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CHAPTER 5. GEOMETRIC PROGRAMMING

5.1 INTRODUCTION

Since its inception by Zener {1961,19621 and Duffin [1962a,1962b], geometric
programming has undergone rapid development, especially with the appearance
of the first book on the subject by Duffin, Peterson, and Zener [1967]. Al-
though its essence and scope have recently been broadened and amplified by
Peterson [1970,1973a,1975], major advances in theory, computation, and ap-
plication are still occuring as more workers enter the field. The main
purpose of this chapter is to summarize the present state of the subject and to
indicate some of the directions in which it is developing. To keep the length
of this chapter within reasonable limits, only the most fundamental aspects
are presented, and then only within the context of n-dimensional Euclidean
space En. (Just to list all relevant papers would itself require several additional
pages.) Consequently, some important topics have been omitted, but a much
more thorough treatment [Peterson, 1977] is presently in preparation. Since
that treatment is to completély subsume the present treatment, only prior
references (when available) are cited herein.

With respect to notation, the context alone dictates whether a given vector
v in En is to be interpreted as a '"column vector', or as a "row vector'". 1In

all cases, the symbol « ., .> indicates the usual "inner product" function.
5.2 PROBLEM FORMULATION AND EXAMPLES

Geometric programming provides a mechanism for formulating and studying
in '"separable" form many important (usually inseparable) optimization problems.
The key to this mechanism is the exploitation of the linearities that are
present in a given problem. Such linearities frequently appear as linear
equations or linear inequalities, but they can also appear in much more subtle
guises, such as matrices associated with nonlinearities.

We shall begin with unconstrained problems and then proceed to.(the more



complicated) constrained problems. In each case we consider important examples

that arise in operations research.

5.2.1 The Unconstrained Case. Classical optimization theory and ordinary

mathematical programming are concerned with the minimization (or maximization)
of an arbitrary real-valued function { over some given subset o/ of its non-
empty domain C & Er. In geometric programming, the subset o/ is required to

12

be the intersect of the function domain @ with an arbitrary cone % < E”

(which is, in fact, a vector space for most examples). For purposes of

easy reference and mathematical precision, the resulting geometric programming

problem/ is now given the following formal definition in terms of classical
terminology and notation.

PROBLEM /. Using the ''feasible solution' set

JExne,

calculate both the 'problem infimum"

¢

5 e

{nf o0k
1é1JQ()

and the "optimal solution" set

g8 x e g2y =),

Each optimization problem can generally be formulated as problem & in
more than one way by suitably choosing the function g and the cone %. For
example, one can always let g be the 'objective function'" for the given problem
simply by choosing X to be En, but that choice is generally not the best

possible choice. The reason is that most problems involve a certain amount



of linearity (due to the presence of linear equations, linear inequalities,
matrices, etc.), which can be conveniently handled through the introduction
of an appropriate nontrivial subcone X C Er' The presence of such a subcone

% is one of the distinguishing features of geometric programming.

Example 1. Perhaps the most striking example of the utility of geometric

programming comes from using it to study the minimization of signomials

This was first done by Zener [1961,1962] and Duffin [1962a,1962b], and served as
the initial development (as well as the main stimulus for subsequent develop-
ments) of geometric programming.
A”signomial"(sometimes termed a ''generalized polynomial'') is any function
with the form
r ailtaf,z 4im
2

P(-‘;) = Zcitl N
1=1

where the coefficients ¢y and the exponents aij are arbitrary constants but
the independent variables tf are restricted to be positive. After much experi-
ence in the physical sciences,engineering and operations research, Zener clearly
recognized that many optimization problems of practical importance can be
accurately modeled with such functions. In many cases they come directly from
the laws of nature and/or economics. In other cases this functional form gives
a good fit to empirical data over a wide range of the variables tj' Actually,
the signomials that occur in such cases frequently have positive coefficients,
in which event they are termed"posynomialsq

The presence of the "exponent matrix'' (aij) (which is of course associated

with algebraic nonlinearities) is the key to applying geometric programming to

signomial optimization. To effectively place the problem of minimizing P(%)



in the format of problem ¢, simply make the change of variables

m
Ty = = az',f 10g -57': vo= 1:21000277';
and then use the laws of exponents tc help infer that minimizing P(?) is equivalent

to solving problem & when

and

X 4 column space of (aéj)'

The advantages of studying this problem rather than its signomial
predecessor are numerous. For example, unlike the signomial P, the exponential
function 9 is completely separable (in that it is a sum of terms, each of
which depends on only a single independent variable-xi). Moreover, if P is

actually a posynomial, then @ is of course strictly convex (even though

o

P itself clearly need not even be convex). Consequently, if " minimizes a
posynomial P, then the corresponding x* must be a unique optimal solution to
problem %; in which event the set of all ? that minimize P can be obtained from
%" simply by solving the displayed system of equations (a task that is
relatively easy because the system is clearly linear in terms of log ?j,
J=1,2,...,7). 1In [Duffin, Peterson, Zener, 1967], [Avriel, Williams, 1970}, [Duffin,
Peterson, 1972a,1972b,1972¢,1973], as well as [Abrams, Bunting, 1975], and some of the
references cited therein, these properties and others that are too complicated

to describe here have been combined into a very comprehensive existence,

uniqueness, and characterization theory for signomial (and especially posynomial)

optimization. Moreover, in [Falk, 1973] the complete separability induced



into signomial optimization forms the basis for a branch-and-bound algorithm
that converges to globally optimal solutions to (intrinsically nonconvex)

signomial optimization problems.

Example 2. Our second example comes from the minimization of quadratic functions

Q) = (3) <2, Hz>+<h,z>,

where H is an arbitrary constant matrix and h is an arbitrary constant vector.
A factorization of the coefficient matrix H (which is of courserassociated

with quadratic nonlinearities) is the key to effectively applying geometric

programming to quadratic pfogramming. More specifically, linear algebra is

used to compute matrices D and # such that
4 12
H=DD - 5.5,

z
where indicates the transpose operation. 1In terms of D and ./ the quadratic

function
QE) = () (<Dz,pz> -< Hz,hz>) +<h,z>,

Of course, the expression < DZ,DZ > 1is not present when Q(2) is negative
semidefinite; and the expression -<.2.82> is not present when Q(2) is positive
semidefinite (i.e. a convex function).

From elementary linear algebra we now infer that minimizing Q(2) is

equivalent to solving problem when

A
C = Emn,
m m
A
70y 2 (D X - D EDE R,
and
A D

Z = column space of | ].
h



Notice that, unlike the quadratic function Q, the quadratic function 9 1is
completely separable, a fact that can be exploited both theoretically and
computationally.

It is useful to introduce some additional parameters into the preceding
function 7 so that a much broader class of optimization problems can be studied;

In particular, we redefine § so that

n P; n P
8 s -1 v 5 -1 7
gy = 4p [ X; = b, I - - P l X. - b. [ + X - b
7 =] 7 v v i =m+1 7 v v 2n+1 2n$1,
where bi and p; are arbitrary constants, and ] -] designates the absolute value

function. Notice that the function g is still completely separable and can be special-
ized to the quadratic case by choosing bi:=0 and,pi =2 for each 1.
Another interesting specialization is obtained by choosing p; =P for each
! while choosing #/ = 0 and h = 0. The resulting problem consists essentially
of finding the "best Ep—norm approximation' to the fixed vector (bl""’hn> by
vectors in the column space of the matrix D, a fundamental problem in linear

regression analysis,

A detailed analysis of this rather broad class of optimization problems

can be found in [Peterson, Ecker, 1970] and the references cited therein.

Example 3. Our third example comes from the optimal location of a new facility

relative to existing facilities, We suppose that there are P existing facilities

R . \ 1.2 D . g ;

with fixed locations b ;b ,...,b" in E,, and we assume that for each facility ¥

Z‘j .

there is a cost di(z,b ) of choosing the new facility location € relative to b
In many instances the functions d; are just "metrics" that reflect the cost

of shipping materiel between the two locations. (Such metrics are usually determined

by the available transportation systems.) The problem then is to chcose a new



p ,
2
location 2 that minimizes the total cost d(Z) =7 di(Z,b ).
=1

In this problem statement there is no matrix that serves as the key
to effectively applying geometric programming., However, minimizing d@) 1is

clearly equivalent to solving problem & when

A
6= %WZ;
D ,
A3 i
ge) = 7046 ,b),
=1
and

A
% = column space of

Lee & &

1.2 D
where ¥ = (¥",¥",..., ¥ ) and there are a total of D (?X7) jdentity matrices 4.

Notice that, unlike the function d, the function 7 is at least partially
separable in that it is a sum of terms, each of which depends on only a single
independent vector variable-xi. This separability occurs in even more complicated
location problems and has been exploited both theoretically and computationally

in [Peterson, Wendell, 1975] and the references cited therein.

Example 4. Our fourth example comes from discrete optimal control with linear
dynamics (or dynamic programming with linear transition equations). We suppose
, 12
that for each 'stage' U there is a cost §; (" ,2 ) that depends on thel'th
2 oy - 12 . .
"state'" 7 and the T'th '"decision" 2 , where the domain of the cost function

9, is the cartesian product Ry x Dy of the Z'th "state set" R; and the 1'th

2
A e e 1 . .
"decision set" D; . We also suppose that the'"initial state'" 7" is determined

by the "initial decision" dl through the equation rl = B1 dl and that each sub-

i , 12 .
sequent state " 1is determined by both the %'th decision @ and the (Z-1)'th

-1

i- 12 2 4
state 7 1 through the "transition equation" ¢ = AT T4 Bid , where A% and B



are constant matrices. Given that there is a total of P stages, the problem

i
is to make sequential decisions 2 that minimize the total cost

0

S (A
7-;21 95 2

The presence of the matrices A; and B; is the key to applying geometric pro-
gramming to discrete optimal control. To effectively place the preceding

control problem in the format of problem &, simply let
x = ¢tal  2q% .., a7t P40

and then observe that the preceding control problem is equivalent to problem

c

& when A D
= X (R; XD7')9

=1

A (A
=. ?z'/(r ’d )’

=]

7 &)

i I

and

-1

A ) 7 / .
72 (x|l -pal, andf“b=%r +B7;d71, to=2,...,0}.

1
The partial separability of ¢ and the "sparsity" of the matrix whose
columns span % has been exploited both theoretically and computationally in

[Dinkel, Peterson, 1975) and the references cited therein.

Example 5. Our fifth example comes from an analysis of multicommodity

transportation networks., We consider a ''graph" whose 'arcs'" are enumerated from

1 through 7 in such a way that for 1 < 7 < v (return) arc I connects the origin

and destination of commodity ¥, while for v + 1 £ <7 (roadway) arc ¢ represents

a collection of unidirectional lanes over which traffic can flow between two

adjacent (intersectional) 'nodes'., Bach return arc 1 is 'directed" from the destinatio

of the corresponding commodity I back to the origin of the same commodity 7,



and each roadway arc ¥ has the given direction in which traffic is permitted
to flow.

Each commodity ? can flow from its origin to its destination only over
certain (predetermined) feasible (roadway) ”paths”pj , which are enumerated by
a finite index set [Z]. Each path pj is, in essence, an "-vector whose A'th
component;fé is to be identified with arc 4. 1In particular, for a given j in
[i], component Pfk is one for (return arc) ¥ =1, zero for all other (return arcs)
% between 1 and Vv, and either one or zero for all (roadway arcs) ¥ between
v + 1 and ﬁ, depending respectively on whether roadway arc # is or is not
part of pathlff.

For notational convenience in describing feasible flow patterns, all
feasible pathslyj are enumerated sequentially by letting ] = {mi’mi + 1""’ni}’
where 1 = Wl = nl’ nl +1 = Wz = n2""’ nv—l+ 1 ='mv < e Thus, there is a
total of ” feasible paths over which traffic can flow, where 7 & nv' Moreover,
a potential commodity flow pattern € is then just a non-negative 7-vector whose

7 'th component Zj is simply the "input flow" on path;f] of that commodity ¥

for which / is in [2]. oOf course, each potential commodity flow pattern Z
m

A
produces a potential total flow pattern X = ;21 ijj , whose #'th component

xk is simply the resulting total flow of all commodities on arc ¥. The feasible

flow patterns are then those potential flow patterns for which Xy =di for

1=t < vV, where dL is a given (non-negative) total input flow of commodity 7.
We now assume that traffic flow on each roadway arc I produces a cost gz, ¢%;)

that depends only on the total flow-xi. The problem then is to determine those

7

feasible flow patterns that minimize the total cost % gtht)' Of course, this
i=ul
problem is relevant only if the given transportation network can be centrally

controlled - which is usually not the case for highway networks.
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For highway networks, it is far more realistic to use the same type of

separable objective function, but let each function g1 be the (indefinite)
integral of a travel cost function ¢ (rather than let each g1 be a

cost function itself). For many highway networks, the most realistic travel
cost function ¢; 1is actually just the travel time Cfxi) required to traverse

arc 1 when it is carrying a total traffic flow Xy . In any case, the reason

for integrating the cost functions G prior to forming the objective function
n

2 g is that under certain (relatively weak) conditions, the resulting
1 =v41

optimal flow patterns (which are, of course, not usually cost optimal) are
in a state of '"Wardrop equilibrium''; that is, the origin-to-destination travel
cost (e.g. the origin-to-destination travel time) for a given commodity % is
identical on all paths used by that commodity and is not greater than what
it would be on its unused feasible paths (given the same total flow pattern).
Such flow patterns are of interest to highway traffic analysts, because high-
way traffic scientists contend that the traffic flow patterns of many com-
plicated real-world highway networks are in, or at least tend toward, a state
of Wardrop equilibrium.

In any event, the presence of the feasible path vectors ﬁj is the key to
applying geometric programming to the preceding network problems. To effectively

place those problems in the format of problem@, first enlarge the set of functions

g1 by letting

{%] 12 =< v

e

N N

[O,+w) V4+1lgi < 1

and
0 1St <y

gi(xi)

g ;) vyl1si=n,
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Then, observe that the preceding network problems are equivalent to problem

d when
An
@=.XCB/'L’
7/=]_
n
55
9y =D g (%),
i=1
and ”
a N, T > <<
'K={x=227.p I 2,20 for 1 7 n},
-

J=1

Note that ¥ is not generally a vector space, but is instead a polyhedral
cone generated by the feasible path vectors ﬁj. This important class of
problems is studied more thoroughly in [Hall, Peterson, 1975] and some of
the references cited therein.

A closely related (but totally different) class of network flow problems

occurs in the context of electric and hydraulic networks. Such problems

involve only a single commodity (electricity or fluid) and can be effectively
placed in the format of problem& in the following way: let cicxi) be the wvol-

tage drop or pressure drop, respectively, across arc { as a function of the com-
modity flow xi in arc 7 (in which event giCxi) is termed the '"content' of arc 1

and is frequently just the power dissipated in arc %), and let X be the vector space
of all (non-unidirectional) feasible flows (i.e. all those flows that satisfy the
"Rirchoff current conservation laws'). Such problems are studied more thoroughly

in [Duffin, 1947], [Minty, 1960], and [Rockafellar,1967b], and the references

cited therein.

The reader who wishes to avoid the complications inherent with constraints can

skip the next section and begin again with section 5.2.3 on page 19.

5.2.2 The Constrained Case. To generalize geometric programming by incorporating

explicit constraints into the preceding problem formulation, we introduce two non-

intersecting (possibly empty) positive-integer index sets T and J with finite

cardinality o(I) and o(J) respectively. In terms of these index sets
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I and J we also introduce the following notation and hypotheses:

(la) For each k€ { O}Lf I UJ there is a function 81 with domain Ck < En ’
k

and there is a set ng E for each j€ J.

]
(2a) TFor each k ¢ {0} U I U J there is an independent vector variable

k X \ . .
x in En , and there is an independent vector variable K with
k

components Kj for each j € J.

1 . . i,
(3a) x denotes the cartesian product of the vector variables x, i ¢ I,

.

J

J . .
and x~ denotes the cartesian product of the vector variables x-,

0 I

. . 0 1 J, A
j £ J. Hence, the cartesian product (x , x, x°) = x of x , x , and

J . . . .
x 1s an independent vector variable in En’ where

a

n n +—?3 n, +—§3 n,.
0 i 3

I ]
(4a) there is a cone X & En'

For purposes of easy reference and mathematical precision, the resulting

geometric programming problem A is now given the following formal definition

in terms of classical terminology and notation.

PROBLEM A. ¢£onsider the objective function G whose domain

A .
c2im,n | e Cp» k € {0} U 1, and (x7, € € c;, i ¢ 7}

and whose functional value

A 0 + i
Glx, K) = gy () +Lgl (K,
J ] ]
where

Ao . .
d;={(XJ,Kj) l SiEEEE‘Cj =0 and sup <xI, d¥> <4 , orKj > 0 and x € chj}

and sup<fo,dJ>'i£ K. =0 and sup < xJ, > <+ o

3 j
+ 5, A d €D, d7ép.
gj(xj,‘j) = j j

g (x3/¥%.) if ¥, > 0 and xJ € K,C,.
i%j iP== = i3
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Using the feasible solution set

A .
s={(@¥%)€c | x €%, and gi(xl) <0, 1€ 13,

calculate both the problem infimum

A
9 = inf  G(x,)
(x,4)€s

and the optimal solution set

g4 {(x,)¢s | c(x,k) = o).

A A
Of course, the unconstrained case occurs when I1=J= &, gO:CO =7, and X=%,

When DJ,==En (which is frequently the situation), a simplification results
i . s . ..
from noting that J.sup <:xJ,dJ:><ﬁhn if and only if xJ==O, in which event sup <:xJ,dJ:>
a’ €D, dJ e,
J

=0. 1In particular then, the functional domain
C-f.={(xj,K.,) IK,ZO and XjEK,C,};
J J J J 1]
and the functional values
* ] j
(xT,K)) =K,g. (x7/K,
B4 (7K JgJ( J),
with the understanding that Ogj(O/O) Ao,

In defining the feasible solution set § it is important to make a sharp

distinction between the cone condition x € X and the constraints gi(xi)S(L

i €I, both of which restrict the vector variable (x,¥). In many cases the
cone X is polyhedral (and hence is finitely generated); and in most examples
of practical significance X is actually a vector space (and hence has a finite
basis). Consequently, the cone condition x € X can frequently be automatically
satisfied and therefore exﬁlicitly eliminated by a linear transformation of x
that results from the introduction of generating vectors or basis vectors for
X (whereas the generally nonlinear constraints gi(xi)fio, i €I, usually can
not be explicitly eliminated by even a nonlinear transformation)., Neverthe-
less, even when it is possible to do so, we do not explicitly eliminate the
cone condition x € X, because such a linear transformation would clearly intro-

duce a common vector variable into the arguments of 8p> B> and g;. Such a
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common vector variable only tends to camouflage one of the extremely useful

chargcteristics of geometric programming - its (partial) separability. Such
separability is clearly present even when the functions gk:Ck, k €{0}JUTUJ are
inseparable.

| Since each optimization pfoblem can generally be formulated as p?oblem
A in more than one way by suitably choosing the functions gk:CK, k€{oYuIUyg
and the cone X, a very important aspect of applied geometric programming is
the exploitation of this flexibility in such a way that a given inseparable
probilem is formulated as an equivalent problem A with as much function
separability as possible. As in the unconstrained case, the key to such a
formulation is usually the introduction of an appropriate nontrivial cone X
to handle the linearities that are present in a given problem. Such linearities
frequently appear as linear equations or linear inequalities, but they can also
appear in rather subtle guises, such as matrices associated with nonlinearities.

The function separability induced in the objective function for each

of the unconstrained examples given in section 5.2.1 can also be induced in any

constraint function of the same general type. We now use signomial optimization to

illustrate the general procedure for doing so.

Example 6. First, make the following choices:

I={l,2,...,p} and J=¢;

Ck Enk
and X
A
gk(xk) = Yeed. dk’
e 4
where
={m_ n eee,lt
[k] {k’ k+1’ ’k.}
and
=m <n n =m Sn e, n +1l=m_ <n_ =n;
L= Dot 1= s p-1 P p
A
X:

column space of la ],
qr
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where

[aqr] is any n X m matrix.

Now, note that all functions in problem A are completely separable.

To relate problem A to constrained signomial optimization, explicitly

eliminate the vector space condition x € X by the (essentially linear) trans-

formation

x ={u a log t., q9q=1,2,...

r r , Ii.
q 1 4

By virtue of the laws of exponents, problem A is now clearly equivalent to

the following (generally inseparable) signomial optimization problem:

m a
Minimize 2Jc I trqr
fo] 41

subject to o a

e 1-Itrqrsdk, k=1,2,...,p,

K] 91
and

t>0.

Of course, the preceding procedure is usually reversed in practice; that
is, the signomial form of problem A tends to occur more often than problem A
in real-world applications, but is transformed into problem A so that the
complete separability of the resulting exponential functions can be exploited.
Actually, signomial optimization problems (as well as more general "algebraic
optimization problems') should usually be reduced to much simpler signomial
optimization problems prior to their transformation to an appropriate problem
A. To see how to reduce such problems to signomial optimization problems in
which each signomial has at most two terms, both of which have the same sign,
consult [Duffin, 1970] and [Duffin, Peterson, 1973,1972b]. If such problems
could be further reduced to signomial problems in which each signomial has

only a single term, all algebraic optimization problems (and hence essentially
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all optimization problems involving only continuous functions) could be
reduced to (finite-dimensional) linear programming problems. Even though
such a reduction will not be accomplished in the future, the reductions
given in the preceding references are already starting to be exploited,
both theoretically and computationally,

The reader who is interested in the applications of signomial and
posynomial optimization should consult the recent book by Zener [1971]} as well

the comprehensive list of papers compiled in [Rijckaert,1973].

The procedure for inducing function separability into constrained ver-
sions of each of the other four examples given in section 5,2,1 will be left
to the imagination of the interested reader, who can also consult the refer-
ences already cited in section 5.2.1,

Linear programming can be viewed as a special case of geometric pro-
gramming in at least three different ways, We now present the easiest of

the three ways.

Example 7. First, make the following choices:

J=¢ ;

& :E1 - E1 such that go(xp) & xp,

and
iy A i
:E"’E = - '6

8, 1 1 such that gi(x ) X bi’ i€r,
where the bi’ i€ I are arbitrary constants;

X 4 {(xo, xI)é Enl xO = <a, z> and xI = Mz for at least one

z€ E for which z, =2 O, jfﬁé? s
m J

where a is an arbitrary vector in Em, M is an arbitrary o(I) x m matrix, and

as
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€ is any subset of {1, 2,..., m}. Now, note that the most complicated func-

tion in problem A is just the simplest kind of affine function.

&y

To relate problem A to linear programming, explicitly eliminate the

cone condition x€ X by the linear transformation used in the defining equa-
tion for X. Problem A is then clearly equivalent to the following very
general linear programming problem:

Minimize <a, z>

subject to

Two other ways in which to view linear programming from a geometric
programming point of view are given in [Peterson,1973a], but none of the
three ways have yet had other than pedagogical influence on linear pro-

gramming.

In all of the examples given here, the index set J is empty. Probably
the most important example for which J is not empty is the 'chemical equi-
librium problem'" -- a problem that lies outside the scope of operations
research but is thoroughly discussed in [Peterson,1973a] and the references
cited therein. The reason for including J in the present problem formula-
tion is that its inclusion is a prerequisite for the duality symmetry des-
cribed in subsection 5.3.3.4.

The following example indicates the generality of geometric programming.

Example 8. TFirst, make the following choices:

k€{o0jUT ,

il
3
o
=
[a N
o

1
(@]
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where CO is an arbitrary subset of Em;

X é column space of

where there is a total of 1+ 0(I) identity matrices U that are mXm.

To relate problem A to ordinary programming, explicitly eliminate the

vector space condition x€ X by the linear transformation

Problem A is then clearly equivalent to the following very general '"ordi-
nary programming problem':
Minimize gO(Z)
subject to
gi(z) < 0, i€1
z€C .
0

Thus, ordinary programming can be viewed as a special case of geometric
programming.

Yet, in a certain sense, ordinary programming is no more special than

geometric programming -- as can be seen by the following reverse speciali-

zation:

C & {z = (x, K)l (x, K)E€C and x GX} s

o

G(x, ¥,

go(2)

gi(z) gi(xi), i€1,
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Note though that the important structural features of geometric programming
are obscured in this ordinary programming formulation. On the other hand,
ordinary programming is actually made partially separable in its geometric

programming formulation, namely:

0
Minimize gO(X )

1 2
subject to gl(x )y < 0, gz(x ) £ 0,..., gp(xp) <0
0
X - Xl =O
xl - x2 =0
xp-l-xp =0
0 1 2 -
X , X 4, X xP 1, XX € CO s
where
{1, 2,..., p} =1
5.2.3 A Summary. Experience seems to indicate that any optimization

problem involving matrices, linear equations, affine sets, or cones (and
even certain other optimization problems, such as optimal location prob-
lems) can probably be transformed into a geometric programming problem
that is considerably more separable and hence much more amenable to analy-
sis and solution than the original problem. This is especially true for
each of the preceding examples, but the complete exploitation of this fact
is way beyond the scope of this chapter.

In the remaining part of this chapter we present only the most basic
theory of geometric programming -- a theory that is equally applicable to

all problem classes and does not, for the most part, actually require sepa-
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rability of the functions g :C and g, C , k€{0}UIUJ. Such function

k’
separability does, however, become extremely useful when specific problem

classes are to be thoroughly investigated and solved.

5.3 BASIC THEORY

The basic theory of geometric programming can be conveniently parti-
tioned into several topics. Certain "optimality conditions'" describe im-
portant properties possessed by all optimal solutions, and in many cases
collectively characterize all optimal solutions. Appropriate "Lagrangians"
provide important "saddle-point'" characterizations of optimality, and can
also be used to introduce the even more significant concepts of "duality".
The latter topic provides important "existence and uniqueness theorems"
for optimal solutions, as well as useful "algorithmic stopping criteria'.
Duality is also a key ingredient in "parametric programming' and "post-
optimality analysis', which are in turn key ingredients in certain impor-
tant '"decomposition principles".

Since many important problem classes are unconstrained (e.g., the
network flow problems given as example 5 in section 5.2.1), and since the
theory for the unconstrained case is far simpler than that for the con-
strained case, we initially limit our attention to the unconstrained case.
Actually, in doing so there is no loss of generality, as explained in

section 5.3.2.

5.3.1. The Unconstrained Case. Let Y be the "dual" of the cone %Z; that

is,

’;/é{yEEp los <ux, y> for each xe:z} )
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Rather elementary considerations show that % is generally a closed convex
cone. Moreover, Y% is '"polyhedral" (i.e., "finitely generated") when X is
polyhedral; and Y is the "orthogonal complement" 2t of Z when X is actually
a vector space. In fact, % can be computed via elementary linear algebra
for each of the examples given in section 5.2.1.

Some of the following subsections can be omitted. 1In particular,
either subsection 5.3.1.1 (on optimality conditions) or subsection 5.3.1.3
(on Lagrangian saddle points) can be omitted without serious loss of con-
tinuity. Moreover, subsection 5.3.1.2 can be omitted by those readers who
are already sufficiently familiar with the "conjugate transformation, sub-

gradients and convex analysis''.

5.3.1.1. Optimality conditions. We begin with the following fundamental

definition.

DEFINITION. A critical solution (stationary solution, equilibrium solutiom,

P solution) for problem 7 is any vector X  that satisfies the following P

optimality conditions

x*exne,
Vg (x*)EY,
and

0 =<x7‘r’ vg(x-k) >,

If the cone X is actually a vector space (which is the case for each of the
examples given in section 5.2.1, except example 5), then @H=ZJ'and hence the
last P optimality condition 0=<:x*,‘k7(x*)> is obviously redundant and can
be deleted from the preceding definition. Furthermore, if X is actually the

whole vector space Ep (which is the situation in the unconstrained case of
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ordinary programming), then y==E;=={O} and hence the remaining P optimality
conditions clearly become the (more familiar) optimality conditions
x¥€C and vy (x™) = 0.
The following theorem gives two convexity conditions that guarantee

the necessity and/or sufficiency of the P optimality conditions for optimality.

Theorem 1. Under the hypothesis that ¢ is differentiable at x*,

(1) given that X is convex, if x* is an optimal solution to problem #,
then X* is a critical solution for problem Z (but not conversely),

(2) given that g is convex on &, if x* is a critical solution for problem

@, then x” is an optimal solution to problem .

The proof of this theorem is not difficult but will of course be omitted.

It is worth noting that ¢ is differentiable for most of the examples
given in section 5.2.1. Moreover, X is polyhedral and hence convex for each
of those examples; and g is convex on C for important special cases of each
of those examples. Consequently, the P optimality conditions frequently
characterize the optimal solution set o* for problem .

Characterizations of &/* that do not require differentiability of g, but
do require the concepts described in the following subsection, are given in

subsection 5.3.1.3.

5.3.1.2. The conjugate transformation, subgradients and convex analysis,

The conjugate transformation evolved from the classical Legendre transformation
but was first studied in great detail only rather recently by Fenchel [1949,
1951]. For a very thorough and modern treatment of both transformations see
the recent book by Rockafellar [1970]. We now briefly describe only those of

their properties that are relevant to geometric programmilpg. All such properties
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are quite plausible when viewed geometrically in the context of two and
three dimensions.
The conjugate transformation maps functions into functions in such
a way that the "conjugate transform" w:) of a given function w:W has functional
values

w(C) A sup [<C,z> -w(2)].
z&€W

Of course, the domain () of ) is defined to be the set of all those vectosrs

C for which this supremum is finite, and the conjugate transform (:{) exists
only when (2 is not empty.

The conjugate transform of a separable function is clearly the sum

of the conjugate transforms of its individual terms - a fact that simplifies
the conjugate transform computations for many of the geometric programming
examples given in section 5.2.1. For purposes of illustration we now per-
form two of those computations in the convex case - the only case in which

the conjugate transformation proves to be extremely effective.

Example 1. If

Z,
\ 1 .
> =
w(z)gélcie and WAE , where ¢, >0, i=1,2,....n,

) n ]
then y(C) = sup [<(,z> —%5 C.ezl] =24 sup [(.z. -c.ezl], which is
i=1"1 i=1 ii i
z€E z, €EE
il i 1
clearly finite if and only if QiZ(),i_=1,2,...,n; in which case an
n
application of the differential calculus shows that ¢ ({) =7, Qi log (gi/ci)-
i=1

"
Z)gi, with the understanding that , log (; A0 when ; =0. Consequently,
i=1

3

Ty
=i

"
w(€) =2 ¢, log (C;/¢,) -

and 0={c€E |c. =0, i=1,2,...,n}.
i=1 not

i=1

'—I
1]
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Example 2. 1If

1 -1 | P

w(z) A P

i .
+ - > = . s e -
Z, . I Z b and WQE ) where P. 1, 1 1,2, 5 1,

RV

1

) -1 P,
then (0) = sup [<(,z> %ilpi Izi bi I (zn bﬂ)]

z€E
n
b5 [ - N g,z - (z =b))]
sup .z2.~Dp, z, - b, + sup [z -(z -b ,
i=1 z,€g, -+t t b 1 z €. 7T
i 1 no 1
which is clearly finite if and only if gﬂ==1, in which case an application of
. n-1 _ q,
the differential calculus shows that (C) = 25 (qil Igi l 1*'biCi)'+b
i=1 >

where 9 is determined from Py by the equation pil-i—q:,L =1. Consequently,

-1 q.
= -1 i = =
w(g) 23:1 (q; | ¢y | +b,C;)+b and Q={CE E_ \ gﬂ 1}.

Geometrical insight into the conjugate transformation canm be obtained by

considering the "subgradient" set for w at z, namely,
g

dw(z) A {gEEn !w(z) +<C,z' - z><w(z"') for each z'€W]}.

Subgradients are related to , but considerably different from , the more
familiar gradient. The gradient provides a 'tangent hyperplane" while a
subgradient provides a "supporting hyperplane'" (in that the defining inequality
obviously states that the hyperplane with equation w' =w(z) +<(,z' -z>
intersects the "graph" of w at the point (z,w(z)) and lies entirely ''on or
below" it). It is, of course, clear that a subgradient may exist and not be
unique even when the gradient does not exist. On the other hand it is also

clear that a subgradient may not exist even when the gradient exists. There is,

however, an important class of functions whose gradients are also subgradients -
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the class of convex functions. In fact, the notions of gradient and subgradient
coincide for the class of differentiable convex functions defined on open sets,
a class that arises in many of the examples given in section 5.2.1.

To relate the conjugate transform to subgradients, observe that if
L€ 3w(z) then <(,z'>-w(z') <<(,z>-w(z) for each z'€ W, which in turn
clearly implies that £ €(Q and that () =- [w(z) +<[, - z>]. Hence,
w(C) is simply the negative of the intercept of the corresponding supporting
hyperplane with the w' - axis. Consequently, the conjugate transform
exists when w has at least one subgradient [, a condition that is known to
be fulfilled when w is convex. Actually, the conjugate transform y re=
stricted (in the set-theoretic sense) to the domain U 8w(z) is termed
the "Legendre transform'" of w and has been a major tisawin the study of
classical mechanics, thermodynamics, and differential equations (as des-
cribed, for example, in [Courant, Hilbert, 1953]). Usually, the domain () of
the conjugate transform y consists of both U 3w(z) and some of its limit

zEW

points.

Each function w and its conjugate transform  give rise to an important
inequality

<z, [><w(z) +u(0),

which is termed the "conjugate inequality' (or "Young's inequality') and
which is clearly valid for every point z€ W and every point [€() (as can be
seen from the defining equation for w({)). Moreover, we have just shown that

equality holds if

ce€ow(z),

a condition that actually characterizes equality by virtue of another
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elementary computation.

When it exists, the conjugate transform (:{) is known to be both convex
and '"closed"; that is, its "epigraph" (which consists of all those points in
Eﬂ'+1 that are '"on or above" its graph) is both convex and (topologically)
closed. Moreover, the conjugate transform of :() is the "closed convex hull"
;:g of w:W; and thus the conjugate transformation maps the family of all closed
convex functions onto itself in one-~-to-one symmetric fashion. Consequently,
the conjugate transformation is its own inverse on the family of all such

functions; and given two such '

'conjugate functions" w:UW and :Q, the
relation [ € dw(z) and z €dw({) are equivalent and hence '"'solve" one
"another,

In geometric programming we must deal with both an arbitrary cone Z

and its "dual

Zé{gGEn |0 <<z,r> for each z€ z},

which is clearly itself a cone. Now, it is obvious that the conjugate transform
of the zero function with domain Z is just the zero function with domain -Z.
Consequently, the theory of the conjugate transformation implies that 7 is
convex and closed (a fact that can be established by more elementary con-
siderations). Furthermore, if the cone Z is also convex and closed, the
symmetry of the conjugate transformation readily implies that the dual of
Z is just Z. 1f, in particular, Z is a vector space in En, this symmetry
readily implies the better-known symmetry between orthogonal complementary
subspaces Z and Z.

In convex analysis the '"relative interior'" (riW) of a convex set WEE
is defined to be the "interior'" of W "relative to'" the '"Euclidean topology"

for the "affine hull" of W (i.e. the "smallest affine set [or linear manifoldl"
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containing W). The reason is that the (riW) defined in this way is not
empty, even when the "interior" of W is empty.
This completes our prerequisites for the remaining subsections of

this section.

5.3.1.3. Lagrangian gsaddle points. Let A:f be the conjugate transform

of the function g:C; that is,

HL{yEE Isw>[<yw>-060]<+m}
= n
xX€EC

and

A@y) b sup [<y,x>-g@)].
x €C

If h:f exists (which is the case, for example, when g:C is convex), then

h:f is a closed convex function that inherits any separability present in
g:C. 1In fact, h:H can be computed via the calculus in the convex case

for each example given in section 5.2.1. Actually, the required computations
for examples 1 and 2 have already been given in (the preceding) subsection
5.3.1.2; and the required computations for examples 3 through 5 can be

found in the cited references.

The following definition is of fundamental importance.

DEFINITION. For a consistent problem ¢ with a finite infimum ¢p, a P vector

is any vector y* with the two properties

y ep
and

o= inf L (x;y*),
X EX

where the (geometric) Lagrangian
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Lg(x;y) b <x,y>-n@).

It should be noted that L@ is generally as easy to compute as h:f5.
The following ''saddle-point theorem" provides several characterizations

of optimality via P vectors.

Theorem 2. Given that ¢:C is convex and closed, let x* €% and let y*efﬁ;
Then x” is optimal for problem & and y* is a P vector for prohlem & if
and only if the ordered pair (x*;y*) is a "saddle point" for the Lagrangian

L , that is,
g

sup L (¢™;y) =L (¢*;y%) = inf L Oy
yEB g x€X

in which case L@ has the saddle point value
Lg (x*;y‘k) =g (x‘f'\‘) - Cpe

Moreover,

sup L (x™3y0 =L (%)

if and only if x™ and y* satisfy both the feasibility condition
¥EEC
and the subgradient condition
v ey Ty
in which case
7 *x b3
L c™y7) =g ™).
g
Furthermore,

L G595 = inf L (o)
g xex ¥

if and only if x* and y* satisfy both the feasibility condition
y*E’Z/

and the orthogonality condition
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in which case

Since the second assertion of Theorem 2 gives certain conditions that
are equivalent to the first saddle-point equation, and since the third assertion
of Theorem 2 gives other conditions that are equivalent to the second saddle-
point equation, Theorem 2 actually provides four different characterizations of
all ordered pairs (x*;y*) of optimal solutions x* and P vectors y*.

Of course, each of those four characterizations provides a
characterization of all optimal solutions x* in terms of a given P vector

o .

¥", as well as a characterization of all P vectors J  in terms of a given

optimal solution x~.

The symmetry of the preceding statement suggests that all P vectors
may, in fact, constitute all optimal solutions to a closely related
optimization problem. Actually, the appropriate optimization problem can
be motivated by the following inequalities

inf L_(e;4%) < sup [inf L ()] < inf [sup L (r,y)] < sup L Cx*;y),
xex ¢ yeps xex ¢ xex yep v VES )
which are vaiid for each y* €5 and each x* €%, by virtue of the single fact
that x¥ and y reside in independent sets X and .} respectively (i.e. the vector
(r3;y) resides in a cartesian product X x.#). In particular, note that
each of these inequalities must be an equality when (x*;y*) is a saddle-
point for L ; in which case x* is obviously an optimal solution to the

minimization problem

inf [sup L O3],
veExX yckb

and y* is obviously an optimal solution to the maximization problem



-30-

sup [ inf L (e300 7).

veEL x€x o
Now, when ¢ is convex and closed, the definition of H? and the symmetry
of the conjugate transformation clearly imply that the preceding minimization
problem is essentially problem ¢. Consequently, it ts not unnatural to
consider the preceding maximization problem simultaneously with problem

¢ and term it the '"'geometric dual problem" .

PROBLEM /. Using the feasible solution set

TAh{y€s| inf L (r;y) is finite)
xex 9

and the objective function

(@) A inf L (c31),
xex ¢

calculate both the problem supremum

Yé sup ¥ (y)
vET

and the optimal solution set

Ty eT [H@) =v].

Even though problem 2 is essentially a "maximin problem'" - a type of
problem that tends to be relatively difficult to analyse ~ the minimization
problems that must be solved to obtain the objective function ¥:J have
trivial solutions. 1In particular, the definition of H? and the hypothesis

that X is a cone clearly imply that inf L (¢;y) is finite if and only if
x€X

¥Y€%, in which case inf Lb(x;y)==— h(y). Consequently, J=%NS and
x €Y

#(y) =-n(y), so problem /7 can actually be rephrased in the following more

direct way:
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Using the feasible solution set
J=uNg,
calculate both the problem infimum

A inf h(y) =-Y
yveJ

and the optimal solution set

TF=(yeT |n@ =v).

then phrased in this way, problem /7 closely resembles problem ¢/, and is
in fact a geometric programming problem. of course, the geometric

dual problem /7 can actually be defined in this way - an approach that is
exploited in the following subsection. Nevertheless, the preceding

derivation serves as an important link between Lagrangians and duality.

5.3.1.4., Duality. Let h:5 be the conjugate transform of the function
¢:C; that is,
BL{YEE, | sup [<y,x>-g@)]<+=]
= "
x€C

and

h(y) é sup [<y,x>-g(0)].
x€eC

If h:fH exists (which is the case, for example, when ¢:C is convex), then

h:r is a closed convex function that inherits any separability present in
¢:C. In fact, A:H can be computed via the calculus in the convex case for
each example given in section 5.2.1. Actually, the required computations for
examples 1 and 2 have already been given in subsection 5.3.1.2; and the
required computations for examples 3 through 5 can be found in the cited
references.

Now, consider the following geometric programming problem /=,
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PROBLEM /2. Using the feasible solution set

FAUNE,

calculate both the problem infimum

y 4 inf P ()
veJ

and the optimal solution set

T*A{yeT |n@y) =y},

It should be noted that problem /3 is generally as easy to compute as A:b
and Y. Moreover, problem 5 is always a convex programming problem, because
both A:8 and Y are always convex and closed (even when g:C and X are not
convex and closed).

Problems &7 and /7 are termed geometric dual problems. Uhen both g:C

and % are convex and closed, this duality is clearly symmetric, in that problem
& can then be constructed from problem /7 in the same way that problem /@ has
just been constructed from problem /., This symmetry induces a symmetry on

the theory that relates ¢/ to &, in that each statement about ¢ and /~ auto-
matically produces an equally valid "dual statement" about /7 and 7. To be
concise, each dual statement will be left to the reader's imagination.

It is worth mentioning that there are cases in which problems &7 and 3
have additional interesting symmetries. In particular, problem /~ turns out
to be a "reversed-time' discrete optimal control problem when problem ¢
is taken to be a (forward-time) discrete optimal control problem (i.e.
example 4 in section 5.2.1) whose linear dynamics are such that each matrix
Bi is identical to a nonsingular matrix B that commutes with each matrix Ai
for 2 =1,2,...,D.

Unlike the usual min-max formulations of duality in mathematical

programming, both problem ¢/ and its geometric dual problem 5 are minimization
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problems. The relative simplicity of this min-min formulation will soon
become clear, but the reader who is accustomed to the usual min-max
formulation must bear in mind that a given duality theorem will generally
have slightly different statements depending on the formulation in use.
In particular, a theorem that asserts the equality of the min and max
in the usual formulation will assert that the sum of the mins is zero
(i.e. g+ =0) in the present formulation.

The following definition is almost as important as the definition of

the dual problems ¢ and /7.

DEFINITION, The extremality conditions (for unconstrained geometric

programming) are:

(1) X EX and veEY
(I1) 0=<ux,y>
(111) yE ).

Extremality conditions (I) are simply the "ccne conditions' for problems
¢ and /7 respectively. Extremality condition (II) is termed the "orthogonality
condition'", and extremality condition (III) is termed the '"subgradient condition'.
If the cone X is actually a vector space (which is the case for each
of the examples given in section 5.2.1, except example 5), then ?/=2§ and
hence the orthogonality condition (II) is redundant and can be deleted
from the preceding definition ( and everywhere that definition is used).

The following 'duality theorem" is the basis for many others to come.

Theorem 3. If x and y are feasible solutions to problems ¢ and /B respectively

(in which case the extremality conditions (I) are satisfied), then
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0<g () +h(),
with equality holding if and only if the extremality conditions (II) and
(I1I) are satisfied; in which case x and y are optimal solutions to

problems ¢ and /7 respectively.

In essence, the proof of this key theorem consists only of combining the
defining inequality 0 <<x,y> for Y% with the conjugate inequality
<x,y><g{x) +h(y) for h:b.

The following important corollary is an immediate consequence of

Theorem 3.

Corollary 3A. If the dual problems & and / are both consistent, then
(i)Mthe infimum ¢ for problem ¢ is finite, and
0 <p+h(y) for each y&J,
(ii) the infimum § for problem /R is finite, and

O<so+y.

The strictness of the inequality in conclusion (ii) plays a crucial

role in almost all that follows.

DEFINITION., Consistent dual problems ¢ and /5 for which
0<p+y

have a duality gap of w+y.

It is well known that duality gaps do not occur in finite linear programming,

but they do ocassionally occur in infinite linear programming

where this phenomenon was first encountered by Duffin [1956] and Kretchmer

[1961]. Although duality gaps occur very frequently in the present (generally
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nonconvex) formulation of geometric programming, we shall eventually see

that they can occur only very rarely in the convex case, in that they can then
be excluded by very weak conditions on the geometric dual problems ¢ and /7.
Yet, they do occur in the convex case, and examples (due originally to

J.J. Stoer) can be found in Appendix C of [Peterson, 1970].

Geometric programming problems ¢¢ that are convex are usually much more
amenable to study than those that are nonconvex, mainly because of the
relative lack of duality gaps in the convex case. Duality gaps are un-
desirable from a theoretical point of view because we shall see that re-
latively little can be said about the corresponding geometric dual problems.
They are alsb undesirable from a computational point of view because they
usually destroy the possibility of using the inequality 0 <gp(x) +h(y) to

provide an algorithmic stopping criterion.

Such a criterion results from specifying a positive tolerance ¢ so that
the numerical algorithms being used to minimize both g(x) and A(y) are

+
terminated when they produce a pair of feasible solutions x and nyor which

gQﬁ)+hQﬁ)g2&
Because conclusion (i) to Corollary 3A along with the definition of ¢
shows that —h(yf) gqu:g(xf), we conclude from the preceding tolerance

inequality that

-f-
S ) -nh)
2

|<e.

Hence, ¢ can be approximated by [g(xf) -h(yf)]/Z with an error no greater
than + €. Moreover, duality (i.e. symmetry) implies that § can be approximated
by Lh(yf)-g(xf)]/Z with an error no greater than + e.
Note though that problems &7 and /# have a duality gap if and only if
there is a positive tolerance ¢ so small that 2e<gp+4{. Because the definitions

for ¢ and | imply that o@+4¢ <g(x) +h(y) for feasible solutions x and y,
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we infer that when ¢ satisfies the preceding inequality there are no feasible
solutions JcJr and y+ for which Q(x+)+71Qﬂ5 <2e¢; in which event the algorithms
being used are never terminated.

The following corollary provides a useful characterization of dual

optimal solutions x* and y* in terms of the extremality conditions.

Corollary 3B, If the extremality conditions have a solution x' and y',

then

(i) x' €5 and yteT*
(11) TF={yeyndg ") |o=<x',y>}
(iii) 0=wp+y.

On the other hand, if the dual problems 7 and /5 are both consistent and if
0=¢p+1{, then x € and yééj* if and only if x and y satisfy the extremality

conditions.

The proof of this corollary is an immediate consequence of Theorem 3 and the
conjugate transform relation &y (x) 5.
The first part of Corollary 3B shows that problems & and & can be

viewed as '"variational principles"

for finding solutions to the extremality
conditions. Actually, in many contexts, the extremality conditions are, in
one form or another, the natural objects of study (rather than either problem
& or problem F). For the highway network problem described in example 5

of section 5.2.1, the extremality conditions (I) through (III) are

equivalent to the conditions that define "wWardrop equilibrium". For the
electric and hydraulic network problems alluded to in the same example: the
cone conditions (I) are simply the '"Kirchoff current and potential con-

servation laws' respectively, the orthogonality condition (II) is redundant

because X and ¥ are orthogonal complementary vector spaces, and the sub-
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gradient condition (III) is just "Ohm's law'. Moreover, in the context of
electric and hydraulic networks, problems ¢Z and /7 are frequently termed the
"Maxwell-Duffin complementary variational principles'. Needless to say,
Corollary 3B shows that the lack of a duality gap is fundamental in all such
contexts.

It is worth noting that if p:® is convex and closed, then the symmetry
of the conjugate transformation implies that the subgradient condition (III)
can be replaced by the equivalent subgradient condition
(I112) x €ah(y)
without changing the validity of Corollary 3B.

In that case Corollary 3B and its (unstated) dual are of direct use
when 0 =¢p+ ¢ and both J* and J* are known to be nonempty; because they then
provide a method for calculating all optimal solutions from the knowledge of
only a single optimal solution. For example, if.x*in # is a known optimal

solution to problem ¢, then

T*={yeuny (™) |0 =<x,p>};

and for each y*€ 7™ the set
S ={x €XNdE |0=<x,7>].

The definition of the Lagrangian H? (in subsection 5.3.1.3) and the fact
that % is a cone readily imply that the cone condition y €% and the
orthogonality condition 0 =<x,y> can both be replaced by the single

equivalent condition L (x;y) = inf L (x%y). Moreover, if g:C is convex
g xtex?

and closed, conjugate transform theory readily implies that the subgradient
condition y € & (x) can be replaced by the equivalent condition

st L Cx;y')==%y(x;y). Consequently, the saddle~point condition discussed
y el '

in subsection 5.3.1.3 is equivalent to the extremality conditions when
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¢:C is convex and closed. Nevertheless, it seems that the extremality
conditions given in the definition are the most convenient to work with.
The following theorem provides an important tie between dual problem

/5 and the P vectors defined in subsection 5.3.1.3.

Theorem 4., Given that problem ¢ is consistent with a finite infimum ¢,
(1) 1if problem 7 has a P vector, then problem /@ is consistent and 0=+,
(2) if problem & is consistent and 0 =g+, then

{* | ¥ is a P vector for problem @} =77

The proof of this theorem is not difficult but will of course be omitted.

An important consequence of Theorem 4 is that, when they exist, all
P vectors for problem ¢ can be obtained simply by computing the dual
optimal solution set T However, there are cases in which the vectors
in J° are not P vectors for problem ¢Z; though such cases can occur only when
0<ep+{y, in which event Theorem 4 implies that there can be no P vectors for
problem &.

The absence of a duality gap (i.e. the assumption that 0=¢p+4{§) is
crucial to the preceding computational and theoretical techniques, as well
as others to come. Although there are numerous conditions that guarantee
the absence of a duality gap, the most useful and widely used ones can be
viewed as special manifestations of the hypotheses in the following theorem.
In addition to guaranteeing the absence of a duality gap, this (geometric
programming) version of "Fenchel's theorem'" also serves as a very important

existence theorem.

Theorem 5. Suppose that both g:C and X are convex and closed. If the dual
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problem /2 has a feasible solution yoef(ri?)rﬁ(rib), and if problem 5 has a

finite infimum §, then 0 =@+{ and o #¢.

A proof of this theorem that is quite different from Fenchel's original proof
(as given in [Fenchel, 1951] or [Rockafellar, 1970]) can be found in [Peterson,
1970].

There are several facts about relative interiors that help in the
application of Theorem 5. For example, if the cone % is actually a vector
space, then (ri%) =% and hence the hypothesis yOE (ri}) N (rif) is implied by
the hypothesis yoéfyfﬁ(riﬁ). Also, if the set B turns out to be a vector space,
then (ri®) =& and hence the hypothesis yo € (ri2/) N (riB) is implied by the
hypothesis yOEE(rfD)(lB; which in turn is always satisfiable when.B==En.

Theorem 5 and the preceding facts are the key ingredients needed
to show that there aré no duality gaps for many of the #xamples given in
section 5.2.1, such as:

(1) posynomial programming problems (example 1) that are '"canonical"
(as defined in[puffin, Peterson, 1966] or [Duffin, Peterson, Zener, 1967]),

(2) convex ﬁD programming problems (example 2) that are "canonical

(as defined in [Peterson, Ecker, 1970]),

(3) optimal location problems (example 3) whose costs di(z,bL) =|\2 - bL’]i

for some 'norm" | Z./(as first shown in [Peterson, Wendell, 1975]),

(4) discrete optimal control problems (example 4) that are 'canonical"
(as defined in [Dinkel, Peterson, 1975]).

(5) highway network equilibrium problems (example 5) whose roadway
arc travel times are monotone nondecreasing and unbounded from above as

functions of the corresponding arc total traffic flows (as first shown in

[Hall, Peterson, 1975]),
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(6) electric and hydraulic network equilibrium problems (also example 5)
that contain only '"current sources', 'potential sources', and linear or nonlinear
"monotone resistors" (as first shown essentially in [Duffin, 1947], [Minty,
1960], and [Rockafellar, 1967b]).

It is worth mentioning here thaf, when both g:C and X are convex and
closed, the absence of a duality gap can actually be characterized in terms
of the changes induced in the problem infimum ¢ by small changes in certain
problem input parameters - a characterization that is given in the following

subsection.

5.3.1.5. Parametric programming and post-optimality analysis. For both

practical and theoretical reasons, problem ¢ should not be studied entirely

in isolation. It should also be embedded in a parameterized family X of

closely related geometric programming problems 7() that are generated by simply
translating (the domain C of) g through all possible displacements - w€ %ﬁ’
while keeping % fixed. (For gaining insight, we recommend making a sketch
of a typical case in which 72 is 2 and % is a one-dimensional vector space.)

Problem ¢ then appears in the parameterized family 4 as problem (0)

and is studied in relation to all other geometric programming

problems (7(x), with special attention given to those problems () in & that
are close to Z(0) in the sense that (the "norm" of) u is small.

The parameterized family F of all problems ) (for fixed g:C and X)

is termed a geometric programming family. For purposes of easy reference
and mathematical precision, problem Z(«) is now given the following formal
definition, which should be compared with the formal definition of problem

& at the beginning of section 5.2.1.

PROBLEM &7 (). Using the feasible solution set
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JW) Axn e -w,

calculate both the problem infimum

(p(u)é inf g@+uw)
X €W)

and the optimal solution set

S DS @) |glrtu) =ow)].

Note that (in a rather general set-theoretic sense) the symbols &, o/, » and
/" now represent functions of 1, though they originally represented only
the particular functional values @Z(0), /(0), ©(0) and S*(0) respectively.
Needless to say, the reader must keep this notational discrepancy in

mind when comparing subsequent developments with previous developments.

For a given u, problem &Z () is either consistent or inconsistent, de-
pending on whether the feasible solution set /() is nonempty or empty. It
is, of course, obvious that the parameterized family & contains infinitely
many consistent problems ¢Z(u). The domain of the infimum function oo is taken
to be the corresponding nonempty set Y of all those vectors u for which &)
is consistent. Thus, the range of © may contain the point -, buF if ) = -o
then the optimal solution set aﬁ(u) is clearly empty.

Due to the pre-eminence of problem 7(0), we shall find it useful to

interpret problem ¢ (1) as a perturbed version of Z(0), so we term the set

Yb {uEEn | #) is not empty}

the feasible perturbation set for problem (7(0) (relative to the family J).

The functions ¢ and 7 usually show the dependence of optimality
on actual external influences and hence are of prime interest in "cost-
benefit analysis' and other such subjects. 1In fact, for the examples given

in section 5.2.1, it is easy to see that the perturbation vector u:
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(1) alters in example 1 the (log of the absolute value of the)
signomial coefficients ¢y (which are generally determined by such
external influences as design requirements, performance requirements,
materiel costs, and so forth),

(2) alters in the linear regression analysis case of example 2 the
vector (bl,..., pm) being optimally approximated,

(3) alters in example 3 the fixed facility locations bL, provided that

°

each cost di62,bi) =|[z-bi||i for some "norm' | ,

12
(4) translates in example 4 the 'state sets"” Ri and the "decision sets"

(5) alters in example 5 the total input flows d,, as well as other

4
network parameters.,
The properties of the parameterized family J brought out in the following

theorem are of fundamental theoretical significance and also have rather

obvious applications in parametric programming.

Theorem 6. The feasible perturbation set U is given by the formula
U=C-2.

Moreover, if both C and X are convex, .then so is %, and the point-to-set

function o/ is "concave'" on Y in that

élJ(ul) + azy(uz) gpﬂ(alul

2
+52u )
1" . . 1] 1 2 . . 1 2
for each "convex combination élu -+62u of arbitrary points u', © €Y.
Furthermore, if both g:C and X are convex, then so is problem 7 ()

for each u €%, and the infimum function ¢ is either finite and convex on

Y or () =-= for each w€ (ril).

A proof for a slightly more limited version of this theorem is given in
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[Peterson, 19701,

It should be mentioned that there are instances in which both g:C
and X are convex (as well as closed) and for which () is finite for at
least one u € (rbY) (the "relative boundary"” of 4) even though ) = -
for each © € (ri%). An example (due originally to J.J. Stoer) can be found
in appendix C of [Peterson, 1970].

In cases for which X is actually a vector space, the following
theorem reduces a study of the parameterized family & to a study of only
those problmes #Z () in & for which u65y==2%o In such cases, it is convenient
to adopt the notation Uy and uy for the "orthogonal projection' of an
arbitrary vector u € QQ onto the orthogonal complementary subspaces X and ¥

respectively.

Theorem 7. Suppose that X and %/ are orthogonal complementary subspaces of
Ep. Then, for each vector u € %@, either the feasible solution sets /(i)

2

and QIQ%) are both empty, or both are nonempty, with the latter being the

4

case if and only if ©w €%, in which case
) =J(u?1) - o
and
W) =qo(u?!)-
Furthermore, if w €%, then either the optimal solution sets ./ () and dﬁ(uy) are

both empty, or both are nonempty and

JEW) =S (uZ!) - Uy o

The proof of this theorem is not difficult and can be found in [Peterson,
1970].
In addition to its rather obvious applications in parametric pro-

gramming the preceding reduction theorem and its (unstated) dual can be
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used to relate the present geometric programming formulation of duality to
both the original Fenchel formulation of duality [Fenchel, 1951] and the
more recent Rockafellar formulations of duality [Rockafellar, 1967a, 1968,
1970]. All such relations can be found in [Peterson, 1970].

The following (geometric programming) version of a theorem due originally
to Rockafellar [1967a, 1968, 1970] provides a direct link between the
infimum function ¢ and the dual problem /5. This link serves as the key to

deriving very important properties of ¢ via conjugate transform theory.

Theorem 8. The infimum function ¢ is finite everywhere on its domain Y and
possesses a conjugate transform if and only if the dual problem & is
consistent, in which case the dual objective function A:J is the conjugate

transform of o:Y.

Although this theorem has a relatively simple and direct .proof (due originally to

Rockafellar), it can also be viewed as an immediate corollary to other theorems
that produce micro-economic interpretations of the dual problem /R, 1In fact,
a detailed analysis of the situation (given in [Peterson, 1970]) shows that a
rather interesting class of micro-economic problems can be solved explicitly in
terms of problem /.

The following corollary plays a crucial role in most applications of

Theorem 8.

Corollary 8A. If the dual problem S is consistent, then the conjugate transform
of its objective function A:J is the closed convex hull E:ﬂ of the infimum

function ¢:%Y (which is, of course, identical to u:%y when w:Y happens to

be both convex and closed).

This corollary is an immediate consequence of Theorem 8 and conjugate
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transform theory.

The preceding theorem and its corollary provide a method for constructing,

without the use of numerical optimization techniques, the closed convex hull

©:U of ¢:Y (which, by virtue of Theorem 6, is essentially the desired

infimum function ¢:Y when both g:C and X are convex). In particular, if the
dual feasible solution set J is not empty (which, as indicated by Theorem 6,
is the only really interesting nontrivial case), it can of course be covered

with a "mesh"
mo (A, Y eT byns.

From Corollary 8A and conjugate transform theory © is clearly bounded from

below on Y by the (polyhedral) approximating function 6b whose functional values

C%Qoé max [<y%u>—h@fﬂ:&reaﬁu€ﬂ.

Moreover, the conjugate inequality (for E:ﬂ and h:J) can be used to show that
T =<y’ ,u>-ny") for each u€ M) - [x € [<y,y>=0},i=1,2,...,83

and the convexity of © then implies that % is bounded from above by "affine inter-
polations'" between such functional values. Furthermore, it is a consequence of con-
jugate transform theory that these lower and upper approxmiations can be

made with arbitrary accuracy simply by choosing the mesh 7 to be sufficiently
"dense" in J. To be practical though, this method requires an explicit
construction of the dual objective function Ah:J, a construction that is

rather easy for virtually all of the important (convex) examples given in

section 5.2.1.

The preceding corollary also helps to motivate the following definition.

DEFINITION. Prohlem & (©) is said to be quasi-consistent if the closed convex
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hull Ezﬂ of the infimum function :Y exists and if uéfﬂ, in which case ©(w)

is termed the quasi-infimum for problem ¢7(u).

Since 2{252, each consistent problem &7/ (1) is quasi-consistent, but not con-
versely.
The following theorem leads to a complete explanation of duality gaps,

and is also at the heart of many post-optimal "sensitivity analyses".

Theorem 9, Suppose that the dual problem /& is consistent. Then, its infimum

{ is finite if and only if problem Z(0) is quasi-consistent, in which case

0=5(0) +y and 33(0) =7 .

The proof of this theorem is a rather direct consequence of Corollary 8A and
conjugate transform theory. The details for somewhat limited versions of this
theorem can be found in either [Peterson, 1970] or [Rockafellar, 1970].

The following corollary identifies duality gaps as simply the difference

between ¢n(0) and w(0).

Corrollary 9A. Suppose that the dual problems ¢Z(0) and /3 are both consistent,

Then, problem ¢7(0) is quasi-consistent and
0n(0) -0 (0) =) +y.

The proof of this corollary comes from Corollary 3A and the addition of
©(0) -=®m(0) to both sides of the equation 0=%(0) +y given in Theorem 9.

The preceding corollary helps to motivate the following definition.

DEFINITION. A consistent problem 7 () for which @) =w@) is said to be

normal,
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The following corollary formalizes the equivalence of normality and
the lack of a duality gap, while showing that either condition guarantees

the validity of the equation on which many sensitivity analyses are based.

Corollary 9B. Suppose that the dual problems ¢(0) and / are both consistent.
Then, problem &Z(0) is normal if and only if problems Z(0) and & have no

duality gap, in which case

3 (0) =T%.

The proof of this corollary uses both Theorem 9 and Corollary 9A along with
the fact that 8p(0) =3p(0) when ¢(0) =7(0).
An additional prerequisite for sensitivity analyses is provided by the

following definition.

DEFINITION. A consistent problem 7() with a finite infimum @(U) is termed

stably set (relative to the family %) when the (ome-sided) '"directional

derivative"

o +sd) ~ol@)
S

A »
Dd@Q¢)= 11m+
s=0

exists and is finite for each feasible direction d (i.e. each direction d

such that u+sd €Y for sufficiently small s>0).

The following theorem ties stability directly to the existence of

certain subgradients, and shows how each guarantees normality.

Theorem 10. Let both :C and X be convex, and suppose that problem &Z(0)
is consistent and has a finite infimum ¢(0). Then, problem Z(0) is
stably set if and only if 3p(0) is not empty, in which case problem &Z(0)

is normal.
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This theorem is a simple consequence of Theorem 6 and the differentiability
properties of convex functions (as described, for example, in [Rockafellar,
19701).

Given a consistent problem 7(0) with a known finite infimum ©(0),

a sensitivity analysis consists of estimating other infima o (w)

for very small u. First-order estimates can, of course, be based on the
directional derivatives Dum(O) when problem (7(0) is stably set. In that

case, the defining equation for Dum(O) provides the usual estimation formula
@) ~p) +Dum(0),

whose use requires a computation of Dum(O). Toward that end, Fenchel [1951]
and, more recently, Rockafellar [1970] have appropriately extended the well-

known formula D o(0) =<u,7p(0)-> by showing that D ¢(0) = max <u,y>
U v
y € 3p(0)

when o is convex on Y - which is indeed the case when both g:C and X are
convex, by virtue of Theorem 6. Moreover, Corollary 9B shows that the

preceding formula can be rewritten as

DuCp(O) = max <u,y>
yejl\

when the dual problem 55 is consistent and there is no duality gap - which
is almost always the case, as indicated by Theorem 6, Theorem 8, and
(Fenchel's) Theorem 5. Consequently, it is of interest to know J* in addition
to (0) and J*(O), so that the preceding displayed formulas can be used to
estimate ¢(u) for a very small u. But T can usually be calculated from
an arbitrary x*efy#(o) by employing the extremality conditions, as explained
after Corollary 3B.

To further characterize duality gaps, we also embed the dual problem
F in a parameterized family £ of closely related geometric programming pro-

blems /() that are generated by simply translating (the domain .8 of) A
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through all possible displacements = D& %1, while keeping % fixed. Problem
/3 then appears in the parameterized family & as problem 2(0) and is
studied in relation to all other geometric programming problems Z(v), with
special attention given to those problems &(v) in & that are close to 5(0)
in the sense that (the '"morm" of) » is small.
Naturally, the symbols &, J, ¥ and 7 now represent functions of v,
though they originally represented only the particular functional values
(), J(©), () and T*(0) respectively, Needless to say, the reader must
keep this notational discrepancy in mind when comparing subsequent developments

with previous developments.

Since the main results having to do with the dual geometric programming

family & are essentially dual to those already given for the family %, we shall
feel free to use them without further discussion.
The following important theorem involves the dual families J and & in a

reflexive (i.e. self-dual)way.

Theorem 11. Let both g:C and % be convex and closed, and suppose that the
dual problems 7(0) and B(0) are both consistent. Then, the following three
conditions are equivalent:

(i) problem Z(0) is normal,

(ii) problem B(0) is normal,

(iii) problems ¢Z(0) and /5(0) do not have a duality gap.
Moreover, if any of these three conditions are satisfied, then
8@(0)=J*

and

3 (0) ="
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This theorem can be proved simply by a repeated application of Corollary 9B
and its (unstated) dual.

There are various degrees of consistency, ranging all the way from
(the very weak) quasi-consistency through (the intermediate) consistency

to "strong consistency'.

DEFINITION. Problem A(v) is said to be strongly consistent if v € (ri?).

Since (ri?%) &%, each strongly consistent problem B(v) is consistent, but not
conversely.

The following theorem indicates the importance of strong consistency.

Theorem 12. Each strongly consistent dual problem B(0) with a finite

infimum ¢ (0) is stably set (and hence normal).

This theorem is an immediate consequence of the convexity of A:f, the
(unstated) dual of Theorem 6, and the differentiability properties of
convex functions (which are given in both [Fenchel, 1951] and [Rockafellar,
1970]).

Since (ri?) is "almost all" of ¥, Theorem 12 implies that almost all
consistent problems 5(0) with a finite infimum ¢ (0) are normal, so Theorem 11
shows that duality gaps are rather rare phenomena when both g:® and X are
convex aﬁd closed. Nevertheless, duality gaps can occur when both g:C and X
are convex and closed, and examples (due originally to J.J. Stoer) can be

found in Appendix C of [Peterson, 1970].

5.3.1.6 Decomposition principles. 1In all problems Z(0) knowm to the

author to be of practical significance'(including all examples given in section
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5.2.1) the cone X is polyhedral and hence '"finitely generated'". Suppose then
without any known loss of practical significance that there is at least one

7 xm matrix 7 with a corresponding index set #€{1,2,...,m} for which

Z={x€Er |x=7/22 for at least one ZEEm for which zjzo, je&].

The index set ¥ can of course be taken to be the empty set when X is in fact
a vector space.
The main prerequisites for decomposing problem «Z(0) into smaller (more

manageable)subproblems are "sparsity' of the matrix 7 and separability of the

function p:@. Sparsity of 7 is frequently a natuv:al occurrence with the
modeling of large systems, while separability of ¢:Z comes from making the
appropriate problem transformations (as illustrated by the examples given in
section 5.2.1).

Three different decomposition principles for three different types of
sparsity are described here. The three different types of sparsity are

indicated by the three different types of "block diagonal structure” il-

lustrated below.

’d 7
Ay iz
T
4 2' A # 2/
Y 45
3 ~z 4
7 7
/%1 :b;
Type 1 Type 2 Type 3

SPARSITY TYPES
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The enumerated submatrices W& are of course the only submatrices of 7 that
need not be zero matrices. Assume in general that 7 such submatrices
ml’ mz,o..,W;, with 7 >2, are arranged diagonally. (In particular, r is &4
for each of the three illustrated examples.) Matrices 7 of type 1 are then
those that have no additional nonzero submatrices; matrices 77 of type 2 are
those that have a single additional nonzero submatrix W% consisting of
entire columns of 7; and matrices 7 of type 3 are those that have a single
additional nonzero submatrix W;_*l consisting of entire rows of 7. Actually,
some matrices of neither type can be effectively transformed into one of the
three types simply by row and/or column permutations.

Type 1 sparsity is the easiest to exploit; and its exploitation is at
the heart of exploiting both type 2 sparsity and, to some extent, type 3
sparsity. Types 1 and 2 are exploited directly, but type 3 requires the use of
geometric Lagrangians and duality.

Each of the three sparsity types induces a partitioning of the rows of

7 and hence the components of x in such a way that

x=1xl,x2,...,x§ for problems of types 1 and 2
while

2 7

1 +
x = ,x ,...,xr,x l) for problems of type 3,

where the components of the vector variable xk are enumerated exactly the
same as those rows of 7] that contain rows of the submatrix W&. Of course,
the rows of W9“+1 for a given problem of type 3 are the "coupling rows"
that must be contended with in reducing such a problem to an equivalent
problem of type 1.

Similarly, each of the three sparsity types induces a partitioning

of the columns of 7 and hence the components of z in such a way that
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r
g = (31,22,“.,2 ) for problems of types 1 and 3
while

~
z= (20,21,22,0..,2 ) for problems of type 2,

where the components of the vector variable Zk are enumerated exactly
the same as those columns of 7 that contain columns of the submatrix %&.
Of course, the columns of Wb for a given problem of type 2 are the
"coupling columns' that must be contended with in reducing such a problem
to an equivalent problem of type 1.

To render all three problem types amenable to decomposition, the
function g:C must be at least partially separable, and its partial
separability must be compatible with the preceding partitioning of the

components of x. In particular then, assume that there are functions

gk:Gk, k=1,2,...,7,7+1, such that
r Z k
C=x ¢ and g(x) = 2ug, (¢ ) for problems of types 1 and 2
-k —7k
k=1 k=1
while
r+1 r+l Kk
C= x ¢ and g(x) = L g, () for problems of type 3.
k=1 K k=1 X

This assmption is, of course, automatically satisfied when p:C is completely
separable, a condition that holds for many of the examples given in section
5.2.1.

Decomposition principles for type 1 and type 2 problems utilize the cones

Z é{xké E ka=772 Zk for at least one zkE E for which Zlf >0, j€&}.
k = T k My j
There are of course 7 such cones Zk’ k=1,2,...,r for a problem of type 1,
and r+1 such cones X, , k=0,1,2,...,~ for a problem of type 2. Only the

extra (coupling) cone ?ZO for a problem of type 2 is a subcone of X.
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Problems of type 1. Observe that the cone X is separable in

that

This separation of the cone X into the '"direct sum'" of the cones Zk, k=1,2,...,7,
and the separation of the function g:C into a sum of the functions

gk:Ck, k=1,2,...,r, immediately imply that problem «7(0), now designated
problem:71(0), can be solved by solving the smaller geometric programming
problems dk(O) that are constructed from the respective functions gkzck and

the respective cones %, , k=1,2,...,7. In particular, the (desired) infimum

~
wl(O) for problem:?l(O) can clearly be determined from the infima wk(O) for
the respective problems<7k(0), k=1,2,...,7 by the formula

7

' (0) = T, 0.
k=1

Moreover, the (desired) optimal solution set a;"(O) for problem:71(0) can ob-
viously be determined from the optimal solution. sets di(O) for the respective
problems d&(O), k=1,2,...,”7 by the formula

270) = ;JI:(O).
k=1

This direct decomposition of problem:?l(O) into 7 smaller problems
&k(O), k=1,2,...,r generally increases computational efficiency and can in
fact be a necessity when<71(0) is itself too large for computer storage.

It is important to note that the previous assumptions about problem
dl(O) are inherited by all problems<71(u) in the geometric programming family
Jlo In particular, the cone X and hence the block diagonal structure of its
matrix representation 7] remain invariant of u; and the separability of the

function g:C is clearly inherited by all functions g(-++uw): C-uw).
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Consequently, the decomposition principle just described in the context
of problem:ﬂl(O) is just as applicable to all other problems ﬂl(u) in
the family Jl.
In treating such problems/71(u), the components of w must be partitioned

in the same way that the components of x have been partitioned, namely,
1. 2 r
U= (U LU eea,ld ),

where the components of the vector variable uk are enumerated exactly the
same as those rows of 7 that contain rows of the submatrix W&.

Now, an application of the decomposition principle just described
in the context of problem<71(0) to each problem<7101) in a given family Jl
shows that the (desired) functions @1141 and Jl*ﬁ4l are determined by the

K
~

corresponding functions wkﬂ*k and d&ﬁx that are associated with the geo-

k

>

metric programming families = that are of course constructed from the respective
functions gk:ck and the respective cones Zk, k=1,2,00e,7 This direct

decomposition of the family Jl into 7 smaller families Jk, k=1,2,...,7 can

be concisely described by the formulas

r
ut= xu,
k=1
r
1 k
o @)= Zcok(u ),
k=1
and
d;* ook
W) = x;/k(u )
k=1
where
uk=ak—zk, k=1,2,c.0e,7

Consequently, the functions @1:u1 and J;fzal can be studied by studying
the functions @k:uk and Jﬁ:uk, k=1,2,.0.,7.

In particular, given that the (one-sided) directional derivative
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k . . . k . . .
ijgk(u ) of the function Qk'uk (at a point u éfuk in the direction

2

dképr ) exists for k=1,2,...,7, and given that both u =(ul,u ,...,ur)

k 2

and d =(d1,d ,...,ir), the (one-sided) directional derivative D @1(u)

a
. 1.ul . 1 ., . .
of the function o : (at the point w €Y in the direction 4 € Ep) clearly

exists and is given by the formula

1 C K
© @) = 2D ).
k=1 ¢

D
It is only on rare occasions that the functions wk:uk, k=1,2,...,r can be
obtained in terms of elementary formulas. Consequently, the directional
derivatives demk(uk),l<= 1,2,...,7, usually have to be determined by
numerical differentiation or other numerical methods.

If a given function ® is convex (which is the case when

1Y
both gkzck and Zk are convex), then other relatively mild conditions

(as discussed in the preceding subsection 5.3.1.5) guarantee that

k. _ k k
decpk(u ) = | max <d ,y >>

y €75 0,uk)
where Jﬁ(o;uk) is the optimal solution set for the geometric dual Ek(O;Uk)
of problem:7kQ¢k). Since j;(o,uk) can usually be calculated from a single
known optimal solution xk*egf’*k,(uk) by employing the appropriate
extremality conditions (as explained after Corollary 3B), and since Jﬁ(o;uk)
is frequently polyhedral (and sometimes a singleton), the directional
derivatives Qimlﬁw) can often be determined by the preceding two displayed
formulas by little more than linear programming (and sometimes much less).
This means of course that first-order methods can often Be used in conjunction
with the preceding decomposition principle to minimize @1(u) over a given
subset of ul-a fundamental technique to be used in decomposing problems

of type 2.

Problems of type 2. Observe that a given problem &(0) of type
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2, now designated problem &2(0), reduces to a problem:7l(u) of type 1
when the coupling vector variable ZO is (temporarily) fixed and w is chosen
to be %bzoo Now, very elementary arguments show that the (desired)

infimum @2(0) for problem;72(0) can in fact be determined by the formula

cc2<0)= inf 1m1 ().
uEx, NnY

The minimization problem that appears in this formula is obviously a

geometric programming problem and is termed the master problem. Its ob-

jective function @1:u1 has of course already been (partially) separated into

a sum of subproblem infima functions @k:u , k=1,2,...,7 by the decomposition
principle just described for problems of type 1. That decomposition principle
is of course to be used here not only to calculate the functional values

@1(u) but also to calculate any directional derivatives Qjml(u) that are
needed to implement an appropriate algorithm for solving the master problem.

Once the master problem's optimal solution set
* 1 1 2
Y é{ué%oﬂ’?,( lo W) =0 (0)}

has been obtained, the (desired) optimal solution set JZA(O) for problem

&2(0) can clearly be determined by the formula

X * *
A= U k™).
ux CUy* k=1

In the process of determining a u*€%”* with the aid of this "tearing

e .

procedure', one can of course expect to determine an.xkngggi(u*k), k=1,2,...,7;
in which event u*i-(xl*,xz*,...,xr*) is one of the desired optimal solutions
to problem<72(0)n This assumes of course that such optimal solutions exist.

In summary, problem &2(0) can be torn into 7 smaller problems

dk(uk), k=1,2,...,7 that are judiciously selected by the master problem

(with the possible help of geometric programming duality in the convex case).
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This tearing may increase computational efficiency but can in fact be
a necessity when 92(0) is itself too large for computer storage.

It is worth noting that the preceding decomposition principle
can easily be applied to each problem<72(u) in a given family 32 whose
(unperturbed) problechZ(O) is of type 2. However, the result of such
an application is notationally cumbersome to describe and is left to

the imagination of the interested reader.

Decomposition principles for type 3 problems implicitly utilize
the dual problem 5(0). 1In doing so, they require g:® to be convex and

closed, and they require the absence of a duality gap.

Problems of type 3. Recall from the end of subsection 5.3.1.3

that problem #Z(0), now designated problem 73(0), can be described in terms
of the geometric Lagrangian H? when g:C is convex and closed. 1In particular,

the (desired) infimum

o> (0) =inf [ supl_(r;)].
x €% yes?

Now, the separability inherited by H? from g:C (via h:8) clearly implies

that
inf [ sup H?CX;y)] = inf | syp ;%?(x;yr+l)],
xEeX yeh XEX Y G.Brﬂ
where the "contracted geometric Lagrangian'
r
LTl A k T+l r+l ™1
SN )zk?zlgk@ YH<y x>k @ ).
Moreover, the absence of a duality gap implies that
inf [ Sup 2 (x;yrﬂ)] = e [inf 2 (x;yf“i—l)]
€x €s ¢ Yy TE€B . x€X
1 r+1

and hence that
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r+1

0= 3} [inf 2 0y TH].

Y€ ﬁrﬂ xE€X

Consequently, the sparsity of 77 produces a master problem

3 r+1
o (0) = rigp Yy )
S
4 r+l
whose objective function value
r
+ + ™+
v/ TH LDy Y en T,
= r+l
k=1
where the subproblem infima
r+1 : k 7+l k k
v, W )Q;Ef[gk(mkz )<y M F >] k=1,2,...,7,

k
. , ,
with 7 1 representing that submatrix of %}+1 whose columns correspond

k
to the components of 2 .

It is worth noting that the k'th subproblem is in fact a geometric

r+1, r+1>

k
programming problem with an objective function value gk(x ) <y X

Ty
T

'suboptimized'" version of

and a cone generated by the columns of the matrix relative to &,

Moreover, the master problem turns out to be a '

the geometric dual problem 2(0); that is, W(yr+1) is finite if and only if

. 1 2 7
there exists a vector (¥ ,y ,...,J ) such that the augmented vector

v = (yl,yz,...,yr,yr+1)<§J(O), in which case Y(yr+1) is just the negative
of the (subjyinfimum of h(y) over all such (yl,yz,...,yr).

The preceding fact implies that the master problem consists of maxi-

mizing a concave function ¥ over a convex set (which makes it a convex

programming problem). Given that gk ¢, k=1,2,...,r,r+1 is convex
+
and closed, any directional derivatives QjY(yr 1) that are needed to im-

plement an appropriate algorithm for solving the master problem can be
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obtained from the subgradient representation

—Dd‘f(ym-l) = sup <d,u >,

e v/

where the subgradient set

.
_BY(yr+1) = iur+1 lthere exist xkEZZk, k=1,2,...r,r+1 for

r+1
which 0 = 2 <xk, yk> , e ahk(yk),

1
r+1 r+1 r+1.)
k=1,2,...,7 and X +u Eahr+1(y )j.

r+1 .
Of course, Yy is actually an optimal solution to the master problem

if and only if 0€ —BY(yr+1), in which event the (desired) optimal solu-
tion set
* 2 r
7 (0) = {(xl,x ,...,xr,x +1) ixkexk, k=1,2,...,r,r+1,
7+1
0= 2 <xk,yk> , and
1

e @), k= 1,2, 1
It is worth noting that the preceding decomposition principle can
easily be applied to each problemi73(u) in a given fam:[lyéz'3 whose (un-
3
perturbed) problem & (0) is of type 3. However, the result of such an
application is notationally cumbersome to describe and is left to the

imagination of the interested reader.

All of the preceding decomposition principles can be combined to
treat problems & (0) for which 7 has the following type of block diagonal

structure.
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As indicated by the partitioning of the matrix 7 between the submatrices
mO and mS (in the preceding illustration), a series of type 3 decompo-
sitions 1s to be guided by a type 2 decomposition,

More detailed descriptions of the preceding decomposition princi-

ples can be found in [Peterson, 1973b, 1976].

5.3.2 Relations between the Constrained and Unconstrained Cases. The

constrained case can, of course, be specialized to the unconstrained case,
simply by letting both index sets I and J be empty while choosing g :CO

to be g :C and X to be X. A somewhat surprising fact is that this speciali-
zation can be reversed; that is, the unconstrained case can actually be
specialized to the constrained case.

To do so, let the functional domain

A} 0 I J 0 i
¢ = {(x ,x ,0,x ,K)E %@l x € Cys % € Ci’ aiE El’ and

i . j +
< 6 . E .
g, (x)+a, <0, 1€1; (x ,Kj)écj, i€ J};

and let the functional wvalue

06w axd 0 g %)+ D 21 ) & 6x,0),
J
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while letting the cone

z é {(XO,XI,Q’XJ’K)E %@‘ (XO’XI’XJ)E X; o« = O; k€ EO(J)} )

Then, (the unconstrained) problem & is clearly identical to (the con-
strained) problem A, The additional independent vector variable « with
components ai, i€ I may seem superfluous, but is included so that the in-
duced family # is essentially identical to a family F that includes cer-
tain important constraint parameters My (as described in subsection
5.3.3.5).

Of course, the preceding choice of g :C and X also induces a choice
of the dual problem B and dual family & corresponding to problemZ (i.e.
problem A). In fact, computations of the resulting conjugate transform
h :B and dual cone Y (given in Peterson [1975]) show that the induced
dual problem & and dual family & are essentially identical to the dual
problem B and dual family G respectively described in subsections 5.3.3.4
and 5.3.3.5., This identification turns out to be highly significant be-
cause it provides an efficient mechanism for extending to the constrained
case most of the important theorems already described for the unconstrained

case.

5.3.3 The Constrained Case. Only the key ideas and results from the

unconstrained case are generalized here, but hopefully the reader can
easily fill in the remaining details by using section 5.3.1 as a guide.

Let Y be the ''dual" of the cone X; that is,

N

y & IAS Enl 0 < <x,y> for each x€X}.

0 I

Of course, the fact that x (x7, x, XJ) means that y & (yo, yI, yJ),
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I J I J
with y and y constructed in the same manner as x and x .

5.3.3.1. Optimality conditions. We begin with the following

fundamental definition.

DEFINITION. A critical solution (stationary solution, equilibrium solu-

(%

% *
tion, P solution) for problem A is any vector (x ,X ) for which there is

o

L
w

a vector A in Eo(I) such that (x",Kh) and A jointly satisfy the follow-

ing P optimality conditions

x €X,
*{ .
gi(x ) <0 i€,
*
A. 20 i€,
i
kid (-ki _ .
Xigi x )=0 i€1,
y"EY,
O=<xxy">,
and
K9 k3 + x3 %
<x 1,y J>=gj(x J,Kj) jeJ,
where
*0 *0
y o Lvg,(x ),
y*iﬁx*vg (x*i) i€1
=" Y8 ’ ’
and
*j A *j % .
y =ng(x /Kj) jET.

For ordinary programming (i.e. example 8 in section 5.2.2), it is worth
noting that the P optimality conditions are essentially the (more familiar)

"Kuhn-Tucker optimality conditions"
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gi(z”)so 1€1
x;zo 1€
A8 (z ) =0 i€

and

Vgo(z”) +2 xgvgi(z") =0.
I

On the other hand, the following important concept from ordinary

programming plays a crucial role in the constrained case of geometric

programming.

DEFINITION. For a consistent problem A with a finite infimum ¢, a Kuhn-

* .
Tucker vector is any vector A in E ( with the two properties

o (1)
A, 20 i€1,
i
and
©p= inf L (x,K;xx),
(x,k)€c °
x€X

where the (ordinary) Lagrangian

L, (x,%5}) AG(x,%) +? )\igi(xi) .

The following theorem gives two convexity conditions that guarantee
the necessity and /or sufficiency of the P optimality conditions for

optimality.

*k
Theorem 13, Under the hypotheses that 81 is differentiable at x

+ x5 *
k€{0}UIUJ and that g, is differentiable at (x J,Kj), jed,
(1) given that X is convex, if (x“,Kﬂ)is an optimal solution to pro-

ate

* %
blem A, and if A 1is a Kuhn-Tucker vector for problem A, then (x ,K )
is a critical solution for problem A relative to xh(but not conversely),

(2) Given that g, is convex on C ke€f{o}UuIUuy, if

k’



-65-

~ta L.

o ata

% * %  *
(x ,K ) is a critical solution for problem A relative to A , then (x ,K )

is an optimal solution to problem A, and A 1is a Kuhn-Tucker vector for

problem A,

5.3.3.2., Lagrangian saddle points. Let hk:Dk be the conjugate
transform of the function gk:Ck, k E{O}UIUJ, and let these sets Dj
determine the sets Dj’ j €J postulated at the beginning of section 5.2.2.

The following defindtion is of fundamental importance.

DEFINITION, Consider the function H whose domain

DA{(y,) |y €D, kE€{0}UJ, and ',1,) €Dy, €T
and whose functional value
L+, 1
Hy, W) Shy ) +25 0] G ,h,),
1
where

+ . .. .
D. A {(yl,)\.) |either A, =0 and sup <yl,cl><+co, or xA.> 0 and ylE)\.D,}
i= i i Jee i i'i
i

and

i i i i
sup <yacl>ifx.=03nd sup <Y ,c ><+4w
ciéGi 1 c1€Ci

+, i

h, (y7,x,) 8

i . i .
Xihi(y /Xi) if Xi:>0 and y E)\iDi°
For a consistent problem A with a finite infimum ¢, 8 P vector is any vector
(y ,A ) with the two properties
* %
(y »A ) €D
and
©=inf L (%5 y 00,

x €X
K=0

where the (geometric) Lagrangian
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L (x,K; v,0) A<x,y>-H(y,\) -2 K.h.(yJ). ’
g = J J ]

For a given problem A note that the geometric Lagrangian Lg is entirely
different from the ordinary Lagrangian LO. Unlike the geometric Lagrangian
Lg’ the ordinary Lagrangian LO simply reduces to the objective function
G when I=¢, but L0 exists even when the conjugate transforms hk:Dk,
k€ {0} UIUJ do not exist. However, Corollary 17B in subsection 5.3.3.4
shows that Kuhn-Tucker vectors and P vectors are closely related.

The following saddle point theorem provides several characterizations

of optimality via P vectors.

* *
Theorem 14, Given that gk:Ck, k€ {0}UIUJ is convex and closed, let (x ,K )

o

% X * % * %
be such that XAEEX and ¥ =20, and let (y ,A )€D. Then, (x ,K ) is optimal

* %
for problem A and (v ,A ) is a P vector for problem A if and only if the

) ga

ordered pair (x ,K ; y .\ ) is a "saddle point" for the Lagrangian Lg’

that 1is,
x % * * x - * *
sup L (x ,K ; y,X)=Lg(x X 3y LA ) =inf L (x,K557 LA )
(y,A) €D x€X &
K>0

in which case Lg has the saddle point value

K

* %
Lg(x , K

o

* * x %
3 Y LA ) =G6kx LK) =e.

Moreover,

sup L (x",K"; V,A) =Lg(x",K“
(y,\) €D

5 Y",X")

(% L (% e

if and only if (x ,K ) and (¥ ,\ ) satisfy both the feasibility conditions

(x“, K“) cc,

*1

g.(x 7)=<0 i€1,

1

and the subgradient and "complementary slackness" conditions

*0 *0
y R ),
* %*7 wi i % % o * %5
either A\, =0 and <x l,y s = sup <cl,y l>, or A.>0 and ¥y IGX.Bg.(X l), ic1,
i deg i i~=i
i
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xi"gi(x"l) =0 i€1,
ki *x 3 ] k5 3 * %3 x93 *
either Kj=0 and<xJ,yJ>= sup <X J,d‘]>, or Kj>0 andyJEng(x J/Kj), j€eJ;

dl €p.
j

in which case

e o da
iy

¥ X * * *
Lg(x K5y LA ) =G6(x L,K ).

Furthermore,

L (x,K ;35 ,0)=1inf L (x,K; ¥y ,A )
& xEX g
K=0

o

if and only if (x ,k ) and (y

o )

&,Xx) satisfy both the feasibility conditions
y €Y,

hj(y"J)so jed,

and the orthogonality and complementary slackness conditions
* %
0=<x,y >,

K*h ( *j) =0 i €J

j j y J 3
in which case

% * * * * *
Lg(x »K 3y LA ) ==H( LA ).

5.3.3.3. The geometric inequality. To introduce duality into the

constrained case, the conjugate inequality (given in subsection 5.3.1.2) must
be extended in a very special way [Peterson, 1973a].

The resulting "'geometric inequality" can actually be derived directly
from the conjugate inequality by introducing a scalar variable T>0. First,
suppose that 7>0 and that /T is in Q, so that (/T can be substituted for C
in the conjugate inequality. Then, multiply the resulting inequality by T

to establish the nontrivial part of the geometric inequality
+ +
<z,(>sTw(z)+w ({,T) for z€W and ({,T) €Q ,
where

+ ,
Q s {(Q,T) €E , either 7T=0 and sup <z',C> <4w, or T>0 and QETQ}
n+1 2 €W = .
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and

sup <z',{>1if T=0 and sup <z',(><+w
z' €W z' €W

5T (C,T) 8
Tw(c/T) if >0 and € TQ.

Of course, the trivial part of this geometric inequality is an immediate

+
consequence of the definition of w ({,7) for T=0. Moreover, it is clear
from the equality characterization of the conjugate inequality that equality

holds if and only if

either T=0 and <z,{>= sup <z',[>, or T>0 and [ € Tdw(z).
z' €W

Of course, another geometric inequality can be derived from the same con-
jugate inequality simply by introducing another scalar variable t 20 and sub-
stituting z/t for z in the conjugate inequality. The details of that inequality
are left to the imagination of the reader.

If w is convex and closed, the symmetry of the conjugate transformation
clearly implies that the condition z € dw({/T) can be replaced by the condition
C €Tew(z) in the characterization of equality for the geometric inequality; in which
case the relations z €3w({/T) and  €T8w(z) are equivalent and hence ''solve'" one
another when 7>0.

This completes our prerequisites for all of the remaining subsections.

5.3.3.4. Duality. Let hk:Dk be the conjugate transform of the function
g,.:C» k€{0}UIUJ, and let these sets D, determine the sets D,, j€J post-
k" k i i’

ulated at the beginning of section 5.2.2.

Now, consider the following geometric programming problem B.

PROBLEM B. Consider the objective function H whose domain

DA {(y,) lykEDk, ke {0} U, El_d(yi,)\i)EDI, i€1)

and whose functional value
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0 4+, i
H(y,A) &by (y )+? h: (775D,
where

+ . . .
D, é{(yl,)\.) | either A, =0 and sup <y',e'><4w, or A, >0 and y €A.D,)
i= i/ =" = Jdco — i — ii
i

and

sup <y1,c1> if ki=0 and sup <y1,c]> < 4o
clECi cléci

+, i
A
hi(y A&

i . i
Ahy G7/2) 1E ;>0 and y €D, .

Using the feasible solution set

TA{,)ED |yey, mhj(yj)so, j€33,

calculate both the problem infimum

y&  inf H(y,))
(y,A) €T

and the optimal solution set

T L {(y,0) €T | B, = ¢].

Problems A and B are, of course, termed geometric dual problems. When

gk:Ck, k€ {0} UIUJ and X are convex and closed, this duality is clearly symmetric,
in that problem A can then be constructed from problem B in the same way that
problem B has just been constructed from problem A. Actually, this duality
is the only completely symmetric duality that is presently known for general
(closed) convex programming with explicit constraints.

In linear programming (example 7), elementary computations show that
dual problem B is, in essence, just the usual linear dual problem.
However, in ordinary programming (example 8), elamentary considerations
show tuat dual problem B is not just the (Wolfe) "ordinary dual problem'
(as properly defined for the first time 1in [Falk, 1967]). Actually, the ordinary

dual problem results from a (sub)optimization of the geometric dual problem
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B over y - a fact that indicates why the ordinary dual problem can almost
never be computed as easily as the geometric dual problem. Unlike the
ordinary dual problem, the geometric dual problem can frequently be computed
in terms of elementary functions, particuiarly for the convex examples described
or alluded to in section 5.2.2.
The following definition is almost as important as the definition of the

dual problems A and B.

DEFINITION. The extremality conditions (for constrained geometric programming)

are:
(1) x€X and vyEY
(11) gi(xl)SO, 1€1 and hj(yJ)sO, €7,
(III) 0=<x,y>
0 0
(1v) y € Bgo(x ),
. _ i i i i i i X
) either A, =0 and <x ,y >= sup <c ,y >or A,>0 and y €x.8g.{x"), i¢€I,
1 1 1 1 1
c €C,
i
(V1) either K, =0 and <xJ,yJ>= sup <xJ,dJ> or ¥,>0 and yJEBg,(xJ/K,), jeg,
j al e, j TR
J
(VII) A8, (X)) =0, 1€1, and thj(yJ) =0, j€I.
When Ci==En (which is frequently the situation), a simplification results
11 g i i i
from noting that <x ,y " >= ;Sup <c ,y > if and only if y° =0. 1In particular

¢ €eC,
i

then, the corresponding extremality condition (V) can be replaced by the

;\. >—O arld 91€>\ ag ( ) i GIu
. . O . \X FY 1

Extremality conditions (I) are simply the "cone conditions'" for problems A and I
respectively, and extremality conditions (II) are simply the "constraints" for
problems A and B respectively. Extremality condition (III) is termed the
"orthogonality condition", extremality conditions (IV) through (VI) are termed
the '"subgradient conditions', and extremality conditions (VII) are (of course)

termed the "complementary slackness conditions".



-71-
The following duality theorem is the basis for many others.

Theorem 15. If (x,X) and (y,A) are feasible solutions to problems A and B
respectively (in which case the extremality conditions (I) through (II)

are satisfied), then

0 <G(x,K) +H(y,N),

with equality holding if and only if the extremality conditions (III) through
(VI) are satisfied; in which case (x,K) and (y,A) are optimal solutions to

problems A and B respectively.

In essence, the proof of this key theorem consists of little more than
combining the defining inequality 0 <<x,y> with an inequality that comes
from summing the conjugate inequality <1x0,y0:>s:g0(x0)-+h0(y0), the geometric
inequalities <Ixi,yi>q;xigi(xi)-+h:(yi,ki), i €1, and the geometric inequalities
<xj,yj>§g-‘:(xj,i€_) +K,h.(yj), jea.

J J J 3

The preceding theorem has two important corollaries that are left to the
imagination of the reader because they differ only sightly from the two
corollaries to (the analogous) Theorem 3. The first corollary is fundamental to
the definition of ™duality gap" and is helpful in studying the constrained
version of the algorithmic stopping criterion presented in subsection 5.3.1.4.
The second corollary provides a useful characterization of dual optimal
solutions (x*,K*) and (y*,x*) in terms of the extremality conditioms.

It is worth noting that if gO:C0 is convex and closed, then the symmetry
of the conjugate transformation implies that the subgradient condition (IV) can
be replaced by the equivalent subgradient condition
(1va) <0 €2 %),

Likewise, if gi:Ci, 1€1 is convex and closed, then the subgradient condition

(V) can be replaced by the equivalent subgradient condition

(Va) either A, =0 and <xl,y1>= . Sup <cl,yl>, or X, >0 and XIEBh.(‘yl/)\.), i€1;
i Jteg i i i
i
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and if gj:C., j€J is convex and closed, then the subgradient condition (VI)
can be replaced by the equivalent subgradient condition

: - I 43 j v .
(Via) either XK, =0 and <x",y > sup <x ,d >, or K,>0 and x” €K,dh,(y"), j€J.

J aj €D, J J 1]
J

These equivalent subgradient conditions (IVa) through (Vla) are, of course,
especially helpful when using the extremality conditions to compute all primal

)

* & *
optimal solutions. (x ,K ) in S from the knowledge of only a single dual

optimal solution (y*,X*) in T*.

It should be emphasized that problem A need not always be solved directly.
Under appropriate conditions it can actually be solved indirectly by solving
either the extremality condition (I-VII) or problem B. In some cases it may be
advantageous to solve the extremality conditions (I-VIL), especially when they
turn out to be (esserntially) linear (e.g. linearly constrained quadratic
programming). In other cases it may be advantageous to solve problem B, especially
when the index set J is empty (e.g. quadratically constrained quadratic pro-
gramming and posynomial constrained posynomial programming); in which event pro-
blem B has no constraints (even when problem A does). Of course, in all such
cases the absense of a duality gap is crucial.

The definition of the Lagrangian Lg (in subsection 5.3.3.2) and the fact
that X is a cone readily imply that the cone condition y €Y, the constraints
hj(yj)‘SO, j €J, the orthogonality condition 0 =<x,y>, and the complementary
slackness conditions thj(yj) =0, j€J can all be replaced by the single

equivalent condition Lg(x,K;y,X)= inf Lg(x',K';y,X)q Moreover, if gk:ck,

x'€X

K'>0
k€ {0} UIUJ is convex and closed, conjugate transform theory implies that the
constraints gi(xl):SO, i €I, the subgradient conditions (IV) through (VI),

and the complementary slackness conditions Xigi(xl)==0, i €1 can all be re-

placed by the two equivalent conditions K=>0 and sup L (x,8;97",A") =L (x,K;y,)A)
(', AN ED 8
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Consequently, the saddle-poirt condition discussed in subsection 5.3.3.2
is equivalent to the extremality conditions when gk:Ck, k€{0}UIUJ is convex
and closed. Nevertheless, it seems that the extremality conditions given in
the definition are the most convenient to work with.

The following theorem provides an impotrtant tie between dual problem B and

the P vectors defined in subsection 5.3.3.2.

Theorem 16, Given that problem A is consistent with a finite infimum o,
(1) 1if problem A has a P vector, then problem B is consistent and 0=+,

(2) if problem B is consistent and O =g+ {, then

* * * * %
{5 ) l(y A ) is a P vector for problem A} =T .

The following theorem provides an important tie between dual problem B

and the Kuhn-Tucker vectors defined in subsection 5.3.3.1.

Theorem 17. Given that problems A and B are both consistent and that 0=un+y,
if there is a "minimizing sequence" {(yq,kq)}T for problem B (i.e. (yq,Xq)E’T
and lim H(yq,kq) =¢) such that lim xq exists and is finite, then n é 1im 29

q =t q =t q=te
is a Kuhn-Tucker vector for problem A.

The following corollary ties the dual optimal solution set T directly to

Kuhn-Tucker vectors.

Corollary 17A. Given that problems A and B are both consistent and that
* % *
0=w+y, each dual optimal solution (y ,A ) €T provides a Kuhn-Tucker vector

XR for problem A.

5

The following corollary ties the set of all P vectors (yh,xx) directly to

.

the set of all Kuhn-Tucker vectors A .
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Corollary 17B, Given that problem A is consistent with a finite infimum @,

each P vector (yw,x") for problem A provides a Kuhn-Tucker vector A for

problem A,

The proof of this corollary requires Theorem 16 as well as Corollary 17A.

As the preceding theory indicates, the absence of a duality gap is a
highly desired situation. The following (geometric programming) version of
"Fenchel's theorem' provides useful conditions that guarantee both the absence

* % *
of a duality gap and the existence of primal optimal solutions (x ,X )€S§ .

Theorem 18, Suppose that both gk:Ck, k€{0}UIUJ and X are convex and closed.
(i) problem B has a feasible solution (y',A') such that
hj(y'j)<o jed,
(ii) problem B has a finite infimum vy,

. . + 4+
(iii) there exists a vector (y ,A ) such that

y+ € (riy),

y € (riD)) kefolug,

+

6D € i) ic1,

i

then 0 =w+y and S #¢.

This theorem is perhaps the deepest theorem in geometric programming. Its
most direct proof utilizes (the corresponding unconstrained) Theorem 5 along
with rather intricate arguments based on "convex analysis'.
+ . . . s . .
Note that the vector (y ,A ) in hypothesis (iii) need not be a feasible
. + .+ . . .
solution to problem B. However, (y ,A ) is obviously such a solution when

J is empty (which is the case for all examples described in section 5.2.2).

Consequently, hypothesis (i) can clearly be replaced by the hypothesis

If
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") J is empty
without disturbing the validity of Theorem 18. Moreover, when the cone Y is
in fact a vector space (which is the case for all examples described or
alluded to in section 5.2.2), the condition y+%§(riY) is implied by the
weaker condition y+éEY.

Theorem 18 can be used to show that there are no duality gaps for the
comstrained versions of problem classes (1) through (3) listed after Theorem 5.
Furthermore, its (unstated) dual can be used to strengthen the "Kuhn-Tucker-

Slater theorem'" in ordinary programming.

5.3.3.5. Parametric programming and postoptimality analysis. As

mentioned in section 5.3.2, the parameterized family F into which
problem A is to be embedded can be obtained by translating the prescribed
domain C (given at the beginning of section 5.3.2) through all possible dis-
placements -u, while keeping the prescribed cone X fixed.

Now, the structure of C obviously induces a partitioning of the com-

. I J .
ponents of © into vectors u , u, u, u , and u, that correspond respectively

J

I J
to vectors xo, X , o, ¥ , and K. Clearly, each component uj, of u does not

influence the problem infimum, but simply translates through -uj only the
optimal value of Kj (if such a value exists). Hence, setting uj equal to

zero deletes from the resulting family £ only problems ¢(«) that are essentially
superfluous. Consequently, the family F is actually taken to be the resulting
family & with all such superfluous problems deleted. Of course, the vectors

uo, uI, uJ and p still needed to parameterize F constitute a single vector
parameter (u,y) where (uo, uI, ujj gu.

The parameterized family F of all problems A(u,u) (for fixed gk:CK, ke {0JUTUJ

and X) is termed a geometric programming family. For purposes of easy reference

and mathematical precision, problem A(u,p) is now given the following formal
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definition, which should be compared with the formal definition of problem

A at the beginning of section 5.2.2.

PROBLEM A(u,u). Consider the objective function G( * +u, x) whose domain

c 2{t0) | x"+uec, ke{0JUT, and &I +ud e €ct, e,

and whose functional value

G(x+u,K) égo(xo +u0) +25 g;-(xJ +uJ,Kj),

J
where
C. A{(CJ,K ) | either Kk, =0 and sup <cJ dJ><+oo or ¥,>0 and c? GK C }
j I T T 4ien. 3 3
h|
and
sup <cJ,dJ> if ¥,=0 and _sup <ol dJ><+oo,
dJ e, ] a? €D,

c ,K y &
8; ( 3

K.g.(CJ/K.) if K.>0 and cJ €K.C..
J7] J -/ ] - JJ

Using the feasible solution set

S(uy) (k) €CQ) | x€X, and g, " +ul) +u, <0, 1€1],

calculate both the problem infimum

C,)(U.,Ll,)_( K)ES( " G(X+U,K)

and the optimal solution set

" (uu) 8 G0 €50, | GGa+u, k) =elu,p) ).

Of course, problem A appears in the parameterized family F as problem A(0,0);

and the symbols A, S, ©w and S now represent function of (u,p), though they

originally represented only the particular functional values A(0,0), S(0,0),
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©(0,0) and S*(0,0) respectively - a notational discrepancy that must be
kept in mind when comparing subsequent developments with previous developments.

For the examples given in section 5.2.2, it is easy to see that the
perturbation vector (u,u):

(6) alters in example 86 the (log of the absolute value of the) signomiai
coefficients cq and the constraint upper bounds dk’

(7) alters in example 7 the affine objective function constant 0 and
the linear constraint upper bounds bi’

(8) translates in (the ordinary programming) example 8 the common
function domain Co in several simultaneous directions while altering the con-
straint upper bounds 0.

To extend the unconstrained theorems given in subsection 5.3.1.5 into
corresponding constrained theorems:

(1) each hypothesis that the set C be convex should be replaced by
the hypothesis that the sets CO and C;, j€J along with the functions gi:Ci,
i€1 be convex,

(2) each hypothesis that the function ¢:C be convex (closed) should be
replaced by the hypothesis that the functions g, :C, k€ {0} UI and the
functions g;:Cj, j€J be convex (closed),

(3) each hypothesis that the cone X% be convex (closed) should be re-
placed by the hypothesis that the cone X be convex (closed),

(4) make the obvious notational alterations in both the hypotheses and
the conclusions, as well as the definitions.

In carrying out (4): the symbol .& should be replaced by the symbol G, the
symbol » should be replaced by the symbol (v,v), where (VO, vI, vJ) é v

translates sets and v influences constraint upper bounds.

Needless to say, the remaining details are left to the interested reader.
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5.3.3.6. Decomposition principles. To generalize the decomposition

principles given in subsection 5.3.1.6, simply view the constrained case in
the context of the unconstrained case via the prescribed choices of g:2 and
% given in section 5.3.2.

In doing so it is important to realize that the components of x==(x0,xI,a,xJ,
K) can be placed in any order to achieve a block diagonal structure for some
matrix representation 7 of X, Moreover, it is clear from the formula for X that
the possibility of achieving such a block diagonal structure for some 77 depends
entirely on the possibility of ordering the components of x==(x0, xI, xJ) in
such a way that a block diagonal structure is achieved for some matrix re-
presentation M of X.

It is equally important to realize that the function g:C inherits any
separability that is present in the functions gO:CO and g}:C}, j€J. Although
7 :C clearly does not generally inherit any of the separability that is present
in a given function gi:Ci (unless a corresponding Kuhn-Tucker multiplier
X: is known, in which case the constraint gi(xi)4'ai:§0 can be deleted from
the defining equation for ¢ while the expression X:[gi(xi)-+ai] is added to the

. s . I J . . . s .
defining equation for g(xo, X, o, ¥ , K)), p:C does inherit sufficient partial

separability when the components of x* belong to a single vector xk.
5.4 REFERENCES

Abrams, R.A., and M.L. Bunting, '"'Reducing Reversed Posynomial Programs', SIAM

J. Appl. Math., to appear, (probably 1975).

Avriel, M., and A.C. Williams, "Complementary Geometric Programming', SIAM J.

Appl. Math., 19, (1970), 125-141,

Courant, R., and D. Hilbert, Methods of Mathematical Physics, I, Interscience,

New York, (1953).



-70-

Dinkel, J.J., and E.L. Peterson, 'Discrete Optimal Control (with Linear
Dynamics) via Geometric Programming,' J. Math. Anal. Appls., to appear,

(probably 1975).
Duffin, R.J. "Nonlinear Networks, IIa," Bull. Amer. Math. Soc., 53, (1947), 963-971.

. "Infinite Programs,'" Linear Inequalities and Related Systems,
H.W. Kuhn and A.W. Tucker (Fds.), Princeton Univ. Press, Princeton, N.J.,

(1956), 157-170.
. '"Dual Programs and Minimum Cost,'" SIAM J. Appl. Math., 10, (1962a), 119.

. ""Cost Minimization Problems Treated by Geometric Means,' ORSA J.,

10, (1962b), 668.
. "Linearizing Geometric Programs,' SIAM Rev., 12, (1970), 211-227.

Duffin, R.J., and E.L. Peterson., ''Duality Theory for Geometric Programming,"

SIAM J. Appl. Math., 14, (1966), 1307-1349.

. "Geometric Programs Treated with Slack Variables,'" J. Appl. Anal.,

2, (1972a), 255-267.

. "The Proximity of (Algebraic) Geometric Programming to Linear

Programming,'" Math. Prog., 3, (1972b), 250-253.

« "Reversed Geometric Programs Treated by Harmonic Means,’” Indiana

Univ. Math., J., 22, (1972c¢c), 531-550.

. "Geometric Programming with Signomials," J. Opt. Th. Appls., 11,

(1973), 3-35.

Duffin, R.J., E.L. Peterson and C. Zener, Geometric Programming - Theory and

Applications, Wiley, New York, (1967) - Russian translation by D,

Babayev, Mir, Moscow, (1972).



-80-

Falk, J.E., "Lagrange Multipliers and Nonlinear Programming,"” J. Math. Anal., 19,

(1967), 141-159.

"Global Solutions of Signomial Programs,' Technical Report #T-274,

George Washington Univ. Prog. in Logistics, Washington, D.C., June, (1973).

Fenchel, W., ™0On Conjugate Convex Functions,"™ Canadian J. Math., 1 (1949),

73-77.

. "Convex Cones, Sets and Functions,' Mathematics Department mimeo-

graphed lecture notes, Princeton Univ., Princeton, N.J., (1951).

Hall, M.A., and E.L. Peterson, "Multicommodity Flows in Nonlinear Transportation

Networks," to appear (probably 1975).

Kretschmer, K.S., "Programmes in Paired Spaces,' Canadian J. Math., 13, (1961),

221.

Minty, G.J., '"Monotone Networks," Proc. Roy. Soc. London Ser. A, 257, (1960),

194-212.

Peterson, E.L., "Symmetric Duality for Generalized Unconstrained Geometric

Programming,' SIAM J. Appl. Math., 19, (1970), 487-526.

. '"Mathematical Foundations of Geometric Programming', Appendix
to "Geometric Programming and Some of Its Extensions,'" Optimization
and Design, M. Avriel, M.J. Rijckaert and D.J. Wilde (Eds.), Prentice-

Hall, Englewood Cliffs, N.J., (1973a), 244-289.

"The Decomposition of Large (Generalized) Geometric Programming
Problems by Tearing,' Proc. NATO Inst. Large Scale Systems, D.M.

Himmelblau (Ed.), North Holland, Amsterdam, (1973b), 525.



-81-

. "Generalization and Symmetrization of Duality in Geometric

Programming," to appear, (probably 1975).

. "The Decomposition of Large (Generalized) Geometric Programming

Problems by Geometric Lagrangians," to appear, (probably 1976).

. The Mathematical Foundations of Convex and Nonconvex Pro-

gramming, to appear, (probably 1977).

Peterson, E.L., and J.G. Ecker, "Geometric Programming: Duality in Quadratic
Programming and Zp - approximation, I,'" Proc. International Sym. Math.
Prog., H.W. Kuhn (Ed.), Princeton Univ. Press, Princeton, N.J., (1970),

445-480.

Peterson, E.L., and R.E. Wendell, "Optimal Location by Geometric Programming,"'

to appear, (probably 1975).

Rijckaert, M.J., "Engineering Applications of Geometric Programming,' Optimization
and Design, M. Avriel, M.J. Rijckaert and D.J. Wilde (Eds.), Prentice-

Hall, Englewood Cliffs, N.J., (1973), 196-220.

Rockafellar, R.T., "Duality and Stability in Extremum Problems Involving Convex

Functions,' Pacific J. Math., 21, (1967a), 167-187.

. "Convex Programming and Systems of Elementary Monotonic Relations,”

J. Math. Anal. Appls., 19, (1967b), 543-564.

. "Duality in Nonlinear Programming,' Amer. Math. Soc. Lects. Appl.
Math., 11, G.B. Dantzig and A.F. Veinott (Eds.), Amer. Math. Soc.,

Providence, R.I., (1968), 401-422.

. Convex Analysis, Princeton Univ. Press, Princeton, N.J., (1970).



