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Abstract

We consider the role of repeat business in resolving the paradox of Diamond [1971]. In each period,
consumers engage in sequential price search at a positive search cost. Consumers enforce pricing
discipline via a simple loyalty-boycott search rule that directs future-period searches away from firms
that raise prices in the current period. In consumers’ best equilibria, the equilibrium price decreases
continuously with the level of search costs, and the competitive outcome obtains as search costs
approach zero. We show further that Rotemberg and Saloner’s [1986] finding of countercyclical
markups does not arise in the presence of positive search costs.
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I. INTRODUCTION

Any economist studying search and pricing ultimately encounters the paradox of
Diamond [1971]: in a static market with a homogeneous good and price—setting firms, if
(i) firms have identical costs of production, (ii) consumers search sequentially for price
information, and (iii) the search cost is positive for each consumer, then all equilibrium
transactions must occur at the (common) monopoly price. Paradoxically, this is true no
matter how small is the level of search costs, but when search costs reach zero, the
equilibrium price jumps discontinuously to the competitive level. Diamond’s key idea is
that the presence of positive search costs allows firms to shade prices upward without
losing any customers; such price shading will continue until each firm charges its most
preferred price.

Previous research has attempted to resolve the Diamond paradox by relaxing one
of the conditions (i), (ii) and (iii). Thus equilibrium prices below monopoly levels may
arise because firms have different costs, and thus different monopoly prices; this permits
consumers to pose a credible threat to search out the low—cost firms. Consumers may
employ "nonsequential" search technologies by which multiple prices are observed in a
single search, or sequential search may be undertaken at zero cost by some subset of

consumers.!

! Reinganum [1979] studies search equilibria in the presence of exogeneous cost differences.
Nonsequential search is considered by Salop and Stiglitz [1977] and Burdett and Judd [1983],
among others. Varian [1980], Rob [1985], Stahl {1989] and others study models in which a
subset of consumers may search at zero cost. Bagwell and Ramey [1992a] explore another
route to resolving the Diamond paradox, which preserves (i)—(iii) but introduces
"money—burning" advertising that firms use to coordinate consumer purchases. In that
model, search threats are credible because advertising rivalry generates endogenous
differences in firms’ production costs and monopoly prices. Finally, Wolinsky [1986]
proposes a resolution of the paradox that involves a slight relaxation of the assumption of
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In this paper we provide a resolution of the Diamond paradox that maintains
assumptions (i), (ii) and (iii), and instead reconsiders the standard search problem in an
explicitly dynamic environment, in which market trading occurs period after period. Our
central idea is that firms’ incentives to shade price upward may be affected by the
implications of price—shading for repeat business: a price—shading firm may not lose any
business in the current period, due to positive search costs, but consumers can credibly
boycott the firm in future periods by directing their future searches to rival firms.
Conversely, consumers can show loyalty to a firm that eschews price—shading by
returning to the firm in the following period. This loyalty—boycott search rule represents
a simple and empirically plausible consumer search strategy, especially for low—cost,
frequently—purchased items (groceries, restaurants, hardware, etc.).

We find that when consumers use the loyalty—boycott search rule, dynamic
equilibria exist in which prices are below monopoly levels; moreover, reductions in search
costs allow equilibria with lower prices to be sustained, and equilibrium prices approach
the competitive limit in a continuous fashion as search costs are reduced to zero. Thus in
the presence of repeat purchases, the natural monotonic relationship between price and
search costs can arise, even when firms are identical, consumers search sequentially within
each period, and search is costly for all buyers.

Our model confronts firms with a fundamental tradeoff between the incentive to
""cheat" consumers in the current period with unexpected price hikes, and the long—run
loss of equilibrium profits caused by this price—gouging. Consumers use their ability to
search to alter this tradeoff. Intuitively, when search costs are high, firms can raise prices
a great deal without losing current—period sales, and thus the gains from cheating are
high; in this case, we show that high equilibrium prices are needed to dissuade firms from

cheating, both because they generate high equilibrium profits and because they dampen

product homogeneity.



the current—period gain from cheating. For low search costs, however, only small price
increases are feasible in the current period, and the gains from cheating are small; it is
then possible to sustain equilibria with low equilibrium prices and profits. Gains from
cheating are completely eliminated as search costs approach zero, and so firms are willing
to accept equilibrium prices arbitrarily close to competitive levels.

We extend our model by introducing random period—to—period fluctuations in
consumer demand. This allows us to reconsider the results of Rotemberg and Saloner
[1986], who study the implications of demand fluctuations for equilibrium pricing in a
dynamic price—setting model with zero search costs. Rotemberg and Saloner find that in
firm—optimal equilibria, i.e. equilibria that give firms the highest profits over the set of
equilibria, equilibrium markups are lower in periods of greater demand. We show, in
contrast, that when positive search costs are introduced, equilibrium markups in
firm—optimal equilibria are independent of the level of demand; this arises from the fact
that with positive search costs, monopoly pricing can always be sustained via simple
repetition of the static Nash equilibrium. Moreover, in consumer—optimal equilibria,
periods of greater demand are characterized by higher equilibrium markups. Thus
Rotemberg and Saloner’s finding of countercyclical markups does not extend to the case
of positive search costs.?

Our work is related to past literature on reputation and product quality, including
Farrell [1980], Klein and Leffler (1981], Shapiro [1983] and Allen [1984]. In these papers,
the prospect of repeat—business punishments gives firms an incentive to invest in

experience attributes of the product, i.e. attributes that consumers can observe only after

2 The empirical literature on the cyclicality of price—cost margins is not conclusive, but our
prediction of procyclical margins does find some support. In particular, using panel data for
284 industries over 1958—1981, Domowitz, Hubbard and Petersen [1986a,1986b,1988] find
that price—cost margins are procyclical in concentrated nondurable goods industries. Bils
[1989], Rotemberg and Saloner, and Rotemberg and Woodford [1991% report evidence of
countercyclical markups.



purchasing the product. We build on this work by considering how repeat business
influences search attributes, which can be observed prior to purchase, and in particular we
show that the effectiveness of repeat—business punishments is critically linked to the level
of search costs. The idea that repeat—business punishments can discipline pricing has
been considered by Okun [1980], who informally discusses a variety of links between
pricing and repeat business, and Bagwell and Peters {1988], who consider the role of cost
conditions in determining the credibility of repeat—business punishments in a two—period
model. Our ideas are also related to some recently—developed dynamic price—setting
models that incorporate search costs, but not repeat—business punishments; these include
Benabou [1988], Fershtman and Fishman [forthcoming], Fishman and Rob [1991], and
McMillan and Morgan {1988].

The plan of the paper is as follows. Section II lays out the basic model, and
Section III considers a class of equilibria in which firms choose a common price along the
equilibrium path. Section IV establishes a relationship between the equilibrium set and
search costs that gives a resolution to the Diamond paradox. Section V extends the basic
model to incorporate rahdom demand, and considers the relationship between demand

levels and equilibrium prices. Section VI concludes.
II. BASIC MODEL

Our model is comprised of a finite number of firms and a continuum of consumers,
who trade a single homogeneous good in each of a countable infinity of periods numbered
t = 1,2,... . Firms are indexed by i = 1,...,N, while consumers are taken to be uniformly
distributed on [0,1] with unit mass. The utility that each consumer derives in a given
period from purchasing q units of the good at price p is U(q) — pq, where U’ > 0, U’’ <

0. Let D(p) denote the demand function, which gives the utility—maximizing q for given



p; we have D’(p) < 0 for p < U’(0). The maximized level of utility is denoted by V(p).
Each firm has a constant unit cost of ¢, which is assumed to satisfy 0 < ¢ < U’(0).
Fixed costs are taken to be negligible.? The profit per consumer of a firm charging price

p is written:

II(p) = (p — ¢)D(p)

A firm that captures mass m of consumers earns mII(p). We assume that II is strictly

concave in p, and thus it has a unique maximizer p* € (c,U’(0)). Note that the monopoly

price, which is p*, is independent of m under our assumption of constant unit costs.
Consumers are assumed to be initially uninformed about the prices that firms

charge in a given period, but consumers can acquire price information through search.

We model this situation by means of the following one—shot trading game, which governs

the trading that occurs within each period. The one—shot trading game consists of three

stages:

Stage 1. Firms simultaneously choose prices P i=1,.,N. At the same time, each
consumer chooses which firm he will visit initially. Consumers incur no cost for
this initial search.

Stage 2. Each consumer observes the Stage 1 price choice of the firm that he visited in
Stage 1. Consumers then simultaneously decide whether or not to visit a second
firm. A search cost of k > 0 is deducted from utility if a second search is

undertaken.

3 Our results are altered somewhat by the addition of nonnegligible avoidable fixed costs; see
note 10 below.



Stage 3. Each consumer that undertook a second search in Stage 2 observes the Stage 1
price choice of the second firm visited. Consumers then purchase as many units as

desired from firms whose prices they have observed.

This one—shot trading game is a simple version of the Diamond [1971] model.
Specifying a zero search cost for the initial search is a standard method for ruling out
cases in which the sole equilibrium outcome has consumers staying out of the market.
The limitation to two searches within a period creates no loss of generality, as our results
can be easily extended to the usual case of sequential search. In either case, the key
assumption that drives our results is that a consumer can observe only one additional
price each time he incurs the search cost.

It is well known that in every sequential equilibrium of the one—shot trading game,
all firms choose p; 2 p*, and all firms with positive equilibrium market share choose P, =
p*. This remains true no matter how small k is. If k = 0 is specified, however, then there
appear equilibria in which all active firms charge p;, = ¢, and all equilibria in which
consumers search twice have this form. This severe discontinuity between competitive
and monopolistic equilibrium pricing at k = 0 is known as the Diamond paradoz.

Now consider the infinite repetition of the game, in which the one—shot trading
game is repeated period after period. The structure of information with respect to
current—period choices is given above, but now we need to say what information agents
possess with respect to choices that were made in preceding periods. Let hit denote the
information that Firm i possesses in period t concerning the pricing, search and purchase
decisions that have been made in periods 1,2,...,t—1, which is called Firm i’s history at .
Correspondingly, hwt denotes the history at t that is possessed by Consumer w € [0,1].

There are many possible ways to specify the relationship between agents’ histories

and the actual choices made in preceding periods, and it turns out that our results hold



for a broad class of such specifications. In particular, we impose only two restrictions:
(i) h , contains at least the names of the firms that Consumer w had himself visited in
the preceding period, together with the prices observed during those visits; and (ii) by
does not identify the search or purchase decisions of any individual Consumer w, nor does
hwt identify the search or purchase decisions of any Consumer w’ # w, although histories
may contain the distributions of these decisions across consumers.4 Beyond this,
histories for firms and consumers are unrestricted, and they may contain anything from
the full record of past decisions and observations to no additional information.

A strategy for Firm i is given by a sequence of mappings Ty Hit - IR_+_, t=12,..,
where Hit is the set of possible hit’ and 0y Maps histories to period t price choices. A
strategy for Consumer w is taken to be a pair of sequences of mappings fwt: Hwt -
{1,...,N}, st Hyp X IR+ - {1,...,N}, t =1,2,..., where H . gives the possible ot fwt

maps from histories to initial search decisions in period t, and s , maps from histories and

wt
price observations to second search decisions in period t. By convention, s

wt = L
denotes a decision not to make a second search in period t. A consumer’s Stage 3
purchase decision is specified simply as the quantity D(p) purchased from the firm having
the lowest price observed in the period.s

Payoffs for the repeated game are given by discounted payoff streams derived from

the sequence of one—shot games, where r > 0 gives the common rate of discount. We

consider a form of sequential equilibrium for this game, which is given by sequences

¢ Note that condition (i) allows a consumer to be "forgetful" with respect to all but the most
recent price observations. The "consumer anonymity” assumption embodied in condition

(ii) is needed to rule out equilibria in which consumers are deterred from making search or
purchase decisions that maximize current—period utility by the threat of triggering a
low—utility outcome in future periods. In such equilibria the consumers’ threat to make a
second search can be substantially neutralized. We feel that equilibria of this sort place an
unrealistically large strategic weight on the decisions of individual consumers.

5 This specification of Stage 3 decisions causes no loss of generality under the consumer
anonymity assumption.
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%wt’swt’ t =1,2,..., for all i and w, that satisfy the following conditions.

(A) For each Firm i, for each t and each hit € Hit’ ‘;is for s = t,t+1,... maximizes Firm i’s
discounted profit stream, conditional on hit’ from period t forward, where the path
of profits is computed relative to some conjecture by Firm i as to the strategies of
other firms and consumers. The path of decisions for periods 1,2,...,t—1 implied by
Firm i’s period t strategy conjecture must be consistent with hit' Further, Firm i
must conjecture that other firms and consumers will follow their equilibrium
strategies for periods t,t+1,... .

(B) For each Consumer w, for each t and each hwt € Hwt andpeR,,f (h  )and

wt(hwt’p) maximize period t utility, where prior to visiting any firm, Consumer w

~

s
conjectures that the firm’s period t price is chosen according to its equilibrium

strategy.

Equilibrium condition (A) reflects the "perfection" requirement that each firm’s
decisions are payoff—-maximizing at every decision point that might be reached,
conditional on some conjecture by the firm as to how other agents play the game in past,
present and future periods. Further, the firm’s strategy conjecture for past periods must
agree with the observed history of decisions, and the firm must conjecture that other’
agents play according to their equilibrium strategies in the present and all future periods.
Condition (B) gives the corresponding perfection requirement for consumers’ visitation
decisions; consumers maximize current—period utility because, under our restriction on
allowable histories, a consumers’ own decisions cannot affect the future path of play.
Prior to making visits, consumers conjecture that prices are determined according to
firms’ equilibrium strategies. Importantly, if a consumer observes a price on his first visit

that is inconsistent with the visited firm’s equilibrium strategy, the consumer still



conjectures that other firms follow their equilibrium strategies.®
III. SINGLE-PRICE EQUILIBRIA

We focus attention on a simple class of sequential equilibria in which along the
equilibrium path, all firms choose a common price in every period. A sequential
equilibrium is a single—price equiltbrium if there is a price p such that the following is
true: for every Firm i and every t, if hit contains no evidence of a deviation by any firm
or any consumer, then Efit(hit) = p The range of prices p that support single—price
equilibria is particularly easy to characterize, as we demonstrate in the following

proposition.

Proposition 1. The price p supports a single—price equilibrium if and only if p > ¢ and:

1 4+ -

(1) (pg(p.k)) < Ti(p)

r

where:

(2) pd(f),k) = min{ i) + d(i),k), p}’< }

6 Conditions (A) and (B) give a form of the sequential rationality criterion of Kreps and
Wilson [1982] that incorporates structural consistency in the formation of the firms’ beliefs.
The requirement that agents must conjecture that other agents follow their equilibrium
strategies in the current and future periods, even when other agents have been observed to
have deviated from their equilibrium strategies in the past, reflects the principle of
backward—induction rationality, according to which agents posit that subsequent decisions
are rational conditional on any decision point that might be reached. Our results would be
completely unaltered if agents were instead free to form any conjecture about another agent
who has been observed to have deviated from his equilibrium strategy. It is important,
however, that agents should regard other agents’ deviations from the equilibrium strategies
as being uncorrelated; see Kreps and Ramey [1987] for further discussion of the latter point.



— 10—

and d(p,k) > 0 is defined by:

~

(3) V(p + d(p,k)) = V(p) — k
Proof. Given in the Appendix.

Inequality (1) gives a necessary and sufficient condition for firms to be willing to
choose their strategy in the single—price equilibrium. On the left~hand side of (1) is the
maximum profit that a firm can obtain in a given period by deviating from the
equilibrium strategy: p + d(p)k) gives the maximum price that a firm can charge in a
period without inducing its initial visitors to make a second search, as indicated by (3); a
firm’s best deviation sets pd(p,k) = p + d(p,k) if this price lies below the monopoly price,
and otherwise it sets pd(p,k) = p*. On the right—hand side of (1) is the discounted profit
stream that a firm obtains from following its equilibrium strategy. If a deviation leads
the firm to lose all sales in future periods, then the equilibrium payoff is preferred to the
deviation if and only if (1) holds.

Thus the key to the characterization is that a firm loses all future sales when it
deviates. Consumers enforce this threat by means of a simple loyalty—boycott search rule,
by which they continue to return to a firm if it charges p, but switch to another firm in
the following period if the firm deviates from p It is important to note that in
supporting single—price equilibria with p < p*, it suffices for consumers to boycott only
firms that raise their price above p, while remaining loyal to firms that chargep or less.
The boycott threat is credible because under the equilibrium conditions, consumers may
conjecture that the deviating firm chooses a price no lower than p in the periods following

the deviation, while other firms are conjectured to charge p. This search rule, which
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places minimal informational and computational requirements on consumers, appeals to
intuition as a realistic hypothesis concerning consumer behavior. Nonetheless it serves to
deliver the largest credible punishment to deviating firms, and thereby supports the

largest possible range of equilibrium prices.”
IV. A RESOLUTION OF THE DIAMOND PARADOX

In this section we show that the Diamond paradox is resolved via selection of
single—price equilibria that have the lowest p among all single—price equilibria; we refer
to these as the consumer—optimal equiltbria. Let the consumer—optimal equilibrium price

be written pc.8 Denote the static or one—time incentive to cheat as:

~

Q(p.k) = T(py(p,k) — (p)

With this, (1) may be rewritten in the alternative form:
T

This expression indicates clearly the tradeoff between the static incentive to cheat,

7 In the language of Abreu [1988], the loyalty—boycott search rule serves as an optimal penal
code since it gives a sequential equilibrium that drives a firm to its minmax value. The
simplicity of the strategies needed to support the optimal penal code in this case contrasts
strongly with the complexity of the decision rules that are often needed in other contexts,
e.g. oligopolistic collusion with quantity—setting (Abreu [1986]). Note further that outcomes
induced by a firm’s deviation from the single—price equilibrium are on the Pareto frontier of
outcomes for the game, and thus the punishments are renegotiation—proof (see Abreu and
Pearce [1991]).

8 Consumer—optimal equilibrium outcomes differ only in the distribution of consumers across
firms.
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represented by the left—hand side, and the future equilibrium profits forgone due to
cheating, given on the right—hand side.
Observe that future equilibrium profits are zero when the equilibrium price is c,

~ *
but they increase as p rises toward p , as shown in Figure 1. The incentive to cheat is

~ N

positive at p = ¢, and is zero at p = p*; thus it is necessary that the curves Q(p,k) and
H(p)/r intersect for some p Further, Figure 1 depicts the incentive to cheat as a
decreasing function of p, which implies a unique intersection between ¢ and p* of the
curves Q(p,k) and H(p)/r This intersection gives the consumer—optimal equilibrium
price p ,, since (1) holds with equality at p =D and is violated for all p <D,

Is it plausible to assume that the incentive to cheat decreases as the price rises?
For p close to p* we have pd(p,k) = p*, and thus Q(p,k) = H(p*) - H(p), which decreases
in p But the same may not hold for smaller levels of p, where pd(p,k) = p + d(p,k).
Two effects emerge in this case. On the one hand, the concavity of the profit function
ensures that the benefit of a price hike of a fixed size diminishes as the equilibrium price
rises toward p*. This effect suggests that the incentive to cheat is lower at higher prices.
On the other hand, however, as the equilibrium price rises, the value to consumers of a
second search is reduced, and they will therefore tolerate a larger price hike before seeking
out a second firm. This effect suggests that the incentive to cheat increases with the

equilibrium price.

To see this second effect, we may use (3) and V’(p) = —D(p) to obtain:

~

bog(pX)  D(p)
= x >1
o D(py(p.k)

Thus an increase in p raises the best deviant price by even more. This effect tends to

raise the incentive to cheat as p rises, and for Q(p,k) to be decreasing in p, the profit
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function itself must be sufficiently concave in price to offset the effect.
The needed concavity condition may be derived as follows. Differentiating Q(p,k)

for the case pd(;A),k) = p + d(;;,k) and rearranging gives:

@Q(ﬁ,k) A Pd(P:k)
=D(p) [ ¥'(p)dp
% D
where:
1/)(p)z(p - ¢)D’(p)
D(p)

It follows that 9’ (p) < 0 is a sufficient condition for the incentive to cheat to decrease in

price. Further, 9’(p) < 0 holds if and only if:

_a—pD’(p)
dp  D(p)

(4)

On the left—hand side of (4) we have the slope of the demand elasticity, which
customarily is taken to be positive to assure existence of a profit—maximizing price. (4)
indicates that a more stringent condition on the slope of elasticity may be needed, in
order to introduce a sufficient amount of concavity into the profit function to make
Q(;;,k) decrease in p It is straightforward to show that D’’(p) < 0 implies (4) when
p2c

Henceforth we assume that (4) holds, and this leads us to the following

proposition.
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*
Proposition 2. (a) p_ exists and satisfies p_ € (¢,p ).

(b) P, is continuous and increasing in k and r, and satisfies:
lim lim
k-0 Pc T a0 Pe =€

The proof of part (b) is given in Figure 1. When the search cost declines, d(i),k) is
reduced. This lowers the gain from cheating for prices on the lower range of (c,p*), ie.
for p < p’, where p’ is defined by p’ + d(p’ k) = p*. This shifts the curve Q(i),k)
downward in a continuous way, which reduces P, continuously. Since d(;),k) converges to
zero as k approaches zero, the curve Q(;;,k) approximates the horizontal axis for
sufficiently small k, and D, is driven to zero. The effect of r is demonstrated in a similar
way, except that a decline in r shifts the curve H(p)/r upward.?

It follows that the consumer—optimal equilibria exhibit a natural relationship
between market power and search costs: markups are reduced continuously as search
costs fall, and competitive pricing emerges as search costs approach zero. What drives
this result is that consumers’ threat to make a second search constrains firms’ gains from
deviating in a given period: if the cost of a second search is small, then a firm’s best
deviation from the single—price equilibrium involves only a small increase in price, which
yields a small increase in profits. Thus lower search costs result in a smaller incentive to
cheat. This in turn implies that lower equilibrium prices may be supported when search
costs decline: the lower equilibrium prices act to restore the balance between the static
incentive to cheat and the corresponding loss of future equilibrium profits, both by

reducing the level of future equilibrium profits and by increasing the incentive to cheat.

9 (4) is needed to ensure that p  is continuous in k and r, but the remaining parts of
Proposition 2 continue to hold when (4) is relaxed.
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As search costs approach zero, the gains from cheating are everywhere driven to zero, and
outcomes with arbitrarily small equilibrium profits become sustainable.10

It is interesting to note as k approaches zero, the set of equilibrium outcomes
expands to the entire set of outcomes that generate positive profit, i.e. the outcomes that
dominate firms’ minmax payoff. Further, in contrast to the usual treatments of repeated
games, this "folk theorem"—~type result holds for a fixed positive level of the discount rate;,
here the gains from deviating are driven to the minmax level, in contrast to the standard
technique in which the punishment for deviating from a positive—profit equilibrium is
made arbitrarily large by reducing r to zero. Proposition 2 also considers the effect of r
on the consumer—optimal equilibria: P, becomes smaller as r is reduced, and P,
appoaches c as r approaches zero, in conformity with the conventional folk theorem. 1!

Proposition 2 shows that the natural relationship between search costs and
equilibrium prices is possible in the presence of repeat business, but necessity of the
relationship does not follow due to the existence of single—price equilibria with p > P,
Equilibria of the latter sort might reasonably be excluded, however, if firms are able
actively to coordinate the selection of a single—price equilibrium, and there are at least
three firms. To see this, note that any two firms can credibly propose to serve the market

at a price p that satisfies (1), as such a proposal gives a single—price equilibrium for the

10 The result is altered if there is an avoidable fixed cost of F > 0 per period that firms must
incur if they post a price in Stage 1. A "shutdown" strategy that allows firms to leave the
market must be added to firms’ available Stage 1 choices, and it is assumed that consumers
search only among the firms that have chosen not to shut down. In this case, the avoidable
fixed cost bounds the eﬁuilibrium prices above c¢: in order to support a single—price

equilibrium with p # p , at least two firms must choose not to shut down in each period, and

this is possible if and only if (p — ¢)D(p) > 2F. As k-0, the latter constraint becomes
binding in the consumer—optimal equilibrium. Note that the constraint is weakened as F
falls, and the results of the text emerge as F-0.

it Note however that the limiting outcomes differ as k and r become large: we have 11(:1;1 P,

*

: *
< p , as can be seen from Figure 1, while clearly lim

I-o pC:p'
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subcoalition consisting of consumers and the two firms. Further, for any single—price
equilibrium with p > P there is at least one pair of firms that can improve their payoff
by dividing the consumers among themselves at a price slightly below f); this means that
for any such equilibrium, some subcoalition consisting of consumers and the two firms can
collectively benefit by agreeing to another equilibrium.

Consumer—optimal equilibria cannot be overturned in this manner, however, since
no group of firms can credibly propose a price below P, Thus when there are three or
more firms, the consumer—optimal equilibria are uniquely robust to this type of
coordination.!? Note that this selection procedure can be regarded as a form of price
competition, in which groups of firms make price proposals from the set of credible
proposals; here firms are able to communicate information concerning their intended
pricing policies, even though they are unable to communicate a commitment to an actual

price level. 13
V. DEMAND FLUCTUATIONS AND CYCLICALITY OF MARKUPS
In an important recent paper, Rotemberg and Saloner {1986] develop a model of

repeated trading in which (i) consumers can costlessly observe all current—period prices;

and (ii) the demand function shifts randomly from period to period according to an i.i.d.

12 The selection procedure closely mimics the logic of coalition—proof Nash equilibrium,
introduced by Bernheim, Peleg and Whinston [1987]. The argument of the text establishes
that if coalitions are restricted to selecting single—price equilibria, then any coalition—proof
equilibrium must be a consumer—optimal equilibrium. Further, a consumer—optimal
equilibrium satisfies coalition—proofness if and only if it cannot be overturned by a coalition
consisting only of firms; the latter can be assured in many cases through appropriate
specification of consumers’ equilibrium visitation strategies. It is argued in the Conclusion
that the restriction to single—price equilibria is actually quite plausible.

13 This kind of competition in price proposals is most sensible for firms having simple pricing
structures. Firms with extensive product lines or complex pricing rules may find
communication of pricing policy to be prohibitively difficult, which suggests that equilibria
with prices above the consumer—optimal level might be more easily sustained in such cases.
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random process. In Rotemberg and Saloner’s context, the unique Nash equilibrium
outcome of the one—shot game is the competitive outcome, and firms’ threat to revert to
this outcome allows dynamic equilibria with price above marginal cost to be sustained.
Rotemberg and Saloner consider firm—optimal equilibria, i.e. equilibria that maximize
firms’ profits over the set of equilibria, and they find that firm—optimal equilibrium prices
must be lower in periods with greater realized demand. This result is important in that it
gives a reason why markups might move countercyclically with fluctuations in aggregate
demand.

In this section we consider the sensitivity of Rotemberg and Saloner’s findings to
the introduction of imperfect price information. This can be done in a straightforward
way by incorporating random demand fluctuations into the model of the preceding
sections. We find that the presence of only a small search cost has a major effect on
Rotemberg and Saloner’s result: as long as k > 0, equilibrium markups are independent of
the demand realization in the firm—optimal equilibrium. Further, in the
consumer—optimal equilibrium, markups must be higher in periods with greater realized
demand.

Assume now that consumers are uniformly distributed on [0,M?] with total mass

MZ, where z € {H,L} and M1 > MV

> 0; state z = H is the "high—demand state," and
state z = L is the "low—demand state." The realization of z is determined independently
in each period, with -y € (0,1) giving the probability that z = H.14 Following Rotemberg
and Saloner, it is assumed that the realization z; of the demand variable in period t is

determined before any agents’ actions are chosen, and further that the realization is

14 This demand structure can be interpreted most directly in terms of a fixed population of
consumers who may be active or inactive in the market in any given period. In particular,

let there be a fixed population [O,MH] of consumers, each of whom is active with probability
one in the high—demand state, and with probability ML / MH in the low—demand state.
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public information; thus firms’ and consumers’ period t strategies may be conditioned on
z,. We require also that consumers’ period t histories contain the realization z, ;.

We focus on two—price equtltbria, which are sequential equilibria with the
following property: for every Firm i and every hit’ if hit contains no evidence of a
deviation by any agent, then ;rit(hit,zt) = pH for z, = H, and C}it(hit’zt) = IA)L forz, = L.
Thus two—price equilibria are indexed by a pair of prices pH and i)L that give the
equilibrium—path choices in the high—demand and low—demand states, respectively. The

following proposition gives a characterization of two—price equilibria that is similar to the

earlier characterization of single—price equilibria.

Proposition 3. The prices pH and pL support a two—price equilibrium if and only if:

R - 1 - -
(sa) Oy cnehM 4 - pehn® + 1 - nelmb

I

1 R R
MY+ — [rptmE 4 (1 - prelyml

(5b) (py(p™ )M ¢ m(plym®

where:
(6) py(pk) = max{ min{ p + d(pk), p }, ¢}
and d(p,k) is defined in (3).
The proof of this proposition is a straightforward adaptation of the proof of

Proposition 1 and is therefore ommitted. Inequalities (5a) and (5b) give the conditions

that rule out deviations by firms in the high—demand and low—demand states,
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respectively. Unlike the case of single—price equilibria, we may have £)Z < cin one of the
states, supported by the prospect of a high price in the other state. In such a case, it is
possible that i)z + d(;A)Z,k) < ¢, so that if the firm deviated in state z it would do best by
driving its customers away; in (6) the definition of pq is modified accordingly. As with
Proposition 1, this proposition relies on the use of a loyalty—boycott search rule whereby
a firm that follows the equilibrium strategy retains its customers in the following period,
whereas a firm that deviates loses its customers. Consumers need more information to
implement the search rule in the present context, however, since they must know the
state of demand in the current and preceding periods; this is not an unreasonable
assumption if the demand state is associated with broad and widely—publicized aggregate
economic conditions.

It is straightforward to verify that (5a—b) are always satisfied by £) = £)L = p*,
i.e. it is always possible to select an equilibrium in which firms choose the monopoly price
in each period. This follows simply from the fact that the unique sequential equilibrium
outcome of the one—shot game is the monopoly outcome when k is strictly positive. Since
these prices clearly give a firm—optimal outcome, it follows that markups in the
firm—optimal equilibria bear no relation at all to the demand realization once positive
search costs are introduced. Of course, this result relies on our particular specification of
demand fluctuations and production costs, in which the monopoly price is unaffected by
demand fluctuations; more generally, it may sometimes be plausible to suppose that
high—demand states would be linked to higher monopoly prices, which would lead to
procyclical markups in firm—optimal equilibria.!®

We now consider the consumer—optimal equilibria of the modified model. This

allows us to check the robustness of our earlier results to the possibility of demand

15 Bagwell and Ramey [1992a,1992b], however, consider a better deal property in which
monopoly prices are decreasing with the volume of demand; in this case countercyclical
markups may be the plausible prediction for firm—optimal equilibria.
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fluctuations; further, as argued above, consumer—optimal equilibria may be the most
reasonable outcomes when firms have the power to coordinate equilibrium selection, and
thus it is important to consider the relationship between markups and demémd in these
equilibria.

When looking for consumer—optimal equilibria of the modified model, there are
two key forces present, and it is useful to identify them at the outset. First, when the
demand state is high, the incentive to deviate is particularly acute, because an added
price hike is received on a larger volume of sales. Thus if equilibrium is to be maintained,
the high—demand equilibrium price must be adjusted to dampen the already—large
incentive to defect. Second, as in the preceding section, this dampening is accomplished
via the selection of a higher equilibrium price in the high—demand state, and this gives
rise to procyclical markups in the consumer—optimal equilibria.

The consumer—optimal equilibria will be derived in two steps: first, we describe
the set of £)H,£)L that satisfy (5a~b); and second, the consumer—optimal equilibrium
prices are located by maximizing consumer utility on this set.16 To begin, let Pa(f)L) give
the minimum level of pH that satisfies the high—demand equilibrium condition (5a) for a
given low—demand price £)L < p*, if (5a) can possibly be satisfied for the given £)L;
similarly, let Pb(i)L) give the minimum pH that satisfies the low—demand equilibrium
condition (5b) for given £)L < p*. The following lemma derives properties of the curves P*

and Pb.

16 Rotemberg and Saloner derive firm—optimal equilibria using a simple procedure that
exploits the fact that the objective function to be maximized, which is the firms’ equilibrium
profit stream, also gives the punishment for deviation. This procedure cannot be used to
derive consumer—optimal equilibria, however, since the objective and the punishment are
distinct. In approaching this more complex problem, we have opted to restrict attention to
the case of two possible demand states.
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- *
Lemma 1. (a) P2 is a continuous and strictly decreasing function of pL on [Ea,p ], where

*
Ea > 0 and Pa(ga) = p . Similarly, Pb is a continuous and strictly decreasing

~ * *
function of pL on [Eb,p ], where Qb > 0 and Pb(Eb) =D ;
b
(b) p* < p’;
(c) Pb(pL) < Pa(pL) at the level of pL such that Pa(pL) = pL;
(d) PP i strictly steeper than P? at any point of intersection.

Proof Given in the Appendix.

b that are established in Lemma 1.

Figure 2 illustrates the properties of P®and P
In particular, part (b) of the lemma ensures that P2 intersects the line pH = p* at a
strictly lower level of f)L than does Pb, while (c) implies that P intersects the 45° line at
a strictly higher level of £)L; thus P* and Pb must intersect each other at some point
above the 45° line, labeled X in Figure 2. Further, accorting to (d) this is the unique
point of intersection: Pb must be steeper than P2 at X because £)L exerts a relatively
stronger effect on pP through its effect on the profits from deviating in the low—demand
state, while the influence of I;L on P2 is relatively weaker since only i)H affects the profits
from deviating in the high—demand state.

The fact that the intersection point X must lie above the 45° line may be
understood intuitively in terms of the link between the current—period demand state and
the gains from deviating. When i)H = p*, the very low price i)L = Ea may preserve
equilibrium in the high—demand state, but it gives a strong incentive to deviate when the
low—demand state is realized; thus Pb must lie above P2 for small I;L. On the 45° line, in
contrast, prices are independent of state, and so at a given price the incentive to deviate
is greater in the high—demand state; due to (4), the per—customer returns from a price

hike are lower when the base price is increased, so that prices must be higherin the



—99 —

high—demand state to preserve equilibrium. This ensures that P? lies above Pb where the
curves cross the 45° line. Rotemberg and Saloner’s model differs in that lower prices are
required to preserve equilibrium in the high—demand state, since their assumption of zero
search costs implies that firms deviate by reducing, rather than increasing, their prices.

The shaded area of Figure 2 gives the set of pH and £>L that satisfy both (5a) and
(5b), and which can thus support two—price equilibria. The consumer—optimal
equilibrium selects consumers’ preferred equilibrium prices from the constraint set given
by the shaded area. The consumers’ objective function, denoted W(I;H,ﬁL), is taken to be
the expected value of total consumer utility, where expectation is taken with respect to
the total mass of consumers in the market:17

"H 'L

H., “H
W(p ,p7) z yMV(

o) + (1 = MPvph)

p

The following lemma relates the indifference curves of W to the curves P? and Pb.

Lemma 2. (a) For pH < pL, indifference curves of W are strictly steeper than P2 at every
point of intersection;
(b) For pH > pL, indifference curves of W are strictly flatter than Pb at every point of

intersection.
Proof. Given in the Appendix.

The relationship between indifference curves and the constraint set is depicted in

Figure 3. Below the 45° line, consumers strictly prefer to move upward along the

17 The function W/MH gives the expected utility obtained by each Consumer w € [O,MH]
under the interpretation of note 14.
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boundary of the constraint set, which is P2, toward the 45° line; further movement along
P%is preferred once the 45° line is reached. It follows that pH > pL is necessary in any
consumer—optimal equilibrium, i.e. consumer optimality requires that markups are higher
in the high—demand state. Thus the consumer—optimal equilibrium implies a relationship
between markups and demand that is the opposite of the relationship found in Rotemberg
and Saloner’s firm—optimal equilibrium.

The following intuition underlies this result. As shown in the proof of Lemma 2,
consumers’ desire to substitute between pH and pL is governed by the likelihood ratio of
consumer demand in the two states. Similarly, the effect of movements in pH and p on
firms’ equilibrium profits is related to this likelihood ratio, but the ratio is weighted by
the effect on firms’ market power in the two states. Given (4), firms find price increases
to be more desirable when the base price is lower, and in particular price increases in the
high—demand state are relatively more valuable when p < p . Thus consumers will
strictly prefer an increase in pH and a reduction in pL that leaves firms’ equilibrium
profits unchanged. The curve P? combines firms’ desire to substitute with the added
effect of pH on firms’ gains from deviating in the high—demand state; since higher p
reduces the gains from deviating, this gives consumers even more reason to prefer upward
movements along P2,

Similar reasoning underlies consumers’ preference for downward movements along

Pb

at points above the 45° line. It follows that the consumer—optimal equilibrium,
denoted by pIg and pIC’, lies either at the intersection point X, as shown in Figure 3, or at
a point of tangency between P? and a consumer indifference curve, lying below X but
above the 45° line. Note finally that as k-0, both P? and Pb must pass arbitrarily close
to the point pH = pL = ¢, and it follows that X converges to this point as k-0; by the
above reasoning the consumer—optimal equilibrium will also converge to this point. The

same argument holds for the case of r-0. These findings are summarized in the following
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proposition.
*
Proposition 4. (a) plg and pIC‘ exist and satisfy p% < plg <p;
(b)

e

Observe that for small levels of search costs, the consumer—optimal equilibria
approximate the competitive outcome, in which markups are zero in either demand state.

Note finally that our concavity condition (4), which is needed for Lemmas 1 and 2,
may be strained when it is possible for two—price equilibria to have prices below ¢ in one
of the demand states; this happens when k and r are small. This is because for such
prices, the assumption D’ < 0 is no longer sufficient for (4). It is straightforward to
verify that (4) holds for every p > 0 under the assumption of linear demand. More
generally, however, it is possible that the incentive to cheat increases in p for a range of p
< ¢, and for low k and r this might give rise to counteryclical consumer—optimal

equilibria, in which prices are below unit costs in the high—demand state.
VI. CONCLUSION

This paper has shown that the Diamond paradox can be resolved without recourse
to cost asymmetries, nonsequential search techologies, or zero—search—cost consumers, if
trade occurs repeatedly over time. In such cases, consumers are able to discipline pricing
by means of repeat business punishments, and moreover these punishments can be
implemented using very simple and plausible search rules. The natural monotonic
relationship between search costs and equilibrium prices is present in consumer—optimal

equilibria, and further the competitive outcome emerges as search costs approach zero.
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Our framework has proven useful for examining the robustness of Rotemberg and
Saloner’s finding of countercyclical markups to the introduction of positive search costs.
With positive search costs, the countercyclicality result does not hold in firm—optimal
equilibria, and is actually reversed in consumer—optimal equilibria. These results raise
new difficulties for the idea that oligopolistic rivalry is a significant source of
macroeconomic "real rigidity;" further, the contrast between our results and Rotemberg
and Saloner’s suggests that it may prove quite difficult to forge any robust link between
real rigidity and imperfect competition.!8

We have restricted attention to dynamic equilibria that are stationary, in the
sense that equilibrium strategies are independent of the particular period in which actions
are chosen. This restriction is nontrivial in the present context, since nonstationary
equilibria with upward—sloping price paths may yield greater consumer payoffs than the
stationary consumer—optimal equilibria considered above. Allowing such nonstationary
equilibria would not change our basic conclusions, however: reductions in search costs
would still reduce the gains from deviating in any given period, and this would make
possible a downward shift in the entire future path of equilibrium prices.

More importantly, nonstationary equilibria strain our interpretation of consumers’
equilibrium strategies in terms of simple search rules. Whether actual consumers are able
to implement strategies carefully calibrated to particular time periods is certainly open to
question, and further there may be difficulty establishing the focal "initial time period"
that plays an important role in the theoretical analysis. Thus the restriction to
single—price equilibria can be viewed as a reflection of consumers’ lack of knowledge of the
strategically relevant time period, and/or their inability to link search behavior to

particular time periods.

18 Haltiwanger and Harrington [1991] and Staiger and Wolak [1992] discuss other factors that
can lead to procyclical markups in a repeated oligopoly.
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Finally, we have made use of the artifice that the interval of firms’ price
adjustments correspond exactly to the time between customers’ repeat purchases. It is
straightforward, however, to extend the model to allow for a price adjustment interval
that is shorter than the repeat purchase interval. Suppose consumers’ purchases are
distributed uniformly through continuous time and are repeated every AT periods. Let
prices be readjusted every AP < AT periods. When consumers use the loyalty—boycott
search rule, a firm is deterred from raising its price at time t because it will lose its flow
of customers for the intervals [t + kAT, t + AP 4+ xAT), k = 1,2,... . Equations (1) and
(5a—b), with slight adjustments in the discounting, continue to give the equilibrium
conditions for single—price and two—price equilibria, and our results can be derived just as

above.
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APPENDIX

Proof of Proposition 1. Suppose p € (¢,U’(0)) supports a single—price equilibrium but

fails (1). Let m,, give Firm i’s equilibrium market share in period t, and put:

1

— t—1 °
m; =T 2?:2 ( ) m

1+ 1 1t
ﬁi gives the constant market share that would give Firm i the same discounted stream of
market shares for periods t = 2,3,... as does m,,. It follows that Firm i’s equilibrium

payoff is given by:

Since Eli\I:l r;1i1 = Elle ﬁ'i = 1, there is some j with either r;1j1 > ﬁj > 0 or I;ljl >m. =
0. Consider a deviation by Firm jin period 1 to pd(i),k) — ¢ for some small € > 0.
According to equilibrium condition (B), all consumers who visit Firm j on their first
search in period 1 conjecture that all other firms choose p in period 1, in accordance with
the equilibrium strategies. Condition (B) thus implies that the consumers’ equilibrium
strategies specify no second search following this deviation, since by (3) consumers
anticipate higher period 1 utility by staying with Firm j, while the restriction on firms’
histories ensures that each individual consumer regards the future path of prices, and thus
his own future payoff stream, as being independent of his own period 1 search behavior.

By this reasoning, consumers who initially visit firms other than Firm j in period 1 also

do not make a second search. Thus Firm j's payoff following the deviation is:
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1+ .. SN m.
H(p)mjl 2 H(p)(mjl + :‘l)

I(pyg(pk) — e)mj1 + Wj > -

where Wj gives Firm j’s profits in the continuation game following the deviation,
discounted to period 1, and the strict inequality follows from Wj > 0 and failure of (1) for
e sufficiently small. Thus ?'jl = p does not actually give a payoff—-maximizing strategy
for Firm j. It is straightforward to rule out prices p ¢ (c,U’(0)).

Now suppose p > ¢ and satisfies (1). Let firms’ strategies be given by ;fit(hit) = p
for all i and t and all hit € Hit’ and let this also give consumers’ conjectures of firms’
period t,t+1,... strategies for every hwt’ and firms’ conjectures of other firms’ period
t4+1,... strategies for every h,. Clearly these conjectures satisfy the restrictions in (A)
and (B), and according to these conjectures any specification of %wt satisfies (B) since
consumers conjecture that all firms choose the same price in every period. Thus we may
define %wt as follows: Let %wl be an arbitrary measurable function from [0,1] to {1,...,N},

and let iwt be defined to satisfy:

w(t—l)(hw(t—l))’ if Firm fw(t—l)(hw(t—l)) chose p in period t—1

e ) —n )

w(t—l)(hw(t—l))’ otherwise

where hwt is a continuation of hw(t—l)' Thus Consumer w continues to make his initial
visit to the firm that he initially visited in the preceding period if that firm did not
deviate from the equilibrium strategy in the preceding period. If the firm was observed to
deviate, then the consumer visits some other firm.

For the given specification of f ,, (A) and (B) imply that s . must satisfy

wt
Swt(hwt’p) # 1 .(h, ) whenever p > p + d(pk), since by (3) we have V(p) < V(p) —kin
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this case, and V(p) — k gives the utility that consumers conjecture they will obtain from
any firm that would be visited on a second search. Similarly, we may specify Swt(hwt’p)
T = fwt(hwt) for p < p + d(p,k). Let all firms and consumers conjecture that consumers

will follow these strategies in periods t,t+1,... no matter what hit or h _ is observed.

wt
Finally we show that firms’ strategies satisfy (A) and (B). Consider the price
choice of Firm i in period 1. For any hit’ Firm i’s conjecture of other agents’ strategies
implies some mass m. , of consumers that are expected to make their initial visit to Firm i
in period t. Since Firm i conjectures that other agents will follow the equilibrium
strategies in the current and future periods, it expects that consumers who initially visit
other firms in period t will continue to visit those firms in all future periods. Further, it
expects that choosing Uit(hit) # p in period t will lead its own period t customers to
switch firms in the following period, never to return to Firm i. Thus Firm i anticipates
zero sales in all future periods if it deviates in period t. Given its strategy conjecture,
Firm i maximizes period t profit by choosing Uit(hit) = min { p + d(i),k), p* }, and thus
the highest payoff it can gain by deviating in period t is given by the left—hand side of (1)

times m.,. By following the equilibrium strategy, however, Firm i expects to obtain the

larger payoff given by the right—hand side of (1) times m.,. Q.E.D.
Proof of Lemma 1. (a) (5a) may be rewritten:
1 - 1 1 - 1 .
H H L L
(A1) MU= M(pg(p™ k) = (= + = )O(p7) ] ¢ (L= 7M™ - 1I(p™)
Y YT I

Using (4) it can be verified that the term in brackets is strictly decreasing in pH forp™ <
* ~

*
p , and is minimized by pH = p . Our assumption U’(q) > 0 for all q implies that

D(p)-w as p~0, and so the right—hand side of (A1) may be made arbitrarily small by
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taking IA)L sufficiently close to zero. Thus (A1) cannot be satisfied for small enough i)L.
Since (5a) is satisfied for pH = f)L = p*, there is a critical value IA)L = Ea < p* such that
(A1) just holds for pH = p*; we have Pa(p_a) = p*, and Pa(;A)L) < p* for Ea <'£)L < p*.
The above—noted monotonicity of the left— and right—hand sides of (A1) assures that p?
is continuous and strictly decreasing as long as P2 > 0, and latter follows on the whole
domain of P2 since the left—hand side of (A1) becomes arbitrarily small as £>H40. The

properties of Pb may be established similarly.

- - *
(b) At pL = an pH = p , we have:

(A2) (T(p4(p% k) — T(p*)M > 0 = (T(py(p k) — TI(p )M

1 *
= - (e M + (1 - ympmY

*
where the first inequality follows from Ea < p and the second equality follows from the

*
H _»". From (A2) it follows that (5b)

cannot be satisfied for any pH when pL = Ea’ and so Qb > Ea.

fact that (5a) holds with equality at pL = Ea’ P

* * *
(c) Note first that Ea <p, Pa(p )<p,and P? continuous and strictly decreasing
assure that there is a single value of pL such that Pa(pL) = pL, and further this value

- *
satisfies pL < p . At this value we have:

(A3) 0 < (TI(p4(p" k) = M(P"YM" < (I(p(p" k) — T(p")MH

1 .
= - (mE + (1= M

I

b

- *
where the first inequality follows from pL < p , the second inequality follows from ML <
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H, and the third equality follows from the fact that (5a) holds with equality at i)H- =
Pa(;A)L), and also pH = p at the selected value of i)L. (A3) implies that (5b) holds with

M

strict inequality at pH = Pa(i)L), and so Pb(pL) < Pa(;A)L).

(d) Treating (5a) as an equality and differentiating gives:

) 0P* (1 — pMP I (p") /r
A4 =
( ol Ml (Y- a(PY/y

Similarly, treating (5b) as an equality and differentiating gives:

b L,/ L oL
(A35) " 1 — M7 (p7)/r - Q' (p7)/(1 — )
opr Mo ' (P%)/ 1
The result follows from comparison of (A4) and (A5) at any i)L and pH —p?=pP (the
argument is easily amended should  fail to be differentiable at p*). Q.E.D.

*
Proof of Lemma 2. Let p’ satisfy p’ + d(p’,k) = p . Treating (5a) as an equality, it

can be shown that, for P? < p’:

P* 1 - 7)MIDEY)
(A6) gg]j: H

YMUD (P?)

(1 + (pD))/r
(1 + 9B)/r+ [$(P%) - 9(P* + d(P X))/~

X

while for P? > p’:
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o P> (1 - M'DEY) (1 + ")/
opC WD (P?) (1 + 9(P?))(1/r + 1/7)

Treating (5b) as an inequality, it can be shown that, for pP <p’:

P> 1 - y)M DED)
(A8) T ;-
D YM"D(P")

(1 + M)/ + [weD) - vt + delx)/a - ¥)
(1 + 9(P°))/r

while for P? > p’:

P®  —1 - MDY 1+ b))/ + 10 - )

(A9 o=
) op™ WD (PP) (1 + 9(P®))/r

Next, using V/(p) = —D(p), we have:

“H L~
A1) dp -1 - )M
d?)r W = constant fyMHD ( pH)

Parts (a) and (b) of the lemma follow directly from comparison of (A6)—(A9) with (A10),
using (4). Q.E.D.
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