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Abstract

Models of commitment make two assumptions: there is a first mover, and his action is perfectly
observed by the subsequent mover. The purposc of this paper is to disentangle these two
assumptions, in order to scc if a strategic bencefit from commitment remains when the first-mover’s
choice is imperfectly observed. The basic finding is that the first-mover advantage is climinated when
there is cven a slight amount of noise associated with the observation of the first-mover’s selection.
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I. INTRODUCTION

One of the central insights of noncooperative game theory is
the notion that a commitment to a course of action confers a strategic
advantage. This idea dates back to von Stackelberg (1934), who
illustrated the advantage of moving first in a duopoly context. The
general significance of this insight, however, was not properly
emphasized until the arrival of Schelling's (1960) celebrated book.
The concept of a "first-mover advantage" is now deeply rooted in the
mindset of economic theorists of all stripes. The fields of Industrial
Organization, Information Economics, and International Trade, for
example, all have been fundamentally influenced by the insight that
commitment possesses a strategic virtue.

While the importance of commitment has surfaced in a wide
range of papers, a common set of assumptions unite the various
examples.  Specifically, the advantage from commitment is modeled
as springing from a combination of two assumptions. First, moves in
the game are sequential, with some players committing to actions
before other players select their respective actions, and, second, the
late-moving players perfectly observe the actions selected by the
first movers. These assumptions are so frequently combined that it
is easy to forget that they are not equivalent. The purpose of this
paper to disentangle these two assumptions, in order to determine if
an advantage to moving first remains when rival players imperfectly
observe the actions selected by the first movers.

To investigate this issue, I consider a noisy-leader game, in
which one player moves first and then a second player observes a
signal of the first-mover's actual selection before making his own
move. With respect to the signal technology, I impose only a "non-
moving support” assumption, whereby each of a fixed set of signals is
possible for any action that the first mover might select. This allows
that the signal may be very well correlated with the actual choice of
the first mover, perhaps even alimost perfectly so.



The basic result is striking. Assuming that the second-mover's
best-response correspondence is single-valued, the set of pure-
strategy Nash equilibrium outcomes for the noisy-leader game
coincides exactly with the set of pure-strategy Nash equilibrium
outcomes for the associated simultaneous-move game. With even
the slightest degree of imperfection in the observability of the first-
mover's selection, therefore, the strategic benefit of commitment is
totally lost.

The paper proceeds as follows. 1 present a simple motivating
example in Section 2, and characterize the result for general
commitment games in Section 3. Next, in Section 4, I investigate
whether an advantage to commitment might reappear in the context
of mixed-strategy Nash equilibria. Concluding thoughts are offered
in Section 5.

2. AN EXAMPLE

Consider a simple 2x2 setting, in which there are two players
who each choose one of two actions, C and S. The payoff matrix is:

S C
S (5,2) (3,1)
C (6,3) (4,4)

The (S,S) outcome is the "Stackelberg outcome,” since this is the
unique subgame perfect equilibrium outcome for the game in which
Player 1 moves first in a perfectly-observable fashion. The unique
Nash equilibrium outcome of the simultaneous-move game is (C,C),
and this corresponds to the "Cournot outcome."!

IThe payoffs selected herc bear a resemblence to those found in the traditional
Cournot/Stackelberg quantity games (with S denoting the Jleader (follower)
output for Playcr | (2)). While the results described below also apply to thesc
traditional games, I focus on the 2x2 game because of its simplicity and because
it is amenable to mixed-strategy analysis in a later section.



Consider next the noisy-leader game. In this game, a pure
strategy for Player 1 is simply an action, a; € {C,S}. Let the signal
received by Player 2 be denoted by ¢, and assume for simplicity that
¢ either takes value C or S. The signal technology works as follows:

Prob(¢=S|S)=1-¢ = Prob( ¢ = C| Q).

where € € (0,1). In other words, when Player 1 chooses a particular
action, the probability that Player 2 will observe a signal specifying
that same action is 1 - €. A pure strategy for Player 2 is then a
function, a,(¢), where a, e {C,S} for all ¢.

The noisy-leader game admits no off-equilibrium-path
information sets, and so it suffices to look for Nash equilibria. It is
instructive to consider first the possibility that Player 1 selects his
Stackelberg leader strategy, a; = S. Suppose, then, that this strategy
is played in a Nash equilibrium of the noisy-leader game. Player 2's
strategy then must be a best response against a; = S, and as a
consequence Player 2 must select S no matter what signal he
receives; i.e., a;(¢) =S is Player 2's best response to a; = S. But, since
Player 2's best reply is to ignore the actual signal value, it follows
that Player 1 can induce the higher defect payoff of 6 by deviating to
C. The Stackelberg outcome therefore fails to emerge as a Nash
equilibrium outcome for the noisy-leader game, and this is true no
matter how precise the signal may be (i.e., no matter how small is ).

In fact, the unique pure-strategy Nash equilibrium of the
noisy-leader game occurs when Player 1 selects C and Player 2 also
selects C for all signal values (i.e., a; = C and a,(¢) = C). This seems a
peculiar result when e is small. Would not Player 1 deviate to S and
establish his Stackelberg advantage? The key pont is that when
Player 2 expects Player 1 to follow the equilibrium strategy, Player 2
implicitly reasons that the S signal can arise only if an "incorrect”
signal is generated. Given this interpretation, player 2 disregards the
signal and plays C even if the S signal is received. Player 1 is then
unable to affect player 2's choice, and so Player 1's first-mover
advantage is completely lost.



3. A GENERAL MODEL

The results described above are easily generalized. To begin, I
define a two-person simultaneous-move game G as follows. Let Aj
be a finite action space for Player i, and let a; represent an element
of this set. Player i's payoff function is then u;(a;,a;). A pure-
strategy Nash equilibrium for the simultaneous-move game G is thus
any strategy pair, (3;,3,), such that u;(3;,3,) > u;(a;,3,) and uy(3;,%,),
> uy(4;,a5) for all a; € Ajand a, € A,.

In the noisy-leader game I', a pure strategy for Player 1 is
again an action a; e A;. Player 2, however, oberves a signal, ¢, before
selecting his action. If & is the range of possible values for ¢, then a
pure strategy for Player 2 is a function, a,:®—>A,, and I shall write
this strategy as a,(¢). As for the signal technology, I assume that @ is
finite and define f(¢|a,) to be the probability of the signal ¢ given
Player 1's actual action a;. Most importantly, a non-moving support
property is assumed, whereby @& is independent of a; and f(q>|a1) >0
for all $ € & and a; e A,.

Two points should be stressed about the signal technology.
First, even though the signal support is independent of Player 1's
action, the signal may be very well correlated with the actual action
of Player 1, and this correlation in fact may be almost perfect.
Second, the non-moving support assumption implies that no off-
equilibrium path information sets exist, and so the appropriate
solution concept is Nash equilibrium.

The payoffs facing the players in the noisy-leader game are
denoted by v;(a;,a5(¢)), where:

vi(a;,22(0)) = 2. £(¢ [a))uj(a;,a(9))

A pure-strategy Nash equilibrium for the noisy-leader game then
consists of a strategy pair, (3;,9,(0)), such that v,(2;,3(0)) =
vi(a;,3,(0)) and vo(3;,3,(9)) = v,(3;,a,(¢)) for all a; € Ay and for all
functions a,(9).



In order to compare the equilibrium outcomes of the two
games, it is useful to define the best-response correspondences in the
simultaneous-move game. Let R;(a,) denote the set of a; values that
maximize u;(a;,a;) over A;. Define R,(a;) symmetrically for Player
2.  Finally, the basic results are most easily reported under the
further assumption that for any action by Player 1, a unique best-
reply action exists for Player 2; in other words, I assume below that
R,(a;) is single-valued.

A couple of observations now may be made:

Observation 1: In any pure-strategy Nash equilibrium of the noisy-
leader game T, 4,(¢) = R,(3d).

In a pure-strategy Nash equilibrium, Player 2's strategy must be
optimal given the equilibrium strategy of Player 1; consequently,
Player 2 selects his best-reply action for all signal values, no matter
how wunlikely the given signal may be under the hypothesized
equilibrium.  Since Player 2 therefore ignores the signal's value, a
deviation by Player 1 does not affect Player 2's selection, and so
Player 1 must be choosing a best reply as well:

Observation 2: In any pure-strategy Nash equilibrium of the noisy-
leader game T, 3, € R (Ry(3))).

With these observations in place, it is now clear that the pure-
strategy Nash equilibrium outcomes for the simultaneous-move and
noisy-leader games can be described simply as action pairs.
Specifically, an action pair (4;,,3,) forms a pure-strategy Nash
equilibrium outcome for G if the same action pairing constitutes a
Nash equilibrium for this game. Similarly, for T, an action pair (a;,3,)
is said to form a pure-strategy Nash equilibrium outcome if the
strategies 4, and 3,(¢) =4, form a Nash equilibrium for T.

The primary proposition now may be stated:



PROPOSITION: The sets of pure-strategy Nash equilibrium outcomes
for the simultaneous-move game G and the noisy-leader game T

coincide.

The proof is simple. Suppose that an action pair (3;,3,) forms a Nash
equilibrium outcome for I'. Then, using Observations 1 and 2, it is
necessary that 4; € R;(3,;) and 4, = R,(4,). These conditions also
imply that this action pair forms a Nash equilibrium outcome for G.
Next, if the action pair (3;,3,) forms a Nash equilibrium outcome for
G, then 3; € Ry(3,) and 3,=R,(4;) is necessary. Now define strategies
for T so that Player 1 selects the action 3; and Player 2 selects the
action 3, (for every possible signal). These strategies then form a
Nash equilibrium for T, and so the given action pair forms a Nash
equilibrium outcome for T.

In interpreting this proposition, it is useful to identify two
kinds of first-mover advantages. First, as in Stackelberg's quantity
game, a first mover can gain a strategic benefit by committing to an
action that is not in his best-response correspondence. A second
benefit from moving first emerges in games with multiple
simultaneous-move Nash equilibria, such as the classic Battle-of-the-
Sexes game, since a first mover can then select his favorite such
equilibrium. The proposition above, however, indicates that both of
these advantages are eliminated if the first-mover's choice is not
perfectly observed.

4. COMMITMENT AND MIXED-STRATEGY EQUILIBRIA

Up to now, I have focused entirely on pure-strategy Nash
equilibria.  This raises the question as to whether an advantage to
commitment might reappear in the context of the mixed-strategy
Nash equilibria of the noisy-leader game. The simple 2x2 example
developed above provides a tractable framework within which to
explore this issue.

To this end, consider again the noisy-leader game for the 2x2
example. The interesting case is when ¢ is small, and so it is assumed
henceforth that & < 1/4. It is now possible to determine the full set of



Nash equilibria for the noisy-leader game. Let A be the probability
that Player 1 plays S; thus, A is Player 1's (possibly mixed) strategy.
Next, let n(¢) be the probability that Player 2 plays S after observing
the signal ¢. Recall now that there is only one Nash equilibrium of
the noisy-leader game in which Player 1 does not mix; this
equilibrium occurs when both players select C with probability one (A
=0="n(9)).

The second possibility is that Player 1 mixes (A € (0,1)). Given
e < 1/4, it is direct to confirm that a Nash equilibrium does not exist
in which Player 2 chooses a pure strategy (n(¢) € {0,1} for all ¢). Itis
also easily verified that a Nash equilibrium does not exist in which
Player 1 mixes and Player 2 mixes for all signal values (n(¢) € (0,1)
for all ¢). Thus, if additional Nash equilibria exist, they involve
Player | mixing and Player 2 mixing for exactly one signal value.

Calculations reveal that only two such cases produce mixed-
strategy Nash equilibria. Consider first the case in which Player 2
mixes when the signal is C and plays S for sure when the signal is S
(n(C) € (0,1) and n(S) = 1). A Nash equilibrium of this sort does in

fact exist, and calculations indicate that it is defined by:
A= 1-¢ and n(C) = (1-4e)/(2—4¢).

A novel feature of this equilibrium is that Player 1 selects C less
often as the signal gets more precise. This pattern ensures that
Player 2's posterior probability of the S action from Player 1
following a signal indicating C is constant and independent of €. This
in turn makes Player 2 willing to mix when the signal is C, even
when the signal is very precise.

The second case occurs when Player 2 mixes when the signal is
S and plays C when the signal is C (n(S) € (0,1) and n(C) = 0).

Calculations reveal a mixed-strategy Nash equilibrium of this variety:
A =¢ and n(S) = 1/(2 - 4e).

Notice in this case that A converges to zero as & goes to zero; in other

words, as the noise gets small, Player 1 plays S less and less often.



This combination of limits ensures that Player 2 maintains the
critical level of uncertainty upon observing ¢ =S, so that Player 2 is
then willing to mix for all € > 0.

Several points can now be made. First, the addition of noisy
leadership results in the existence of mixed-strategy Nash equilibria
even though the simultaneous-move game possesses no mixed-
strategy Nash equilibrium. Second, one mixed-strategy Nash
equilibrium outcome of the noisy-leader game converges as the noise
(i.e., €) goes to zero to the Stackelberg outcome. The other mixed-
strategy Nash equilibrium outcome of the noisy-leader game,
however, converges to the Cournot outcome. Third, as always, the
simultaneous-move game Nash equilibrium outcome, (C,C), survives
also as a pure-strategy Nash equilibrium outcome for all e in the
noisy-leader game. Thus, the Stackelberg outcome can be
approximately recovered from one mixed-strategy Nash equilibrium
for the noisy-leader game when observability is "close” to perfect,
but there 1is certainly no guarantee that this mixed-strategy Nash
equilibrium will in fact obtain.

5. CONCLUSION

Models of commitment or first-mover advantages have
profoundly affected a number of fields in economics. These models
make two assumptions: one player moves before the other players,
and the first-mover's selected action is perfectly observed by the
other players. The purpose of this paper is to disentangle these two
assumptions and examine the strategic role of commitment when
other players observe imperfectly the first-mover's choice. The key
finding is that the advantage of committing to a course of action is
eliminated when other players observe this commitment with even
the slightest amount of imprecision.

The ideas developed above are easily extended in a variety of
directions. For example, the models that I formalize here all have a
single leader. While this assumption is met in a number of examples
of economic interest, there also exist models in which more than one
leader exists, and in which the leaders simultaneously make



commitments that influence the future course of the game.2 It is
straightforward, however, to see that the basic results developed
above carry over to the context of simultaneous-commitment models.
Regardless of the number of leaders, when other players observe a
leader's selection with even the slightest degree of imprecision, the
advantage of moving before others is extinguished.

For applied theorists, the key message of the paper is that the
many predictions derived from models with commitment may
require reconsideration. Apparently, these predictions are valid only
for settings in which the committed action is in fact perfectly
observed by subsequent players. This requirement is quite
stringent, and it would seem to be violated in a number of real-world
settings to which popular commitment models are thought to apply.

A role for commitment may reappear, however, in the context
of incomplete-information games. For instance, if other players are
incompletely informed of the first-mover's type, then the
equilibrium behavior of the first-mover in the associated noisy-
leader game is likely to differ considerably from that which would
occur were moves made simultaneously (Matthews and Mirman,
1983). Further, in repeated games of incomplete information, a long-
lived player may repeatedly play the Stackelberg strategy, in order
to develop the reputation for being a "commitment type,” who
always selects this strategy (Fudenberg and Levine, 1992).

Finally, the findings developed here also highlight a new
discontinuity for the sequential equilibrium (Kreps and Wilson,
1982) correspondence. For example, in the 2x2 game, when Player 1
moves first and his selection is perfectly observed, the unique
sequential equilibrium outcome is the Stackelberg outcome, (S,S).
With a slight amount of noise, however, the Cournot outcome, (C,C),
emerges as a sequential equilibrium outcome. Sequential
equilibrium thus fails in the limit to be upper hemicontinuous with
respect to the level of observability (i.e., €) in the game.3

2See, for example, Fershtman and Judd (1987), Kreps and Scheinkman (1983)
and Spencer and Brander (1983).

3As Fudenberg and Tirole (1991, p. 342) and Myerson (1991, p. 189) discuss in
other contexts, upper hemicontinuity of sequential equilibrium can be



The possibility of discontinuities in the sequential equilibrium
correspondence has arisen previously in other games. Most notably,
in the traditional signaling game, a slight amount of uncertainty as to
the sender's payoffs can induce separating equilibria in which the
sender's behavior differs radically from that which would occur were
the sender's preferences commonly known.# The new feature of the
discontinuity emphasized in the present paper is that it occurs in the
transition from an imperfect- to a perfect-information game whereas
the signaling-game discontinuity emerges in the transition from an
incomplete- to a complete-information game.

restored if the definition is extended to allow nature to choose some branches
with zero probability and if nature is allowed to tremble.

4Kreps, Milgrom, Roberts and Wilson (1982) and Fudenberg, Kreps and Levine
(1988) explore further implications of this general theme.
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