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Small Deviations from Maximizing Behavior in a Simple Dynamic Model

ABSTRACT

The basic intuition that motivates this paper is that the presence of
non-maximizing agents creates incentives for maximizing agents to take
advantage of them, and when "frictions" are sufficiently small, these
incentives might translate seemingly small deviations from maximizing behavior
into non-negligible effects. This paper explores this intuition by looking at
a simple dynamic model, which in reduced form can be described by the
elementary demand-supply paradigm. The dynamic model allows to capture
explicitly the special efforts that the maximizing agents devote to gain at
the expense of the non-maximizing ones. In a model with inflexible entry
process, it is shown that, when market frictions are relatively insignificant,
small deviations from maximizing behavior have substantial impact on market
outcomes. In a model with flexible entry process, the price effect of
deviations from rationality is dampened by adjustments in entry. Yet these
deviations result in first order efficiency loss, in contrast to the second

order loss that one would expect from looking at standard static models.



Small Deviations from Maximizing Behavior in a Simple Dynamic Model

1. Introduction

Even adherents of the fundamentalist approach to economic theory would
probably agree that the assumption of maximizing behavior is just a
simplification and that the predictions of a sensible model should be robust
to small deviations from maximizing behavior. This paper focuses on a
particular aspect of the possible effects of such deviations. The basic
intuition that motivates this paper is that the presence of non-maximizers
creates incentives for maximizers to take advantage of them, and when
"frictions" are sufficiently small, these incentives might translate seemingly
small deviations from maximizing behavior into non-negligible effects.

This paper explores that intuition in the context of a simple dynamic
model in which trade takes place over time through a process of pairwise
meetings of sellers and buyers. This model has three attractive features for
the discussion at hand. First, by looking explicitly at the process of price
formation, this model allows to capture naturally the notion of a mistake that
agents can make in deciding on prices. Second, the dynamic nature of this
model allows to capture explicitly the efforts that maximizing agents make to
take advantage of non-maximizing ones. Third, this model has the standard
textbook diagram of demand and supply curves as its reduced form -- this
diagram captures the participation decisions of agents in the steady state
equilibrium of the model--and this will allow to present the results in an
elementary way.

Looking at the reduced form, without explaining yet how it corresponds
to the underlying dynamic model, one result is depicted by the following

diagram.
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If all agents are perfect maximizers, the equilibrium price and volume of
trade will correspond to the usual intersection of the curves. If buyers are
not perfect maximizers in the sense that a fraction f of them might make
g-errors in "bargaining" over the price, then the equilibrium volume of trade
will correspond to Q in the diagram. There will be two types of efficiency
loss: one on the order of €? due to suboptimal volume of trade (captured by
the shaded triangle); the other is on the order of fe per-capita (captured by
the shaded rectangle). This observation contrasts with a familiar intuition
which is based on the static model and according to which deviations from
maximizing behavior have only second order effect on welfare. To see this
contrasting intuition, consider the standard textbook diagram of demand and
supply curves, and suppose, for example, that the buyers in this market behave
as if their reservation values were actually higher by an e than their true
values. In the following diagram actual behavior is described by the dashed D’
curve, while maximizing behavior is described by the solid D curve. The

welfare loss is captured by the shaded triangle which is on the order of e?




In this sense and in contrast to the result reported above, here the welfare
loss is only of second order in e.

Going back to the result of this paper, the additional deadweight loss
means that the potential to make errors is fully translated into efficiency
loss. This loss is caused by the extra efforts of sellers to take advantage of
the buyers’ mistakes, and it is reminiscent of the idea due to Posner(l975)
that competition for monopoly position translates the monopoly profit into
efficiency loss.

Another result concerns a special case in which the reduced form is
captured by demand and supply curves which are inelastic at prices between
some common sellers’ reservation value and some common buyers’ reservation
value. This corresponds to a scenario in which the gains from trade for all
agents exceed the value of any outside alternatives. In this case, non-
maximizing behavior of the type described above does not create any efficiency
loss, but it leads to an extreme distribution of the surplus whereby the price
is driven to the buyers’ reservation value and sellers appropriate the entire
surplus.

The question of whether and under what circumstances small deviations
from rationality can have substantial impact on the outcomes of economic
interactions has been considered by Akerlof and Yellen [1985a,b], Colinsk
[1980], Haltiwanger and Waldman [1985], Russel and Thaler [1985]. What this
paper adds to that literature is a dynamic model which is geared towards
capturing the intuition that some amount of non-maximizing behavior in a
relatively frictionless market triggers responses from the maximizing agents
who try to take advantage of it and in the process affect the outcome in new

ways.
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The model used in this paper is a relatively straightforward
modification of the pairwise search and bargaining model which was probably
first analyzed by Diamond and Maskin(1979) and Mortensen(1978). The version
used here is more directly related to Rubinstein and Wolinsky(1985) and even

more so to the model and insights of Gale(1987).

2. The Basic Model

2.A. The benchmark case of perfect maximizers

The market is envisioned as an ocean of agents who meet pairwise to

transact. There are two populations: sellers who seek to sell a unit of some
indivisible good, and buyers who seek to buy a unit of that good. The market

operates over a sequence of dates labelled by t=0,1,2... At each date sellers
and buyers are matched randomly pairwise. Matched agents decide through the
following simple bargaining game whether and at what price to trade. One of
the matched agents is selected randomly, with probability %, to propose a
price; the other agent responds to that price offer with acceptance or
rejection. Upon acceptance, the agents trade at the agreed price and leave the
market; upon rejection, they separate and return to the pools of the
unmatched. The intrinsic value of a unit is O for sellers and 1 for buyers, so
that an exchange of a unit for the price p yields utilities p and l-p to the
seller and the buyer respectively. Agents discount future benefits using a
discount factor 8. It is assumed that there is no aggregate randomness in the
sense that frequencies of realizations of random variables over the population
will be identified with the distributions of these variables (e.g., exactly %
of all matched sellers get to propose in each date, etc.)

Let S(t) and B(t) denote the numbers of sellers and buyers present in
the market at date t. The evolution of these numbers is determined by the
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initial conditions, the rates of new arrivals, and the rates of departure,
which depend in turn on the meeting technology and the behavior of all agents.
Let S(0) and B(0) denote the initial stocks of agents, and let D=S(0)-B(0).

Initially, we assume that the entry process is exogenous: there are
constant and equal flows of M new sellers and M new buyers arriving each
period. This together with the fact that sellers and buyers depart from the
market in equal numbers implies that the difference in their stocks, S(t)-
B(t), will remain constant and equal to the historical difference D, for all
t. This assumption will be relaxed in Section 3 below where entry decisions
will be made endogenous and responsive to market conditions.

The meeting technology is captured by the function K[S(t),B(t)]
describing the total number of meetings in a period, as a function of the
stocks of agents present. To avoid discussion of unimportant details, we shall
restrict attention to the specific technology,

K[S(t),B(t)] = min{S(t),B(L)},
whereby in each period the maximum possible number of pairs are being matched
and only the excess agents on the long side of the market are left unmatched.
It will be obvious, however, that this restriction does not play a qualitative
role and the points made below are valid for a large class of well behaved
technologies.

The behavior of a seller (buyer) at some date t is characterized by a
price he will offer, if he is matched and it is his turn to propose, and the
minimal (maximal) price he will accept, if it is his turn to respond at this
date. Thus, in the aggregate, agents’ behavior at date t is summarized by the
four distributions of price offers and acceptances of sellers and buyers

respectively. These distributions determine in the obvious way the evolution
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of S(t+1l) and B(t+l) from S(t) and B(t). The state of the market at date t
consists of these four distributions and the numbers S(t) and B(t). The market

is in a steady state if the state is constant over time. An agent's strategy

describes what prices he will offer and what prices he will accept at each

date, as a function of the state. A market equilibrjum is a steady state

situation such that each agent’s strategy is optimal, given the state of the
market which is in turn the outcome of all agents’ behavior.

Consider any market equilibrium. Since, by definition, this equilibrium
is a steady state, we can omit the time variable t from the equilibrium
magnitudes. Let ag and ag denote the probabilities that sellers and buyers
respectively have of meeting an agent of the opposite type at any period in

that equilibrium. Note that

(1) ag = K(5,B)/S; ag = K(S,B)/B.

Let Vg and Vz denote the maximized expected utilities of unmatched
sellers and buyers respectively at the beginning of any period in that
equilibrium. Since the equilibrium strategies are required to be optimal after
any possible history, a buyer would accept any price below p=1-8Vy and a
seller would accept any price above p=8Vy. Therefore, in this equilibrium, at
any date, the prices p=1-8Vy and p=8Vg5 will be proposed by proposing sellers

and buyers respectively and would be accepted by their counterparts. Thus,

(2) VS = as[(l - 6VB)1/§ + 6VS1A] + (l - as)GVS

(3) Vg = ag[ (1 - 8Vg)% + 8Vgh) + (1 - ag)dVy
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Since at equilibrium every meeting is concluded with a transaction, the
number of departures is equal to the number of meetings and the steady state

condition of equality between the outflow and the inflow reduces to

(4) K(S,B) = M.

Equations (1)-(4) together with the initial condition S-B=D characterize
the market equilibrium when all agents are maximizers. We shall be interested
in situations in which the trading process does not involve large frictions.
In this model small frictions are captured by a discount factor near 1.
Solving this system for the limiting case as & approaches 1, and noting that
limVgy is actually the price (denote it by p) at which all transactions are

carried out in the limit, we get

(5) p = limVg = 1-1imVy = B/(2B + D)

The particular specification of the meeting technology, K(S,B)=min{S,B},

together with (4) imply M=min{(S,B}=min{B+D,B}. Substituting into (5) we have
M/(2M + D) if D>0

(6) p = limVg = 1 - 1imVy = {

(M-D)/(2M-D) if D<O

2.B. Non-maximizing behavior

Suppose that, occasionally, a buyer might miscalculate his response and
be willing to accept price offers which are higher than what is optimal for
him to accept. Specifically, in each meeting in which it is the buyer's turn
to respond, there is probability f that the buyer will underestimate his
continuation value, Vg, and act as if it were (l-¢)Vy. In other words, he will
agree to accept prices up to 1-8Vg(l-e) rather than just up to 1-8Vy as
correct optimization would dictate. Otherwise, all agents behave optimally in
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all other occasions. The occurrence of an error will be assumed independent of
all other random events in this model. This form of "irrationality” is of
course ad-hoc. One may think of many other variations, such as errors made
both in accepting and proposing, and errors made only by certain buyers and
not others, etc. However, the qualitative points made below will be wvalid for
many such variations and we adopt one such variation for performing concrete
computations. We shall return to discuss this assumption at a later stage
after its exact role will become clear.

The notion of equilibrium remains the same except that, in decision
nodes in which he is in the non-optimizing state, a buyer's strategy is
required to be only e-optimal. In other nodes the buyer's behavior is fully
optimal and even takes into account the possibility that in the future he
might err and make a suboptimal decision. Now, in any possible market
equilibrium, buyers always offer 38Vg, always agree to any price up to 1-8Vg,
and a fraction f also agree to any price below 1-8g(l-¢), while sellers always
agree to any price above 38Vg in their turn to respond. Different possible
market equilibria may differ only with respect to sellers’ behavior in their
turn to propose. The only two relevant alternative equilibrium strategies for
the seller are to propose the price p=1-38Vyz, or to propose p=1-8Vg(l-£) in the
hope that the buyer is in the non-maximizing state. If, at the market
equilibrium, the former strategy is optimal for the sellers, then the market
equilibrium 1s characterized by (1)-(4) as above. However, to account for the
cases in which the latter strategy or both strategies are optimal at the

market equilibrium, conditions (2)-(4) are replaced by the following.
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Us = ag[(1-8Vy)% + 8Vghk] + (l-ag)dVs

(2") Wg = ag(f(1-8Vg(Ll-e))% + 8Vgh] + [l-ag + ag(l-£)%)8Vs

Vs = Max({Ug,Ws)

(3') Vg = ag[(1-8Ve)% + ((1-g)8Vg+gfdVs(l-£))%] + [l-ag + ag(l-(l-g)-gf)%]3Vs

(4") K(S,B)[l+l-g+gf]% = M

where ge[0,1] satisfies: if Ug>Wg, then g=0; if Ug<Wg, then g=1.

Us and Wg are the respective expected utilities of a seller who always demands
the price 1-8Vy and of one who always demands 1-8Vy(l-e). The variable g
captures the fraction of the seller population who, at the equilibrium, demand
the price p=1-8Vyz(l-£). The remaining fraction, l-g, demand of course 1-8Vj.
Note that, if g=0, then V4=Ug and this system reduces to (2)-(4). If g=1, then
Vg=Ws. In this case the difference from (2) is that here the sellers attempt
to take advantage of the non-maximizing buyers by insisting on p=1-8Vg(l-e).
The first expression on the RHS of the (2') equation which defines Wg accounts
for the possibility that a particular seller will reach an agreement in the
current period. This will happen if the seller meets a buyer and either it is
the seller’s turn to propose and the buyer is non-maximizer, or it is the
buyer’s turn to propose. The former event occurs with probability agf% and in
it the unit will be traded for the price p=1-8Vg(l-e); the latter event occurs
with probability ag% in which case the unit is traded for the price p=3Vg. The
second expression accounts for the possibility of this seller will not reach
an agreement in the current period. This event occurs with the complementary
probability [1 - ag + ag(l - f)%] and in it the seller gets the discounted

continuation value of 8Vg. If ge(0,1), the equilibrium is mixed: both
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strategies are optimal for sellers, and the equilibrium value of g is
determined so as to exactly maintain the balance Vg=Ug=Ws.

Condition (3’) is explained analogously by accounting for the
possibility that some or all sellers may "ambush" the non-maximizing buyers.
Note that the continuation value Vy which determines the buyer’s optimal
acceptance behavior accounts for the possibility that this buyer might err in
the future.

Finally, condition (4') differs from (4) due to the fact that, in their
turn, some or all sellers (fraction g) make proposals which are acceptable
only to non-maximizers. This means that only some of the meetings are
concluded with a transaction and hence slows the rate at which agents depart
from the market. Specifically, the LHS of (4') states that the fraction of all
meetings that are concluded with a transaction consists of the % of all
meetings in which the buyers propose, the (l-g)% in which the sellers demand
the price p=1-8Vy, and the gf% of all meetings in which sellers demand the
price p=1-8Vy(l-¢) from buyers who happen to be in the non-maximizing state.

The following proposition collects the relevant features of the market

equilibrium in this environment.

Proposition 1:

(1) If & is sufficiently small, the equilibrium is characterized by (1)-(4).
(ii) If & is sufficiently close to 1, then in any market equilibrium Vg is
near 1 and Vg near 0. (I.e., Vv>038(v) s.t. V828(v), Vag<v and Vg>l-v in any
equilibrium.)

Proof: First, observe from (4'), (1) and the meeting technology that in all
equilibria ag and ag are bounded away from 0. To verify part (i), note that,
if & is sufficiently small, then since ag is bounded away from O, we have
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Us>Wg. Therefore, g=0 and the market equilibrium is characterized by the
system (1)-(4). To verify part (ii), let v>0 and suppose that there is a
sequence of 3 approaching 1 and a corresponding sequence of market equilibria
in which Vg>v. Observe from (2') that, when Vyz is bounded away from O and 8
sufficiently close to 1, then Wg>Us. Therefore, in these equilibria g=1.

Solving (1),(2'),(3’) for Vg and Vg, under the assumption g=1, we get

asf[2(1-8) + dage (1+f))

(7) Vs =
2(1-8)[2(1-8)+8ag(1+fe)] + dagf([2(1-3)+8age (1+£)]

2(1-3)ag

2(1-8)[2(1-3)+8ag(1+fe)] + dagf[2(1-8)+bage (1+£)]

Since ag and ap are bounded away from 0, it follows that, as 8 approaches 1,
1imVg=1-1imVg=0. This contradicts our supposition, and hence implies that,
when 8 is sufficiently close to 1, the equilibrium values of Vg and Vg are

arbitrarily close to 1 and O respectively. QED

In this model market frictions are captured by the discount factor &:
the smaller it is, the larger is the cost of search and hence the more
significant is the friction. Thus, proposition 1 says that, when the market
frictions are sufficiently significant, the presence of non-maximizers does
not affect the market outcome. However, when these frictions are relatively
insignificant, the presence of non-maximizers has a substantial effect:
essentially, the entire surplus is appropriated by the sellers.

When there are non-optimizing buyers, sellers have an opportunity to try
to "catch" such a buyer and take advantage of his mistake. The seller’s gain

from such behavior is determined by the magnitude of the buyer’'s error, eVg;
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the cost associated with this behavior is the delay, whose expected duration
depends on the frequency of non-optimizing behavior, f, and the disutility it
causes depends on 8. Now, for any given level of V>0, sufficiently high 3's
will render the cost of delay small in comparison to the gain eVy and hence
will make it profitable for sellers to wait for an "irrational” buyer. But
such behavior on the part of all sellers will depress the payoff to the
maximizing buyers as well, and so Vg will drop. The system will be
equilibrated once the gain &Vy dropped enough to strike a new balance with the
cost of delay.

The upshot is that a small extent of non-maximizing behavior as captured
by small values of ¢ and f might have a great impact in a market with small
frictions, because maximizing agents will attempt to take advantage of it and
in the process alter significantly the market outcome. Put differently, what
are seemingly small deviations from maximizing behavior are actually not small
when the frictions are sufficiently insignificant.

Finally, consider the efficiency of the market outcome. Since, by
assumption, the rates of participation in this market are exogenously fixed,
the total surplus is determined by the extent to which the potential gains
from trade are exploited. Obviously, for 8<l, there is surplus loss in the
magnitude of 1-Vg-Vg>0 per transaction which captures the resources spent on
search. But 1imVg=l-1limVp means that the potential gains from trade are fully
exhausted in the limit. Thus, while the deviations from maximizing behavior

have a pronounced effect on the price, they do not involve any welfare loss.



3. Endogenous Entry

So far entry into the market has been modeled as an exogenous process: M
new entrants flow into each side of the market regardless of the terms of
trade. Endogenous entry decisions might be expected to affect the results in
two ways. First, the extreme distribution of surplus arising above might be
offset through adjustments in entry. Second, the possibility of suboptimal
rates of participation introduces another source of potential distortions.

Suppose that in each period new sellers and buyers arrive at the gates
of this market and decide, once and for all, whether to enter or to pursue an
alternative opportunity. Agents differ with respect to their utility from the
alternative. Let M;(V), i=S,B, denote the numbers of sellers and buyers
respectively, who value their alternative opportunity at V or less. Assume
that the functions M; are constant over time, continuous, strictly increasing
and that M;(0)=0. The functions M; replace the parameters M and D as
primitives of the model, and M and D will be now determined in the system. The
assumption that M; is an increasing function captures the idea that better
terms of trade for a type i agent (i.e., higher V;) draw a larger entry flow
of agents of this type.

Consider first the case in which all agents are perfect maximizers. The
equilibrium is characterized by conditions (1),(2)-(4) as before, but now

there is an additional condition on the equilibration of the entry rates,
(9) M = Mz(Vg) = Mg(Vg).

Analogously, when buyers are not perfect maximizers in the manner considered
throughout, the market equilibrium is characterized by (1), (2')-(4') and (9).

The fact that Vg appears as the argument of My means that the entry of buyers
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is assumed to respond to the correct value of participation, which takes into
account the fact that they are liable to make errors later on. This seems like
the right rational-expectations assumption for this case. But it will also be
obvious that an alternative assumption whereby buyers’' entry decisions ignore
the possibility of error would lead to the same qualitative results.

For later reference, it is useful to note that the assumptions M,(0)=0
and M; strictly increasing imply that there is a unique v>0 such that
Mg(v)=Mg(l-v). Furthermore, if Vg>v and Vg<l-v, then Mg(Vg)>Mg(Vg); if Vg<v and

Vg>1-v, then Mg(Vs)<Mg(Vg).

Proposition 2:

If & is sufficiently close to 1, the equilibrium behavior of all sellers is to
always propose p=1-8Vg(l-¢). I.e., the market equilibrium is characterized by
the system (1), (2'), (3') and (9), where g=1 and Vg=Ws.

Proof: Consider a sequence of & approaching 1 and a corresponding sequence of
equilibria.

Claim: Over this sequence ag approaches 0.

Proof: Suppose to the contrary that there is a subsequence of the equilibria
over which ag>A>0. Observe from (2’') that over this subsequence
1limVg21-(1l-¢)1limVy. This is because, with ag bounded away from O, a seller can
guarantee that much in the limit by sticking to the strategy of always
demanding p=1-8Vy(l-e) and refusing any other offer. Also, it is always true
that 1imVy<l-1limVg. Combining these two inequalities we get
1imVg<l-1imVg<(1l-2)1limV, which implies 1imVg=0 and 1imVg=1l. But this means
that, far enough in the sequence, Mg(Vg)>Mz(Vy) so that (9) is violated,

contradicting the supposition that ag is bounded away from O. |



Suppose that over the said sequence of equilibria g<l. In this case

Vg=Ug and solving the system (2'),(3') we get

ag[2(1l-8) + Baggfe]

Ve =
° 2(1-8)(2(1-8)+dag(l+gfe)] + Bag[2(1-8)+baggfe]

2(1-8)ag

VB=
2(1-8)[2(1-8)+8ag(1l+gfe)] + Bag[2(1-8)+daggfe]
The above claim together with the matching technology, K(S,B)=min{s,B), and
(1) imply that, when 8 is near 1, ag=l. Substituting this into the above
expressions, we get that, over sequences of equilibria such that 1limVg and

1limVy exist, they are

lim[gas/2(1-8)]fe

limVg =
1 + limgfe + lim[gag/2(1-8)|fe

1

limVy =
1 + limgfe + lim[gag/2(1-8)]fe

Notice that over a sequence such that limVg exists, lim{gag/2(1-38)]
exists and 0<lim{gag/2(1-3)]<=, since lim{gag/2(1-8)]=0 or « implies 1limVg=0
or 1, violating (9).

Next observe that g<l means that demanding the price p=1-8Vy is at least
as good a strategy for the seller as the alternative of demanding the price
p=1-38Vg(l-e). That is,

1-3Vy 2 £[1-8Vg(l-e)] + (1-£f)8Vg
Rearranging, we get

1-3Vy-8Vg 2 8Vgpfe/(1-£).



Taking limits and substituting the above derived values of limVg and limVg,
limgfe > fe/(1-f)

But since limgs<l and 1/(1-f)>1, this is a contradiction. This means that the

supposition, that there is a sequence of equilibria over which g<l, is false.

Therefore, for sufficiently large 8, in all equilibria g=1, which proves the

proposition. QED

Thus, when 8 is near 1, sellers’ equilibrium behavior is to demand in
their turn the price p=1-3Vz(l-e) in the hope that the buyer they are facing
is in the non-maximizing state. Note that lim{ag/2(1-8)]<=» means that, for &
near 1, the sellers’ meeting probability, ag, is small. The reason is as
follows. The above described behavior of sellers exerts an upwards pressure on
the price. If 8 is near 1 and ag is not too small, this pressure will drive
the price near 1. But this is incompatible with equilibrium, since then the
flow of entering sellers will exceed the flow of entering buyers. The system
will be equilibrated through the emergence of a large excess stock of sellers,
S-B, which exerts a counter pressure on the price by reducing ag and hence
weakening the sellers’' position.

As a corollary from Proposition 2, we have

Proposition 3:

limVgmx*fe (1+£) /[ 1+fe+x*fe (1+£)]; limVg=1/[1l+fe+x*fe(1+£)],
where x* is the solution to Mg(xfe(l+f)/[l+fe+xfe (1+£)])=Mg(l/[1+fe+xfe(1+£)])
Proof: It follows from proposition 2 that, for & near 1, the equilibrium
values of Vg and Vg are given by (7) and (8). Taking limits we have

lim{ag/2(1-8)]fe (1+£)

limVg =
1 + fe + lim[ag/2(1-3)]fe(1+f)
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1

limVg =
1 + fe + lim{ag/2(1-8)fe(1+f)

Recall that over a sequence such that 1imV; exists, lim[gag/2(1-8)]
exists and 0<lim[gag/2(1-3)]<=. Now, letting x=lim[ag/2(1-3)] and x" be the
value of x for which (9) holds in the limit, i.e., Mg(limVg)=Mp(limVz), we get

the expressions in the statement of the proposition. QED

Notice that 1limVg + 1limVy < 1. This implies immediately the following
observation.
Corollary: Even in the limit, as 3 approaches 1, there is a non-vanishing
efficiency loss at the rate of

1 - (limVg + 1imVy) = fe/[1+fe+x"fe(1+£)] > 0.

The source of this inefficiency is the waiting costs of sellers. The
above noted fact that lim{gag/2(l-8)]<~ means that limag=0. The low ag is the
consequence of a large excess of the number of sellers over that of the buyers
and it translates to longer expected delays between consecutive matchings of a
seller. That is, at equilibrium, the balance in entry is achieved when the
extra gain that sellers make at the expense of buyers’ mistakes is being

whittled away by inefficiently longer delays.

4. Discussion

Identifying the model with the demand-supply paradigm

Let us first explain the sense in which the dynamic model of this paper
corresponds to the familiar demand-supply apparatus (this correspondence has
been pointed out by the above cited Gale(1l987)). Consider the benchmark case
in which all agents are perfect maximizers and assume the above endogenous
entry process. In this case the limiting market equilibrium, as 8 approaches
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1, is characterized by the price p=limVg=1-1imVy as given by (6) and the entry
flow M which is given by the limit version of (9), M=Ms(limVg)=Mz(limVy). The

latter can be written as
(10) M = Ms(p) = Mg(1-p)

As we have already mentioned, the properties of Mg and Mg imply that
there is a unique p and hence a unique M which satisfy (10). Given these
values of p and M, equation (6) only determines D, which is also endogenous
when entry is. The following figure describes (10) in a form that corresponds

to the familiar textbook supply-demand picture.

P

lth&

Mg (1-%)

Like in the traditional supply and demand curves, the axis are inverted: the
argument p -- the price -- is plotted on the vertical axis, while the
corresponding flows of agents -- the quantities -- are drawn on the horizontal
axis. The supply and demand curves, Mg(p) and Mz(l-p), describe the periodic
flows of entering sellers and buyers as functions of price. The equilibrium of
the model corresponds to the equilibrium in this "flow market" as depicted by

the intersection of the curves.



Consider now the case in which buyers are not perfect maximizers, as
described above. As argued by proposition 3, in this case limVg < 1 - limVy,

the appropriate version of (10) is
(10") M = Ms(ps) = Mp(1l-pg),

where pg=limVg is the seller’s price and pp=1l-1limVy is the buyer’s price, in a
sense that will become clear. Notice that the transactions are not all
performed at one price: at a fraction 1/(1+f) of the transactions the price is
Ps, while at the remaining fraction the price is pg/(l-e). Thus, pg and pg
should be interpreted as the expected full prices received by the sellers and
incurred by the buyers respectively. For example, pg accounts for the expected
transaction price that the seller receives minus the expected search cost
incurred in waiting. The following figure depicts the flow market equilibrium

in this case.
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The two types of inefficiency

The last figure captures two types of inefficiency caused by the non-
maximizing behavior of buyers. The shaded triangle captures the potential
gains from trade that are being lost due to too little entry, which in turn
reflects the wedge between the seller’s and buyer’s prices. The shaded
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rectangle reflects the losses due to sellers’ waiting time wasted in the
system: the difference between the expected price paid by buyers, pg, and the
expected utility received by sellers is the seller's search or waiting cost.
The explanation for this waste is clear: rent seeking behavior of sellers
results in a great excess supply of sellers who seek to exploit the
"irrationality" of buyers. This excess supply imposes waiting costs on the
sellers, and the system is equilibrated only once these waiting costs
completely exhaust the gains they make at the expense of buyers' mistakes.
This point is reminiscent of the point made by Posner(1975) and others that
monopoly profit actually represents waste, because, in competition for the
monopoly position, rent seekers would expend resources until all this profit
is exhausted.

The first type of efficiency loss (the triangle) is on the order of e2;
the second type of loss (the rectangle) is a linear function of fe, which by
the corollary to proposition 3 is (pg - ps)M = Mfe/[l+fe+x"fe(1+f)]. Thus, if
we think of small deviations from maximizing behavior, i.e., small & and f,
then the second type of loss is significantly more important than the first.

The "smallness" of the deviations from maximizing behavior

The title of this paper speaks of "small" deviations. This is in the
sense that the parameters ¢ and f can be small in absolute value. However, it
is important to note that when 3 is near 1 these parameters are not small
relative to the frictions. That is, when we take limits with respect to 8, the
parameters ¢ and f are kept constant. It is this fact which makes it
worthwhile for maximizing agents to incur the cost of the frictions in order
to capitalize on the e magnitude errors of the non-maximizing. Thus, the

observations of this paper pertain to a situation in which the deviations from
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maximizing behavior, while possibly small in absolute value, are sufficiently

significant relative to the frictions of the trading process.

5. Further Discussion of Some Simplifying Assumptions

Many of the specific assumptions made above were helpful in obtaining a
concrete example which can be solved explicitly, but are not essential for the
qualitative points. The important element is that some of the buyers are
sometimes liable to err and trade at higher prices than they would if they
were maximizing, and that when the frictions are relatively insignificant,
sellers would "ambush" those buyers. This basic element does not depend on
whether all buyers err with some probability, as we assume, or only some
fraction make errors while other do not; whether buyers err only in their turn
to respond or also when they propose; whether they only err in being too soft
or also in the other direction; and what the precise functional form of the
error is.

Only certain buvers are inconsistent maximizers

Consider, for example, the case in which only certain buyers are
inconsistent maximizers, while the rest maximize consistently. Suppose that
the inconsistent maximizers constitute a fraction t of each entering batch of
M buyers, and that they always make the € errors described above. Here the
fraction f of non-maximizing buyers in the steady state population is
determined endogenously and is in general different from t, since the
different types of buyer stay in the market for different durations. Recall
that g denotes the fraction of sellers who demand the price 1-8Vg(l-e). Since
the non-maximizers agree to this price, they reach an agreement in their first
match. The maximizers, who reject this price, take on the average 2/(2-g)
matches to transact, since at any given match they transact only with
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probability 1l-g/2. This probability consists of the probability 1/2 that they
propose and of the probability (l-g)/2 that they are offered the price 1-8Vg.
Therefore, the fraction f is given by
(11) £~ t/[t + (1-6)2/(2-8)) = t(2-g)/[t(2-g) + 2(1-t)].
Now, system (2')-(4’) is adapted to this case by replacing (3') with

Vg = ag[(1-8Vg)% + (1-g)8Vg%] + [l-ag + apgh]dVy
and substituting f from (1l1l) into (4'). The equations (2') remain unmodified.
Since f is bounded away from O, the qualitative results reported above
continue to hold for this case as well.

Two-sided errors

The assumption that only buyers err plays a more important role in that
it is responsible for the asymmetries inherent in the results, i.e., that with
exogenous entry the sellers appropriate the entire surplus and that with
endogenous entry there is an excess of sellers that creates the delays.
However, this asymmetry only serves to sharpen the observation concerning the
aggregate effects of the non-maximizing behavior. If we assumed instead that
both sellers and buyers are liable to make such mistakes, then the forces
identified above will work on both sides of the market and the outcome will be
determined by their relative strength. To see this point more concretely,
assume that sellers err in a similar manner. Let f;, &, and g;, i=S,B, denote
the counterparts of f,z and g which are now indexed by S and B since they
appear on both sides. The counterpart of (2') will now be

f Us = ag[l-3Vp+gpfsdVg(l-e5)+(1l-gg)8Vg]% + [l-agtag(l-(l-gp)-gpfs)h]8Vg
(2'") { Wg = ag[£p(1-8Vg(l-£5))+gpfsdVs(l-eg)+(1-gg)8Vs)h +

( [l'as+as(1‘fs+1'(1'gB)'ngS)‘A]6VS



Since the structure is now symmetric, the counterpart of (3’) will be
completely analogous (just exchange B’'s for S’s everywhere). This new system
can be solved in the same way as above. For the case of the exogenous entry
process discussed in Section 2, there is a limit (as 8 approaches 1) market
equilibrium such that gg=gz=l and |

(12) limVg = fpep/(fges + fgep); 1limVp = fgeg/(fseg + fgpep).

To verify this note that, if there is such an equilibrium, the relevant
equations will be the Wg and Wy parts of (2'') and (3'’') respectively, with
gs=gp=l. That is,

Vg = ag[fz(1l-8Vp(l-25))+fs8Vs(1l-£5)d8Vg]%h + [l-agtag(2-f5-f5)%)8Vg

Vg = ag[f5(l-8Vg(l-£5))+fp8Vg(l-25)d8Vg]% + [l-agtag(2-fg5-fg)%k]8V,

Solving these equations and taking the limit as 8 approaches 1, we get the
expressions in (12). Thus, in the limit, at a seller’s turn to propose, the
expected value of following the gg=1 strategy is f3(l-1imVg(l-eg))+(1l-£f5)1limVg,
while the value of the alternative is 1-1imVyz. Since limVg=1-1imVg, we have
fp(l-1imVg(l-25))+(1-£f5)1imVg > 1-1imVy. Thus, the gg=1 strategy is indeed
optimal for the seller, in the limit, and analogously the gz=1 is optimal for
the buyer. Since the inequality is strict, this is also true for 8<1l but
sufficiently close to 1, implying that this behavior is an equilibrium for
such values of &.

Notice from (12) that the surplus is allocated here according to the
relative frequencies and magnitudes of the errors. If, for example, eg=ep and
fg>fs, then the share of sellers is larger. This is of course consistent with
the result of proposition 1 which refers to the extreme case where only buyers
are liable to err. It is interesting to contrast the expressions here with

those in (6). Like in Proposition 1, here too, in the limit when the market is
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nearly frictionless, the equilibrium "prices" depend only on data concerning
the errors and so are independent of the parameters M and D which fully
determine these magnitudes when there are no errors. In particular, this means
that, if the extent of the non-maximizing behavior is the same on both sides
of the market, i.e. eg=e5 and fp=fg, then the mistakes do not necessarily
"cancel out" in the sense that here limVg=limVg=%, which is different from the

magnitude in (6) unless D happens to be 0.
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