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ABSTRACT
A Borel probability measure is residual if it gives measure zero to all meager subsets. We first give
some existence results about this class of measures. Then they are applied in order to get some non-
existence results for probability measures defined on Boolean algebras. This is done on the basis of
some duality methods. Finally we prove that the range of a nonatomic probability measure defined

on a Boolean algebra which satisfies the c.c.c. is dense in the unit interval.



I. Introduction

Let X be a topological space and let cl(a) and int(a) denote, respectively,
the closure and the interior of a subset a<X. A subset a is said to be nowhere
dense if intcl(a)=@, i.e. if the closure of a has empty interior. Nowhere
dense subsets have no interior points. A subset a is said to be meager (or of
the first category) if it can be represented as a countable union of nowhere
dense subsets. They are the subsets of X which can be approximated by nowhere
dense subsets. A probability measure is called residual if it gives measure
zero to meager subsets. The interest for these measures is twofold.

(1) Nowhere dense subsets and meager subsets have been regarded as small in
a topological sense. To help intuition, observe that a nowhere dense subset of
the real line is a subset full of holes. On the other hand, from a
measure-theoretic viewpoint the notion of small is represented by nullsets.
So, quoting [I11, p.4], "it is natural to ask whether these notions of
smallness are related". The study of residual measures is of interest in a
similar perspective. Indeed, with respect to a residual measure, meager Borel
subsets are small not only in a topological sense, but also in a metric one.

(2) Let A be a Boolean c-algebra and P a probability measure (not
necessarly  strictly positive) defined on it. By the Loomis-Sikorski
representation theorem, to the pair (A,P) can be associated a measure space
characterized by a residual measure. Using techniques of this type it is
possible to derive some results about probability measures defined on Boolean
algebras from propositions established for residual measures.

The paper is organized as follows. Section 2 contains some preliminary
notions. Section 3 gives existence results concerning residual measures. In
section 4 the results of section 2 are used in order to obtain some
non-existence results for probability measures defined on Boolean algebras.
Finally, in section S the constructions of the previous sections are used to
get a result about the ranges of probability measures on Boolean algebras.

We follow the notation of [9]. This implies, for instance, that lower and

upper cases will usually denote, respectively, sets and Boolean algebras.

2. Preliminary notions

We first define some classes of Borel probability measures.

Definition 2.1. A Borel probability measure P defined on a topological



space X is said to be regular if for all Borel subsets a we have

P(a)=sup{P(c) : cca and c closed}=inf{P(v) : acv and v open}.

Definition 2.2. A Borel probability measure P defined on a topological
space X is said to be T-additive if whenever (ga) is a net of open subsets

such that g cg_ for a=B, then P(U g )=sup{P(g )}.
a °B o~ o

Let M denote the o-~ideal of all meager Borel subsets. Next we define

residual measures.

Definition 2.3. A Borel probability measure P defined on a topological

space X is said to be residual if P(a)=0 for all aeM.

Given a probability measure P on a field A, a subset a€A is called a P-atom

if: (i) P(a)>0; (ii) if bca and beA, then either P(b)=0 or P(a\b)=0.

Definition 2.4. A Borel probability measure P defined on a topological

space X is said to be nonatomic if there are no P-atoms.

In the sequel we will make use also of the notion of nonmeasurable
cardinal. Indeed, suppose that on the power set of a space X there exists a
diffuse probability measure P, i.e. a measure giving measure zero to all
singletons. In such a case the cardinal number of X is called measurable.
Instead, a cardinal R is called nonmeasurable if this does not hold for all
spaces of cardinality X.

Now we turn to Boolean algebras. For basic notions and results we refer to

[9]. We begin with a definition (1 is the unit element of A).

Definition 2.5. A probability measure P on a Boolean algebra A is a
real-valued function such that:
P(a)z0 for all aeA;
© . N L
P(ijlan)—Z::lP(an) wsenever (an)nzch is a set of pairwise disjoint
elements for which }, 1a exists;
n= n

P(0)=1.

It is worth noting that P has not been defined as a strictly positive
measure (i.e. it is not required P(a)=0 iff a is the zero element).

It is important to distinguish the previous definition from the usual
definition of probability measures on fields of subsets. Let A be a field of

subsets. A real-valued set function P on A is countably additive if: (iii’)



P(Uc::lan):Z::lP(an) whenever (an):zch is a set of pairwise disjoint elements
such that U(:zlaneA. Condition (iii’} is quite different from condition (iii)
in definition 2.5, as was stressed in {7]. In fact, Z:=13n’ the supremum of
(an}c:=l in A, can exists even when Ua::lan is not in A. Instead, if U‘:=laneA,
then U‘:=lan=zo:=lan. Therefore, if a set function satisfies (iii), then it
satisfies (iii’), while a set function which satisfies (iii’} can fail to
satisfy (iii}). We illustrate this failure with what would be otherwise a
counterexample to the results of next section. Let A' be the smallest field of
subsets of [0,1) generated by the intervals [a,b), with O=a<b=l. The field A‘I
is both separable and atomless (these notions are introduced below)}. It is
known that each element of A‘ can be expressed as a finite and disjoint union
of half-open intervals of the form [a,b). Consequently, each element of A‘
contains an open subset. Now, let m be the restriction of the Lebesgue measure
on A*. We want to show that m does not satisfy condition (iii} of definition
2.5. In fact, let us construct a subset of [0,1) in a way similar to that of
the Cantor set. However, this time at stage n we delete 2" intervals of the

form [a,b) and of length «(3™), with O<a<l. We denote by c; what remains

3 3 3 »n 3
after stage n and we set c =n°° ¢ . The subsets ¢ belong to A for all
. a n=1 &,n a,n
nzl. Moreover, we have caSca, where ca is defined below in the second remark
* #»* *
on p. 7. Thus cl(ca)gca, and so <, is nowhere dense. This implies that <, does
- *
not contain any open subset. Therefore, <, does not belong to A because we
»*
have already seen that each element of A has a non-empty interior.
* *
Furthermore, for the same reason all subsets of <, do not belong to A . To sum

*

* = ® * .
up, =c A and A" ¢ =@. In section 2 we said that m(ca)=1—oc.

r]n=lc(x,n
Looking at the construction of . it is easy to see that the continuity of m
»*
implies m(ca)=m(ca). Therefore, using again the continuity of m, we have
* -
lim m(c_ )=m(c )=l1-a. But m(A” ¢ )=m(e)=0. Hence, lim m(c. »>mA® c ),
n->0 ,n o n= ,n n->0 a,n n=1 &,n
and it easy to verify that this violates condition (iii} of definition 2.5.
This is the result we wanted to prove.

Following {9], Ult(A) denotes the Stone space of A and Clop(Ult(A)) the
dual algebra of UIlt(A). In next section we will make use of a generalization
of the Loomis-Sikorski representation theorem, proved in {14]. To report this
generalization we need some further notions. A subset of Ult(A) is said to be
o-closed provided it 1is the intersection of countably many subsets in

Clop(Ult(A)). A subset of UIlt(A) is said to be c-nowhere dense provided it is



a subset of a nowhere dense co-closed set. Clearly, a c-nowhere dense subset is
nowhere dense. Finally, a subset of UIt(A) is said to be of the o-category if
it is the union of countably many subsets c-nowhere dense in Ult(A}. Observe
that a o-category subset is meager in Ult(A). Let M0 be the o-ideal of all
subsets of the o-category in o(Clop(Ult(A))), the o-field generated by
Clop(Ult(A)). Set f¥=((uuvl)-v2 with ueClop(Ult(A)) and vl,vzeMo). F is a field
contained in o(Clop(Ult(A))). Let s:A-Clop(Ult(A)) be the Stone isomorphism.
Let h be the o-homomorphism from ¥ onto the quotient algebra ?/Mo defined by
h(a)={be¥ : bAaeMo), where ae¥. Let m be a homomorphism from A onto f?/M0
defined by m(a)=h(s(a)), where a€A. m is called the canonical homomorphism.

The version of Sikorski’s result we are interested in is the following one:

Proposition 2.6 (Sikorski). The canonical homomorphism is a o-isomorphism

from A onto ?/MO.

A Boolean algebra satisfies the countable chain condition, c¢.c.c. for
short, if each pairwise disjoint family in A is at most countable. For this

class of Boolean algebras in [14] it is proved the next result:

Proposition 2.7 (Sikorski). A Boolean algebra A satisfies the c.c.c. if and

only if every nowhere dense subset in Ult(A) is c-nowhere dense.

Therefore, if a Boolean algebra A satisfies the c.c.c., then a subset of
Ult(A) is meager iff it is c-nowhere dense. Let M’ be the c-ideal of all
meager subsets in ¢(Clop(Ult(A))). By proposition 2.7, ?/M0=9/M’ in a Boolean
algebra which satisfies the c.c.c..

Two other notions in which we are interesed are those of separable Boolean
algebras and of atomless Boolean algebras. A Boolean algebra A is said to be
separable if there exists a countable set D of nonzero elements of A which is
dense in A, i.e. such that for every aeA, with a#0, there is an element a’eD
with a’<a. A Boolean algebra is said to be atomless if it has no atoms. An
atom is a nonzero element aeA such that for every element a'eA with a’sa we
have either a’=a or a’=0, where O is the zero element of A.

In view of the results of section 2 we are particularly interested in the
Boolean algebras with separable Stone spaces. To deal with them we introduce a
cardinal function. So, let s be a countable subset of the Stone space Ult(A).
Let d(:) be the cardinal function on A defined by d(A)=min{|s| : s is a dense

subset of Ult(A)}. Clearly, Ult(A)} is separable iff d(A)=R0.



Remark. Unlike [9], we will denote by Bai(X) the Baire o-field of X and not
the o-field of subsets with the Baire property. Moreover, we will call Baire

subsets the elements of Bai(X).

3. Existence of residual measures

We begin by proving a quite useful existence result.

Proposition 3.1 Let X be a separable Tl space. Then there exists a residual

regular measure iff X has an isolated point.

Proof: if x is an isolated point, the Dirac probability measure Sx is a
residual regular measure. For the converse, suppose that X is perfect (i.e. X
has no isolated points). Since X is a Tl space, all singletons {x}, for xeX,
are closed subsets. Since X is perfect, no singleton can be at the same time
both open and closed. So int({x})=¢ and the singletons are nowhere dense
subsets. lLet s be a countable dense subset of X and let P be a regular
residual measure. We have P(s)=0 since P({x})=0, the singletons being nowhere
dense subsets. Then P(s)=ZxESP((x))=O. Since s is a dense subset, X\s does not
contain any nonempty open subset. This implies that all closed subsets c
contained in X\s are such that int(c)=@, i.e. they are nowhere dense subsets.
Then P(c)=0. Since P is regular, we have:

P(X\s)=sup{P(c) : ccX\s and c closed).
It follows P(X\s)=0 and so P(X)=P(X\s)+P(s)=0 for any regular residual

measure P m

Remark. After having proved proposition 3.1, I have found a similar result

in [5, p.113]. However my proof is different from that given in [5].

Remark. The Borel measure on [0,1] is not residual. In fact, there exists a
nowhere dense subset with positive Borel measure. This set is constructed like
the Cantor set, except that now at each stage are deleted intervals of the
form (a,b) of length of3™"), with O<a<l. The set has Borel measure l-a, and it

is nowhere dense. We denote this set by .

In [4, proposition 5] it is stated that in a perfect metric space cannot
exist a nonzero residual measure which is compact regular. In [2, proposition
4a] it is proved that there exists a nonzero t-additive residual measure on a

metric space X iff X has an isolated point. We can give a more general result.



Proposition 3.2. Let X be a metric space. Then there exislts a nonzero

residual measure iff X has an isolated point.

Proof: in [4, p.249] it is proved that a perfect metric space contains a
dense subset s which is meager. Let P be a residual measure. Then P(s)=0.
Since s is dense, we have int(X\s)=s. Moreover, since X is a metric space, P
is regular. Therefore, in order to complete the proof it suffices to follow
the same reasoning employed in the final part of the proof of proposition 3.1

In proposition 3.2 we have considered metric spaces. Similar results hold
for other topological spaces, as shows the next proposition. Here T3 means

regular and Tl.

Proposition 3.3. Let X be a T3 separable space. Then there exists a

residual measure iff X has an isolated point.

Proof: a separable space has the countable chain property. Therefore it
follows from ({2, proposition 2a] and from [I, proposition 6] that every
residual measure is t-additive. On the other hand, by [6, theorem 5.4] every
T-additive probability measure on a regular space is a regular probability

measure. A simple application of proposition 3.1 completes the proof. =

Now we turn to nonatomic residual measures. The next proposition contains
some non-existence results for this class of measures. In particular, points
(i) and (iv) will be employed in section 4. We denote by Is(X) the set of all

isolated points of the space X.

Proposition 3.4. (i) Let X be a T3 separable space. Then there is no
nonzero nonatomic residual measure.

(ii) Let X be a separable metric space. Then there is no nonzero nonatomic
residual measure.

(iii) Let X be a T3 space such that Is(X) forms a dense subset. If |Is(X)|
is nonmeasurable, then there is no nonatomic residual measure.

(iv) Let X be a compact Hausdorff space such that Is(X) forms a dense

subset. Then there is no nonatomic and regular residual measure.

Proof: (i) let P be a nonatomic residual measure. Since P is nonatomic,
P({x})=0 for all xeX. In particular, if s is the countable dense subset of X

which exists by hypothesis, we have P(s)=ZxESP((x))=O. Observe that if there



are isolated points in X, they are all contained in s. In fact int(X\s)=@. We
have seen in the proof of proposition 3.3 that all residual measures on a
separable T3 space are regular. Therefore a reasoning similar to the one
employed in the proof of proposition 3.1 shows that P(int(X\s))=0.

(ii) The proof is similar to the one of point (i).

(iii) Let P be a nonatomic residual measure. Clearly the cardinal number of
each pairwise disjoint family of open subsets is at most |Is(X)|. By I[2,
proposition 2a] every residual measure on X is T-additive. In particular, P is
t-additive. Let IcIs(X) with |I|=?<o. From point (i) we know that P(I)=0. Now
suppose that IclIs(X) with |I|=?<l. Let us denote the ordinal numbers by greek
letters. It is known that the set I <can be put into a one-to-one
correspondence with the ordinal numbers less than ?{1 so that can be written

I=(xa:oc<?<1) (see [12, proposition 3.27]). Set hB=U(xa:ocSB<x‘<l). {h :B<s‘<1) is a

B
monotone increasing net with respect to set inclusion. Every isolated point is
a clopen subset. So h_, is an open subset for every ordinal number B. By

B
definition, we have I=U(hB:B<s‘<l). Therefore it holds P(I)=sup{P(h ):B<R1)

because P is T-additive. From what we have already proved for |I|=Ro, ’zve can
say that P(hB)=0 for each B<s‘<l. Therefore P(I)=0. This implies that every
subset of Is(X) of cardinality Nl has measure zero. Using transfinite
induction, it is easy to extend this conclusion to all cardinals R=|Is(X)|. In
particular P(Is(X))=0. Since Is(X) is a dense subset, we have int(X/Is(X))=a.
Since all t-additive measures on a T3 space are regular, a reasoning similar
to the one employed in the proof of proposition 3.1 shows that P(int(X\s))=0.

(iv) A compact regular Borel probability measure is Tt-additive. Therefore

the proof is similar to the one of point (iii). =

4. The existence of probability measures on Boolean algebras
The existence results proved in the previous section have interesting
applications in the study of probability measures defined on Boolean algebras.

We begin with a consequence of proposition 3.3.

Proposition 4.1. Let A be an atomless Boolean algebra with d(A)=s‘<o. Then

there is no nonzero probability measure on A.

Proof: let Bai(Ult(A)) be the Baire o¢-field of UIt(A). 1t is known that
Bai(Ult(A)) coincides with the o-field generated by Clop(Ult(A)), i.e.
o(Clop(Ult(A))). Then M’ is the collection of all meager Baire subsets. Let P



be a probability measure on A. Set Pv=Pon_loh:?-'[O,l] and
Ps=Pos—l:Clop(Ult(A))-'[O,ll. Using propositions 2.6 and 2.7, it is easy to
verify that Ps and Pv are probability measure respectively on Clop(Ult(A)) and
on %. Let P* be the restriction of PV to Clop(Ult(A)). If aeA, we have:
P*(s(a))=P (s(a))=P(r "' (h(s(@)))=P(r" (n(a))=P(a)=P (s(a)).

Therefore P”EPS, and Pv is the probability measure which extends PS on ¥.

Clearly M'c¥ and it is easy to check that we have Pv(v)=0 for all veM’.
From the inclusions Clop(Ult(A))cFcBai(Ult(A)) it follows o(F)=Bai(Ult(A)). By
Caratheodory extension theorem there is a unique probability measure P’ which
extends PS from Clop(Ult(A)) to Bai(Ult(A)). Clearly P’ coincides with Pv on
F. The Boolean algebra A satisfies the countable chain condition (c.c.c.}).
Suppose not. Let (al}IEIcA be a set of pairwise disjoint and nonzero elements
with |I|>R0. Then {S(al)}lel is a set of pairwise disjoint elements in UIt(A).
Moreover s(al):tz for all iel since a is nonzero. But Ult(A) is separable and
so it satisfies the c.c.c. for topological spaces. Since the s(al) are clopen
subsets, this implies that at most a countable number of the s(al) are
non-empty. This contradiction shows that A satisfies the c.c.c.. Therefore, by
proposition 2.7 every nowhere dense subset in Ult(A) is o-nowhere dense, i.e.
it is contained in a closed nowhere dense subset c¢ such that c=ﬁ°i°=1ui for some
u‘eClop(A). Clearly ceBai(Ult(A)). Let acUlt(A) be a meager subset. Then
a=U°1°=lal, with a nowhere dense subsets. By proposition 2.7 we have

a c, where the cl are closed and Baire nowhere dense subsets.

ad
Sinclelljlei:l;l;ai(Ult(A)), it follows that every meager subset is contained in
a Baire meager subset. Let Bor(Ult(A)) be the Borel o-field of Ult(A). Since
Ult(A) is compact and Hausdorff, there exists a unique regular extension P"
from Bai(UlIt(A)) to Bor(Ult(A)) (see [3, p.183]). Let M be the o-ideal of all
meager Borel subsets of Ult(A). If aeM, we know that there is a subset a’eM’
such that ac<a’. Since P’(a’)=0, it follows that P"(a)=0, i.e. P" is a residual
measure. Furthermore, P" is just the unique extension of P’. In fact, by now
it is clear that every extension of P’ is residual. And we have seen in the
proof of proposition 3.3 that each residual measure on a o-field like
Bor(UIt(A)) is regular. But, there is a unique regular extension.

To sum up, we have proved that the existence of a nonzero probability

measure P on A implies the existence of a unique nonzero residual and regular

measure P" on Bor(Ult(A)). However, by proposition 3.3 we have P"=0.

10



Therefore, by contraposition, P=0. =

In [8, theorem 3.2] it was proved that on a separable atomless Boolean
algebra there is no nonzero probability measure. This result is now an easy

consequence of our proposition 4.1, as shown by next corollary.

Corollary 4.2. Let A be a separable atomless Boolean algebra. Then there is

no nonzero probability measure on A.

Proof: in view of the proof of proposition 4.1 it suffices to show that
Ult(A) is separable. By hypothesis there exists a countable dense subset D of
A. Let s:A-Ult(A) be the Stone isomorphism. For every feClop(Ult(A)) there
exists a subset ves(D) such that o#vcf. Since Clop(Ult(A)) is a base for
Ult(A), it follows that s(D) is a pseudobase for Ult(A). Let X €v for every
ves(D). It is easy to check that {x} is a countable dense subset of

v vEs(D)
Ult(A). =

While [8, theorem 3.2] is a consequence of proposition 4.1, the following

result shows that the converse is not true.

Proposition 4.3. There exists an atomless Boolean algebra A with d(A)=s‘<o,
but not separable.

Proof: let us consider the generalized Cantor space 2" with I=2N‘

According to [13, theorem 14.3] its dual field Clop(ZI) is a free Boolean
algebra with ZR" free generators. So Clop(ZI) is atomless (cf. [9, proposition
9.11]) and has a separable Stone space ([9, corollary 9.7al and [13, §I4E]).
However Clop(ZI) is not a separable Boolean algebra (cf. [8, p.479]). =

Remark. As shown by corollary 4.2 and proposition 4.3, proposition 4.1
extends the result of Horn and Tarski. Moreover, the proof they gave was
algebraic. Instead, our proof of proposition 4.1 is mainly of topological

nature.

The next proposition shows a rather interesting fact. It says that we can
keep the result of proposition 4.1 by replacing the atomlessness assumption on

A with a nonatomicity assumption on the probability measure.

Proposition 4.4. Let A be a Boolean algebra with d(A)=s‘<o. Then there is no

nonzero nonatomic probability measure on A.

Proof: suppose that P is a nonzero probability measure on A. From the proof

11



of proposition 4.1 we know that this implies the existence of a nonzero,
regular and residual measure P" on Bor(Ult(A)). Now suppose that P is
nonatomic. Set PS=Pos_1:Clop(Ult(A))*[0,1]. We already know that PS coincides
with the restiction of P" on Clop(Ult(A)). It is a simple matter to verify
that Ps is nonatomic. Let g be a open subset of Ult(A). We have g=U1€1f1 with
f‘ieClop(Ult(A) because Clop(UIt(A) is a base. Let goc:U{fB
Since P" is Tt-additive, we have P"(g)=sup{P"(ga):a5|g|). If P"(g)>0, then a

B=a and a<|g]|}).

reasoning similar to the one employed in the proof of proposition 3.4(iv)
allows us to say that there is some f‘]eClop(Ult(A) such that Ps(f1)>0' Since
PS is nonatomic, f'1 is not a Ps—atom. A fortiori, f‘1 is not a P"-atom.
Therefore g is not a P"-atom. Let ¢ be a closed subset of Ult(A). We have
P"(c)=P"(int(c)) because the boundary b(c) is a nowhere dense Borel subset.
Suppose P"(c)>0. Then P"(int(c))>0 and c¢ is not a P"-atom. Let aeBor(Ult(A)).
Since P" is regular we have P"(A)=sup{P"(c): cca and ceUIt(A)}. If P"(a)>O0,
then P"(c)>0 for some c. Therefore a is not a P"-atom and this implies that P"
is nonatomic. Hence, by proposition 3.4(i) we have P"=0 and so, by

contraposition, P=0. =

Proposition 4.4 shows a class of Boolean algebras which do not admit

nonatomic probability measures. A special case of interest is now considered.

Corollary 4.5. Let A be an atomic Boolean algebra which satisfies the

c.c.c.. Then there is no nonzero nonatomic probability measure on A.

Proof: it is known that if a Boolean algebra is atomic, then the subset of
the isolated point is dense in the Stone space. Since A satisfies the c.c.c.,
then there are at most a countable number of isolated points. Therefore,

Is(Ult(A)) is a countable dense subset of Ult(A), and so d(A)=s‘<o. m

S. The range of a nonatomic probability measure

We prove the following result:

Proposition 5.2. Let P be a nonatomic probability measure defined on a
Boolean algebra A which satisfies the c.c.c.. Then R(P) is a dense subset of

[o,11.

Proof: from the proof of proposition 4.4 we know that P implies the
existence of a regular, nonatomic and residual probability measure P" on

Bor(UlIt(A)). Since X is compact, P" is also compact regular and so t-additive.

12



Therefore, since A is a base, the result can be proved with the same reasoning

used in [10, proposition 2.1 and lemma 5.1]. =

Remarks. (i) In locking at this result it is important to keep in mind the
distinction between measures on Boolean algebras and measures on fields
outlined in section 2. In fact, the example given there shows that this result
is not true for probability measures defined on fields. (ii) Let Bor(R) be the
Borel o-field of the real line. Let N be the o-ideal of the subsets with
Lebesgue measure zero. The quotient algebra Bor(R)/N does not have a separable
Stone space (cf. [13, p.95]). But Bor(R)/N satisfies the c.c.c.. In fact, on
Bor(R)/N there exists a nonzero strictly positive o-finite measure induced by
the Lebesgue measure. This example shows that proposition 4.4 does not

conflict with proposition 5.2.
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