therefore, being A a
base, the proof-tecnique of proposition 2.1 can be applied. This time A, being
an algebra of clopen subsets, plays the role of I'(X). We have to take care of
one minor difference here. For, let a be an open subset for which there is a
sequence (f‘}T_IQA such that a=UT_lfi. Now a is not necessarly in A because A
is not o-complete. Hence set g =UN f. We have g €A and lim g =a. Since P’ is

N i=11i N N> 00N
countably additive, we have P"(a)=P’(a)=lim P’(g )=lim P(g ). Therefore P"(a)
N> N N2eo °N
is an accumulation point of R(P), and from now on the proof proceeds

analogously to the one of proposition 2.1. m



Let us consider a f.a. probability measure P defined on a Boolean algebra
B. Let Ult(B) be the Stone space of B, Clop(Ult(B)} the dual algebra of Ult(B)
and s:B-Ult(B) the Stone map. It is known that Clop(Ult(B)) is a perfect and
reduced set algebra. So Ult(B), -equipped with the topology of base
Clop(Ult(B)), is a Boolean space. Let PS be defined on Clop(Ult(B)) by
Ps(s(a))=P(a) for aeB. It is a simple matter to check that PS is a f.a.
probability measure. Since Clop(Ult(B)) is perfect and reduced, we know that
there is a unique countably additive extension P; of PS on o(Clop(Ult(B))).
Therefore, being R(PS)=R(P) by definition, as a direct consequence of lemma

5.1 we have the following result.

Lemma S5.2. Let P be an infinitely many valued f.a. probability measure

defined on a Boolean algebra B. Then R(P) is a dense subset of R(P;).

6. Main results on comparative probability
As we have said in the introduction, our main result in comparative
probability is proposition 4.3. Indeed, it is a simple consequence of next
proposition. In fact, a tight CP-structure is atomless (cf. theorem 3 in

Wakker (1981)).

Proposition 6.1. Let 5' be a fine and atomless CP-structure defined on a
Boolean algebra A. Let P be the f.a. probability measure that by theorem 4.2

almost agrees with gi. Then R(P) is a dense subset of [0,1].

Proof: the first part of the proof mimics, mutatis mutandis, the proof of
lemma 1 in Saks (1933). So, let aeA with a> 0. By lemma 1 in Wakker (1981)
there is a sequence {a }¥*  such that a=a, a =a, a>.(D and a <'a -a

n n=i 1 n+l n n n+l~” n n+l
Then P(a )+P(a -a )=P(a ). Hence P(a )=(1/72)P(a ). Therefore,

o1 n+l n n+l n n+l _n_ln
P(aml)szr1 P(al). Let €>0. For n large enough, 2 P(al)<e and so
*
P(apﬂke. Since < is fine, there is a finite partition (bi)T_1 such that
b1< a for 1=i=m. Then P(bl)sP(a +1)<€ for 1=i=m. Since the Stone map
~ n

s:A»Ult(A) is an isomorphism, we have s(A)=s(V?_lbl)=UT_ls(bl)=Ult(A) and
z=s(bl/\bJ)=s(bl)r\s(bJ). Hence (s(bl))r;_1 is a finite partition of Ult(A)
contained in Clop(Ult(A))). Moreover, given €>0 from the definition of PS it
follows PS(S(bl))=P(bl)<8 for i=l1,...,n. Consequently, P;(s(bl))«: for
i=l,...,n. So, given €>0 there is a finite partition of Ult(A)) contained in

o(Clop(Ult(A))) whose elements are less probable that e. Now, define on

10



o(Clop(Ult(A))) a  CP-structure <' as: a<®b iff P)(a)<P}(b)  for
a,bec(Clop(Ult(A))). From what just proved it follows easily that <F s
superfine. By proposition 4.1(ii), which can be easily adapted to set
c-algebras, it follows that the unique f.a. probability measure that agrees
with <* has range [0,1]. Hence, by the definition of P; it follows
R(Pé)=[0,1]. Obviously R(P)} is not finite. In fact, suppose on the contrary
that R(P) was a finite set and let d=min{r : reR(P)}. It is easy to see that
there exists a subset a€A such that 0O<P(a)<d, which is a contradiction. Now a

direct application of lemmma 5.2 completes the proof =
We conclude with a corollary.

Corollary 6.2. Let 5* be a superfine CP-structure defined on a Boolean
algebra A. Let P be the f.a. probability measure that, by part (i) of

proposition 4.2, almost agrees with 5*. Then R(P) is a dense subset of [0,l1].

Proof: in view of proposition 6.1 it suffices to prove that 5* is atomless.
Now, suppose on the contrary that a> 0 is an atom. Since 5* is superfine,
there is a finite partition (bl)T=1 such that bl<*a for Isi=m. Set dl=blna.
Clearly d1 is nonzero for some i, say i’, because (dl}nln=l is a partition of a.

*
So,{‘i suppose  d *O. We; have dl,S(bi,na)sbl, and so d < (bl,r\a)s b .. Since
b‘,< a, this implies dl,< a. Then dl,zO because a is an atom and dl,Sa. Let
I={i : dl#D}. We already know that I#@. Suppose #(I)=k. Then a=Vk=1d1. Since
diz'o for lsisk, by C, p.195 of Fishburn (1970) we have V‘l‘zldlz 0, and so

»*
ax 0. This contradiction proves the corollary. =
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