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1. Introduction

The literature on implementation has used a large number of solution concepts to
model the behavior of individuals. It is now known that the social choice rules which
can be decentralized differ widely across solution concepts. In this paper we ask: which

properties of solution concepts are responsible for the differences?*

To begin to explore this issue, we consider a very simple setting which has been well-
studied: one with a finite set of alternatives and a full domain of preferences. Here the
differences across solution concepts are most vivid. The only social choice functions which
can be implemented via some solutions are dictatorial, while other solutions can implement

non—dictatorial social choice functions .

The first theorem in this area, the Gibbard (1973)-Satterthwaite (1975) Theorem,
states that a strategy—proof social choice function on an unrestricted domain of preferences
must be dictatorial if it takes on at least three values. Equivalently, the result says that
interesting social choice functions cannot be implemented in dominant strategies. This
restriction to dictatorial social choice functions 1s often attributed to the strength of the

requirement that there exist a dominant strategy for each agent and every preference profile.

It is interesting, however, that similar results obtain for much weaker solution concepts.
Jackson (1992) shows that if a social choice function can be implemented in undominated
strategies by a bounded mechanism? on a full domain of preferences, then it too must be
dictatorial. Undominated strategies is a very weak solution concept, quite the opposite of
dominant strategies. Most games have undominated strategies: for instance, all mechanisms
with finite action spaces are bounded and have undominated strategies for every preference
profile. An impossibility result also holds for Nash equilibrium. The only social choice
functions which take on at least three values and are Nash implementable are dictatorial,
as shown Dasgupta, Hammond and Maskin (1979). These results indicate that it is not
the “strength” of the solution concept which makes it impossible to implement interesting

social choice functions .

! A systematic exploration of the similarities and differences of various solution concepts
should be of interest to game theory in general, beyond questions of implementation.

2 A mechanism is bounded if, for each weakly dominated action, there exists and undom-
inated action which dominates it. Definitions of various solution concepts and restrictions
on mechanisms are provided in Section 2.



In order to understand what makes it impossible to implement interesting social choice
functions , it is important to recognize that there are solution concepts which avoid the
negative results. Nondictatorial social choice functions can be implemented on a full domain
of preferences via undominated Nash equilibria, the iterated removal of weakly dominated
strategies, maximin strategies, and other solutions. These observations lead to the following
question: Which properties of a solution concept prevent it from implementing interesting

social choice functions ?

To answer this question, we begin by proving a new impossibility Theorem. This
theorem is stronger than the Gibbard-Satterthwaite Theorem, since the conditions it uses
are generally weaker than strategy—proofness. Strategy—proofness is the strong requirement
that no individual can ever gain at any preference profile from misrepresenting his or her
preferences. The impossibility theorem still holds if strategy—proofness is replaced with two
conditions which we call Best and Second Best. Best states that, at a given preference
profile, if an individual’s most preferred outcome can be obtained by some misrepresention
of his or her preferences, then it is also obtained via his or her true preferences. Second
Best states that, at a given preference profile, if an individual’s most preferred outcome
cannot be obtained by any report of his or her preferences, and the individual’s second
most preferred outcome can be obtained by some misrepresention of his or her preferences,
then that second most preferred outcome is also obtained via his or her true preferences.
One might think of these two conditions as applying strategy—proofness only in cases where
one of an agent’s two most preferred outcomes are available (and only at that given profile

of other agents’ preferences).

This new impossibility theorem provides properties which characterize the solution
concepts which lead to impossibility results. A solution implements a dictatorial social
choice function via some mechanism if and only if the outcome correspondence associated

with the solution concept satisfies the best and second best conditions.

By examining solution concepts which satisfy the best and second best conditions,
as well as ones which do not, we are able to develop a second characterization theorem
which provides additional insight. This second characterization theorem identifies condi-
tions which are called positive responsiveness and direct breaking, both of which are easilty

verified across solutions. Roughly, positive responsiveness states that a solution accounts
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for improvements available to an agent. The direct breaking condition states that if a set
of actions was a solution at a given preference profile, but is no longer a solution when
some agent’s preferences change, then that agent must have an improving deviation. In
addition to being easily verified, the conditions also provide additional intuition into the
impossibility results. One may interpret the direct breaking condition as saying that actions
to be ruled out are broken directly; or in a sense, “on the proposed equilibrium path”. The
direct breaking condition is satisfied by undominated strategies (on bounded mechanisms),
Nash equilibrium, and the iterative elimination of strictly dominated strategies. However,
undominated Nash equilibrium, the iterated removal of weakly dominated strategies, and
maximin strategies, which do not lead to impossibility results, do not satisfy the direct

breaking condition, and therefore incorporate “off the equilibrium path” information.

The paper is organized as follows. First, we provide definitions and prove the impos-
sibility theorem. Next, we use the intuition from this theorem to address the question of
implementation. Examining this theorem with respect to various solutions leads us to define
the positive responsiveness and direct breaking conditions and prove a second characteri-

zation result. Finally, we discuss potential extensions to allow for indifference. A table at

the end of the paper summarizes the results for various solution concepts.

2. Definitions

The finite set of alternatives is denoted A. It is assumed that #A4 > 3.

The society is composed of a finite number, N, of individuals.

Individual preferences are represented by a binary relation which is complete, asym-
metric, and transitive. * We use the notation P’ to represent such a binary relation for
agent 1, and for a # b, let aP'b mean that 1 prefers a to b. Let P denote the set of all such

strict preferences over A.

A social choice function is a map which associates an alternative to each preference

profile. We use F to denote a social choice function, F: P¥ — A,

® The combination of completeness and asymmetry rules out indifference. As pointed out
by previous authors, considering only strict preferences actually provides for stronger results
than allowing for indifference, since it is a more restricted domain. For the implementation
_problem, the consideration of indifference leads to some difficulties, which we discuss in our
concluding remarks.



A social choice function is strategy—proof if for each 1, P, and D' either F(P) =
F(P~*,P*) or F(P)P*F(P~*,P").

A social choice function is dictatorial if there exists ¢ such that F(P)P'a for all P € P
and a # F(P) in the range of F.

A mechanism (or game form) is a pair (M,g), where M = M' x --- x MY and
g : M — A. The set of mechanisms to be considered for the implementation problem is

denoted §.

A solution is a correspondence which indicates the set of actions which might be played
for a given game form and profile of preferences. We denote solutions by S where S :
G x PN — 2M_ Thus, S[(M,g), P] is a subset of M and m € S[(M,g), P| indicates that
m is a solution under S to (M,g) at P. The outcome correspondence associated with S is

Os : G x PN — 24 is defined by
Os[(M,g9),P]={a€ A| Im € S[(M,g), P] s.t. g(m) = a}.

A social choice correspondence F is implemented via the solution S and the mechanism

(M,g) if Os[(M,g),P] = F(P)forall Pe pPV.

SOLUTION CONGCEPTS.

Although most of the solution concepts we discuss are well-known, we provide defini-
tions for them as used in an implementation context. An (incomplete) list of references for
implementation via the solutions we discuss includes: Maskin (1977), (1985) for Nash im-
plementation Palfrey and Srivastava (1991) and Jackson, Palfrey and Srivastava (1990) for
undominated Nash implementation, Farquharson (1969), Moulin (1979), (1983), and Abreu
and Matsushima (1990), for the iterated removal of weakly dominated strategies, Jack-
son (1992) and Boérgers (1989) for undominated strategies, Thomson (1979) and Moulin
(1982) for maximin strategies, Barbera and Dutta (1982) for protective equilibria, Herrero
and Srivastava (1992) for implementation via backward induction, and Moore and Repullo
(1988) for subgame perfect implementation. Moore (1991) provides an excellent survey of

implementation via the solution concepts mentioned above.

DOMINANT STRATEGIES.



An action m' € M’ is a dominant strategy for agent ¢ at P* if for each m™* and ™'

either g(m',m™*) = g(M*, m™*) or g(m*,m™*)P'g(Mm*',m™*).
UNDOMINATED STRATEGIES.

The action m* € M' (weakly) dominates m* € M* at P* if for each m™" either
g(m*,m=%) = g(m*,m™*) or g(M*',m *)P'g(m*,m~*), with the preference being strict for

some m~*. The action m® is undominated at P' if it is not dominated by any other action.

STRICT DOMINATION.

The action m* € M"* is strictly dominated by m* € M* at P* if g(m*, m~*}P'g(m*, m™*)
for each m™*. The action m' is strictly undominated if it is not strictly dominated by any

mt.
ITERATIVE REMOVAL OF DOMINATED STRATEGIES.

Given a mechanism (M,g) and sets X' C M*',..., X" C M", an action m' €
X' is dominated by m' € X' at P' with respect to X if for each m™ &€ X~ either
g(m',m="} = g(m',m~*) or g(M',m~*)P'g(m',m~*), with the preference being strict
for some m™* € X, Let D'(X,P) be the set of actions which are not dominated
for i at P* with respect to X, and let D(X,P) = D*(X,P) x «-- x DV (X, P). De-
fine a sequence Do(M,P),...Dg(M,P)... by Do(M,P) = D(M,P) and Dg(M,P) =
D(Dg_,(M, P),P). Finally, let D*(M,P) = Ng Dy (M, P). An action m € D*(M, P) is
said to be iteratively undominated at P.

Correspondingly, we can define iteratively strictly undominated by using strict domi-

nation instead of domination in the above definition.

NASH EQUILIBRIUM.

A (pure strategy) Nash equilibrium at P is a profile of actions m € M such that for

each ¢ and M either g(m) = g(Mm*,m~*) or g(m) P g(M*,m™").
UNDOMINATED NASH EQUILIBRIUM.

The actions m € M form an undominated Nash equilibrium at P € P¥ if y1 is a Nash

equilibrium and each m' is undominated at P*.
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MAXIMIN.

Let w(m’, P*) denote the worst possible outcome for agent 1 according to P* if m* is
used. [That is, there exists m™* such that g(m’,m™*) = w(m*, P*) and for every M’ either
g(m*,m~%) = g(m*,m™%) or g(m*,Mm~*)P'g(m*,m™*).] An action m' € M* is a maximin
action for agent 1 at P*, if w(m*, P*)P'w(M’, P*) or w(m’, P*) P*w(m*, P*), for all M € M*.
Under maximin, agents ‘rank’ their strategies in terms of the worst outcomes the?' might

lead to, and select from among those with the best worst outcome.

BOUNDED MECHANISMS.

A mechanism (M, g) is bounded at P if whenever m' is dominated at P*, there exists

a undominated m*' which dominates it. (M, g) is bounded if it is bounded at each P € P.

3. The Impossibility Theorem

To begin to understand the properties of solution concepts which lead to impossibil-
ity results, we first look at the properties of a social choice function which imply that it
is dictatorial. Our starting point is the following version of the Gibbard-Satterthwaite

Theorem.

THEOREM [GIBBARD (1973), SATTERTHWAITE (1975)]. If a social choice function

has at least three elements in its range, then it is strategy—proof if and only if it is dictatorial.

It is known that conditions other than strategy—proofness also lead to dictatorial so-
cial choice functions . The Muller-Satterthwaite (1977) theorem shows that the following
monotonicity condition implies that a social choice function is dictatorial on a full domain
of preferences.

A social choice correspondence F is monotonic if for each a, P, and P such that
a € F(P) and a ¢ F(P), there exists 7 and b such that aP*b and bP a. [This condition is

also referred to as strong positive association.]

THEOREM [MULLER-SATTERTHWAITE (1977)]. If a social choice function has at least

three elements in its range, then it is monotonic if and only if it is dictatorial.

7



The impossibility theorem we prove here 1s based on a different set of conditions which
are a priori weaker than strategy—proofness, and distinct from monotonicity.* The following
conditions also imply that a social choice function is dictatorial.

Let br(P*) denote best element of in the range of F according to P*. [So br(P*)P'a
for all a in the range of F such that a # by (P*).] Let sbr(P*) denote the second best
element in the range of F according to P*. [So br(P*)P'sbr(P*) and sbp(P*)P'a for all a
in the range of F such that a # b (P*) and a # sbr (P*).]

CONDITION (B).

A social choice function F satisfies the Best condition (B) if for any P, 4, and ﬁ'
F(P) = bp(?) implies that F(F‘,P—i) - bp(?).

CONDITION (SB).

A social choice function F satisfies the Second Best condition (SB) if for any P, 1, and
F(B,P~%) # bp(P') for all 7 and F(P) = sbr (P ) imply that F(P, P~%) = sbp(P').

(B) requires that at a given preference profile of other agents preferences, if an agent’s
most preferred alternative is the outcome associated some preferences of the agent, then it
is outcome associated with the agent’s true preferences. (SB) is similar, except it applies in
situations in which the agent’s most preferred alternative is not available, but the second

most preferred alternative is.

THEOREM 1. If a social choice function has at least three elements in its range, then it

satisfies (B) and (SB) if and only if it is dictatorial.

Proof of Theorem 1: It is clear that if F is dictatorial then it satisfies (B) and (SB).

Here we show the converse for N = 2. ° The extension to N > 2 is straightforward and

4 We use the term “impossibility theorem” loosely. For instance, the above theorem can
be restated: A social choice function which has at least three elements in its range cannot
be both monotonic and non-dictatorial. We will continue to use the term “impossibility”
with this understanding.

® The proof presented here follows the same intuition as the simple proof of the Gibbard-
Satterthwaite theorem presented by Barbera and Peleg (1990). Some differences are neces-
sary, since (B) and (SB) do not allow us to work with choices from option sets in the same
way as Barbera and Peleg.



appears in the appendix. Since (B), (SB), and dictatorial are all defined relative to the
range, without loss of generality, we can assume that the range of F is A. We write b(F*)

instead of bp (P*).
LEMMA 1. (Unanimity) If b(P') = b(P?) = a, then F(P) = a.

PROOF: There exists P such that F(P) = a. By (B) F(Pl,ﬁz) = a. By (B) again,
F(P',P*)=a. |

LEMMA 2. Ifb(P') =b(P') and F(P',P°) = b(P"), then F(P',P°) = b(P").

PROOF: Let ¢ = b(ﬁ’z) and a = b(ﬁl). If a = ¢ then this follows from unanimity. So
suppose that a # ¢ and F(_ﬁl,_ﬁz) # ¢. Then by (B) for player 2, F(ﬁl,Pz) # ¢ for
all P2, Let P? = (c,a,...). By unanimity F(ﬁl,P"’) = a for some P?, and so by (SB)
F(P',P?) = a. Since b(P') = b(P') = a it follows from (B) that F(P', P?) = a. Thisis a
contradiction since F(Pl,ﬁz) = ¢ and (B) imply that F(Pl,ﬁz) =c 1

LEMMA 3. For any P!, either F(P',P?) = b(P!') VP?, or F(P!, P?) = b(P?) VP2.

PROOF: Suppose the contrary for some P!'. Then 3P2 such that F(Pl,ﬁz) —c#a=
b(P'), and there exists P? such that F(P', P?) # d = b(P?). Without loss of generality
by (B), take b(P?) = ¢. Consider P! = (a,d,...).° From Lemma 2 and the fact that
F(P!,P?) = ¢, it follows that F(P',P?) = c. From Lemma 2 it also follows that follows
that F(P', P?) # d (otherwise Lemma 2 would imply that F(P!,P?) = d). By (B)
F(P!,P?) # dVP2. Let P = (d,c,...) By (SB) it follows that F(ﬁl,_ﬁz) = c. Notice that
F(Pl,ﬁz) # a VP! (otherwise (B) would imply that F(IB'1 ,ﬁz) = a). Then by unanimity
F(Pl,ﬁz) = d for some P!, and so by (SB) F(ﬁl,_ﬁz) = d, contradicting F(ﬁl,ﬁz) =c |

LEMMA 4. F is dictatorial.

PROOF: Suppose the contrary. Then by Lemma 3 3P! such that F(P', P?) = b(P') VP?
and 3P! such that F(P', P?) = b(P2) YP2. By (B) it follows that (P!) = c # a = b(P).
Find d ¢ {a,c} and P° such that b(ﬁz) =d Let P = (c,a,...). By Lemma 2 and the
fact that F(B*, P?) = b(P?) VP2. it follows that F(P',P") = d. This implies by (B) that
F(P!,P’) # ¢ for all P'. However, by (SB) [since F(P!, P?) = b(P*) VP?] it follows that
F(P',P°) = q, a contradiction. 1

8 Notice that a, c, and d are distinct. By the supposition a # ¢ and ¢ # d. The fact that
a # d follows from F(P!, P?) # d VP? and unanimity.
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Theorem 1 shows that the full force of strategy—proofness is not needed to produce
the theorem, but rather only strategy—proofness at particular preference profiles where one
of an agent’s top alternatives are available. Given Theorem 1, it is clear that these are
equivalent on a full domain of preferences, since the social choice function is dictatorial in
either case. More generally, however, strategy—proofness will always imply (B) and (SB),

but the converse does not hold. This is illustrated in the following example.

EXAMPLE 1.

There are two individuals {1,2} and four alternatives {a,b,c,d}. The possible prefer-
ence profiles are (P!, P?), (P! ,ﬁz), (Igl,ﬁz),. (Isl,ﬁ:’) These are represented below where

the vertical order indicates an agent’s preference.

Pl = p? P’ pt = p? pt = p2
a b c c
b a a b
c d b a
d ¢ d d

The social choice function F is defined by F(P*, P?) = d, F(Pl,ﬁz) =¢, F(P*, P?) =
a, F(P',P?) = b. F satsifies (B) and (SB) since agents’ best and second best alternatives
are not available at any given preference profile because of the restricted domain. However

it is not strategy—proof, since at (P!, P?) individual 2 prefers the outcome associated with

(P!, P%).

We should also compare (B) and (SB) to the monotonicity condition identified by the
Muller-Satterthwaite theorem, which has a different inuition and on restricted domains
has no logical relation to (B) and (SB). Example 1 demonstrates that monotonicity is not
implied by (B) and (SB). The social choice function in Example 1 satsifies (B) and (SB), but
does not satisfy monotonicity when we consider F(P*, P?) and F(Pl,ﬁz). The following

example shows the converse.

EXAMPLE 2.
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There are two individuals {1,2} and four alternatives {a,b,c,d}. The possible prefer-
ences are as follows: aP'bP'cP'd, aP?bP?cP?d, and bP aP dP ¢, which are represented

below.

P! = p? P
a b
b a
c d
d c

The social choice function F is defined by F(P!, P?) = a and F(Pl,ﬁz) =d. Fis

monotonic, yet it does not satsify (B) since a = bp(Pz) is available to agent 2 and yet

a # F(P*,P).

4. Implementation and A Comparison of Solution Concepts

Let us now turn to the implementation problem. Theorem 1 provides a character-
izations of solution concepts which lead to impossibility results. (B) and (SB) have the
following counterparts which apply to solution concepts.

A solution S satisfies the (B’) relative to (M,g) if for any P, ¢, and 2 b(F) €
0s[(M,g), P| implies b(F') € Os[(M, g), P~*, P |.

A solution S satisfies the (SB’) relative to (M,g) if for any P, 1, and P that
sb(ﬁ{) ¢ Os|(M,q),P~*, P*] for all P* and Sb}:"(ﬁ{) € 05|(M,g), P] implies that sb(?) €

05[(M,g),P_‘,P ]

Theorem 2 then follows directly from Theorem 1.7

THEOREM 2. The solution S satisfies (B') and (SB') relative to a mechanism via which
it implements a social choice function (with at least three outcomes in its range), if, and

only if, the social choice function is dictatorial.

We illustrate the above theorem in the following examples.

7 (B') and (SB’) are now defined relative to the range of a mechanism, although we no
longer include subscripts.
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EXAMPLE 3. Undominated Strategies

If we restrict attention to the class of bounded mechanisms, then the solution of un-
dominated strategies satisfies (B’) and (SB’). Consider a bounded mechanism (M, g) and
any i, P € PV, P e P, where m € S[(M,g), P] and g(m) = b(1_31) If m* is undominated
at P, then m € S[(M,g),P“,?], and (B') is satisfied. If m' is dominated at P, then it
is dominated by an undominated m' and so g(m',m™*) = g(m) and (B’) is satisfied. To
verify (SB’), consider a bounded mechanism (M,g) and any i, P € PV, P € P, where
m € S[(M,q),P]. g(m) = sb(?) and b(]_31) ¢ OS[(M,g),P",ﬁ‘] for all P'. If m' is
undominated at _ﬁ{, then m € S[(M,g), P",F], and (SB') is satisfied. If m* is dominated
at P, then it is dominated by an undominated m'. Since b(?) ¢ Ogs[(M,g), P] it follows
that g(m',m™*) # b(]_31) Thus, g(m*,m™*) = g(m) and (SB!) is satisfied.

Implementation in undominated strategies shows that the possibility of non-trivial im-
plementation depends critically on the domain of possible mechanisms §. If § includes all
mechanisms, then any social choice function is implementable in undominated strategies
[Theorem 1 in Jackson (1992)]. The above argument breaks down in trying to find the ap-
propriate 7 because for an unbounded mechanism, there exist infinite strings of strategies,
with each strategy dominating the previous one, but none of which are undominated. For
such mechanisms, an agent might find that a dominated strategy provides a better outcome
than all of the undominated strategies, against a particular set of strategies of other agents
[See example 1 in Jackson (1992)]. For such a mechanism, however, it seems unreasonable
to argue that agents will only play undominated strategies. Thus the restriction to bounded

mechanisms is appropriate.

The same arguments as in Example 3 show that the solution of dominant strategies

satisfies (B) and (SB/).
EXAMPLE 4. Nash Implementation.

We now verify that the Nash solution satisfies (B’) and (SB’) relative to any mechanism
on which it is single valued. Consider a mechanism (M, g) and any i, P € PV, P e P,
where m is a Nash equilibrium at P and g(m) = b(F) It follows that m is a Nash
equilibrium at P“,?], and (B') is satisfied. To verify (SB’), consider a mechanism (M, g)

(on which Nash outcomes are single valued) and any 1, P € PV, P < P, where m is a

12



Nash equilibrium at P, g(m) = a = sb(P') and b(P') ¢ Os[(M,q),P~*, F] for all P
Let m be a Nash equilibrium at P"',T’* and suppose that g(m) = ¢ # a = g{m). Since
b(F) ¢ Os[(M,g), P“,?], it must be that ¢ # b(7’1) and so aP ¢. Consider P such that
b(13‘) = a and sb(]s‘) = c¢. Since m is a Nash equilibrium at P"',_Isi it follows that m is
a Nash equilibrium at P“,IS‘. However it also follows that m is a Nash equilibrium at
P",I;‘. This contradicts the fact that the outcome correspondence is single valued. Thus

our supposition was wrong and so g(m) = g(m) and so (SB’) is satisfied.

As we see above, for some solutions it is (SB!) is not trivial to check, and may depend
on whether the outcome correspondence is single valued or not. Thus (SB’) may not be easy
to verify generally. With this in mind, we will develop an alternative characterization. The
intuition for this second characterization comes from identifying what it is about solutions

which makes sure that they do or do not satisify (B') and (SB’).

EXAMPLE 5. Undominated Nash implementation.

The following mechanism allows both agents some say in the selection of an outcome,
and yet it has a unique undominated Nash equilibrium for any preference profile. Thus this
illustrates that undominated Nash equilibrium is a solution which does not satsify (B’) and

(SB’) relative to some mechanisms.

m? m?
m! a a
m! b c

The mechanism represented above always has a unique undominated Nash equilibrium.
The column player always has a unique undominated action, depending on the preference
between b and c¢. The row player has a unique best response to this action, which completes
the equilibrium. Notice that an iterated elimination of (weakly) dominated strategies will

lead to the same predictions as the undominated Nash equilibria for this mechanism.?

& More discussion of interesting social choice functions which can be implemented by an
iterated elimination of weakly dominated strategies on a full domain of preferences is given
in Moulin (1982), (1983), and Herrero and Srivastava (1992).
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If we examine other solution concepts applied to the above mechanism, such as undom-
inated strategies, Nash equilibrium, or dominant strategies, they do not lead to a unique
prediction for the above mechanism at some preference profiles. At some profiles there are
more than one predicted outcomes for the undominated strategy or Nash solution concepts,

while agent 1 has no dominant strategy.

Let us see where (B’) fails. If P! = (c,a,b) and P? = (a,b,¢), then the solution is
m, with outcome a. If agent 2’s preferences change to P = (a,c,b), then the solution is
bottom right, with outcome ¢. Thus (B’) fails, since agent 2 would rather have preferences
P2 when he or she has preferences P Indeed, the social choice function implemented by
the mechanism of Example 1 is not dictatorial. Similar examples can be constructed to

illustrate that (SB?) is not satsified.

Remark that undominated Nash equilibrium is stronger than either Nash equilibrium or
undominated strategies, and weaker than dominant strategies. This indicates that whether
or not a solution produces an impossibility result is not related to the strength of the
solution concept in a simple way. In the above example, dominant strategies is too strong
so that it produces no outcomes at P!, P2. In contrast, Nash equilibria or undominated
strategies are too weak and produce multiple outcomes at P!, P?2. Undominated Nash is
weak enough to have the outcome m at P!, P? and yet strong enough to rule out other

outcomes, thus implementing a non—dictatorial social choice function .

Intuition is drawn from this example by examining why agent 2 chooses m> instead of
m? at Pl,ﬁz. The solution m is not broken “directly”, but rather indirectly. It is what
happens in the bottom row which causes agent 2 to prefer m* over m?. However, this new
choice for agent 2 now influences the choice of agent 1 who would rather choose the bottom
row. Thus m is broken by “off the equilibrium path” considerations. Neither agent has an
improving deviation away from m, but other considerations make agent 2 choose m? and

then it is best for agent 1 to change to m?.

Another solution concept which permits a positive implementation result is maximin

strategies.®

® For more discussion of implementation via maximin see Thomson (1979). Example 6
also works for implementation via protective equilibria [Barbera and Dutta (1982)], which
is a refinement of the set of maximin strategies [see Barbera and Jackson (1988)].
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EXAMPLE 6. Maximin Strategies.

The following mechanism shows that the maximin solution is single valued on a mech-
anism which is not dictatorial. In fact, the maximin outcome function for the mechanism
below is anonymous. One way to think of this mechanism is that each agent can veto a

single outcome. The unique maximin solution is to veto your worst outcome.

m2 2 w2
m?! a a b
mt a c c
m! b c c

Let us see where (B) fails. If P* = (c,a,b) and P* = (a,b,c), then the solution is
m!, m?, with outcome a. If agent 2’s preferences change to P = (a,c,b), then the solution
is m*, m*, with outcome c. Thus (B/) fails, since agent 2 would rather have preferences P2,

when he or she has preferences 28

Again, the fallure to satisfy the (B’) come from “off the equilibrium path” consid-
erations. The change in behavior for agent 2 does not result from a better opportunity
against m!, but rather from considerations of how agent 2’s actions do against the rows

more generally.

Before moving on with this intuition, we want to remark that this failure to satisfy
the best condtion is not necessarily a shortcoming. Although the best condition seems
like a compelling condition for a solution to satisfy, we should be careful to consider its
interpretation under different information structures. For solutions which operate in in-
complete information settings, such as undominated strategies or dominant strategies, it
seems natural since agents do not know the preferences of others and thus choose actions
independently of the actions or preferences of others. The only change in actions from a
change from P* to P isduetoa change by agent 1. The agent should not choose actions
which do uniformly worse against the actions of the other agents. However, when we move
to a complete information setting, the preceeding argument can no longer be made. A so-

lution such as undominated Nash equilibrium, looks for a stable point given that all agents
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know each others’ preferences. In Example 1, m is ruled out at Pl,ﬁz since agent 1 knows
that it is a dominant strategy for agent 2 to play m?. Given this, agent 1 should play m!,

even though the agent would prefer that both agents play m.

The intuition obtained from the preceeding examples is captured in the following con-
dition which we call the Direct Breaking condition. Loosely, it states that a solution which
leads to dictatorial outcomes on a full domain pays attention directly to the equilibrium. A
change implies that something better is available via some deviation. Thus equilibria which

are broken are broken directly.

DIRECT BREAKING.

A solution S satisfies direct breaking with respect to the mechanism (M, g) if for each

P, and P such that Os[(M,g), P)nOs[(M,g), P} = 0, either

(i) there exists 1 with b(P*) € O[(M,g), P] and b(P') € Os[(M, g)P], or

(i1) there exists i m € S[(M,g), P}, and m" such that g(m“,m‘)?g(m).

The direct breaking condition may be interpreted as follows. Suppose that a change
in preferences leads to a complete change in outcomes. Either some agent is getting his
or her best outcome in each case, or else the actions leading to some original outcome are
not stable at the agents’ new preferences. That is, some agent could benefit from deviating

from at least one of the solutions associated with the original preferences.

We make two remarks about the above condition. First, it is slightly more complicated
than the simple intuition we obtained from Examples 5 and 6. In particular, part (i)
is extra. This is due to the fact that we desire a full characterization result and there
are some somewhat pathological solution concepts to be covered. The role of part (i) is
illustrated in Example 7 below. Second, the above condition is not sufficient for a solution
to only implement dictatorial social choice functions . The reason is that the solution
may satisfy the direct breaking condition, and yet not result in a dictatorial outcome,
becasue it is picking worst outcomes instead of best ones. That is, there is nothing in the
direct breaking condition which assures that agents in any way attempt to maximize their
preferences, instead of minimizing them. Thus to obtain a characterization, we need to add

a condition which says that agents are acting in accordance with their preferences.
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POSITIVE RESPONSIVENESS.

A solution S satisfies positive responsiveness with respect to the mechanism (M, g) if
for every 1, m € S[(M, g), P|, and m' € M, such that g(m™*,m*)P*g(m) either

(1) there exists 71 € S[(M,g), P] such that g(m)P'g(m~*,m*) or g(m) = g(m~*,m*),
or

(i1) there exists 7 # ¢ such that Os[(M,g), 13] = b(P?) for all P,

The positive responsiveness condition states that either the solution accounts for im-
provements available to an agent, or else the agent is essentially a dummy agent who does
not have any affect over the outcome. This condition turns out to be fairly weak and is
satisfied by almost all solution concepts. If we consider any solution which is stable in a
Nash equilibrium sense, then this condition is satisfied almost vacuously: there can exist no
such improvement m* for 1. For solutions which work by means of domination arguments,
the condition is also satisfied, but only when we restrict attention to bounded mechanisms.
For example, if we consider undominated strategies, then such an action m' is either un-
dominated itself, or dominated by an undominated action which then must lead to at least
as good an outcome for agent 1 as m'. If the mechanism is not bounded, then this is no
longer true.!® Two solutions which do not satisfy positive responsiveness are maximin and
the protective criterion. Both solutions rely on information about the worst outcomes which
an action may lead to, and do not account for the outcome of an action against particular

actions of the other agents.

Both the direct breaking condition and the positive responsiveness condition consisted
of two parts. The following example illustrates why these conditions need two parts. For
instance, the positive responsivenss condition states that either an individual responds
positvely to improvements which are available to him or her, or else the agent is effectively
a dummy agent. In the following example some agents act as dummies — always acting in

accordance with another agent’s wishes, and the solution produces a dictatorial outcome.

19 Example 1 in Jackson (1992) provides an illustration. In that example there are devi-
ations m' which are strict improvements, but they form a string each one dominating the
previous one.
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EXAMPLE 7. A Dictatorial Solution,

Consider S defined by
S[(M,g), P} = {m | g(m)P’g(m)v¥m € M}.

S is the somewhat pathological solution concept which assumes that all agents choose
actions which are best for the first agent. Clearly, the social choice functions which are im-
plementable via S are dictatorial. Yet, S does not satisfy part (i) of positive responsiveness

and part (ii) of direct breaking with respect to the following mechanism.

m? m?2
m! a
mt c d

1

Let P' = (a,b,c,d), P = (d,a,b,c), and P?(c,d,a,b). The solution at P is m
and the solution at “}31)})2 is m. Part (i) of positive responsiveness is not satisfied since
g(m', m?)P?g(m). (This is part of what makes the solution so unappealing.) Part (ii) of
direct breaking is not satisfied since neither agent has an improving deviation away from

m.

In this example, we see also why the direct breaking condition needs two parts. Things
are not broken directly here, since agent 2 acts in agent 1’s interest, rather than in his or
her own interest. Thus part (i) of Positive Responsivenss and Part (ii) of direct breaking
are needed to provide a full characterization result, since pathological solution concepts,
such as the one above, are covered. However, as we shall see in the examples below, these
parts of these conditions can effectively be ignored when we deal with any of the standard

solution concepts in which agents act in their own best interest.

THEOREM 3. A solution satisfies positive responsiveness and direct breaking for a mech-
anism via which it implements a social choice function (with at least three elements in its

range), if and only if the social choice function is dictatorial.

PROOF: Let F be a social choice function which has at least three elements in its range
and is implemented via the solution S by the mechanism (M,g). It is easy to check that

if F is dictatorial then S satisfies both positive responsiveness and direct breaking relative
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to (M,g). We show the converse. So suppose that S satisfies positive responsiveness and
direct breaking relative to (M, g). We show that S satisfies (B’) and (SB’) with respect to
(M, g). Thus by Theorem 2, F is dictatorial.

First, we verify (B’). Consider m € S(P) such that g(m) = b(ﬁ') Suppose that
b(I_D‘) ¢ Os[(M,g),P“,?]. By direct breaking it follows that there exists some k, m €
S(P), and m* such that g(m"",m")-ﬁkg(m) (where if k # ¢ then P = P*). Since
g(m) = b(_IS’.), it must be that k # i. Then P° = P* and so g(m~* m*)P*g(m). By
positive responsiveness either the outcome function is dictatorial and so (B’) is statisfied,
or else there exists m € S[(M,g), P} such that g(m)P*g(m), contradicting the fact that the

outcomes are single valued. Thus b(P') € Os[(M,g), P~%, P |, satisfying (B').

Next, we verify (SB’). Consider m € S(P) such that g(m) = sb(?) and b(_ﬁ‘) ¢
Os[(M,g),P“,I;‘] for all P'. Without loss of generality, given that we have shown
(B?), we can assume that g(m) = b(P*), and that Os[(M,g),P“,?] = sb(P*). Sup-
pose that sb(?) ¢ Os[(M,g),P",?]. By direct breaking it follows that there exists
some k, M € S(P"‘,?), and m* such that g(m™*,m*)Pkg(m). If k # 1, then by pos-
itive responsiveness either the outcome function is dictatorial and so (SB') is statisfied,
or else there exists m € S[(M,g),P“,F] such that g(m)P*g(m), contradicting the fact
that the outcomes are single valued. Thus it must be that k¥ = 1 and g(m~*, m') P'g(m).
Since Os[(M,g),P_‘,?] = sb(P*), it follows that g(m~*,m') = b(P*). This implies that
g(m™*,m') = sb(?). Since g(m) # b(?), it follows that g(ﬁ“,fn‘)?g(ﬁ). By pos-
itive responsiveness either the outcome function is dictatorial and so (SB’) is statisfied,

or else there exists m € S[(M,g), P~*,P| such that g(#)P g(m), which contradicts our
supposition. Thus sb(P') € Os[(M, g), P~*, P'], satisfying (SB’).

The direct breaking condition may seem somewhat similar to requiring that the out-
come correspondence associated with a solution be monotonic. There are important differ-
ences, however, and the direct breaking condition is weaker. The direct breaking condition
is binding only when all outcomes change due to a switch in preferences by some agent.
In contrast, monotonicity is binding when any outcome changes due to a change in the
preferences of an agent. Further, monotonicity then requires a preference switch between
the outcome and some alternative for the agent whose preferences have changed. Direct
breaking only requires that some agent have an improving deviation from some original

solution. These important differences are evident in the following example.

EXAMPLE 8. The Iterated Removal of Strictly Dominated Strategies.

Only dictatorial social choice functions are implementable via the iterated removal
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of strictly dominated strategies.!® Positive responsiveness and direct breaking are easily

verified as follows:

First we check positive responsiveness. Consider 1, m € S((M,g),P] and m' such

that g(m=*,m')P'g(m). Since #A is finite, there exists m' such that for each m* either

oo ¥

g(m™ ", m)Pig(m™*,m*) or g(m™*,m') = g(m™*,m*). It follows that m™*,m" is iteratively
undominated at P, and hence satisfies the requirement of positive responsiveness.

Checking the direct breaking condition is as straightforward. Consider m which is left
after the iterated elimination of strictly dominated strategies at P. If m is not a solution
at P, then there is a first stage such that m7 is strictly dominated by m’ for some 5. This
implies that g(m_f,r—n'j)—lsjg(m).

Now we show that although the iterative elimination of strictly dominated strategies
satisfies positive responsiveness and direct breaking, it does not always have a monotonic

outcome correspondence. Caonsider the following mechanism.

m? m?
mt a a
mit b c

Let P! = (b,a,c), P = (b,c,a), and P? = (c,b,a). At P, neither agent can remove
a strategy and so the set of outcomes is {a,b,c}. At ﬁl,Pz, agent 1 can remove m! since
it is strictly dominated by m!. This then allows agent 2 to remove m?. The solution is m
with outcome ¢. This is inconsistent with monotonicity: the relative ordering of b remains
unchanged, and yet it is dropped as an outcome. It is consistent, however, with direct

breaking since g(m)P?g(m', m?).
EXAMPLE 9. Nash Implementation Revisited.

Although it was somewhat difficult to check that the Nash equilibrium solution (SB!)
for mechanisms on which it is single-valued, we can easily check that it satisfies both
positive responsiveness and direct breaking for any mechanism. Positive responsiveness is
satisfied since by the definition of Nash equilibrium there can never exist m' such that
g(m™*, M*) P g(m), when m is a Nash equilibrium at P. Direct breaking is satisfied since if
m is a Nash equilibrium at P but not at P=*, P*, then m' must no longer be a best response

for player 1.

EXAMPLE 10. Undominated Strategies Revisited.

' A similar result for a slightly differnet solution was obtained by Borgers (1989).
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We close this section by verifying that the solution of undominated strategies satisfies
both positive responsiveness and direct breaking for any bounded mechanism. Consider
P, m which is undominated at P, and ¢ and M' such that g(m™* M*)P*g(m). Either m'
is undominated, or it is dominated by an undominated action 7. Positive responsiveness
is thus satisfied by either (m~* ') or (m~*,m'), respectively. To verify direct breaking,
consider P and P such that Os((M,g), PIn0Os[(M,9), P“',—P—‘] = (. Let m be undominated
at P. It follows that m' is dominated at P by an action m' which is undominated at P.
Thus, g(m) # g(m~*,m'), and so g(m“,'rﬁ*)ﬁ{g(m). Therefore, direct breaking is satisfied.

We remark here on a sublety concerning the direct breaking condition and our com-
ments concerning “paying attention to off the equilibrium path outcomes.” Theorem 3
has shown that direct breaking (together with positive responsiveness) is necessary and
sufficient for a solution to implement only dictatorial social choice functions . This means
that a solution which incorporates off the equilibrium path information might break equi-
libria indirectly and thus avoid the direct breaking condition and the impossibility result.
This, however, does not mean that a solution which incorporates off the equilibriu path
information necessarily avoids the direct breaking condition. For instance, the solution of
undominated strategies pays attention to all outcomes which can be obtained by any com-
bination of other agents actions. Thus the set of actions which form a solution can change
due only to a change in ordering of alternatives which are not available to any agent given
the equilibrium actions of the other agents. Yet, undominated strategies still satisfies di-
rect breaking relative to bounded mechanisms, since a change in the outcome does require
that some agent have an alternative action which is better given the actions of the other

agents.!?

5. Concluding Remarks

In this paper we have examined properties of solution concepts which limit their ability
to implement non-dictatorial social choice functions on a full domain of preferences. The
solutions with limited implementation results had the common trait of “breaking” certain
equilibria directly by requiring that some agent have an improving deviation against the
actions of the other agents. In contrast, solutions which permit implementation of interest-
ing social choice functions on a full domain of preferences incorporate information which
permits them to break equilibria without requiring that any agent an improving deviation
directly against the actions of the other agents. [Table 1 summarizes the results for various

solutions.]

12 This is where the restriction to bounded mechanisms is important. Without this re-
striction, an action could be ruled out by an infinite string of actions each dominating the
previous one, but none of which are undominated. Non-dictatorial social choice functions
are implementable through unobunded mechanisms.
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We have focussed attention on full preference domains and on the implementation of
social choice functions . Comparisons across solution concepts might also prove useful in
understanding implementation in more structured environments, where there are additional
restrictions on the set of preferences considered, and where it is possible to implement

correspondences instead of just functions.

Another extension would allow for the possibility of indifference in preferences. Con-
sidering a full domain of preferences with the possibility of indifference, produces difficulties
for the implementation of social choice functions .!® For almost any solution we consider,
there are no non-constant social choice functions which are implementable on a full do-
main of preferences where indifference is allowed. [Thus not even a dictatorial social choice
function is implementable on such a domain.] This is easily seen by noting that when
all agents are completely indifferent, then all actions will be possible under aimost any
solution concept. An implemented social choice function must then take on all values at
such a preference profile. Even if complete indifference is ruled out, allowing for some in-
difference will produce multiple outcomes for some preference profiles. Thus to extend the
discussion of implementation to the domain of indifference, one has to consider social choice

correspondences.

% Theorem 1, however, could be extended to allow for indifference, given that preferences
which have best and second best alternatives are admissible. An extension beyond that, to
say a metric space of alternatives and a restriction to continuous preferences [as in Barbera
and Peleg (1990)}, would require a change of the (SB) condition.
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TABLE 1

D — Only dictatorial functions are implementable.

N - Non-dictatorial functions are implementable.

N = N2>3
Solution H#A=2 H#A=2
Dominant Strategies N N
Undominated Strategies
(unbounded mechanisms) N N
Undominated Strategies
(bounded mechanisms) N N
Iterated Elimination:

Weakly Dominated N N
Iterated Elimination:

Strictly Dominated D D
Nash Equilibria D N
Undominated Nash N N
Perfect Equilibria N N
Maximin D N
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APPENDIX
Proof of Theorem 1 for N > 2. !4

A subset of agents S has veto power if aP'b for all i € S implies F(P) # b.
(i) Partition agents into S and S°¢. Either S or S° has veto power.

Counsider preference profiles for which all agents in S have identical preferences, and
all agents in S° have identical preferences. From the proof of the Theorem for N = 2 and
the fact that (B) and (SB) work in coalitional versions (when all members of a coalition
have identical preferences), F gives the most preferred outcome of either S or S° on this
restricted domain. Say it is S. Suppose that for some P, F(P) = b while aP'b for all1 € S.
Consider P such that every agent in S has identical preferences with a most preferred and b
second, and all agents in S¢ have identical preferences with b most preferred. The outcome

is the most preferred outcome of S, so F(P) = a. Since F(P) = b by (B) it follows that

F(PS,P° ) =b. Then by (SB) F(P°,P° ) = b. This is a contradiction.

(ii) If S has veto power and j € S, then either S — j or j has veto power.

Suppose not. Then by (i) it follows that S° U j and § — 5 U S° have veto power. Let
S — 7 have preferences (a,b,c,...), j have preferences (b,¢,a,...), and S° have preferences
(c,a,b,...). F(P) # b, since aP'b for all i # j. F(P) # ¢, since bP'c for all 1 € S.
F(P) # a, since cP*a for all { € §°U j. This is a contradiction since any coalition will veto
all outcomes not in {a,b,c}.

(ii1) F is dictatorial.

Begin by (i) and then apply (ii). If 7 has veto power, then j is a dictator. If not, then
pick k € S — 7 and apply (ii) again. Repeat until k is a dictator.

14 This portion of the proof is partly based on a proof in Schmeidler and Sonnenschein
(1978).





