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Abstract

We consider an infinite dynamic game between a large player and a large number (con-
tinuum) of small players in which state variables affect players’ payoffs. We analyze the
perturbed game in which with small probability the large player can be one of many com-
mitment types. We show that this perturbation allows the large player to establish a
“reputation” and that in every Nash equilibrium the large player gets at least what he
could get by committing to an optimal strategy as his discount factor approaches 1. Fur-
thermore, if the transition function is reversible, i.e. if a small player can move from one
state to another only if he can also return, then this result holds even if the small players’
discount factor also approaches 1.

We present an example of a firm associated with a large number of employees who can
accumulate firm specific human capital. A tight bound on the firm’s equilibrium payoff
is given and it is shown how reputation can allow the firm to improve upon all subgame
perfect equilibria of the unperturbed game. For the durable goods monopoly it is shown
that reputation may fail to improve the monopolist’s payoff.

KeywoRrDs: Dynamic games, reputation, Nash equilibrium.

Journal of Economic Literature Classification Numbers: C72, C73.



1 Introduction

Many economic problems have the feature that a state variable such as capital, debt or
money, provides a link between present actions and future payoff opportunities. As an ex-
ample, games that describe the strategic interaction between a government and households
usually involve state variables. It is in this context that the problem of time consistency of
optimal government policy arises: since ex-ante and ex-post optimal policies differ, even a
benevolent government may not be able to achieve the optimal commitment outcome.

Recent work has turned attention to this kind of games. Dutta (1991) provides a
Folk theorem for stochastic games. Chari and Kehoe (1990) and Stokey (1992) study the
time inconsistency problem introduced by Kydland and Prescott (1977, 1980) and Fischer
(1980) and characterize the set of equilibria in problems of optimal policy design when the
government cannot commit. Both Chari and Kehoe (1990) and Stokey (1992) show that,
if there is sufficiently little discounting, a desirable outcome (the Ramsey outcome in a
capital taxation model, Ramsey (1927)), can arise in equilibrium. However, in their model
the Ramsey outcome is only one of many equilibria.!

We consider a general class of dynamic games with one large player and a large number of
small players. A deterministic transition law describes the evolution of the state variable.
The large player has some private information about his type, i.e. the small players are
uncertain about the type of large player they are facing. This uncertainty may be very
small in the sense that the large player is of one particular type with a probability close
to one. The goal of this paper is to find conditions under which a patient large player
can exploit the uncertainty of his opponents and enforce an outcome that is essentially
equivalent to publicly committing to an optimal strategy.

The introduction of uncertainty relative to the type of a player and the consequent
possibility of acquiring a reputation for an appropriate behavior has received considerable
attention in the literature. Starting with the work of Kreps and Wilson (1982) and Milgrom
and Roberts (1982) the studies of reputation effects have focused exclusively on repeated
games.

Fudenberg and Levine (1989) study a class of repeated games in which a long lived

player faces a sequence of short lived opponents, each of whom plays only once but observes

Tt is sometimes argued that in this case the government may be able to select its preferred equilibrium.
However, Dekel and Farell (1990) show that these selection arguments are inconsistent.



the entire history of the game. If there is a positive probability that the long lived player
is a type who always plays the strategy to which the normal player would like to commit,
then reputation effects lead to a sharp prediction for all Nash equilibria of the game: the
large player will receive a payoff that is at least as large as what he would receive if he could
publicly commit to his preferred strategy.

This result is robust in the sense that it does not rely on a refinement of Nash equilibrium
and that it is unaffected by further perturbations of the information structure of the game,
i.e. by the introduction of additional commitment types?.

The present paper uses reputational arguments and provides conditions under which
results analogous to the ones obtained by Fudenberg and Levine (1989) apply to dynamic
games and also provides conditions under which reputational arguments may fail.

Since we consider games with a a large number (continuum) of small players, we will
assume that the individual play of the small players is not observed. In a purely repeated
game this assumption would imply that each small player behaves like a short-lived player,
since his actions will affect neither his future payoffs nor the public history of the game. In
a dynamic game the presence of state variables creates an intertemporal link and introduces
a new strategic dimension to the problem. Even though a small player cannot influence
his opponent’s future play, he can change the value of his individual state variable, thereby
affecting his own future payoff opportunities. Therefore a small player’s behavior will
depend on the (expected) future actions of the large player 3.

For example, in a capital taxation model in order to choose a high investment level
today, the households in the economy need to become convinced that the government will
set low capital tax rates not only today but also in the future.

As is clear, the presence of state variables makes it more difficult for the large player to
establish a reputation: small players have to become convinced that the large player will
follow a particular strategy not only in the current period but also in the future. The more
the small players’ behavior is affected by play in the distant future the harder it will be for
the large player to gain from establishing a reputation.

Our first result (Theorem 1) applies to the case where the small players have a fixed

discount factor while the large player is arbitrarily patient. If there is a commitment type

?For extensions of Fudenberg and Levine (1989) see Fudenberg and Levine (1992), Schmidt (1991) and
Cripps and Thomas (1992).
®See also Schmidt {1992), for a similar effect in games with two long run players.



that plays the strategy to which the large player would want to commit then in any Nash
equilibrium the large player is guaranteed at least the optimal commitment payoff*.

To obtain a result that holds for a wide range of interesting economic applications we
allow the payoffs to the small players to depend on the aggregate play of the small players
and the aggregate state variable, as well as on their own play and the play of the large player.
In the terminology to be introduced, we allow for strategic ezternalities among small players.
This has the surprising implication that, for a fixed discount factor, arbitrarily distant play
of the large player may affect current behavior of the small players (see Example 2). If the
optimal commitment strategy can be approximated by an eventually periodic sequence, i.e.
a sequence that converges to some cycle of bounded length in finitely many periods, then
also in this case reputation effects allow a precise characterization of equilibria. Assuming
that the discount factor of the small players stays fixed while the large player gets arbitrarily
patient, the large player will receive at least the optimal commitment payoff in all Nash
equilibria (Theorem 2).

Finally, we consider the case where both the large and the small players are arbitrarily
patient. This case is particularly relevant for policy games, in which, for example, the payoff
function of the government is equal to the payofl function of the median voter. Then, if
players are very patient, the small players’ action may be affected by very distant future
outcomes.

In this case it is shown (Theorem 3) that the large player will only be able to exploit
his reputation if the following reversibility condition on the transition function is satisfied.
A transition function is reversible if players can move from one state to another only if
they can also return. This condition is satisfied in capital accumulation games, but is not
satisfied, for example, in the standard durable goods monopoly 3. Once a customer has
purchased the durable good, he has reached an irreversible state. Example 3 shows how in
the durable goods monopoly reputational arguments fail to guarantee the large player his

optimal commitment payoff.

An example that is discussed in the paper is that of a firm with a large number of em-

ployees who can invest in firm specific human capital (skills) to increases their productivity.

*By the optimal commitment payoff, we mean the maximal time average that the large player could
guarantee himself by publicly precommitting if the game started in the worst possible state from the large
player’s point of view.

®See for example Coase (1972), Ausubel and Deneckere (1989), Stokey (1981), Fudenberg, Levine and
Tirole (1985), Gul, Sonnenschein and Wilson (1986).



Employees are not willing to invest unless the firm rewards the increased productivity. Since
human capital is firm specific, however, the firm has an incentive to renege on its promise
to reward increased productivity and to pay only the reservation wage. Even though in the
game with complete information there may be no subgame perfect equilibrium in which
human capital is accumulated (Proposition 1), the introduction of a small amount of un-
certainty about the type of the firm implies that the optimal level of human capital will
be accumulated and the firm will appropriate all the net gains from this accumulation
(Proposition 2).

An interesting application of the case in which large and small players have the same
discount factor is the classical time inconsistency problem in an intertemporal capital tax-
ation model (Kydland and Prescott, 1977). Fischer (1980) describes a situation in which
a benevolent government has to finance a public good by levying taxes on capital and la-
bor. If the government could commit to a certain strategy, it could achieve the Ramsey
outcome (Ramsey, 1927), i.e. the sequence of combinations of capital and labor tax rates
that minimize distortions. Once capital has been accumulated, however, it is optimal for
the government to raise as much revenue as possible from capital taxation that is ex-post
non distortionary. If private investors expect the government to renege on its promise to
set low capital tax rates, they will accumulate a suboptimal level of capital.

The result of the present paper is that if the prior probability of a particular commitment
type is strictly positive, then in any Nash equilibrium the government will achieve a payoff

close to the payoff corresponding to credible commitment to an optimal tax rate.

The structure of the paper is as follows. In section 2 we describe the complete infor-
mation game. Section 3 introduces the perturbed game, i.e. the possibility of the large
player to be one of many “types”. Section 4 provides the first result for the case where the
discount factor of the small players stays fixed while the large player is very patient. Sec-
tion 5 discusses the example of firm specific human capital accumulation referred to above.
Section 6 gives the result for the case in which there are strategic externalities. Section
7 deals with the case where large and small players share a common discount factor and

Section 8 provides conclusions. Proofs are presented in Section 9.



2 Description of the Game

The class of games we consider has two types of players: one large player denoted by b, and
a continuum of identical small players ¢ € [0,1] = I. The finite sets Y and X denote the
actions of the large player and the small players respectively; y € Y, € X. Furthermore
we let ¥ denote the set of mixed actions of the large player.

Each small player has an individual state variable, z € Z, where Z is the state space
that is assumed to be finite and identical for all small players. Let A denote the set of
probability measure on Z, A € A, and M denote the set of probability measures on Z X X,
i€ M; p(z,z) is to be interpreted as the measure of small players with initial value of the
state variable equal to z that choose action 2. Finally let 4% € A denote the marginal of
pon Z and uX the marginal of £ on X (iX belongs to the set of probability measures on
X).

The game is played in the following way: At the beginning of each period ¢t = 1,2,...
the public history (to be described below) is observed by all players and each small player
observes his own private history. Conditional on these observations, every small player
takes an action z* € X and the large player simultaneously takes a (possibly mixed) action
g € ¥, where ¥ denotes the set of probability distributions on Y.

After these actions have been selected, payoffs occur and all players observe the real-
ization of the action of the large player y; and the distribution yu,; of actions of the small
players. Note that this is a joint distribution over actions and states, i.e. after each period
every player knows which proportion of players in state » played action z, for every z € Z.
Clearly this joint distribution has to be consistent with the state in the beginning of the
period A; € A, ie. pZ = A,

The law of motion for the individual state is described by the following function:
f:YXXXxZ—-7Z

ie. sz = f(yi, 2}, 21). In other words we assume that the value of the individual state
variable at date t + 1 does not depend on the aggregate distribution of the state variable
or on the aggregate action played by the small players.

The aggregate law of motion is described by:

F:YxM-—A



where

F(ye, pe)(2) = Z pi(z, 2"

{(,2") £ (yerz,2") =z}

Note that F' is continuous.

Let the distance between pu¢ and uj be defined as

e = gl = ) iz, 2) — pi(z, )

ZxX
and let
A= X[ = D] 1A=) = N(2)I-
VA
A public history of the game at time ¢ is the sequence of realizations of yy,t' = 1,...,t—1,
pp,t' = 1,...,t — 1 and the aggregate state in period ¢, A\;. Since we will want to use a

recursive definition of histories we also include A, 7 = 1,...,t — 1 in the history at time
t®. The set of histories in period t is denoted by Hy = (Y x M x A)'™! x A, with hy € Hy;
hi = A1 and hy = (he—1;Yi—1,4¢—1,A¢) for t > 1; H = H,,. For the history from t’ to ¢,
t' <t we write hy\hy € Hy_y.

For a given sequence of play (y,u) = ((y1,y2,.-.), (K1, 42, ...)) the payoff to the large
player is:

[ee]

Vb(ﬁ,y,,u) = (1 - ﬁ)Zﬁt_lvb(yta,ut)

t=1
Similarly for a given sequence (y,u,z,2) = ((y, s, T, 2¢ )52, ) the payoff to a small player
is:

V(é,y,u,z,z) = (1 - 6)Zét—lv(yt7,utvzhzt)
t=1

Since the small players’ payoffs depend on the individual state variable this formulation

includes the case in which there is a finite number of different types of small players.

b

Assumption 1 v® and v are continuous on M. Moreover 0 < v,v® < 9.

A pure strategy for the large player is a mapping y; : H; — Y; a mixed (behavioral)
strategy is a mapping o; : H; — ¥. Similarly a strategy for a small player is a mapping’
x; : Hy X Z — X. An aggregate strategy for the small players is a mapping u, : H; —

M that satisfies the following consistency requirement: For hy = (hy—1;fs—1,yt-1, M), We

®Notice that given the transition law X, is determined by w1, y1,..., -1, yt-1.
"Given that private histories are unobservable, we assume that small players do not condition their play
on their private history.



have [g,(h¢)]? = A;. In other words, for every history the marginal distribution of gu,(h;)
over states has to coincide with the current state A,. Finally, o = (01,...,0¢,...), X =
(X1yeeesXtyoo)yand g = (Hyyeeey gy

In an abuse of notation we will often write V (6,0, ,x; h¢, z;) as the expected payoff to
a small player from playing x, starting at state z, after history h,. Similarly V®(3,0,u;h,)
is the expected payoff to the large player after history h;.

2.1 Best Response and Aggregate Best Response

For a given strategy of the large player and a given aggregate strategy for the small players

(which no individual small player can influence) we define an ¢ best response as follows:

Definition 1 (¢ Best Responses) The strategy x = (x;)52,, i an ¢ best response for player
i to (o,p) if for all hy € Hy it = 1,..., such that hy is a public history that is reached with
strictly positive probability and for all z € Z, V(6,0,1,x;he,2) > V(8,0, 1, X' by, 2) — ¢,
for all x'. Let B(o,pu; ), z) denote the set of best responses given o, p, and initial state

A, 2.
Let Bf(o,p;hs,2) be the € best response in period ¢ only, i.e. :

Bi(o,p;he,z) = {z € X | x(ht,2) = z, for some x € B(o, p;2)}
Note that for ¢ = 0 we have the conventional best response.

Definition 2 (Aggregate ¢ Best Response) The aggregate strategy p = (p,)$2,, is an ag-
gregate € best response to o for initial state A, if for all hy that are reached with strictly
positive probability there is a p with | — p,(h)| < € such that x € Bf(p,o;hy,2), for all
(z,z) € suppu. Let E°(o,A) denote the set of aggregate € best responses to o for initial
state A.

Therefore an aggregate € best response to a strategy o of the large player is an aggregate
strategy p such that almost all individual strategies in its support are an € best response
to i and o for all reached histories.
Finally let E{(o,h:) be defined as the aggregate € best response in period ¢ only, given
a history h;:
Ef(o,ht) = {p € M|pu(h;) = p for some p € E(o)}

When t = 1, hy = {A}, therefore we will write E{(o,\) instead of E{(o, hy).



For € = 0 we get the usual best response and aggregate best response. Let B, By, E, E;,
denote the best response and aggregate best response for € = 0.

Note that according to Definition 2, all small players may be able to gain € every period
if an aggregate ¢ best response is played. Thus for an aggregate ¢ best response to be
close to an aggregate best response ¢ has to be small relative to the discount factor é since
€/(1—6) measures the maximum utility loss for a typical small player over the course of the
game. While for a fixed discount factor an € can be chosen such that ¢/(1—8) is very small,
when we will consider the case where the discount factor of the small players is arbitrarily

close to one (Section 7), we will need to use a stronger notion of aggregate € best response.

3 The Perturbed Game

Now we consider a slight variation of the game defined above. Suppose that the small
players are not completely sure about the large player’s payoff function and in particular
that they believe that with positive probability the large player’s payoff function is different
from the one described in the previous section. Let Q be the space of potential types with
generic element w. Then the large player’s payoff function will also depend on his type,
Ve(B,y,p;w, hy). Let wg denote the event that the type of the large layer is such that his
payoff function is like in the unperturbed game, i.e. V¥(3,y, p;wo, ) = VO(8,y, 1, k). In
the following we will call type wg the rational or normal player.

Types other than wy may have a possibly history dependent payoff function that makes a
given pure strategy dominant in the infinite game. Such players will be called commitment
players and for the sake of simplicity will be identified by the strategy they play rather than
by their payoff function.

The existence of these commitment types captures uncertainty of the small players
about the type of large player they are facing. The idea is that although the small players
are almost certain they face the rational type, they cannot exclude the possibility that the
large player perceives the game in a different way and hence will behave “irrationally”. To
account for the possibility that the large player can be of different types we have to modify
the definition of a strategy for the large player. A mixed (belhavioral) strategy for the large
player is now a mapping o : H; X Q@ — L.

Since the small players cannot observe the type of the large players, the definition of a

strategy for the small players remains unchanged. We assume that the prior distribution



of types is common knowledge. By o\o'(w) we denote the strategy that is obtained by

substituting o'(w) for o(w) in .

Definition 3 A Nash equilibrium for initial state )\ is a (o,p) with uZ = X, such that
i€ E(a,)), and for allw € Q, V¥(B,0, 3w, ) > V¥(B,0\0'(w), p;w, A) for all a'(w).

First we want to investigate the consequences of imitating a particular commitment type
on the beliefs of the small players. In Lemma 1 we show that if the large player chooses
to imitate a pure strategy of a particular commitment type, then in all but finitely many
periods the small players will actually believe that with high probability the aggregate
play will be consistent with this strategy being played in the next 7 periods. Both the
formulation and the proof of Lemma 1 are an extension of a result in Fudenberg and Levine
(1989).

Let y™ denote the pure strategy played by a particular commitment type w*. Let k™ be
the event that y, = y;(h,) for all A, that are reached following (y*, u) starting from a given
ho = Ag. Furthermore let p(w*) = p* denote the prior probability that w = w”. Let 7} be
the probability that in the next 7 periods the actions of the large player are consistent with
y*,i.e. the probability that in periods t,¢+1,...,t+7 — 1 aggregate play is consistent with
y* being played given the aggregate strategy u, i.e. 7;7 = Priys = yi(ht)y-o- s Ytgro1 =
Vigr—1(hegr—1)|hs—1, u]. Finally, let n(r;” < 7) be the random variable denoting the

number of periods in which 7;7 < 7.

Lemma 1 Let0 < 7 < 1 and suppose that p* > 0, and that (o, p) are such that Pr(h*|w™) =

1. Then
7_logp |

P T F
rn(r;T <7) > log 7

h*| = 0.

Remark: Note that since certain states may not be reached along a given history A*, the
small players will not get convinced that the large player actually uses the same strategy as
the commitment type. However, since no individual small player can affect the aggregate
state, the play in public histories that are not reached is irrelevant for any small player’s

decision problem.



4 The Case with No Strategic Externality

In this section we consider the simpler case in which the payoff of every small player is

independent of the aggregate play of the small players.
Assumption 2 (No Strategic Externality) v is independent of .

The following equation defines V® to be the limit of time averages of the large player’s

payoff. Since time averages need not converge we will take the limit infimum. Let
_ 1 X
Ve(y,u5A) = liminf ;v”(yt,m

where (yy, 4¢) is the history induced by y and p and A.

Define a strategy y such that y,(h;) = y; for all hy a simple strategy. A simple strategy
is a strategy that does not depend on history but only on calendar time. With an abuse
of notation in the following we will sometime identify a simple strategy with the infinite
sequence of actions it prescribes, y = .

Let V%(e, ) be the best time average the large player could guarantee to himself by
committing to a given simple strategy subject to the small players playing an aggregate ¢
best response. Then

Vb(e,A) = su inf  Ve(y,pu;\).
(€,A) Sup el (y,152)

Let Vb(e) = infy V8(e, A) and let V® = lim,_q V¥(e).

Now we define a collection of types (the Stackelberg types) which can be used by the
rational large player to establish a reputation. Let y(e,n,A) = (y1(e, 7, A), ..., ye(€,m,A),...)
be a simple strategy that satisfies

e Ve(y(e,mA), 1, A) > VP(e,A) = n.
Hence y(€e,n, ) is an “almost” optimal sequence if the criterion is the limit of time averages.

The type w(e,n,T) is defined by the following strategy:
o In the first T periods this type follows y(e, 7, A;).

o In case the small players reacted with an € best response in period 1, this type con-
tinues with y(e,n, A1) in period T + 1. If the small players did not choose an action

close to a best response in period 1, this commitment type switches to y(€,n, Ar41).

10



e The same pattern is repeated for all periods: The commitment type will continue
following the sequence y(e,n, A) if either it has been played for fewer than T periods
or if T periods ago “almost” a best response was played. Otherwise a new sequence

y(e,m, A') will be started, where )’ is the current value of the state variable.

More precisely, let 8, € N t = 1,2,... be defined as follows:

1 ift=1
6 =< 61 +1 if 6y <Torif p_r € E{_7p(y(e,n,Ae—g,_, )y hr-T)
1 otherwise

Now let the type w(n,¢,T) be defined by following strategy:

yt(h’t) = y0¢(€7 77, ’\t—0¢)

Note that the T-period lag in adjusting the optimal policy in the definition of the
commitment types is crucial to avoid the time-inconsistency problem. A commitment type
who chooses the optimal policy for the current state in every period is of little use to the

large player since he wants to commit to ex-ante rather than ex-post optimal policies.

Assumption 3 For all (¢,n) there is an € < ¢,n' < 1 such that w(e',n',T) € Q has strictly
positive prior probability for all finite T.

Assumption 3 says that there is a large variety of the described Stackelberg types. In
particular, for arbitrarily small (€¢,7) we can find a commitment type with positive prior for
any finite “lag parameter” T.

In Theorem 1 we make two important assumptions that will be relaxed later. First we
assume that v is independent of y, i.e. there is no “strategic externality” in the play of the
small players. Second we assume that the small players’ discount factor stays fixed while
the large player’s discount factor approaches 1. Theorem 1 states that if the type space
includes a particular collection of commitment types then as the discount factor of the large

player goes to 1 in any Nash equilibrium he gets at least V°.

Theorem 1 Suppose that Assumptions 1, 2 and 8 hold. Then in any Nash equilibrium
(o, ) for initial state A, limg_, V®(B;0, 1, )) > VO.

The intuition behind Theorem 1 is the following: Suppose that the large player imitates a
commitment type w(e,n,T). Then Lemma 1 implies that after a finite number of periods

the small players will actually believe that the large player will continue to play like the

11



commitment type in the next T periods with very high probability. Since the small players
discount future payoffs there is a T large enough such that if the commitment strategy is
followed with large probability in the next T periods then the small players will actually
play a best response to the commitment strategy. Since we can find commitment types with
positive prior probability for arbitrarily large lag parameter T, we can choose T in such a
way that T > T. In this case an aggregate ¢ best response to the commitment strategy
implies an aggregate best response to an optimal sequence y(¢,7,A). The Theorem then

follows from the fact that this argument can be repeated for arbitrarily small (¢, 7).

5 Firm Specific Human Capital Accumulation: An Exam-
ple

A large amount of the accumulation of human capital takes place “on the job”. Becker
(1975) distinguishes between general formation and firm specific formation and argues that
general formation is paid for by workers (in the form of a wage lower than the oppor-
tunity wage) while specific formation is paid for by the firm. The accumulation of firm
specific human capital is finally argued to be an explanation of the relationship between
job qualifications and turn over rate and of labor hoarding in the business cycle.

An important assumption of this analysis is that the human capital investment level can
actually be observed by the firm. However, since any human capital investment requires at
least some degree of cooperation on the part of the employee, it is probably more reason-
able to assume that the firm cannot observe the employee’s investment effort but only his
productivity level.

The purpose of this section is to apply the results of section 4 to show that even when
a firm can only observe the productivity levels of its employees, Becker’s (1975) result is
still true in the sense that firm specific capital accumulation does take place and that an

arbitrarily patient firm appropriates all its net value.

Consider the following strategic situation: A firm is associated with a large number
of identical workers; each worker can invest in improving his skills or his product. This
investment will typically be productive only after one or more periods. The firm can
observe the productivity of each worker but it cannot observe the investment he makes in
improving his product. The firm has to decide a wage schedule each period, i.e. it associates

to each productivity level a wage.

12



Let b denote the firm and let ¢ € [0, 1] denote the workers. Each worker in each period
is in one of H +1 different states (productivity levels). Let Z = {2°,...,z",..., 2f} denote
the set of productivity levels. The worker can choose among J + 1 different investment
levels each period. Let X = {z°,...,27} denote the set of possible investment levels of the
workers. Let 20 = 0. A worker in state z € Z produces an output of size z in the current
period. Let z; be the state of a worker in period ¢. His state in period ¢t + 1 is given by
z41 = Sz, 20).

The firm cannot observe individual histories. It can, however, observe the distribution
over productivity levels in every period. At the beginning of each period the firm observes
the distribution A over productivity levels. The firm chooses a wage schedule that associates
a wage with every productivity level. Let W = {w?,...,w"} be the set of possible wages.
We assume that the grid on W is “fine”, i.e. w™ —w" ! < £ and that 27 € W\ Vj = 0,..., J.
The set of actions for player b is given by WH*! je. Y = WH*L, For y € Y, let y(2) be
the wage schedule corresponding to state z. For a worker who chooses z; in period ¢ and is

in state z; the payoff in period ¢ is given by®

v(yt7zt’zt) = y(Zt) — I

Given the aggregate state is A; and the firm chooses y; the payoff to b in period t is given
by:
?/t, At) = Z/\ (z = w(2))

Note that the workers’ payoff is independent of the aggregate state.

Example 1 The following example illustrates how the subgame perfect equilibria in this
dynamic game may not contain any efficient equilibrium.

Let X = {0,z},Z = {',2"}, f(2,0) = 2, f(21,0) = M, f(z,2) = zH,Vz € Z. Let
A = A(z") be the proportion of high productivity workers.

Proposition 1 A; = A\, and y; = 0 is the unique subgame perfect equilibrium in this game,

for all 6,8 € [0,1).

Proof: Note that for every history h € H, A is an increasing sequence. Thus A; — A for

some A. If A = A; there is nothing to prove. Hence assume A > A;. If Ay — A, for every

8Since v does not depend on the aggregate action, Assumption 2 is satisfied.
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€ > 0 there is a t such that A — A; < € for all 7 > ¢. Choose an € > 0 such that
el < (1-8)A -6z

Now let ¢ be such that A — X, < €. Since the left hand side of the above inquality gives an
upper bound on what the firm could gain by setting a ¥ > 0 and the right hand side gives
a lower bound on the cost to the firm of setting a y such that the workers will be willing to
invest, in period ¢ only y; = 0 can be optimal. Thus in period t —1, 2,1 = 0 and A; = A;_;.

Hence by induction A = A;. O.

Even though for
62"

1-46

>

moving to state z* would be efficient, there is no subgame perfect equilibrium that can

support this move.

5.1 Using Reputation

In the following we show how in this simple class of games reputation can be used to find
a tight bound on equilibrium payoffs.
Let (z1(8),(z:(8))2,) be the pair such that for ze41 = f(z¢, 2¢)

[e.e] o]

Y BT m(B) - z(B) > Y BNz — )

t=1 t=1
for all (21, (z4)). Hence (21(53),(z:(8))) is the state investment pair that achieves the largest

net surplus (discounted with the firm’s discount factor).

Assumption 4 There is a 3 < 1 such that for 3 € [ﬁ, 1), z1(B) = 2%, 24(B) = z*, for all t
and f(z*,2*) = 2*. Furthermore for all = € Z there is a feasible sequence (zt,zt)thl with

T§H+1suchthatzo——-zandzT:z".

The first part of the assumption says that the optimal state/investment pair is station-
ary, i.e. there is a (2*,z*) such that along the optimal sequence (z*,z*) will be repeated
every period. Note, however, that results of the same kind of the ones we will discuss in
Proposition 2 can be easily obtained at the expense of a heavier notation without the first
part of Assumption 4. The second part of Assumption 4 says that it is possible to reach

state z* from every other state z.
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Let ¢(6,2) be the cost of moving from state z to z*, i.e.

k
c(d,z) = ( min (1 - 6)Zéj_11:]~

Tyyenny Ik) ].:1

s.t. 21 =2, z; = f(25-1, Tjo1), 2 = 27,

We assume that ¢(6,2) > (1 — §)z” for all = < 2%, i.e. it is less costly to stay at the
productivity level z* than to move to z* from a less productive state.

Let § satisfy the following equations:

max c(6,z) < &H*I¢ (1)
Snéiq c(6,2) > (1-6)z" (2)
Since ¢(6,2z) — 0 as § — 1 there exists a § < 1 such that inequalities (1) and (2) are

satisfied for all 6 > 6.

Suppose the type w” (the “Stackelberg” type) follows the following strategy:

5+ ifz=2"
yt(z):{ 0 ¢

w otherwise
The strategy y imposes a simple two-tier system: unexperienced workers get the reser-
vation wage and experienced workers get their investment expenses plus a small premium
that is just sufficient to give them an incentive to accumulate (if § > §). Furthermore if y
is played and 6 > & then it is optimal for every worker to stay in state z*, i.e. to invest z*,
since inequality (2) holds.
The following proposition gives precise bounds for the payoff of the firm as the discount

factor of the firm approaches 1.

Proposition 2 Suppose Assumption J holds and suppose that § > 6. Let V® denote the
ezxpected payoff of the rational firm in period 1. If w* has prior probability p* > 0, then in

any Nash equilibrium z* — z* > limg_, V® > z* — z* — €.

Proof: The first inequality follows from the fact that the expected payoff of any worker
has to be nonnegative since every worker has the option of choosing z, = 0, for all ¢ and
therefore the inequality follows from Assumption 4. The second inequality follows from

Theorem 1. O

Proposition 2 shows that if there is an arbitrarily small probability that the firm is a

type that plays an appropriate strategy, the firm can actually improve upon all the subgame
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perfect equilibrium payoffs in the unperturbed game by establishing a reputation for playing

like the commitment firm.

6 Including Strategic Externalities

In many economic problems the utility of individuals depends on their individual choice as
well as on the aggregate behavior of the other individuals, for example through prices in a
market game or through the aggregate level of capital in a capital accumulation problem
with externalities. In this section we discuss reputational arguments in the general case in
which the payoffs to individual small players may also depend on the aggregate play of the
small players.

Allowing for this possiblity complicates the analysis for the following reason: Even
though small players discount future payoffs at a fixed rate § < 1, it is not true that the
aggregate € best response today does not change when the large player’s action in the very
distant future changes.

The large player can only exploit his reputation successfully if the small players choose
an aggregate € best response to the commitment strategy whenever the large player imitates
this strategy long enough. This implies that we need to find a (uniform) bound T such that
if the small players believe that the commitment strategy is played for the next T periods,
then they will actually play an aggregate ¢ best response to it. When v is independent of
i discounting implies that we can find such a 7' uniformly over all strategies. If v depends

on i, this property fails. The following example illustrates this point.

Example 2 Consider an economy in which there is a continuum of private agents (small
players) and a government (large player). Suppose that private agents can choose between
becoming specialized or staying autarkic. Then the strategy space for each private agent is
X = {0,1} where z = 0 symbolizes autarky and z = 1 specialization. Any agent can either
be in an experienced state, 2 = 1, or in an inexperienced state, 2 = 0. Experience is obtained
after having specialized for one period. If an experienced agent fails to specialize, then he
loses his experience. Hence the individual state variable transition can be summarized by:
flz,z)=2,2=0,1.

Only experienced agents who specialize are productive. However, their payoff from
specialization depends on how many other agents decide to specialize in the current period

(irrespective of whether these agents are experienced or not). Let uX(1) be the fraction of
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agents who specialize in the current period, then the value of the output produced by an

agent who plays z and is in state z is: pX(1)zz — cz where ¢ is the cost of specialization.
The government has two policies: It can either do nothing (y = 0) or it can reward all

the experienced specializing agents by giving them a subsidy of 1 for each unit they produce

(y = 1). With this set-up the payoff function of a private agent will be

v(p,y,2,2) = (¥ (1) + y)zz — cz.

The government is benevolent but giving a subsidy is costly. Let u(1,1) denote the
proportion of experienced private agents (private agents in state z = 1) who decide to

specialize (z = 1). Then the government’s payoff function can be written as

V(y,p) = p(1,1)(1+ (1 = k)y) — ep™ (1)

where £ > 1 is the unit cost of raising funds to pay the subsidies.
The following table summarizes the payoffs to the private agents. The column entries
are combinations of actions and individual values of the state variable of the small player

(z,z); the row entries denote actions of the large player.

(0,0) (0,1) (1,0) (1,1)
y=0 0 —c 0 pr (1) —c
y=1[ 0 —c 0 [pf(H)+1-c¢

Let ¢ < 6 < 1. Under policy y = 0 the private agents will specialize (z = 1) only if
enough other small players specialize. Under policy y = 1 there is a reward for experienced
agents who specialize.

The government would like to play policy ¥y = 0 in every period and would like all small
players to specialize (choose action 1). However this is not the only aggregate best response
toy = (0,0,...,0,...). Any sequence of the form:

1 ft<r
X _ ~
He (1)“{0 ift>7

for 7 > 0 is an aggregate best response. In particular p¥(1) = 0 for all t is the worst
aggregate best response.
Now suppose the government plays y = (0,...,0,1;0,...,0,1;...), where the sequence

of consecutive 0’s is arbitrarily large. Whenever the government gives a subsidy (y = 1
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is played) in period 7 every small player wants to specialize (z; = 1) and be ezperienced
(z; = 1). But this implies that in period 7—1 every small player has to specialize (z,_, = 1),
otherwise he would not be experienced in the following period. This in turn implies that
also in period 7 — 1 every small player can benefit from specialization (z,_; = 1) as long
as he is experienced (z,_; = 1). But to be experienced in period 7 ~ 1 (2,1 = 1) he has
to specialize in 7 ~ 2 (2,2 = 1) and so on.

Thus every small player will choose z; = 1 for ¢t < 7, which implies that the unique
equilibrium is X =1, for all ¢. In order to guarantee that the private agents will actually
specialize (z = 1) the large player has to give a subsidy (switch to policy y = 1) every once

in a while. o

Theorem 1 relied on the fact that we could find a uniform bound T such that the large
player’s actions more than T periods from now did not affect the small players’ current
behavior. The previous example shows that in the case with strategic externalities such
a uniform bound does not exist®. This creates a problem for a large player who tries to
exploit his reputations: the small players may have to be convinced that the large player
follows a given strategy for very many future periods.

As an illustration, consider again Example 2. Suppose that the large player wants to
establish a reputation for playing the sequence y = (A, B; A, A, B; A, A, A, B;...). Clearly
pX(1) = 1 is the unique aggregate ¢ best response to y. However, to ensure that this best
response is played in period ¢, 7; 'T‘, with T; — oo has to be sufficiently large. If T} goes to
infinity very fast then the large player may actually never be able to establish a sufficiently
“far-reaching” reputation so that the small players will play u} (1) = 1.

To circumvent this problem we will assume that by committing to an “eventually pe-
riodic” sequence the large player can do almost as well as by committing to an arbitrary
sequence. This allows us to restrict the Stackelberg type to a set of strategies for which
we can find a uniform bound on the number of future periods that matter for the current
behavior of the small players.

Recall that a pure strategy y for b is called simple, if y = y, for some y € Y, i.e.
no matter what history is reached in period t, player b chooses y; in period {. Define a
simple strategy L periodic if for some [,k < L, L < oo, we have y;;; = y; for all ¢t > k. Let

Y (L) denote the set of L periodic simple strategies. The following assumption says that by

°In other words: the aggregate ¢ best response fails to be lower hemi continuous in the product topology.
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committing to an L periodic sequence, the large player can guarantee himself almost the

same payoff as by committing to an arbitrary sequence.

Assumption 5 For alln > 0,¢ > 0, there is an L such that for all y, ) there isay’ € Y(L)

such that inf yepeqy z Ve(y' u,A) > inf pepe(y,n Vo(y, 1, A) — 1.

Note that Assumption 5 is satisfied in Example 2.
Commitment types (Stackelberg types) are constructed analogous to the ones in Section
4. The only difference is that we restrict the Stackelberg type to the use of L periodic
sequences. Let y(e,n,A) € Y (L) satisfy
perd® Vi(yle,mA), 1, 2) > VP(e,0) =
Assumption 5 guarantees the existence of such a sequence. As before we define 6, € N

t=1,2,... as follows:

1 ift=1
6,=1< 61 +1 if ;) <Torif gu_1 € E{_7p(y(€,m,Mi0,_,)s hr—T)
1 otherwise

Type w(e,n,T) is committed to the strategy:

yt(h‘t) = y91(67 m /\t—Bg)

The interpretation of this strategy is the same as the one that was provided for the case

with no strategic externality.

Theorem 2 Suppose that Assumptions 1,3, and 5 hold. In any Nash equilibrium (o, p)
for initial state X, limg_; V¥(Bi0,pu, ) > V°.

Theorem 2 generalizes Theorem 1 to include the possibility of the small player’s payoff to
depend on the aggregate play of the small players. If Assumption 5 holds, then Theorem 2
says that as the discount factor of the large player goes to 1 in any equilibrium he gets at

least the time average of payoffs corresponding to an optimal commitment.

7 Patient Small Players

In Theorem 1 we assumed that the discount factor of the small players stays fixed while
the large player becomes arbitrarily patient. In applications like policy games the utility

function of the large player frequently reflects the utility function of the small players (e.g.
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the large player’s preferences are identical to the utility function of the “median voter”).
Thus it is important to identify classes of games where reputation allows the large player
to achieve essentially his commitment payoff when both the large and the small players
become arbitrarily patient simultaneously.

The difficulty in establishing a reputation with patient small players lies in the fact
that small players may become increasingly reluctant to take an action that leads to an
irreversible state as they get more patient. Thus to convince a very patient small player
to take this action the large player may have to establish a reputation for following the
commitment strategy for very many periods and hence it may take “too long” to establish

a reputation that induces the small players to enter an irreversible state,

7.1 The Failure of Reputation in the Durable Goods Monopoly

The following simple example of a monopolist selling a durable good to a population of
buyers illustrates the failure of reputational arguments with irreversible states.

Example 3 Suppose there are two types of buyers H and L. The reservation price of type
H, | for the durable good is 5, the reservation price of type L, rZ, is 2. There is mass
1/2 of both types of buyers. Each period the buyer takes either action 0 (he does not buy)
or action 1 (he buys). Similarly the state of a buyer is either 0 (no purchase has occured
in the past) or 1 (a purchase has occured in some previous period). Thus the transition
function is defined as:

0 fz;,=0and 2, =0
1 otherwise

f(ztvzf) = {

The monopolist sets a price p, every period, where p; € {0,1/n,...,(57n — 1)/n};n > 6. If
buyer ¢ € {H, L} purchases the durable good in period ¢ then his payoff is 6*(r* — p;). More
precisely, buyer 2’s payoff function is

ri—p, ifzz=0and z;, =1

Ui(Pt,zt’Zt) = ~Pt ifzy=1land z; = 1
0 otherwise

For any sequence of prices p and aggregate actions u the payoff to the large player is!®

Ve(p,u) = 6" pe - e(1,0)
t=1

%We do not include z(1,1) (the proportion of buyers that have already bought the durable good in the
past that do so again) because no buyer will purchase twice in equilibrium.

20



Suppose there are three types of monopolists: one normal type characterized by the payoff
function above, type w* who sets p; = (57 — 1)/n for all ¢t and type & who follows the

strategy:

[ Gn-1)n ift<T
Pt=9Y (2n - 1)/n otherwise

where log(1/2)/log(é) < T < log(2/(3n + 1)))/logé. Both commitment types have prior
probability € > 0.

The strategy of playing p; = (2n — 1)/n (for the normal type) constitutes a sequential
equilibrium for large §. To see this first note that p; = (2n — 1)/n constitutes a subgame
perfect Nash equilibrium in the game where there is only the normal type if § is sufficiently
large. Thus it remains to show that the normal type does not have an incentive to imitate

type w*. Suppose b deviates and offers p; = (5n — 1)/n. Since

i-éT-(S—(Qn—l)/n)>l/n

type H will not buy until period T' + 1'!. However

6T1.5n—1+6T+11_2n—1<7n—1<2n—1
2 n 2 n in n

for n > 6, where the first element of the chain of inequalities is an upper bound on the payoff
to b from deviating and the last is the payoff from setting p1 = (2n — 1)/n. This implies
that deviation from p; = (2n — 1)/n does not pay. Thus in this game the large player is

unable to exploit reputational effects to achieve the simple monopoly payoff (5n — 1)/2n.0

7.2 No Irreversible Actions

The following Assumption says that no action that the small players can take has irreversible

consequences.

Assumption 6 (Reversibility of Accumulation Paths) Suppose there is a sequence
(Y15---5YN), (21,...,2N) such that for z; = z and z, = f(Yn,Zn,2n—1) we have zy = 2'.
Then for any other sequence (1,2, ...) there is a sequence (£1,..,% ) such that for z;y = 2/

and z, = f(Yn,&n,2n-1) we have zn = z.

"'The left hand side of the inequality is a lower bound on the expected payoff from waiting until T + 1
and then buying at pr41 = (2n — 1)/n, and the right hand side is the payoff from buying at (52 — 1)/n at
t=1.
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Using Assumption 6 we can partition the states Z into subsets Z7 such that the small
players can only move between states in the same subset Z7 and furthermore there is an N
such that for any pair (z,2') belonging to the same Z’ a small player can move from z to
z' in fewer than N periods (independent of y).

Note that the definition of aggregate € best response (Definition 2) contains strategies
in which every small player “loses” ¢ units of utility as compared to a best response every
period. Since 6 is fixed in Theorem 1, we can make ¢/(1 — §) arbitrarily small. (Note that
€/(1 - 6) denotes the overall “loss” of utility of a typical small player as compared to a best
reponse). Here we want to let § — 1 and therefore we need a stronger notion of aggregate
¢ best response.

Denote by yT = (y1,...,yr) a T period sequence of actions for the large player and
similarly 7 = (p1,...,pu7), 27 = (21,...,27),2T = (21,...,27). Finally let GT(yT) =
{(2T,2T) : 2L, = f(yT,2T,2])} denote the set of sequences (zT,z7) of length T that are

feasible under y7. Now define a truncated aggregate € best response in the following way:

Definition 4 (Truncated Aggregate ¢ Best Responses) u? is a T-truncated aggregate ¢
best response to yT for initial state X if utTJer = F(yl,ul),t =1,...,T — 1 and for all
(zT,zT) € suppu” N GT(yT)

Lo~ 7 1 e L~ 1 1 7

_Zv(yt s Ty 9 24 ) 2 _Zv(yt ,.Z; ' 2t )_6

T t=1 T t=1

for all (z'T,z'T) € G(yT) with 2T = 2T, Let ET<(yT )\) denote the set of T-truncated

aggregate € best responses to yI for initial state .

This definition of a truncated aggregate ¢ best response says that over the course of T
periods the average payoff could not be increased by more than ¢ by any other sequence
of actions. Note that this definition requires € optimality (in a time average sense) over T
periods and irrespective of the continuation of play and hence is a much stronger notion of
aggregate ¢ best response than the one used in Theorems 1 and 2.

Next we define the limit of the commitment payoffs of a sequence of truncated games.
Consider a truncated game in which the large player commits to an optimal sequence and
the small players choose a truncated aggregate ¢ best response. V? denotes the limit of

payoffs for the large player when the game is truncated farther and farther away in the

22



future. Again, since time averages need not converge, we take the limit infimum. Let

Vb(e,\) = liminf — byl |
(€,A) im In {max _ min Z (v7 1)

yT uTeET<(y
and
Ve(e) = inf Ve(e, N).
Vb = lime_o V(e).
Again we define a collection of commitment types who will allow the large player to

establish a reputation. Let yT(¢,A) be a T period sequence that solves

b
max
ax i A)TZ ol ul)

We define the type w(¢,T'), to play the strategy

y(faT) = (yir((’ /\l )7 e 73/%:((’ /\l)’ yir(fv /\T+l)7 s 7y%(€7 /\T+l); .. )
The commitment type w(e,T') plays the optimal sequence in the T-period truncated game

given the initial state at the beginning of the truncated game.

Assumption 7 For all € > 0 there is an ¢ < ¢ such that w(',T) € Q has strictly postive

prior probability for every finite T'.

Theorem 3 says that if both players are very patient and if the transition function is re-
versible then in any Nash equilibrium the large player will receive at least a payoff that is

close to the maximal time average in the T-period truncated game for arbitrarily large T'.

Theorem 3 Suppose Assumptions 1, 2, 6, and 7 hold and all players have a common dis-
count factor §. Then in any Nash equilibrium (o, p) for initial state X, lims_; V(650 pu,2) >
Ve,

The idea behind the proof of Theorem 3 is that we split up the infinite game into finite
“superstage games” of length T'. Note that the effect of a current decision of a small player
on the payoffs in future “superstage” games can be “undone” in N periods or less by the
reversibility assumption. If ¥ is small as compared to T' then the small players will behave
almost like short lived players in every superstage game, i.e. they will behave essentially as
if they were alive only for one superstage game. Therefore the large player can exploit his
reputation if he convinces the small players that he will follow the commitment strategy
in the current superstage game. Thus it is sufficient for the large player to establish a
reputation for a bounded number of future periods and Lemma 1 shows that this can be

accomplished in finitely many periods.
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8 Conclusions

Whenever current play affects future payoff opportunities, agents’ current decisions depend
not only on present but also on future expected behavior of their opponents.

To describe this situation an infinite dynamic game between a large player and a con-
tinuum of small players has been studied and it has been shown that the use of reputational
arguments allows to characterize the set of equilibria by providing a lower bound on the
equilibrium payoffs to the large player. This has been accomplished by noticing that, if
there is uncertainty relative to the type of the large player, the large player can actually
establish a reputation for behaving in a certain way in a finite horizon.

An example has been presented to show that when individual small players’ payoffs also
depend on the aggregate play of the small players, it is possible that arbitrarily distant play
of the large player affects current aggregate behavior of the small players. Interestingly it
turns out that even in cases like this reputational arguments do have a bite: it is argued
that the large player can establish a reputation for playing repeatedly an appropriate finite
sequence of actions which in turn allows him to get at least his commitment payoff.

Provided that the small players’ actions do not have irreversible consequences, reputa-
tional arguments have been shown to work independently of the rate of patience of the small
players. Even when the large player and the small players have the same discount factor
(like in the case of a benevolent government), the fact that the large player can establish
a reputation for playing a strategy that depends on the aggregate state variable only after
a sufficiently long adjustment lag provides a lower bound on the large player’s equilibrium
payoffs.

A simple example of a durable goods monopoly problem has been presented to illustrate
the role of the assumption that the small players’ actions do not have irreversible conse-
quences: when some action profile leads to an absorbing state (purchase of the durable good
in this case), then, if the small players are arbitrarily patient, the possibility of establishing
a reputation may fail to improve the large player’s payoff since no finite adjustment lag in
the strategy of the large player would convince an arbitrarily patient small player to play a
best response to the optimal commitment strategy. Only in a case like this is it possible that
payoffs that are not close to the large player’s optimal commitment payoff be equilibrium

payoffs of the perturbed game.
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9 Proofs:

9.1 Proof of Lemma 1:

Lemma 1 Let 0 < 7 < 1 and suppose that p* > 0, and that (o, p) are such that Pr(h*|w*) =
1. Then

Prn(x;” <7)> Tlog;i [h*] =0
log 7

Proof: Let w* denote the event that w # w*. Then by Bayes’s law we have

Pr(wiher) = Pr(wy;(he), he)
Pr(w™h:) Pry; (he)lw”)

T Pr(wrlh) Pr(yi(hokot) + (1 = Pr(w o) Pr(yi (hole") (4)

Notice that Pr(y;(h:)lw*) = 1 and that the denominator of (3) is equal to Pr(y;(h¢)).

Therefore (3) can be rewriten as

Prilhin) = ot (1

Notice that for any 7, Pr(y: = y;(he)) = Pr(yy = yi(he)t' = t,. .t +7-1)+
Pr(y;(he),yy # yu(hy), forsomet’ = t+1,...,t + 7 —1). Recall 7;7 = Pr(yy =
yi(he),t' =t,...,t + 17— 1), and let 77 = Pr(y: = y;(hs), g0 # y3(hy), for some t' =
t+1,...,t+7—1),i.e. 7;7 is the probability that the large player’s play is in accordance
with y* at time ¢, but differ at some point in the next 7 — 1 periods.Then, for any fixed

7 (4) can be rewritten as
Pr(w*lht)

*T =xT *
T+ m

Pr(wlhegr) =

Suppose that 7;7 < 7 for all ¢’ = ¢,...,t + 7 — 1. Then if the large player plays like
the commitment type for ¢’ = t,...,t + 7 — 1 (i.e. y» = yy(hy)), then the probability
that he is type w™ has to go up by a factor of at least 1/7 (because if yp» = y}(hy) all
t'=t,...,t + 7 —1,then at some ¢’ =t,...,t + 7 — 1 #;7 will be updated to zero. Given

that Pr(w*|hy) = p*, after 7 periods
Pr(wlhrsn) > 7.
If 7;7 < 7 for 7K periods during which y; = y*(h¢), all t, then

Pr(wlhiri1) > p7/7F.
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However, since
Pr(w*|hy) <1 (5)
if
pr /Al > 1 (6)
inequality (5) is violated and a contradiction to the hypothesis that ;7 < 7 for all t' =
t,...,t+ K .7 — 1 is obtained.

Taking the log of (6) the condition becomes
K >logp™/log™
and the proof is complete. O

9.2 Proof of Theorem 1

Theorem 1 Suppose that Assumptions I, 2 and 3 hold. Then in any Nash equilibrium
(o, p) for initial state A, limg_,; V¥ Bio,m,2) > VP,

The strategy of the proof will be to show that if the large player imitates the Stackelberg
type w(n,¢,T) for appropriately chosen T', then eventually the small players will play a best
response to the Stackelberg strategy.

In the following we present a Lemma that shows that if the small players believe that
the large player follows a given sequence of actions for a sufficient number of periods with a
sufficiently large probability, then the small players will play an aggregate ¢ best response
to this sequence of actions.

For a pure strategy y, let 7rtyT be the probability that y is played in each of the next T
periods, i.e. in the periods t,t + 1,t +2,...,t + 7T — 1,

Lemma 2 Suppose Assumptions I and 2 hold. For everye > 0 and T > (log §—log v)/ log 6,
there is an a such that for every simple strategy y, if 7rtyT > 1~ «, then in equilibrium

it € Ef(y,A) for all A and all t.

Proof: In the case with no strategic externality to prove that u; € Ef(y, ) it suffices to
show that for all (z,2) € suppy,, ¢ € Bf(y, z) (the aggregate action p has been dropped as
an argument of B(.) since by Assumption 2 v is independent of u).

Choose a T' such that

o<
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or, taking logs,
T logn — logz‘).
log é
Let z, € Bf(y,z) and z} ¢ Bf(y,z). Let V; be the expected payoff along the equilibrium
path if z; is chosen in period t and the player behaves optimally otherwise and let V| be the
expected payoff along the equilibrium path if z} is chosen and the player behaves optimally
otherwise. Then

Vi— V> (1-a)—ab-n (7)
Note that this inequality holds independent of the particular choice of z; and z;. To show

that an ¢ best response to y is played in equilibrium we need to show that there is an «

such that V, — V// > 0. From (7) a sufficient condition for that to happen is:
t
(1-a)—-—av-n>0 (8)

For n < €/2 there is an « such that (8) is satisfied and the Lemma follows. O

Lemma 2 shows that if the small players believe that the large player will play a given
sequence of actions for a sufficiently long period of time with a suficiently high probability,
then they will play an aggregate € best response to it. Lemma 1 on the other hand showed
that if the large player played a certain strategy long enough then the small players would
become convinced that he will continue to play that strategy for the following T periods
with an arbitrarily high probability.

The following Lemma applies Lemma 1 and Lemma 2 to the Stackelberg strategy de-
scribed above to show that in all but a finite number of periods the small players will play an
aggregate ¢ best response to an optimal sequence if the large player imitates a Stackelberg
type.

Let T* > (log 5 —~log v)/log é and let y* denote the strategy played by commitment type
w(e,n,T*). Let H* be the set of histories consistent with y* being played by b. Further let

Hi(e,m,A)={h € H|ly = y(e,n,A), u € E<(y(€,1,A)), A\s = A}

be the histories for which the sequence y(e,7,A) and an aggregate ¢ best response to this

sequence have been played.

Lemma 3 Suppose h € H*. Then there is a number N, independent of h, such that the
number of periods for which p, € Ef(y(e,n,A),he), for all hy € HZ(e,n,A), for all k <t
and for all X is bounded by N with probability 1.
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Proof: For the proof of this Lemma we keep (¢,7) fixed and therefore we will drop (€, n)
as arguments in y(.) and H*(.). Suppose that for all k <t, u; & Ef(y(A), hi), hix € HE(X).
Then there is a t’ € (t — T + 1,...,t) such that Tr:,T < (1 — «) since otherwise h\hy €
HY ,/(Ay) for some 0 < t' <t and hence the large player will continue to play y(Ay) for
the next T periods with probability greater than 1 — a and therefore Lemma 2 implies that
pe € E(y(A), ki)

But 7;T < (1 — a) at most T2 times with probability 1 (Lemma 1). Thus

log(1—a*)
N< T2ﬁ§ffx—_) with probability 1. O

The following Lemma says that by imitating the commitment type constructed in the
section 4 the large player can get a payoff at least V(€) — 1. Since € and 75 are arbitrary

Lemma 4 proves Theorem 1.

Lemma 4 Suppose Assumptions | and 2 hold. Further suppose that w*(e,n) has prior prob-
ability p* > 0 then in any Nash equilibrium (o, p) for initial state A, limp_,, Vb(ﬁ;a',,u,,/\) >
V() —n.

Proof: Consider the strategy for b of always following y* (corresponding tow™ = w(e,n,T)).

Then p; & Ef(y(e,n, A), ki) for fewer than N periods by Lemma 3. For a given A let

¢
v'(A) = inf  (1-— Lo (ye(e, 1y A), k),
M=t 0 8) 32 8 e(un(e ). )

for uZ = X and let v* = infy v{(A). Then a lower bound for b’s Nash equilibrium payoff can

be described as:

’Ut] _+_0+ﬁt1+1v12 +“.+[Btl+...+tN_]+N—l,UtN +0+ﬁtl+---+tN+Nv°0 >

> ot +0+ﬁt+lvt(/\)—+— +”'+ﬁ(N—l)t+N—lvt +0+ﬁNt+Nvoo
for some t where 0 <t < oc. Then

Vb(ﬁ;ﬂ,[.t,/\) > 'Ut(l + ﬂt+1 +ﬂ2(t+l) +.. 4+ ﬂ(N—l)(H-l)) _+_ﬂN(t+1)voo
> vt+1(1+6t+1 +ﬁ2(t+l) +...+ﬂ(N—l)(t+l))+ﬁN(t+l)v°°

—Bt+1(1 . ,6)'6(1 +5Hv—l + ﬂ?(t—f-l) +ﬂ(N—l)(t+l))

1 — gN(+) 0o 1N
_ UHIW + ﬂN(t‘H)v - ﬂH’l(l — ﬂ)v—l_—w 9)
Let
{)t ’Ut _ Zi‘:l ﬁk_lvi

T (-5 T L g
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Then (9) becomes

1 - ﬂN(H—l)

Vi(Bia,pmA) 2 81— pNUIRD) 4 g (e CRRE

(1-8) (10)

Now we want to let 3 — 1. Notice that the ¢t that appears in (10) is a function of 5. If
t(8) stays bounded by some T' < oo as 3 — 1, then the first and the last term (10) tend to

zero and the result follows since

%lrnl ﬂN(H—l)voo > ‘_/b(C) -

If t(3) does not stay bounded as 3 — 1, 1i.e. t(3) — oo, then we have for some 0 < § < 1:
lim V(Bio,p,A) > (1 — 6)lim inf AL 6 lim v>® > Vb(e)—p

1

since both liminfs_; #*(®+1 and limg_; v™ are greater than or equal to V(¢) — 1. O
¢ 8 g

9.3 Proof of Theorem 2

Theorem 2  Suppose that Assumptions 1,3, and 5 hold. In any Nash equilibrium (o, p)
for initial state X, limg_; V®(B;0,1,2) > V.

First we will need a preliminary Lemma.
Lemma 0 For all € > 0, there is a pair (n,() such that if py € Ef(a,/\) and |y — pi| < m,
then uj € E{(o,N).
Proof: u; € Elc(a,/\) means that there exists a p € E¢(a) : py(hy) = py, where hy = A.
Moreover for each realization of y € Y*°, p implies a 4 € M. Clearly we can construct a

)/OO

p#' such that for each realization of y € we get a u' € M with |y’ — uleo < 7. By the

definition of aggregate ¢ best response there exists a ui with |y — p;(hy)| < ¢ such that:
T € BIC(’J'?O.; hy,2),¥(z,2) € suppyy.

However, since |p] — 1] = |p] — #.(h1)] < n we have |u} — uf| < 7+ ¢. By continuity of

v, for all € > 0 there exist { and 7 such that
T € Bf(u',a;ht,z),\f(z,z) € Suppp'l'

which means that p] € Ef(o,)). O

The next Lemma is a weaker version of Lemma 2 for the case where v depends on u.
Recall that for a pure strategy y, 7rtyT denotes the probability that y is played in each of
the next T periods, i.e. in the periods ¢t,t +1,¢t +2,...,t +T.
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Lemma 5 Given € > 0, for every L there is a (T,a) such that for 7r§’T > 1— a then in

equilibrium for all y € Y (L), py € Ei(y,hy) where (T, ) is independent of t, hy.

Proof: Note that since Y(L) contains a finite number of elements and since (y, y1+1,...) €
Y(L)if y € Y(L) it is sufficient to show that for every pure strategy y we find a (T, @) such
that if T{T > 1 — a, then uy € Ei(y, ), for all A.

Let ©7(y,a) = {o|y1,...,yr is played with probability 1 — a}. If 7r1T

Y > 1 — a then in
equilibrium p € E(a, ) for some o € £T(y, a).

Let (oT) be a sequence such that 7 € £7(y,a”),a’ — 0as T — oo. Let (u*T,AT) be
a sequence such that p*T € E(eT,AT) and let u* = p(h*) where h* is the history where

o =y for all t.
Claim: If p*, X is a limit point of (#*T), AT, then pu* € E(y, ).

Pf: Suppose p* ¢ E(y,A). Then thereisa rand aset D C Z x X with 3=, ,yep #*(2,7) >
¥ > 0 and for all (2,z) € D

z ¢ BT(yv,“L*;hTaz)

Thus if (z,z) € D then for all x with x(h,) = = there exists an x’ such that:
Vi(y, K%, 2,h) < Vr(y#*vX',Z,hr) -n

Choose T such that
§To < /2

T T

Since p:,T — py uniformly for ¢’ < 74 T and since @' — 0 as o' — y, by continuity of
vin g and in « at a = 0, it follows that for large T" and for (z,z) € D there is an z’ such
that

ViloeT, 1T x,2,h,) < Voo T, w7, %', 2, by ) — /4. (11)

However, for large T, |u:T — p%| < 4/2 and hence (11) contradicts the fact that u*7 ¢
E(aT AT). o

Next we want to show that as T — oo the distance between the first element of an ag-
gregate best response to o, !l € Ej(o!, ), and the set of first elements of the aggregate ¢
best response to y, Ef(y, A), tends to zero. More precisely, we want to show that for all (¢, 7)
there exists a T such that for all 7' > T for MT(A\) = {u|u € E;(oT,)) for some o7 €
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S(y,a’)}

sup _sup inf |u] —pul <o
A uTeMT(\) w€EL(y.))

This is satisfied if

limsupsup sup inf |u {— ul=0.
T—co A uTeMT(\)ueES(y.)

From above we know that u*, A a limit point of a sequence 7, AT with uT ¢ E(a7T,AT)
has to belong to E(y, ) C E¢(y, ) which implies that the limit above is zero.

This implies (by Lemma 0) that by choosing 1 and { appropriately, uT € E{(y, ) for
T>T" forall A\. O
Proof of Theorem 2: Let w(7n,¢) = w(¢,n,T*) denote the commitment type that plays
the Stackelberg strategy described above, where T* satisfies Lemma 5 uniformly for all
y € Y(L) and L is chosen sufficiently large so that there is a y(e,n,A) € Y(L) for all A.
Now we can apply Lemma 3. Given that Lemma 3 holds so does Lemma 4. Note that 7n,¢

can be chosen arbitrarily by Assumption 3. Thus Lemma 4 proves Theorem 2. O

9.4 Proof of Theorem 3

Theorem 3 Suppose Assumptions I, 2, 6, and 7 hold and all players have a common dis-
count factor §. Then in any Nash equilibrium (o, p) for initial state X, lims_, V¥(8;0, pu, \) >
ve.

Proof: Step 1: Let T be such that for all A

b
A > pb A€
TeETC(yT(me;v Yl (€, 2), ) 2 VP(Ase) =

Note that for all ¢,7 > 0 there is a T < oo such that yT(e,)\) satisfies the above inequality

for all A. This is the case since
Ve, A) = Ve, M) <o |A = N]

since v is independent of u!?

Step 2: Claim Let y be a given pure strategy. Independent of y, for any ¢ > 0 there
are @ > 0 and § < 1 and a T < oo, such that if the probability that y is followed in
the first T periods is greater than 1 — a, then for all1 > 6§ > 6 in any Nash equilibrium
(#1,.. - 67) € ET<(y, M),

!2The constant © is the upper bound on the payoffs of the small and the large players (Assumption 1).
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Pf: Let

BT(y,z) = {(z1,20), € GT(7T )[zl = z and for all (z},2)) € GT(y7) with 2} = 2
T
TZ yt 7ztazt Z yt ’ztazt 6}
t=1 t=1

Let

T
U*T = r{n i(z Yty Tt 2t)

with z; = 2.

There are 3 reasons why a small player may not want to play an element in BT<(y, 2).
First, y will only be followed with probability 1 — «; second, playing a best response may
cause the player to reach a state in period T which is not the optimal state for the play
thereafter and third, the player discounts future payoffs, instead of using the time-average
criterion.

Let Zthl 6=y, be the expected payoff of the small player along the equilibrium path
in the next T periods and let 274, be the state in which player ¢ is in period T + 1 along

the equilibrium path. For (27, 27) ¢ BT(y, z) we have:

T
Zét—lvt <(1- a)(U*T(Z) —€)+av+v- Z

On the other hand, the player can use the following sequence: for the first T — N periods
play a sequence that maximizes the average payoff in the first T periods against y, in the
last N periods, adjust the state so that in period T + 1 the state zr4q is reached. This

gives a lower bound on the payofl:

T
Zét I’Ut_ l—a Z

t=1

1—5”1“‘5 N

T —§T| T

Now note that if T is large and « is close to zero and ¢ is close to one then the prescribed

strategy is an element in BT (y,z). Furthermore it gives a larger payoff than any strategy

that is not an element of BT (yT) since
T
1 1-4 N
(1-a)e>20-) T—ét_ll—éT + 05+ ab

t=1
But this implies that for all (z,z;)7_, € supp(u1,...,u7) such that z41 = f(ye, 2¢,2,) we

have (z¢,z¢)}-; € BT (y,21), which proves the claim. o
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Step 3: Let u denote the sequence of (u;) induced by the history when player b imitates the
type w(e, T) and let 777 be the probability that y(e, T') is played in the periods ¢,2+1,. .., t+
T —1. For every a > 0, W;%_H < 1 -« for fewer than N(a,T) different k£ (Lemma 1). Thus
for all but N(«a,T) different k& we have (ppry1,...,k74+T) € E"T(yT(e,/\kTH),/\kTH).
But this implies that for all but N periods of length T the undiscounted payoff of b is larger
than V°(e) — 5. Since ¢,7 can be chosen arbitrarily small (Assumption 7), the Theorem

follows. O
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