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ABSTRACT

One of the approaches in consumer theory considers each product as a
collection of attributes. Consequently, consumer preferences are defined
over attributes. As opposed to the traditional approach, according to which
consumer preferences for products are the underlying feature of economic
modeling, they are now derived from the composition and strength of
products’ attributes.

In this paper I try to answer the question of how one can determine
the relative importance of the different attributes of a product. In order
to answer this question a stopping problem model is constructed. An agent
faces a sequence of 1.i.d. multi-dimensional products of which he can
observe only one attribute. At each stage the agent has to decide whether
he wants to stop, taking the best product so far, or whether he prefers to
continue by observing a specific attribute of the next product. The model
is solved for an optimal observing policy.

In the finite case, second order stochastic dominance characterizes
the optimal strategy in the sense that if it holds between the two random
variables induced by the expected utility given an attribute, it 1is never
optimal to observe the "dominating" one.

In the infinite horizon case, observing one attribute only is always
optimal. However, the infinite horizon optimal strategy may not be
myopically optimal. The seeming discrepancy between finite and infinite
horizon models wvanishes for a sufficiently large horizon, thus making the
infinite case optimal attribute the one chosen for a long period in finite
horizon cases also. Identifying the infinite case optimal attribute allows
us to determine the performance of the model in the long run even when

second order stochastic dominance does not hold.



1. INTRODUCTION AND SUMMARY

One approach in consumer theory, first presented by Lancaster 1966,
states that the economic agent or the consumer regards each product as a
bundle of attributes. Therefore, the consumer’s preferences are defined
over the set of different combinations of attributes which are identified
as products, rather than assuming the preferences over products as a
primitive. Different composition and magnitude of attributes among products
determines the consumer’'s preferences over the different products.

This paper tries to develop a systematic way of answering the
question, "What makes a certain attribute important ?". In order to address
this problem we introduce the following decision problem: A rational
decision maker is facing a sequence of multi-dimensional products. He has
to choose one product, preferably the best, from this sequence. However,
the decision maker is restricted by the following information constraint,
he can observe only one attribute from each product in the sequence

An example illustrating this process might be the following; One is
interested in buying a used car. He visits several car dealers which in
turn, each make him an offer. However, for various reasons (e.g. the dealer
doesn’t have time, there are more costumers waiting to examine the car,
these are the prevailing social norms), he can have only a limited amount
of time in which he can test each car. Then he can decide if he wants to
buy the car or is he interested in observing another car. At any stage he
can come back and buy the car that he already observed before. His problem
then, is, which attributes of the car should he be most interested in
examining. Is there one attribute that provides the best information about
the car or should he examine each time a different attribute, maybe as a

1

Given a full description of the preducts he is facing, the decision maker

can choose optimally - He is facing a usual stepping problem.



function of previous results.

Another example is the following: Suppose that a university department
is 1interested in hiring a young assistant professor. It summons up
candidates and 1interviews them one at a time. After reviewing each
candidate the department has to decide whether to make an offer to the
strongest candidate so far or to continue to interview new candidates. In
this example, the restrictions of the model seem more natural, since each
interview is costly (the department has to fly the candidate and host him
for a couple of days.) Furthermore, it is not customary to interview a
candidate twice and during these couple of days only limited information
can be gathered on the candidate. The department therefore has to decide in
what kind of information it is more intecrested.

In this context, this paper tries to understand the dynamic nature of
what makes a certain attribute intercsting, where "interest" 1is defined
implicitly by the optimal observation policy. However, this analysis can be
thought of as having descriptive implications as well, suggesting that what
might appear at a particular moment as interesting is indeed an optimal
observation. In other words, when pecople are confronted with problems of
this kind their indeterminacy and inconsistency may be the result of
unconscious optimizing rather than shee¢r arbitrariness. The notion of a
decision maker that unconsciously chooses optimally seems more plausible
than that of the (boundedly) rational decision maker that is fully aware of
the model and calculates his optimal strategy. Furthermore, the first
approach can be justified on an evolutionary basis.

Similar models of decision processes were considered in the
psychological literature. These models, (see Coombs 1964; Fishburn 1968;
Tversky 1972), concern themselves with the following problem: A decision

maker faces a set of different products (alternatives) from which he has to



choose only one. They propose the following decision rule: The decision
maker chooses one attribute (either deterministically or
probabilistically). All the products (alternatives) that fail to have this
attribute are disqualified. This process 1s repeated until only one product
(alternative) is left, and this last product ends up being chosen. However,
whether the particular way of choosing the attributes is deterministic or
probabilistic, the way in which this atctribute 1is being chosen 1is left
implicit.

Two other related areas of research are: Search literature and the
multi-armed bandit problem. In search 1literature (for a survey, see
McMillan and Rothschild 1989), generally, a search problem is constructed
and various search strategies are discussed. However, in this paper the
motivation 1is quite different. The Dbasic question we ask 1is, which
attribute observation policy will Dbetter facilitate our  search.
Consequently, there is no "optimal attribute" that we search for, rather,
the most informative attribute may vary along time and history. However,
our problem is embedded in a search problem in the following sense: using
the attribute observation policy we secarch for a good enough product and
when we find one, we stop.

In the multi-armed bandit problew (see Berry and Fristedt 1985) one
chooses among several distributions with unknown parameters. Each
distribution yields a certain payoff and the objective function is to
maximize the expected cumulative payoff. Since the parameters are unknown,
each draw from a distribution provides. apart from the immediate payoff,
some information about the distribution. Therefore, when devising a
strategy one must consider incurring a certain loss at an early stage in
order to gain information that will be wvaluable later. However, in the

present model there 1s no reason for experimentation since all the



parameters are known a-priori. While one can think of it as a degenerate
bandit problem it is focused on the information acquisition aspect of the
strategy.

As mentioned above, bounded perception is reflected in our model in
the assumption that only one attribute may be observed at a time. While
this extreme assumption may be too restrictive (and is made in our model
mainly for tractability reasons) we [ind that it does not make the model
much less realistic. Indeed, very often products are way too complex for
the consumer to observe all their attributes, whether a used car, or a job
applicant is concerned. Furthermore, the cost of having an observation can
be very high considering time and other resources, rendering more than one

observation per product practically impossible <(e.g. the problem of

interviewing job applicants). In additiown. the model allows to lump several
attributes together into one artribute. For instance, in the
recruiting-new-faculty example, applicants are questioned about their

former studies and publications and &are required to give a research
seminar, all of which can be redefined as a "research" attribute, but
usually are not tested for their performance in front of an ordinary class
(the "teaching" attribute).

Yet another justification for the bounded perception model stems from
biological evidence: there are natural mechanisms that force a limitation
very simi liar to the one described. The human eye, for instance, can
observe only a limited range in a certain time, although one can choose the
place one wants to look at.

In this paper the optimal observation problem is solved for the finite
and infinite horizon cases. In the finite case, we construct two examples
that help to clarify and motivate the wain results of the paper. The first

example shows a problem where an optimal strategy observes two attributes,



whereas in the second one only one atctribute is observed by the optimal

solution.

Example 1l: Consider a two period problem, N=2. The decision maker has to
choose among products which are each defined by a pair of values, one for
attribute p and one for attribute gq. Each attribute may take the values 0O
or 1 according to the following distributions which we assume to be

independent.

<Fl o 1 <1 0 1
3/4 1/4 1/3 2/3

The wutility function 1is V(xp,xq)=xp+xﬁ and 1s discounted with pg<l. Full
analysis of the problem is carried out by backward induction.

Computation, presented in the appendix, shows that the optimal strategy
(for 12/13<B) is: First, observe attribute p. If you see xP=1, stop and get
a utility value of 58/3. I1f, however, vou observe x"=0, continue to observe
attribute q in the next round. If you sec¢ x'=1, take it and get a utility
value of Sﬁz/h. If you see x'=0 go back and take the previous observation
(x*=0), in this case you get a utility value of 2[32/3.2

As we shall see later, in the infinite horizon case, for 3/4<8 an optimal
strategy will always prefer observing cthe p attribute.

The economic interpretation of <this example can be presented as
follows. The q attribute has a large probability of success, much larger
than that of p. However, a "success" in the p-dimension guarantees a higher
conditional expected payoff. In the first period the decision maker is
willing to bear a risk and he observes attribute p. If he wins, he stops.

If he fails he moves over to observe the ¢ attribute in the hope that it,

However, for lower ﬂ values (3/11<f<ia; 15 in the first period an optimal

strategy will prefer observing character

A q because observing x =0 will

not allow an additional observation while observiniy



at least, will guarantee a better than average conditional expected payoff.
If it does he takes it. If not, he liis no choice and he takes the first
product. Since X’ is more likely to be zero than X¥, the q attribute
functions here as some sort of "insuraunce". Loosely, the fact that X is
"safer" than X’ allows the decision maker to bear risk in the first period,
knowing that unless a "disaster" occurs (i.e. with a small probability) he

is covered.

Example 2: Again we present a two period problem, N=2. The decision maker

is faced with two attributes p,q, with the following distributions,
<P 0 3 <l 0 1
1/2 1/2 1/2 1/2

The utility function is as before vk xhy=xPxd. Again, analysis of the
problem will be carried out by backward induction, in the same manner as in
example 1. The computation is done in the appendix.

The optimal strategy is: First observe attribute p. If you see x°=3, stop
and get a value of 98/2. If you see x'=U observe again, it does not matter
whether you choose to observe attribute p or attribute g, either one will
give an expected utility value of 34°. We see that an optimal strategy
here can be restricted to observing :tctribute p alone. In this sense,
attribute p is more interesting than asttribute q.

We see a major difference between the two examples, in the first one
an optimal strategy observes both attributes while in the second example an
optimal strategy can be restricted to observe only one attribute. We wish
to generalize this distinction by referring to the differences in the
distributions of the attributes only.

In the finite case, a necessary and sufficient condition for an

optimal strategy to observe only one attribute for any time horizon N, is



that the random variable induced by <the expected utility given this
attribute is second order stochastically dominated by those corresponding
to all other attributes. At first sight it might appear unintuitive that
the dominated variable is chosen by the optimal solution. Recall, however,
that for a random variable to be second order stochastically dominated
implies that it reveals more information and that the decision here is what
attributes to observe rather than what random variables to consume.

By contrast, in the infinite horizon case, observing one attribute
only is always optimal. Yet, the infinite horizon optimal strategy may fail
to be myopically optimal. Namely, there¢ are cases in which, if we consider
only a one-period future, the optimal Infinite horizon strategy will be
strictly sub-optimal. The apparent discrepancy between the finite and
infinite horizon cases vanishes asymptotically. Although in the finite
horizon case one can always construct examples where every optimal strategy
may decide to observe two attributes {(or more), the probability that this
event actually occurs approaches zero as the horizon tends to infinity.

Therefore, it turns out that what makes an attribute attractive
involves more than "being informative" in the sense of being stochastically
dominated. Attractive attributes are, in the long run, those which have the
possibility of pulling the whole product assessment sharply upwards, no
matter how small is the probability of that occurring in any given stage.

The general structure of the paper is as follows: The second section
presents the model. The third sectioun deils with the finite horizon case,
presenting the characterization of an optimal strategy in terms of second
order stochastic dominance. Finally, the fourth section deals with the
infinite horizon case, demonstrates that observing one attribute only 1is
optimal and explains the connection between the finite and infinite horizon

cases by showing continuity of the finite horizon analysis at infinity.



2. THE MODEL

Denote the attributes of a generic product by X", i=1,..,k. The X''s
are independent random variables X :{! — R and denote the cumulative
distribution function of X' by Gi(-).

The sequence of products is denoted by X, X ,... where

1 2

X;(Xi,Xj,...,Xt), teN. The X 's are i.i.d. random variables X :1 — R

k
where teN. By independence of the attributes, each Xt has G(-)=iglGi(-) as
its cumulative distribution function.

We will assume that the decision maker has preferences which are given
by a bounded and continuous von Neumann-:lorgenstern utility function, V(-),
V:R" — R+, which will be discounted by 0<fg<l and where R* is the products’
space.

The information restriction canr e described by the sequence of
attributes the decision maker wishes to observe at each stage al,af...
where ate(l,...k}. Thus, the decision maker would seek to maximize
E[V(Xl,...,XF)lxa], where x° is the realization of the a-th attribute that
the decision maker chose to observe. This is as close as he could get to
maximizing V(xl,...,xk) (which he would do in the case of no restriction).
Here and throughout the paper capital letters X,Y, will denote random
variables and lower case letters x,y, will denote realizations (numbers) of
the corresponding random variables.

The observation procedure is as lollows: The decision maker goes
through the sequence Xl’Xz"" . From cach product Xt he observes one
attribute a, until he decides to stop. “hen a decision to stop is reached,

the decision maker takes the best product he has seen so far.

This procedure yields a sequence of random variables Y&’Yz"" which

9



are defined as:
t o aj
Y =4 Max {mvm_)[x?]}
t j=1..¢t L 3 J
Describing this problem as a stopping problem, at time t the decision
maker has to decide - whether to take v and thus stop the procedure , or
continue the observation procedure by choosing a . o the attribute of the
. 3
t+1-th product he wishes to observe
Describing this setup as a dynamic programming problem one has to
characterize the states set, the actions set, a transition function and a
payment function.

States set: S =R o (¢}

Where a state s&€S has the following interpretation: Suppose we are in

period n, then s = ?ax {E[V(X_)|xajj), Notice that knowing the state does
j=1..n J J

not imply knowing the history of the process nor the number of periods that
have passed since the beginning of the¢ problem. Still, at time n, s=yn/ﬁn
where Y, is the realization of Yn, which means that the state description
contains all the relevant information {or the problem. ¢ is an absorbing
state, denoting the end of the process.

Actions set: A= (1,.... k."STOP"}

At each state the decision maker chooses an action which may be to observe
an attribute a, 1l=<a<k, or to "stop" in which case he terminates the

observation procedure, and chooses the best product observed so far.

Transition function: q:SxA ~ F(S)

The transition function, given a state and an action, describes the
distribution of states which follows. (F(S) is the family of
cumulative distribution functions over the states set S.)

q(s,a) = ¢ with probability one if s=¢ or a="STOP".

Notice that if we want to describe choe case where the decision maker is

facing a finite product sequence with

Y =0 for i>N.
i

N. we can do that by fixing

10



Otherwise, (s=¢,a=j,l<j<k)

0 s'<s
s,a) = ,
as.a) Gi(s’) s <s'
1-Gi(s)
Immediate payment function: T:SXAXS —— R

The payment function r describes the immediate payoff given a state s and
an action a which transforms the process into state s’.
s s#¢,a="stop",s’'=¢

r(s,a,s’') =

0 otherwise

(
I
The target function: Max Bl ﬁlr(s ,a ,S )
g | 8

a, =
We are interested in finding an optvimal strategy for this problem. a
strategy for this decision problem should tell us what we should do in
every period: stopping and taking the best product so far or continuing by
observing an attribute of the next product. Any such strategy induces a
random variable which is referred to as & stopping rule.
Formally, a stopping rule is a random variable 7=(t;av...,at) such
that:
- t is a random variable denoting the stopping time.
- a,...,a are random variables dencting the attributes observed
until stopping time.
- In time n, the decisions (an and whether t stops) must be a function
of what is known until time n.
Denote the random variable represcnting the utility for the decision
maker if he uses 7 as his stopping rule by Y

T

Denote V = Sgp EYT. The decision maker wishes to guarantee himself a

11



. wl .
utility as close as possible to V . 1u this problem he can actually get
Vﬁ, i.e., there is a stopping rule 7% that guarantees a value of V . This
is because the problem defined here is & monotone problem. Extending Chow,

Robbins and Ziegmund’s definition to this stopping problem, Monotonicity

« -
for the stochastic sequence (Y ,a}  is defined as follows. First denote

n n n=.

by A the event that there is no expected gain from continuing one step
n

past stage n, i.e.,
A = { w: E[Y |y ,a _i=sv ., for all a }
n+l n nt+i T u ntl

This is a monotone case if: AIQAZQ----
and, n§lAn= Q (up to zero probability events)
Verbally, this definition considers the choice between stopping at a
certain point and continuing just one wmore¢ period. A stochastic sequence is
monotone if this "myopic" decision to stop will never be regretted, i.e.,

if a decision to stop at time t implies the same at time t+l and if such a

decision will always occur for some t.
Observation: This problem, Max EYT, is u monotone problem.
T

Proof: Since the proof follows naturally after some more results are

obtained, we present the proof later, in section 4.

4

A necessary and sufficient condition lor the existence of EY is that
T
a
E[V(X)Ix ] is bounded for all n. Since we assumed that the utility function

V( ) is bounded, EY is always defined.
T



3. THE FINITE CASE

In the finite case, the time left until the end of the process is of
crucial importance in devising an optimal strategy. The analysis is carried
out by backward induction. First, the last period is analyzed, then, the
next to last period situation is analyzed given the results of the previous
analysis. In much the same way, in each period, the analysis is carried out
when one knows the result of his actions in terms of distribution over
states in the following period. The solution for the general finite horizon
problem appears in the appendix.

The k random variables X yield k r1indom variables E[V(X)|Xi}:ﬂ — R
which are non negative and bounded.

It 1is shown that second order stochastic dominance between the
E[V(X)|Xi]'s characterizes the optimal strategy in the finite horizon case
in the following sense; If there exists an attribute p such that E[V(X)|Xp]
is second order stochastically dominated by the E[V(X)|X¥)'s of all of the
other attributes, then there exists au optimal strategy that will choose to
observe attribute p alone. If, on <the other hand, there 1is no such
attribute, every optimal strategy will observe at least two attributes.
Before we turn to the proof, we presenc the definition of second order

stochastic dominance as it appears in Rothschild and Stiglitz, 1970.

Definition: For two bounded random variubies P and Q, with bounded support
[0,M] and with the corresponding cumulascive distribution functions, FP(-),

Fb(-), we say that P is second order stochastically dominated by Q if:

0

M
(1) J(FP<x>-FQ<x>>dx
0



m
(ii) I(FP(X)-FQ(X))dx > 0 for all O=m<y
0

We will also use this term for attributes, namely:
Definition: For two attributes p and ¢, p 1is said to second order
stochastically dominate q If E[V(X)|X'] second order stochastically
dominates E[V(X)|XY].

In the examples given in the introduction, example 1 does not have
second order stochastic dominance and in example 2, attribute p is

stochastically dominated by attribute q.

1] V() XY
i
E(V(X)|X"]
3/4 -
E[V(X)[X"]
1/3
E[V(x) x%]
! 1 I I
0 1/4 2/3 1 Sey 5/3 2
Example 1
1 .
Eov(x) X%
E[V(X)|X*]
1/2 N |
|
\
|
; B I I T
0 3/2 5/2 3 7/2 9/2
Example 2
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Theorem 1: In an N22 stage problem, there exists an optimal strategy that
observes attribute p only with probabilicv I if attribute p is second order
stochastically dominated by all other attributes. Conversely, 1if the
cumulative distributions of E[V(X)|X ], l<i<k, are strictly monotone and
differentiable, and an optimal strategv observes attribute p only with
probability 1, then attribute p is second order stochastically dominated by

all other attributes.

Proof: "If": First, we need some definitvicns. Define the random variable
1
U (v) to be,
1
U'(v) = Maxiv.E V(X)[X'])
1

Now we recursively define Un(v) and CL’;(V). For n>1 let U"(v) be,

Un(v) = Maxy v , §-liax }{EU?(V)}

N

and for n=2, let Un+l(v) be,

i
U“Il(v) - U“[Max{v,&\f(:() 1X*] )]

with the following interpretation: Ui(V), which is a function of v and Xi,
is the random variable that the decision maker is choosing by observing
attribute i at the last period, with & reservation value v. U"(v), which is
a function of v only, is interpreted as the value of the problem, n stages
from the end, with reservation value . Uh(v) is indeed the wvalue of the
problem, it is the most the decision maker can hope to get. Furthermore, it
encapsulates an optimal policy and UN(v):Y* {as implied by the proof in the
appendix). Un?(v), again, a function o! v and Xl, is the random wvariable
that the decision maker is choosing by observing attribute i, n+l periods

before the end of the problem, with a rescervation value v,

15



Lemma : U%(V), Un(v) and [f#l(v) are convex functions of v for i=1,..,k,
1 1

I<n=<N. Ué(v) is also convex in E[V(X)|X;j tor all i=1,..,k, 1=<n=N.
1

Proof: Since we always consider Max(v.E[V(X)|X1]) which 1is convex 1in
E[V(X)]Xi], showing that the above functions are convex in v suffices for
U?(v) to be convex in E[V(X)|X1] for all i=1,..,k, l<n<N.

We prove the convexity of U?(v), U (v) by induction on n:

n=1: We prove that Ui(v) is convex in v.

Pick any Xe[0,1], vl,vzzo. Denote v3=Av/+(l-A)v2

"

A-Max(vl,E[V(X)|Xi]} + (l—A)-Max(vz,E[V(X)|XL]) - Max(va,E[V(X)|Xi])

it

Max(Av1,AE[V(X)|Xi]} + Max((l-A)vZ,(l-A)E{V(X)|X1]} - Max(vS,E[V(X)|Xi]}

> Max(Avr+(l-A)v2,AE{V(X)[X1]+(1-A)E[V(X)/Xi}) - Max(Av1+(l-A)v2,E[V(X)|Xi]}
=0

n=k: We assume Uﬁ(v) is convex in v for i=1,..,k, and we prove that Uk(v)
and [ﬁ:l(v) are convex functions of v f{or i=1,.. k. First we show that

convexity of U#(v) implies convexity of EUS(v) .
1 -
Pick any A€[0,1], vl,vzzo. Denote v3=Av_r(l-A)v2
X s e
AEU (v ) + (1-M)EU (v ) - EU (v)
i 1 - 4 i 3
- E[ AUR(v ) + (1-0U0 v ) - US(v) }
i 1 - Z i 3
>0
Because convexity of U%(v) for all values of X implies
1
AUS(v ) + (1-0)U (v ) - US(v )=20.
i1 F i3
Now, U"(v) is convex since the maximun operation 1s convex. Similarly,
Unﬂ(v) is convex since the maximum operation 1is convex and Un(v) is
1
convex.
Using a theorem from Rothschild and Stiglictz 1970 we know that if a random

variable X 1is second order stochastically dominated by another random

variable Y, then for every convex fuunction U(-), EU(X)=EU(Y). Therefore,

16



using the above lemma, we conclude EUi(v)? EU:(V) for all g=1,..,k, ve{0,M]
and 1<n<N. Which means that in everv period observing attribute p 1is
preferable to observing any other attribute q. Thus completing the proof of
the "if" direction.

Conversely, We will demonstrate that in a two attribute case, if there is
no second order stochastic dominance between the attributes then an optimal
strategy will observe both attributes with positive probability. Without
loss of generality , this implies that in a k attribute setting the absence
of second order stochastic dominance implies that an optimal strategy will
observe at least two attributes.

m
First we show that J‘(F_(x)—F.(x))dx > 0 implies EU'(m) > EU (m).
i J 1 J

0
m i M

Assume J(F_(x)-F_(x))dx > 0. This implies JF (x)dx < JF_(x)dx, since
i J L J

0 - m
M M

JF_(x)dx = JF‘(x)dx for all i and j. (Observe that this property holds
i J
0 0

in general since for any three random variables X,X',Y, E[E[Y|X]]=E[E[Y|X']

and E[X]=J1-FX for bounded non negative X.)

Therefore,
M 5
m + J(l-F‘(X))dX > woa J(l—F (x))dx
i J
m
However,
M S
M .
m + J(l-F,(x))dx =m + (1-F (x))x + fo_(x)dx
1 1 b
m intgg. F

by parts

=m+ (-m(1-F (m)) ~+ JA\:f_(X)dX



M
F (m)m + fov(x)dx

- Etm-1 g + ELE[V() X)L o }

(V(X) X' )<m! :‘ [V(X) X ]>m)

EU  (m) /8

Which implies, EU'(m) > EU (m).
1 J

If there is no stochastic dominance between i and j then there exists m

m
1

such that J(F_(x)-Fv(x))dx > 0 and there exists m such  that
i 3

0

m
2
J(FA(X)-FA(X))dx > 0. Continuity of the integral implies that there exist
J i
0

two 1intervals [v;,v;'] and [vé,vé': such that for all me[vi,v;'],
m

(Fi(x)-Fj(x))dx > 0 and for all me[vé,vf’:, J(FJ(X)-Fi(X))dx > 0.

O e 5

3

Requiring that every E[V(X)|Xi] will have strictly monotonic cumulative
distribution insures that in the 1last period an optimal strategy has a
positive probability of getting into any interval. In particular it insures
a positive probability of getting into [V',V;'] and [v;,v;’] thereby
insuring a positive probability of a1 optimal strategy to observe both

attributes i and j. -
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4. THE INFINITE CASE

As opposed to the finite case, in the infinite case the horizon faced
by the decision maker is the same at every stage. I will show that in the
infinite case, an optimal strategy will always observe the same attribute.
Using the fundamental theorem of discounted dynamic programming, Blackwell
1965, we know that excessivity is a sufficient condition for the optimality
of a policy 7. Therefore, if we denote by Uw(r)(s) the payoff function for
the decision maker, which represents the expectation of payment for the
decision maker in state s using policy 7, it is sufficient to show that,
for all s,

UT(r) () = 0(U () (s)

where O(-) 1s an operator defined as follows:

Let F={(f:S — R | £ is bounded and measurable}, define O0:F — F as,

0(f)(s) = Sup J[r(s,a,s')+ﬁf(s')]dq(s’|s,a) for feF.
aEA

Verbally, a strategy satisfies the excessivity criterion if, when we
delay its exercising by one period and in the meantime do the best thing we
can, we do not improve our payment.

Define a stopping time t as follows,
1

Lemma: For each attribute i=1,..,k, t <determines a threshold value b such
1 1
that for states s which are greater or equal to b , observing attribute i
1

worsens the state in expectation and ror states s which are smaller than

b , observing attribute i improves the state in expectation.
1

Proof: The existence of b can be shown by looking at the graph of the

1

expectation of states in the next period when we are in state s and are
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about to observe attribute i. I.e., the graph of E{s’|s,1] as a function of
s and 1. Observe:
(1) Since E[s'|s,i] is equal to E[Maxi{s.EV(X)}|observing attribute 1] it

is continuous and non decreasing with respect to s. Furthermore,

E{s'|s,i] is a convex function of s for all 1i=1,..,k. Since
E{s’{s,i] = E[Max{s,EV(X)}]|observing attribute 1] = E[{S,E[V(X)|Xi])]
which was proven to be a convex function of s for all i=1,..,k, in the

proof of the lemma in theorem 1.
(1ii) Non negativity of V(-) implies E{s’|O,i]=E[E[V(X)|Xi]]=E[V(X)].

(iii) Since V(-) is bounded (say by M) Eis’'|s,i]=s, for all M<s.

Since E[Y +l|y ,i]=y 1f and only 1if Siiis’|s,i]<s (we wuse the notation
n n n
s=y /B") the graph shows the value b corresponding to the choice of each
n i
of the attributes i=1,...,k. The monotounicity and continuity guarantee a
o~

unique value for b .
1

)

E(s'|s,i]

BE[s'|s,1]

EVEX) ]+—

BE[V(X) I - |

A&
-~
-
L2 1/5 ; 1
b

i |

We can use the lemma to prove the [ollowing observation.

Observation: This problem, Mﬁx EY , is 4 monotone problem.
T

5
In case there is i) such that b <t =t for all h#i, j, then we are
h o .

indifferent between observing characteristic 1 and characteristic J.
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Proof: First we show A CA " for n=0 by induction on n.

n n
For n=0: y0=0 (the reservation value is 0) then non negativity of V(.)
implies AD=¢.

For general n, consider two cases: The first is that in period n+l

E[V(X )|xanﬂ] <  Max {E[V(X )|xaij} is observed, therefore, s =s
n+l j=1..n 3 3 ) n+l n
or 'y .=By
Y = =
E[Yn+2| n1 Tne1’ Fnez 1]
= Y = =i =g = =
ﬂE[Yn+1| n ﬂyn'an+1 l] (Sm-". sn s ﬂYn+1 Yn+2 and yn+1 ﬂyn)
< ﬂE[Ymﬂ|Y'=y ’aqul} {because of monotonicity of
£ L\Anrl l Yn=yn ’ an+1=l] mn yn)
= By {byv the assumption s =s )}
. n+l n
=Y {by the assumption ynn=ﬂyn)
Otherwise, E[V(X )[xan+ﬁ >  Max {E;V(X_)lxaj}} which means s >s
n+t+l j=1..¢t 3 J 3 n+l n
Y Py -
Given that weA
n
n
= > = =
A s_ . Y ; E[Ynﬂ|Yn Yooa 1
def. An (*)
ntl N 7 ntl
; ﬁ E[Snl(Sn+1=Sn) . ! 7 [Sn+11 { Sn+1>Sn) ]
def .

We want to show weA o namely,
n+

n+l
ﬂ Sn+1 ; yn+1 ? E[Yn+2|Yn+1:y1T dl T4=l}
def An+1
_ n+2E 1 n+2E S 1
; s [Sn+1 {Smg—;slwl}] + 8 [ n+2 (Sn+2>Sn+1)]
def.

Multiplying by s /ﬂnﬂs+1 this is equivalent to showing,
n n

ls /s

>
Sn - ﬂE [ Sn1 ;1-21 { Sn+2>sn+1} n’ n+l

{Sn+2=Sn+1)] + ﬁEES:

which holds since we know,

BE[s 1

n { Sn+2=Sn+1 )

ls /s

+ s 1
] REL vz { Sn+2>sn+1) n ntl
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- BE[s 1 ]+ BES

n {Sn+1<sn+1} Lrll{Sn+1>Sn+1)JSn/Sn+1

Because knowing the state does not imply knowing the time and assume we're

in time n with s =s E This in turn is smaller or equal than,

n nt
= 'BE[Snl(Sn+1=Sn) ] + ﬁE[S::Tll(Sn+1>Sn+1} }Sn/sn+1
Since, observe that Pr{S =<s }2Pr(S =s ) and Pr{(S >s }<Pr{(S >s }
n+l n+l nrl n n+l n+l nt+l n

because s <s*&. So now the average is :taken with a larger weight on the
n n

higher value. And this 1s smaller or equul to,

< s { by () )

n

Second, we show 8 A= Q.
n= n

Since A CA we have,
n n+l

e’ c G < . <
Pr{ UA}) =Pr{n A i = 1lim Pr{A ")
n=1 n =1 u n—o n

n= :

C

Using A CA again, we get, Pr{A ) = Pria 1A “}-Pri{A )
n ntl n n n-1

n-1

n
TSN < . c c
Pria ) HZPr{Ak la )
c=

Using the lemma we know that for values greater or equal than b another

observation worsens the state in expectation. Therefore there exists a

C

0<g<l, q = Pr{E[{V(X)|X’]2b} such that Pria‘|a ) < 1-q for all k>1, and,

Pria ‘) = Pr{A ") Pri{a
n i

B

k

< PriA - (l-)" — 0

n—© |

We now turn to define 7”‘ define t as the first time

y 2E[Y ly ,a =1i] for all i, or t*:‘

Max {t }. Denote b = Max (b } and
n n+l “n  ntl =1 =1..k

K i i i

j = argMax {b }. Therefore, the stopping rule 7" is defined as follows:
1
i=1..k

"stop" b <s
r(s) =

observe characteristic j s <b

Theorem 2: the stopping rule 7 is optimai.
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Proof: First, with the previous lemma, observe that 7" is well defined.
Second, we demonstrate the excessivity property. Before that we need to find
EYT*(S) (which is actually Uw(r*)(s), the expectation of future payment when

Jt
we are in state s and acting according to policy 7 ).

Claim: EYT*(S) is as follows:

EY «(s) =
7

Proof: For b<s it is obvious. (since the process stops).
a
For s<b the expected payment in state s, according to policy 7 is

E[ﬁt]-E[E[V(X)|Xj][bsE[V(X)|XJ]] where ¢ 1s distributed geometrically with

probability of success denoted by p. Computing E[ﬁt]:

E[8"] = }: g (1-p)"'p
n=1

- nlog_ gyl P
pA }: e -

n=1

Using the lemma, b is such that for stites s which are greater or equal to
b, observing attribute j worsens the state in expectation and for states s
which are smaller than b, observing attribute j improves the state in
expectation. Therefore b is the solutiovii to the equation:

b = ﬁ[(l-p)b + pE[E[V<X)|XJJIbsE[V<X>|xJ]]
Rearranging terms yields:

TE%%E-E[E[V(X) |X7 ) bt v(X)|X7]] = b
Which means,

E[B°]-E[E[V(X)|X’] bk V() [x7]] = b

This ends the proof of the claim. ®
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Now we demonstrate excessivity: for bss the policy stops. If instead, it
continues by observing any attribute i and then continuing according to 7*,
it will give a lower expected value since we are in the region b=s where
any additional observation worsens the state in expectation.

For s<b the policy continues by observing attribute j, 1if instead, it
continues by observing attribute i distinguish between two cases: If it
stops immediately after that, which meuns it is in a state s’>b, it could
not have given an expected utility value of more than bi, which is smaller
than b - the expected utility wvalue if it does not deviate from r. O If it
does not stop, then s'<b and continuing according to 7 owill give no more
than b, which is not an improvement. If. instead of observing a different
attribute, it stops, it gives a utilicty value of s which is smaller than
b. -

The most important conclusion from the optimality of the stopping rule
7 1is that for every decision maker (who 1s characterized by a utility
function V(-) and discounting factor 5) there 1is only one interesting
attribute, not depending on states. The value b is monotonically increasing
in 8. It is possible that different § values will lead to different chosen
attributes in the strategy . Thus, the iInteresting attributes for two
decision makers with the same utility function but different discounting
factor may not be the same.

Notice that the stopping rule 7 has two simple properties. First, it
is stationary. That is to say, in each state the decision is not dependent
upon time. Second, the stopping rule is "almost" myopilc. It is myopic in
the sense that the decision whether to stup or not depends on observing the

situation one step ahead only. However it is not entirely myopic: once it
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decides to continue, the stopping rule might pick up an attribute which
does not give the highest one-step «xpected payment. It 1is therefore
possible that in some states, i1f the process would have ended in the next
period, an optimal strategy would have picked a different attribute than
r*, as demonstrated in example 1.

In order to better understand the relation between the finite and
infinite cases, notice that U"(v), the expected payoff n periods from the

end with a reservation wvalue v, 1s anr increasing sequence bounded by

Uw(r*)(v). In fact,

Lemma: Un(v) — Um(r*)(v), moreover (ite convergence is uniform.
n
Proof: Since we assumed that V(:) 1is bounded (say by M), we have,

U (r Y (v) - UM(v) < g™ —— 0

n—>® |

The following theorem demonstrates o stronger form of similarity, the

similarity in the actions taken by optimal finite and infinite case

strategies.
Theorem 3: There exists n’ such that i: ::c¢ decision maker is faced by any
horizon, nzn’, then an optimal strategy will observe the Iinfinite case

dominant attribute for at least n-n’ periods.

Proof: Un(v) — Um(f3(v), implies that for all e>0 there exists an n’
N 4

such that for all n>n', Un(v) > Uw(fw)(v)—e b-e¢.

I

Suppose, without loss of generality, thuat p is the infinite case optimal
attribute. Denote P=E{V(X)|X’] and QzE\Y(X)]Xq] for attributes p and q.

Observing attribute p gives,
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n-1

(ﬂaxlv.P}'1<P<b)) } > b-¢

Observing any other attribute q gives,

ﬁ{ E(Q-l(sz)} + E{(U (Max;v,Q)‘l(Q<b)) }

ﬁ{ E(P-1 oy, ) + E(U

Observe that,

n-1 N 1y .
ﬁ{ E{Q-l(sz)) + E{U ~(Maxiv,Q) 1(Q<b)) }

~

= 5{ E(Q'l(sz)) + E(b.l(Q<b)} }

Since for states at which the strategy does not stop , an optimal infinite
strategy yields only an expected payoff o1 b.

This, in turn, is smaller than b, becaus¢ for b > b ,
q

b > ﬁ[(l-p)b + pE[E[V(X) |37 [b=E[V(X) |xq]]

by the definition of b and the lemma. For b it holds as an equality, for
q q

b>b taking another observation worscus the state 1in eXpectation.
q
Therefore, choosing n’ large enough guaruntees that observing attribute p

will give higher expected payoff. -
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Appendix:

First, we present a detailed analysis of the examples,

Example 1: Consider a two period problew, N=Z. The decision maker is faced

by two attribute p,q, products of binarv distributions,

x| 0 1 'l o 1
3/4 1/4 1/3 °2/3
The wutility function is V(x? xH=x"+x"  Full analysis of the problem is

carried out by reviewing the problem in backward induction.

after the last period, t=2:
x°=1: E[V(x)|x’=1]=8°5/3
xI=1: E[V(x)|x%=1]=8°5/4
x°=0: E[V(x)|x’=0]="2/3
x3=0: E[V(x)|x%=0]=4°/4

In the second (last) period, t=1:

P q

observing x observing x

xP=1: (58/3) stop (58/3) stop
x%=1: B°(3/4(5/6)+1/4(5/3)1=658° /48 (58/4) stop
xP=0: B%(3/4(2/3)+1/4(5/3))1=118°/12 5U1/3(2/3)+2/3(5/4)1=198%/18
x3=0: A2(3/4(2/3)+1/4(5/3))=118°/12 501/3(1/6)+2/3(5/4) )=115°/12

In the first period, t=0:

. P -
observing x observing x1

{3/&(19ﬂ2/18)+l/4(5ﬂ/3))=ﬂ(30+57ﬂ)/48 {l,5(1152/12)+2/3(65ﬂ2/48)}=87ﬂ2/72

Example 2: Again we present a two period problem, N=2. The decision maker

is faced by two attribute p,q, products ot binary distributions,
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1l 0o 3 <12
1/2 1/2 1/2 1/2

The utility function is V(xP, xTy=x"+x" Again, analysis of the problem
will be carried out by reviewing the prcblem in backward induction, in the

same manner as in example 1.

after the last period, t=2:
xP=3: E[V(x)|x’=3]=8°9/2
x%=2: E[V(x)|x%=2]=8°7/2
x%=1: E[v(x)|x%=1]=8%5/2

xP=0: E[V(x)|x"=0]=8°3/2

In the second (last) period, t=1:

observing x” observing x"
xP=3: (98/2) stop (98/2) stop
x%=2: BH(1/2(7/2)+1/2(9/2) }=tp° (78/2) stop
x'=1: B%(1/2(5/2)+1/2(9/2))=78"/2 8°11/2(5/2)+1/2(7/2) )=3p°
xP=0: BE(1/2(3/2)+1/2(9/2))=34° 5°11/2(5/2)+1/2(7/2) V=34

In the first period, t=0:

P q

observing x observing x

(1/2(38%)+1/2(98/2))=B(9+68) /4 (1/2(78%/2)+1/2(4B%))=158°/4

Next, we solve for the optimal strategy for the general finite problem.

Some notation first:

e, = yN(af...,aN) = The value of the¢ target function after observing
the last product. =X (yN is a random wvariable as
defined before, i... a function of the decisions
a,...,a

1 N)
(i) N-1 . . . ; .
Nl E[eN|Hl ,aN=1] = The expectation or the target function value in

stage N, conditiovned on the history until stage
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e .. N-1 .
N-1, H (a sufficient statistic for H1 is
y (al,...,a”1)¢ and when we choose to

observe attribute 1.

le = D{Iaxk (le) = The value of the best observation in stage N-1.

- =1 -

e = Max{(f ,y (a,...,a )} = The wulue of the target function in
N-1 N-1'7N-1" 1 N-1

stage N-1.

Similarly, this notation is extended to «ll periods (0<t=N).

Proposition: the optimal rule T is defined as follows:
*
7 =Min(0<n<N|f <y } when for t<n we choose ro observe the attribute
n n
on which ft is obtained. which means., ror any other stopping rule 7,

6
EyTsEy”—eO

Proof: for r any stopping rule define:

a(N)=E{v
R ol 1
k<N all)=Eiv o Rl T
a(0)=E{e ¢

Suppose yb=0, if the decision maker prefers not to enter the process his
utility is 0. Hence e0=Max(yO,fO} is a constant equal to E[eo].
I will show: (i) a(k) is a decreasing svquence in k (eO is a bound for
payment)
(ii) For r=rﬁ, a(k) is a coustant sequence (rﬂ is optimal
since it gives eQ)

Observe that,

alk-1) = Bly Ty P T ke1en) ]

a(k) = E[yTI{T<k_1)] + u’yri(r=k-l)} + E[ek (kﬁr)]
6  Notice that e, is @ ocomstant because .. will define |y as a reservation
value constant and fo:i.=Té$k {E[ellyo,a;:;A» is also a constant.
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Consider: E[ekl{kST}] = E[E[eklikﬁr) |H O]}
= E[T . Eie 0]
< Bl kery hien !
= B e it
And also: E[yk_11{7=k_1)}
s Bley g1y
So we have: E[ekl{kST)] + E[yk-ll{r=k—1* < E{I{kST)ek-l] + E[ek~11{r=k-1)]

which proves (i).
(ii) To show that for r* a(k) is a constant sequence, I will show that

*
for 7 the inequalities in (i) are equalities.

From the definition of 7 we have that r is the first time the maximum
between f and y is obtained on y. Therefore under r kst implies
k-1 Tk-1
E[I « Ele, |[H ' 1) = &7 N
(k=<7 ) k' o ¢ TCTik<T ) k-1°
) I:‘L(ksf)elc-l]

And from the same reason:

E[ = L o lI

Ye-15 7 k-1 et k-1

Because 7 =k-1 implies e which cowpletes the proof of (ii).

k-1Yk-1 n
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