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Abstract

We examine the following paradox: In a dynamic setting, an arbitrarily large finite
number of agents and a contimuun of agents can lead to radically different equilibrium
outcomes. We show that in a siiuple strategic setting this paradox is a general phe-
noinenon. We also show that the paradox disappears when there is noisy observation
of the players’ actions: The aggregate level of noise must disappear as the nunber of
players increases, but not too rapidly. We give several econoiic exaiuples in which
this paradox has recently received attention: the durable goods monopoly, eorporate

takeovers, and time consistency of optimal government poliey.

This paper examines a scemingly narrow techuical puzzle: In a dynamic setting, equilib-
ria can be radically diflerent in a model with a finite munber of agents than in a model with
a continuum ol agents. While seemingly narrow, this issue has broad economic importance:
the continuum of agents model is widely used either explicitly or unplicitly in applied eco-
nomic situations ranging from competitive markets to public {inauce and political economy.
‘T'he rationale for using the continuum of agents model is that it is a useful idealization of
a situation with a large {inite number of agents. If equilibria in the coutinuum mnodel are
radically different from equilibria in the model with a finite number of agents, then this
idealization makes little sense.

A good example in which this issue has arisen is the study of the Coase Conjecture for



at a time when he does not yet have complete information about their play, although later,
after he has moved, he will {ind out what they did, and this will determine his payofl. Note
also that in the infinite case (SLOW CONVIERGENCIS) hnplies that all the definitions are
unchanged.

If all small players choose g we denote this by |og] = (og,...,08); if all small players
excepl 7 choose og and i chooses xg we write log|\irs = (05, ..., x5, ...,05). A pair (og,01)

is a noisy Stackelberg response for small player 7 if

(9) gslloslorn) > gs(los|\izs,o1)

A pair (05,0} is a noisy precommitiment equilibrium if it is a Stackelberg response, and if

for any Stackelberg respouse (o, 0), mr{los], o) > m(los], o))

Noisy Paradoxical Theorem If o game salisfies (LINEARITY), (CONCAVITY) and
(NONDIEGENERACY) then for any n and any e > 0 there is a 4™ > 0 such thal the payoff

to the large player in any noisy precommitment equilibrium is larger than n] — e.

The Noisy Paradoxical Theorem shows thal for a given number of players, and for small
noise, the noisy precommitment equilibrium will be very close to the precommitment equi-
librium in the case wilth perfect observability. This result should be scen as a “continuity
check” for a fixed number of players. It shows that the equilibrium cutcome of the game
with perfect observability is preserved for a fixed number of players when the noise is small,
and hence there is no discontinuity in the solution concepl when moving from the precom-

mitment equilibriun with perfect observability to the noisy precommitiment equilibriumn.

Not So Paradoxical Theorem /f a game salisfies (LINEARITY), (CONCAVITY) and
(NONDEGIENERACY) and if the noise salisfies (SLOW CONVERGENCE), a noisy pre-
commitment equilibrium exisls. In this case, any limil of noisy precommilment payoffs lo

the large player as n — oo is equal to 7.

I'ix a sequence (y") satisfying (SLOW CONVERGENCI). Clearly (ay™), o > 0, also

satisfies (SLOW CONVERGENCI). We may view « as a measure of how much noise there



is for small values of n while the tail of (7"') determines the noise for large values of n.
We summarize our results by sayiung that il « is sulliciently small, for small n, the noisy
precommitment payoff will be close to the maximum possible 7y, while if n is large, it will

be close to the simple Stackelberg payoff 7.

Corollary Suppose o game satisfies (LINEARITY), (CONCAVITY), (NONDEGINIER-
ACY) and (SLOW CONVERGENCI). Ior any € > 0 ond any N > 1 there is an o > 0

and a N, N < N < oo, such that if the noise is (o) and

(i) if n <N then the payoff Lo the large ploayer in a precommilment equilibrium with n

smoll players will be between wj and 7} — c.

(ir) if n > N then the payoff to the large player in a precommitment equilibrium will be

between wp, ¢ and 7y, — c.

The Corollary is an inmmediate consequence ol the Noisy PParadoxical Theorem and the
Not So Paradoxical Theorem. It shows that the equilibrium payofl to the large player is
continuous in both directions: il the noise is small then for a small number ol players the
cquilibrium payoff will be similar to the perlect observability case, whereas if the number

ol players is large then the payofl to the large player will be similar to the continuum case.

3 Economic Examples

We now consider three examples. All are simplified versious of games that have been studied
in the literature. 'The first is connected with the Coase conjecture, the second with the free
rider problem in corporate takeovers and the third with time cousistency of governmment
policy.

Example 1 The large player is a monopolist and the small players are potential buyers.
The monopolist sets the price 27, as a [unction of the realized demand, aud buyers choose a
quantity to purchase, rg. The buyers must choose how much to purchase belore knowing the

price, but alter the monopolist has decided on the price as a fuuction of average demand.
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Let p(eg) < 1 be the (downward sloping) inverse demand curve of a typical buyer. We
assuie that p(1) == 0. There is no cost of production.

With perfect observation and a finite population, the monopolist can effectively extract
all the consumer surplus by setting a “take it or leave it” price and by committing to
not selling anything if demand is insullicient.  With noise and a large population, such a
conmniliment is not feasible, becanse the monopolist cannot tell if there is suflicient demand
of every consumer, and so nust setlle for the monopoly price,

To sce why this is the case, we simply cast the model into our framework. The utility

of a buyer is given by consumer surplus

(10) wg(r) = / plz)dz —xpxg
. zgfl?s

Notice that this [unction is linear afline in 7, so that (LINIEARITY) is satisfied. The
payoll of the monopolist is 7y, == xprg, so that (CONCAVITY) is satisfied.

In this game 7} corresponds to the profit realized by the monopolist when he gets all the
consumer surplus, wlhile 77, correspouds to the siimple monopoly profit. Without noise, the
monopolist can commit (o the policy of charging a price equal to the tatal consumer surplus
il demand is 1, i.e. if every consumer demands exactly one unit, and charging a choke price
such as T otherwise. It is then an equilibrium for each individual buyer to purchase one
unit, since each buyer realizes that by purchasing less, he will in fact face the choke price.
When there is noise, and the monopolist can observe his demand only imperfectly, such
an extireme policy by the monopolist will not work, and our Not So Paradoxical Theorem
shows that in this case the monopolist (to a good approximation) can do no better than

the simple monopoly profit.

Remark: In Bagnoli et al. (1989), the durable goods monopolist is able to extract all the
surplus by using the lollowing “Pacman strategy”: livery period the durable good is oflered
al a price equal to the highest reservation price of the remaining buyers. livery buyer wilh
a reservation price equal to the current price realizes that if he decided to wail insltead of

purchasing today hie would face the same price in any future period until e finally purchases.
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This strategy has the same spirit as the “choke price strategy” described above. Similar
to the monopoly example above, slightly iimperfect observation of the realized demand will

guarantec that the “Pacman strategy” cannot be successful.

Example 2: The large plaver is a potential raider of a corporation. The takecover will
increase the value of the firm by 1 > 3 > 0 due to better management. The initial value
of the corporation is 0. Suppose every sharcholders owns an equal amount of shares. ISach
shareholder decides a fraction of his shares zg € {0, 1] to be oflered on the market (at a
given price p, where 0 < p < 7). The raider chooses a takcover probability = € |0, 1] that
is conditional on the total fraction of the company’s shares oflfered. If he decides to take
over the compauy then he purchases the offered shares and imiplemients the miprovemnents
in the corporation that lead to the increase in value of the company!®. The payofl for the
raider is - wg - (1 —p). The payoll for the sharcholderis p-ay-wg+ 2y, -1- (1 —xg). Note
that all our assumptions are satisfied in this case.

In the finite case without noise, the raider can commit to a policy of taking over the
company only if 100% of the shares are offered. This will allow him to appropriate alimost all
the efliciency gains dne to liis takeover if the price p was set close to zero. llence 7} = y—p
in this case.

With a continuum of agents, the precommitment equilibrinun will not allow the raider to
appropriate any ol the efliciency gains due to his takeover. Irrespective of the raiders policy,
and for all p < 1, every sharcholder will set 2g = 0 in this case. 'T'he Not So Paradoxical
Theorem shows that the observation of Grossman and Ilart (1980) approximately carries
over {o the {inite case, if the raider can only imperfectly observe the number of shares

offered.

Example 3: The large player is a government that must choose whether to place a tax on
capital or use a distortionary tax in an ellort to raisc adequate revenue. Small playcrs are
households endowed with a single unit of capital; if capital is not taxed it may be invested
to yield a return of (1 4 r)xg where xg < 1 is the investiment and » > 0; if capital is taxed,

investment yields no return. If each houschold invests to the maximuin and capital is taxed,
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the governient collects 1 7. To raise the same amount of revenue by an alternative tax
{on tabor, say) costs cach honschold ¢ > 1 }-r, since the tax is distortionary. Let xj, be the

probability thatl the govermment taxes capital. Tousehold utility is
(11) as(eg,xn) = (1 —ap)(l+rag—c) Fa(l —ag)

Since thie government nses a mixed strategy, (LINEARITY) is satisfied. Government utility
is equal to the houscholds™ utility, except that if capital is taxed and if households invest
less than the maxinmum, there will be a revenue shortfall resulting in a loss of p(1 — zg),

where p > 1. Govermmeul utility is therefore
(12) ms(es,xr) = (0 —ap)(V Freg—c¢) 4 ap(l —as)(1 —p)

which certainly satisfies (CONCAVITY).

In this example 77 = 0 corresponds to the first best. Inspection shows that w; < 0,
and 77, = 0 ouly if houscholds invest 1 unil and the probability of a tax on capital is 1.
Note that z; < 0 and hence the first best allocation satisfies individual rationality. At
the govermment maximum houscholds receive (), and can improve their utility by reducing
investiment, so (NONDEGENERACY) is satisfied.

I this context 7y, is known as the second best, or Ramsey equilibriun. A calculation
shows that this is obtained when @y, = 1/(1 4 r), in which case households are indiflerent
to the level of inwvestment. Moreover, it is best for the government if households invest
to the maximum i this case. This increases the utility when there is no capital tax, and
reduces the penalty when there is a capital tax. The utility actually attained is 7 =
(1l —c/(1 +r)) <O

Previons analysts of the problem (sce Ifischer (1980), Chari and Kehoe (1989)) have al-
ways deall with the continumn case, and concluded that the Ramsey equilibrium is the best
possible. Questions have focused on whether the government can actually precommit, and
so achieve the payoll corresponding to the Ramsey equilibrium, or whether there is a time
inconsistency problem. The analysis here shows that with perfect observation and finitely

many households the govermment can do significantly better than the Ramsey equilibrium:

13



The government taxes only capital provided there is enough investment. If there is not
enongh investment, the govermment follows a punitive strategy of taxing ouly labor. Note

that the payofl of the honscholds when only labor is taxed is (14 » — ¢} < 0.

Appendix

Paradoxical Theorem If a game salisfies (LINKARITY), (CONCAVITY) and (NON-
DEGENIRACY) then for oll finite n o precommilment cquilibrivin exists, and the unique
amount received by player L oan any precommilmendt equilibrium is 7y ; If n = 0o a precom-

mitment equilibriwm exists and the unique amount recetved by player 2 is wj, < 7wy .

Proof: In the finite case the large player can use the following policy: If zg is observed
then the large player chooses x). If any og # xy is observed then the large player clivoses
x;, where a satisfies maxzo molwg,xy) = ng. By the construction of x* no small player
has an incentive to deviate from xy since 7§ > wg. Since w7 is the highest payoff the large
player can get in any precommnitinent equilibrium, the above policy is optimal.

In the continuum case, since any single player deviation does not change the aggregate
og, the optimal policy for the large player can be taken to be a constant action. (CONCAV-
I'TY) and (LINEARITY) ensure that there is a pair (¢, xg) such that #p(zg,z;) = 7y,

and xs is a best response to . Moreover 7y, < 7] by (NONDEGENERACY).O

Noisy Paradoxical Theorem If a game salisfies (LINUARITY), (CONCAVITY) and
(NONDEGENERACY) then for any n and any € > 0 there is a v > 0 such that the payoff

to the large player in any noisy precommitment equilibrium is larger than x) — «c.

Proof: Choose & = (Zg,2) so that 7(L) > 7] —c and 75(2) > 75+ €,¢ > 0. Clearly by
continuity of the payoll functions and by (NONDIEGENERACY) such a & exists. Choose
6 such that 7;(%) > n;(vg, 21) — e for j = L,S and for all zg € [Ts—mn-6,Zs + n -4l
[rurther choose /£, 4™ so that Prob(lz — &g > ) <1 — ¢ and Prob(Jz —2g] > K) > 1 — ¢
for |x — zg] > 6.

Let the large player use the following strategy: If |z — #g| < K then he chooses &7, and
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if |2 —2g| > I he chooses 2. Given this strategy note that whenever all but one (player i)
small players choose x¢ € N = [tg— 6 &5 8] it is optimal for player i to choose a 'y such
that X.x:g/n € N. 'To sce this note that by choosing a xg € {£g—n-8,254 n-é] the small
player can guarantee an aggregale action g which in turn implies that with probability
I — ¢ the large player will choose 2y,. Thns the sinall player can guarantee himsell a payoll
of mg(2)(1 —¢)—c? | exg which for small ¢ is clearly better than what the small player could
get by choosing an g for which the aggregate action is outside N. By a simple fixed point
argunient it follows that there exists a £ € N such that il n — 1 players choose &g then

n--1 o, 1.7
n LS b aes

it is optimal for the n-th player to choose z. (I'or any ag € N let f(zg) =
wliere xy is the best response of a small player. f is a continuous function f : N — N
and hence there is a fixed point of f.) It remains to be shown that at 2 the probability of
punishment is small. A simple calculation shows that at  the probability of punishment
cannol exceed 2¢ since each small player always has the option ol choosing a xg such that
the aggregate action is £g. 'Thus the described strategy guarantees the large player a payoll
of mp(£)(1 — 2¢) 1+ 2emy, > wj (1 = 2¢) — ¢4 2¢my, were m; is the payoll of the large player
receives if he forces the small players payoll down to its minmax value. Note that in any

precommitment equilibrium the large player has to get a payoll at least as large as the

pavofl of the indicated strategy. Therefore, since € is arbitrary the proposition [olows.O

Not So Paradoxical Theorem If a game satisfies (LINIFARITY), (CONCAVITY) and
(NONDEGENERACY) and 1f the noise satisfies (SLOW CONVIERGENCE), a noisy pre-
commitment equilibrium exists. In this case, any Limit of noisy precommitment payofjs to

the large player as n — oo is equal lo 7wy,

Proof: Let 0% be a sequence converging to og, and ¢} (z) be such that 0% is a Stackelberg
n n

response to aj. The loss to the i-th small player from deviating from o2 to wg in the

n-player game is

/7’(5‘(02', o (2))dI" (z2)|os]) — /7rs(;rg, UZ(z))d]""(zHUg# \zg) =
/(”S(rf.’s'wff’fj(z)) —ng(xs, 05(2)))dF" (z|log\zs)



(13) [ nsto ot @)@ logl) - a7 llodMes)) 2 0

Note that

fﬂ(z_::q) gy (Z_(US_(I;;S‘*US)/N)>’dz
8 B

(1) / a1 elfosl) ~ d” Gllosfes)] ~ [

Using laylor's Theoren, this equals

(15) [|promente=se

Since we have assumed that the £ f" are uniformly bounded, (SLOW CONVERGENCE)

imphes that
(16) lin /Irll""(;z:“(fg,) —dI"z||los]\zs)| = 0!

Thus it follows that

(17) [ stior oie)) = ms(oR,ohNar Gllogha) <

where Ting, o ¢ == 0. Therefore, there is a sequence of probability measures on X g, G™(q)

such that
(18) /(ﬂg(.r:g, q) — ms(og, q)}dG " (g) <

from which it follows that

(19) /(ﬂs(:vs» q) — 1505, q))dCG"(q) < ' sup ms(os, q) — 7(os, q)]
. q

Let G(-) be a weak limit point'? of the sequence G™(-). Since by assumption o — og, we
couclude that

(20) /(WS(.L‘S, q) — ms{os, q))dG{q) <0

Set xy, == [qdG(q) to the expected value of the play of the large player according to G.

Because g is linear alline in a,

(21) ms(es, wp) — mslog,w) <0

On the other hand the large player gets

(22) /W.S'(U.%,UZ(Z))J/’"(ZHU.’@I ) — /m,((fs,q)d(l'(q) <wplos L),
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where the final inequality follows {rom the assumption thal the large player's payoll is
concave in his own action. We conclude that the imit of the precommitment payoll to the
large player in the finite games is nol greater than in the limit game. Finally, we observe
that since an optimal precommitment in the limil game is to precommit to a constant
function, this is [easible and yields approximately the same payofl in the finite game for
large 1. so that the it of precommitiment payolls is not smaller than the preconumitment

pavoll in the limit gaane. O
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Footnotes

*Levine: Department of Economics, University of California, Los Augeles, CA 90024; Pe-
sendorfer: Department of Sconomics, Northwestern University, Kvanston, [1. 60208. We
would like to thank Kyle Bagwell, Drew [fudenberg, Andy Newman, Paul Milgrom and two
anonymous referces for helpful commments. "This work was partially supported by NSI® grant
515890-23697 and the UCLA Academic Senate.

"Roy Radner (1980) considers c-equilibria in a finitely repeated Cournot game and finds that
for a fixed number of repetitions the ¢ equilibria converge to the competitive equilibrium
as the nuimber of players gets large. The argument is based ou the assumption that f{irms
have untimited capacity; with a fixed capacity the described paradox arises also in this case:
the continuum limit has the competitive equilibriunt as the unique outcome while with any
arbitrarily large but linite number ol players collusion can be sustained.

2A related idea may be found in Al-Najjar (1992).

“When the play of individual agents is observed an alternative solution to this paradox is
to drop the anonymity assumption in the continuuin limit. This leads to equilibria in wlich
deviations by a single infinitesimal player leads to a large reaction by other players. Such
a notion of equilibrium is explored by [fudenberg and Levine (1988).

Another implication of noise in the observation of the first mover is considered by IKyle
Bagwell (1992) who shows that when there is no precommitinent, the implicit precomnit-
ment value of being the first mover is diminished wlhen there is even a small amount of
noise.

“We are grateful to Paul Milgrom for pointing out the connection between our results and
the work of Dubey and Kaneko and to several referees for pointing out the connection to
Green and Sabourian.

5In Dubey and Kancko's approach the continuity with respect to the number of players
is achieved at the cost of introducing a discontinuity in the solution coneept: equilibrium
behavior for any {inite munber of players if the threshold is zero will be radically diflerent

from equilibrium behavior if the threshold is strictly positive, even if it is arbitrarily small.
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Green and Sabourian do not cousider the effect of noise on the set of equilibria for a fixed
nuutber of players.

"Green and Sabourian assume that the map from the distribution of strategies (endowed
with the weak topology) to probability distributions over outcomes (endowed with the total
variation norm) is continmious. As we note below, our much simpler assumption implies a
conditions similar to the one assumed by Green and Sabourian.

8Note that in this example buyer utility is linear in the seller action (price), and as a result
mixed strategies are not called for.

*T'he linearity assmnption is needed for our results in the noisy case: if the large player is
constrammed to play pure strategies in a setling in which the small players’ payolls are not
linecar in their action, the Not So Paradoxical Theorem fails.

%or simplicity we assume the raider can implement the efliciency improvements even if he
controls less than 50% of the corporation.

HThe integral of the absolute value of the derivative to the measure is the total viariation
of the measure. This condition essentially means that small changes in the distribution of
players’ actions have a small effect on the distribution of outcomes in the total variation
norut. This is the assumptions used by Green (1980) and Sabouriau (1990).

2T hat is the sequence has a subsequence that converges to this point in the weak topology.
This topology is characterized by the convergence of the expectation of continuous functions,
and the space of probability measures on a compact set is known to be compact in this

topology. See, c.g., Ix. R. Parthasarathy (1967), 'Theorem 6.4. pg. 45.
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