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Why Study Networks?

• Many economic, political, and social interactions are shaped by the local 
structure of relationships:
– trade of goods and services, most markets are not centralized!…
– sharing of information, favors, risk, ...
– transmission of viruses, opinions...
– choices of behavior, education, ...
– political alliances, trade alliances…

• Social networks influence behavior
– crime, employment, human capital, voting, smoking,…
– networks exhibit heterogeneity, but also have enough underlying 

structure to model

• Pure interest in social structure
– understand social network structure





Primary Questions:

• How do networks form?

• How do networks influence behavior?



Outline

3 Examples of models and the questions 
they can answer:

- Random graph models

contagion/diffusion

- Game theoretic/strategic model

efficiency versus stability

- A hybrid model

estimating friendship formation



Village 24:

• Borrow&Lend:



Outline

3 Examples of models and the questions 
they can answer:

- Random graph models

contagion/diffusion

- Game theoretic/strategic model

efficiency versus stability

- A hybrid model

empirical estimation of friendship                          
formation



Random Network Models 

• Provide some insight into structure

– How will a disease diffuse?

– How do link patterns affect diffusion speed?



• Consider a disease, an idea that spreads by 
contact

• When do we get diffusion?

• What is the extent of diffusion?

• How fast is diffusion?

Questions:



• Society is described by a random network

• Some node is initially infected

• That node infects its neighbors

• They infect their neighbors, and so forth

Model - ``SI’’:



• Get nontrivial diffusion if someone in the giant 
component is infected/adopts

• Size of the giant component determines 
likelihood of diffusion and its extent

• Random network models allow for giant 
component calculations

Extent of Diffusion



Representing Networks

• N={1,…,n}    nodes, vertices, players

• g {0,1}n×n represents the relationships

• gij = 1  indicates a link or edge between i and j

• Notation:  ij g  indicates a link between i and j

• Network (N,g)



Basic Definitions

• Walk from  i1 to iK:  sequence of links (i1i2,i2i3,...,iK-1iK)  

Often convenient simply to represent it as a sequence of 
nodes (i1,i2,..., iK)  such that ik-1ik g for each k

• Path:  a walk (i1,i2,... iK)  with each node ik distinct

• Cycle:  a walk where  i1 = iK

• Geodesic:  a shortest path between two nodes



Paths, Walks, Cycles... 
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Components

• (N,g) is connected if there is a path between 
every two nodes

• Component:  maximal connected subgraph
– (N’,g’) (N,g)

– (N’,g’)  is connected

– i N’ and ijg implies j N’ and ijg’



Diameter

• Diameter – largest geodesic 
– if unconnected, of largest component...

• Average path length (less prone to outliers)



• Each link is formed with an independent 
probability p

• Look at large n:  properties as society becomes 
large

Erdos-Renyi Random 
Networks



Calculating the Size of the 
Giant Component

• q is fraction of nodes in largest component on n-1 
node network (roughly the fraction on n nodes too)

• add node n and connect it

• chance that this node is outside of the giant 
component is (1-q)d where d is this node’s degree



Giant Component Size

• So, probability 1-q that a node is outside of the 
giant component is  

1-q = ∑ (1-q)d P(d)

• Solve for q…



1-q

∑ (1-q)d P(d)

0 1

1

solution

solution of q=0 



Degree Distribution:

• probability that node has d links is binomial
P(d) = [ (n-1)! / (d!(n-d-1)!) ] pd (1-p)n-d-1

• Large n, small p, this is approximately a 
Poisson distribution:
P(d) = [ (n-1)d / d! ]  pd e-(n-1)p

• hence name ``Poisson random graphs’’



Random network 
p=.02, 50 nodes





Note

• many isolated nodes

• several components

• no component has more than a small fraction 
of the nodes,  just starting to see one large 
one emerge



Random Network
p=.08, 50 nodes





Giant Component Size: 
Poisson Case

Solve      1-q = ∑ (1-q)d P(d)

when     P(d) = [ (n-1)d / d! ]  pd e-(n-1)p

so          1-q = e-(n-1)p ∑ [(1-q) (n-1)p]d / d! 

= e-(n-1)p e(n-1)p(1-q)

= e-q(n-1)p

or     - log(1-q) / q  = E[d]



Giant Component Size:

- log(1-q) / q  = E[d]
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E[d]=.5 , 50 nodes



Giant Component Size:

- log(1-q) / q  = E[d]
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E[d]=1.5, 50 nodes

E[d]=1 is the threshold for emergence of cycles and a giant component



Giant Component Size:

- log(1-q) / q  = E[d]
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E[d]=2.5, 50 nodes



Giant Component Size:

- log(1-q) / q  = E[d]
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E[d]=5, 50 nodes

E[d]=4 leads to high probability of connection



Who is infected?

• Probability of being in the giant component:

• 1-(1-q)d   increasing in d

• More connected, more likely to be infected

(more likely to be infected at any point in 
time...) 



Lessons:

• Thresholds/``Phase Transitions’’:
– low density no contagion

– middle density some probability of infection, part 
of population infected

– high density sure infection and all infected

• Degree affects who is infected and when



Extensions:

• Immunity:   delete a fraction of nodes and study 
the giant component on remaining nodes

• Probabilistic infection 
– Random infection:  have some links fail, just lower p 



Speed of Diffusion?

• How do shortest paths in a network 
depend on the size of the society and the 
connectedness of the society?



Networks

• Networks differ in their link density

• Networks differ in how links are spread across 
nodes:  Homophily

– Bias of relationships towards own type

• Technology and globalization are changing 
networks: 
– More relationships??

– more/less homophily??



Density:
Average Degree (# links)

HS Friendships (CJP 09)    6.5
Romances  (BMS 03) 0.8

Borrowing (BDJ...)  3.2

Co-authors (Newman 01, GLM 06)
Bio                      15.5
Econ                     1.7
Math                     3.9
Physics                 9.3

Facebook (Marlow 09) 120



Yellow:  Whites
Blue: Blacks
Reds: Hispanics
Green: Asian
Pink: Other
White: Missing

CJP (2009)



Homophily:

• Tendency to associate with others with similar 
characteristics: age, race, gender, religion, 
profession…. 

– Lazarsfeld and Merton (1954) ``Homophily’’

– Shrum (gender, ethnic, 1988…), Blau (professional 1974, 1977), 
Burt, Marsden (variety, 1987, 1988), Moody (grade, racial, 2001…), 
McPherson (variety,1991…)… 

– Add Health:  Moody (2001), CJP (2007),  Goodreau, Kitts, Morris 
(2009), Currarini, Jackson, Pin (2009)



Adolescent Health, 
High School in US:

Percent: 52 38 5 5

White Black Hispanic Other

White 86 7 47 74

Black 4 85 46 13

Hispanic 4 6 2 4

Other 6 2 5 9

100 100 100 100



Yellow:  Whites
Blue: Blacks
Reds: Hispanics
Green: Asian
Pink: Other
White: Missing

Strong Ties



Multi-Type 
Random Network Model 

• {1, …, n}   agents/nodes

• Partitioned into groups N1, …, NK

• Node i in group k is linked to a node j in group 
k’ with probability  Pkk’   (undirected)

• Homophily:   Pkk > Pkk’ for k’≠ k



Multi-Type Random network



Example Low Homophily



Example  High Homophily



Why do we care: Diffusion

• Characterize  how shortest paths are 
affected by density and homophily

• How will things diffuse?
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Multi-Type 
Random Network Model 

• {1, …, n}   agents/nodes

• Partitioned into groups N1, …, NK

• Node i in group k is linked to a node j in group 
k’ with probability  Pkk’   (undirected)

• Homophily:   Pkk > Pkk’ for k’≠ k



Sequences of Networks

• (n, K(n), N1(n), ..., NK(n)(n),  {Pkk’ (n)}kk’ )

• d(n) = Σkk’ Pkk’(n) nk (n) nk’(n) / n2 overall avg
degree



Sequences of Networks

• Links are dense enough so that network is 
connected: 

d(n) ≥ (1+ε) log(n) some ε>0

• Some non-vanishing proportion of links are 
across groups so that network does not split:

Pkk’(n) ≥ ε Pkk for some ε>0 and all kk’

• d(n)/n 0    network is not too complete



Theorem on Network 
Structure  (Jackson 08)

AvgDist(n)      →P 1

log(n)/log(d)

link density matters but not homophily



Intuition:

1 step: Reach  d nodes, 



Ideas:

1 step: Reach d nodes, 

then d(d-1), 



Ideas:

1 step: Reach d nodes, 

then d(d-1), 

then d(d-1)2,    



Ideas:

1 step: Reach d nodes, 

then d(d-1), 

then d(d-1)2,    d(d-1)3, ...

After k steps, totals roughly dk



Ideas:

After k steps, reach dk

When do we reach all n?

dk = n  or  k = log(n)/log(d)  



Ideas:

After k steps, reach dk

dk = n  or  k = log(n)/log(d) 

suppose reach  at least/at most   fd at each step

need  at least/at most   (fd)k =log(n)/[log(d) + log(f)]

bound  f  



Ideas:

Most at maximum distance
(10,    100,  1000,  10000...)



Small Worlds/Six Degrees of 
Separation

• n = 6.7 billion (world population)

• d = 50 (friends, relatives...)

• log(n)/log(d) is about 6 !!  
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Network structure affects diffusion:
– probability of infection/contagion

– extent of infection

– who becomes infected

– speed of diffusion

Technology is changing the world!

Diffusion



• Network structure matters

• Tractable, and simulations can go a long way 
to offering predictions

• experiment with changes in network 
structure, immunization, etc…

Diffusion



• For education/immunization

• Targeting nodes for deletion/infection…

• Endogenizing network?   

Implications



• Decisions to be made  each chooses 0 or 1
– not just diffusion 

– not just updating

• Local Complementarities - payoffs depend on 
neighbors’ actions…

• ``Strategic’’ Interplay
– Inter-dependencies

Games on Networks



• Each player chooses action xi in {0,1}

• ui(xi,xNi(g)) payoff to i

• Often will examine cases where i’s payoff 
depends only on di(g) and mNi(g) - the number 
of neighbors of i choosing 1

Definitions



Example:

• Agent prefers to take action 1 if and only if at 
least two neighbors do
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Example:

• An agent is willing to take action 1 if and only 
if at least two neighbors do
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• When can both actions be sustained in an 
equilibrium?

• What happens to diffusion in such settings?

Strategic Setting there are 
multiple equilibria



• Example: Morris (2000)  Coordination game

• prefer to take action 1 if and only if more than 
a fraction q of neighbors take action 1

When can multiple actions 
be sustained:



• Let S be the group that take action 1

• Each i in S must have fraction of at least q 
neighbors in S

• Each i not in S must have less than a fraction 
of q neighbors in S

Pure Strategy Equilibrium 
Structure
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Equilibria when agents are willing to take action 1 
if and only if more than half of their neighbors do
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Agents will play 1 if and only if at least 70% of their neighbors do 

In the top network all agents must play the same action
In the bottom network, both actions can be sustained



• A group S is r-cohesive relative to g if 

mini ∈ S  |Ni(g)⋂S|/di(g)  ≥  r

Cohesiveness of S is min i ∈ S  |Ni(g)⋂S|/di(g) 

Cohesion



Both groups are 2/3 cohesive



Morris (2000):   there exists a pure strategy 
equilibrium where both actions are played if 
and only if there is a group S that is at least q 
cohesive and such that its complement is at 
least 1-q cohesive.

Equilibria where both 
strategies are played:



• If q=1/2 – so want to match majority

• Then two groups that have more self-ties than 
cross-ties suffices

• As q goes up, need more homophilous 
behavior between the groups

Homophily?



Yellow:  Whites
Blue: Blacks
Reds: Hispanics
Green: Asian
Pink: Other
White: Missing

Strong Ties



• Start with some group of m nodes taking 
action 1 – fix their action

• Iterate on best replies for the rest of the 
population (break ties to 1)

• When does action 1 diffuse to the whole 
society?

Contagion/Diffusion



Contagion from m nodes occurs if and only if 
there is no subset of the remaining nodes that 
is more than 1-q cohesive.

Proposition (Morris (2000))



• If there is a group S that is more than 1-q cohesive, 
then no member of that group has a fraction of at 
least q of its friends outside of S

• No member of that group changes to 1.
• If there is no such group, then some member of the 

complement of m has at least a fraction of q of its 
friends in m.  

• At every iteration, some agent among those not yet 
taking 1, has a fraction of at least q of his or her 
friends taking action 1; otherwise the remaining 
group would be more than 1-q cohesive

Proof



• Drop out decisions

• Strategic complements

Application:



Drop-Out Rates

• Chandra (2000) Census – males 25 to 55

1940 1950 1960 1970 1980 1990

whites 3.3 4.2 3.0 3.5 4.8 4.9

blacks 4.2 7.5 6.9 8.9 12.7 12.7



• Value to being in the labor market depends on number of 
friends in labor force

• Drop out if some number of friends drop out

• Some heterogeneity in threshold (different costs, natural 
abilities…)

• Homophily – segregation in network

• Different starting conditions:  history...

Drop-Out Decisions



Two groups exhibit homophily…



X
X

Drop-out if at least half of neighbors 
do -- begin with two initial dropouts…



X X
X

Drop-out if at least half of neighbors 
do…



X

X

X X
X

Drop-out if at least half of neighbors 
do…



X X

X

X X
X

End up with persistent differences 
across groups...   Applications to 
social mobility, wage inequality, etc.



• Structure matters:
– Multiplicity of equilibria

– Multiple actions can emerge  depending on 
cohesion/homophily patterns...

• Diffusion:  
– Dynamics are more complicated than pure diffusion case,  

depend on homophily, thresholds, heterogeneity...

Summary – Games on 
Networks:



Outline

3 Examples of models and the questions 
they can answer:

- Random graph models

contagion/diffusion

- Game theoretic/strategic model

efficiency versus stability

- A hybrid model

empirical estimation of friendship                          
formation



Strategic Models 

• Help answer  ``why’’ networks take certain 
form  (why the Pkk’s?)

• Do ``right’’ networks form?   

• Welfare measures
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Representing Networks

• N={1,…,n}    nodes, vertices, players

• g ∈{0,1}n×n represents the relationships

• gij = 1  indicates a link or edge between i and j

• Notation:  ij ∈ g  indicates a link between i and j



• ui (g)   - payoff to i if the network is g

• undirected network formation

An Economic Analysis:
Jackson Wolinsky (1996)



• 0≤δ≤1 a benefit parameter for i from 
connection between i and j

• 0≤cij cost to i of link to j

• ℓ(i,j) shortest path length between i,j

ui(g)= ∑j δℓ(i,j) - ∑j in Ni(g) cij

Connections Model JW96



Symmetric Version:

• benefit from a friend is δ<1
• benefit from a friend of a friend is δ2,...
• cost of a link is c>0
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5u1= δ-c

u2= δ-c



Symmetric Version:

• benefit from a friend is δ<1
• benefit from a friend of a friend is δ2,...
• cost of a link is c>0

1 
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5u1= 2δ -2c

u2= δ+ δ2 -c

u3= δ+ δ2 -c



Symmetric Version:

• benefit from a friend is δ<1
• benefit from a friend of a friend is δ2,...
• cost of a link is c>0

1 

2

3

4 

5u1= 2δ+ δ2 -2c

u2= 2δ+ δ2 -2c

u3= δ+ δ2 + δ3 -c

u4= δ+ δ2 + δ3 -c



Symmetric Version:

• benefit from a friend is δ<1
• benefit from a friend of a friend is δ2,...
• cost of a link is c>0

1 

2

3

4 

5u1= 2δ+ δ2 + δ3 -2c

u2= 2δ+ 2δ2 -2c

u5= δ+ δ2+ δ3 + δ4 -c

u3= δ+ δ2 + δ3 + δ4 -c

u4= 2δ+ δ2 + δ3 -2c



• Which network are best for society?

• Which networks are formed by the agents?

Questions:



• no agent gains from severing a link –
relationships must be beneficial to be 
maintained

• no two agents both gain from adding a link (at 
least one strictly) – beneficial relationships are 
pursued when available

Modeling Incentives: 
Pairwise Stability



• ui(g) ≥ ui(g-ij)  for i and ij ∈ g
– no agent gains from severing a link

• ui(g+ij) > ui(g)  implies uj(g+ij) < uj(g) for ij∉ g
– no two agents both gain from adding a link (at least one 

strictly)

• a `weak’ concept, but often narrows things down

Pairwise Stability
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• Pareto efficient g:  there does not exist g’ s.t.
– ui(g’) ≥ ui(g) for all i, strict for some

• Efficienct g  (Pareto if transfers):
– g maximizes ∑ ui(g’)

Efficiency
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Example: Pairwise stable and 
inefficient

• δ < c < (δ+δ2)(1- δ3)    n = 6

• efficient:  (not ps)                              ps:



Transfers?

Inefficiency due to fact that center won’t sustain links   

• Pay center  to equilibrate values
-- Does this always work?                             
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transfers 

• ti(g)  such that

– if di(g)= 0    then    ti(g) = 0     

– if  Ni(g)\{j}  =  Nj(g)\{i}   then ti(g) = tj(g)
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Economic Network Models 

• Highlight tension between selfish formation 
and efficiency

• Understand externalities

• Policy predictions....



Outline

3 Examples of models and the questions 
they can answer:

- Random graph models

contagion/diffusion

- Game theoretic/strategic model

efficiency versus stability

- A hybrid model

empirical estimation of friendship                          
formation



Hybrid Network Models 

• Most networks involve both choice and 
chance in formation

• What are the relative roles?

• Random/Strategic models can be too extreme

• Can we see relative roles in homophily?



Homophily:

• Group A and Group B form fewer cross 
race friendships than would be expected 
given population mix

– Is it due to structure:  few meetings?

– Is it due to preferences of group A?

– Is it due to preferences of group B?

• Extend CJP model to answer this

• Compare across races in data on high 
school friendships



Revealed Preference 
Theory

• Common to Consumer Theory

• Use it in mapping social/friendship choices 
too!

• Different information than surveys on 
racial attitudes



Model to incorporate both

 Utilities specified as a function of friendships

 Meeting process that incorporates randomness

 Allow both utilities and meeting process to depend on 
types



II. Model  
Currarini, Jackson, Pin 2009ab:

Types:  i ∈ {1,….,K}

si = # same-type friends 
di = # different-type friends

Ui = (si + γi di)α utility to type i
γi is  the preference bias 
α captures diminishing returns



Meeting Process:
``Party’’



1



2

1



3

2

1



3

2

1

4



3

2

1

4



Meeting Process

qi rate at which type i meets type i, 

1-qi rate at which type i meets other types

qi=(stocki)1/ βi

Σqi
βi = 1

βi = 1  ``unbiased’’:  qi = stocki

βi > 1  meet own types faster than stocks



Meeting Process

qi=(stocki)1/ βi

βi = 1   if stocki=1/2 then qi=(1/2)1/1= 1/2

βi = 2   if stocki=1/2 then qi=(1/2)1/2= .707

βi = 7   if stocki=1/2 then qi=(1/2)1/ 7= .906



Equilibrium Conditions:

• ti maximizes   (qi ti + γi (1-qi)ti ) α – cti

• stocki = wi ti / Σ wj tj fraction of type i in the 
matching

• q =   qi=(stocki)1/ βi meetings determined by stocks;

• qij stocki = qji stockj (balanced meetings)

• atomless population



Fitting: 
Equilibrium Conditions



Equations Characterizing
Equilibrium:



Fitting Technique:

Search on grid of biases in preferences and
meetings
For each network (school) and specification of 
biases, calculate an error in terms of total 
deviation from fitting equations
Sum squared errors across networks (schools)
Choose biases to minimize (weighted) sum of 
squared errors



Fitted Values

ALPHA = .55

A B H W O

GAMMA = 0.9 0.55 0.65 0.75 0.9

BETA = 7 7.5 2.5 1 1



Summary

• Highly significant biases in both preferences and 
meetings

• Highly significant differences across races:
– Preference bias ranges from 0.55 to 0.90; sig diffs

– Meeting bias ranges from 1 to 7.5, sig diffs

– Blacks, Asians: high meeting bias

– Whites: no meeting bias, Hispanics: int meeting bias

– Blacks, Hispanics more preference bias, Asians least

• School size affects biases dramatically, but not 
preferences(?)



Conclusions

• Model allows identification:
– numbers of friends- identifies preference bias

– profile of mix of friends- identifies meeting bias

• Significant differences across Races
– What drives racial differences?

– Still see effect when incorporate school size,

• Why do large schools have larger preference 
biases?

• Other correlates, attributes, wealth…?



• Bridging random/economic models of formation
• Furthering existing random/economic models
• Relate Networks to outcomes –

– Applications: labor, knowledge, mobility, voting, trade, 
collaboration, crime, www, ...

– general game structures
– markets…

• Co-evolution networks and behavior
• Empirical/Experimental

– many case studies lack economic variables that would  tie 
networks to outcomes

– enrich modeling of social interactions from a structural 
perspective - fit network models to data, test network models

• Foundations and Tools– centrality, power, transfers, community 
structures and homophily, ...

Frontiers and Future


	Network Formation and Behavioral Implications
	Why Study Networks?
	Slide Number 3
	Primary Questions:
	Outline
	Village 24:
	Outline
	Random Network Models 
	Questions:
	Model -  ``SI’’:
	Extent of Diffusion
	Representing Networks
	Basic Definitions
	Paths, Walks, Cycles... 
	Components
	Diameter
	Erdos-Renyi Random Networks
	 Calculating the Size of the Giant Component
	Giant Component Size
	Slide Number 20
	Degree Distribution:
	Random network �p=.02, 50 nodes
	Slide Number 23
	Note
	Random Network�p=.08, 50 nodes
	Slide Number 26
	Giant Component Size: Poisson Case
	Giant Component Size:
	E[d]=.5 , 50 nodes
	Giant Component Size:
	E[d]=1.5, 50 nodes
	Giant Component Size:
	E[d]=2.5, 50 nodes
	Giant Component Size:
	E[d]=5, 50 nodes
	Who is infected?
	Lessons:
	Extensions:
	Speed of Diffusion?
	Networks
	 Density:�Average Degree (# links)
	Slide Number 42
	 Homophily:
	Adolescent Health, �High School in US:
	Slide Number 45
	Multi-Type �Random Network Model 
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Why do we care: Diffusion
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Multi-Type �Random Network Model 
	Sequences of Networks
	Sequences of Networks
	Theorem on Network Structure  (Jackson 08)
	Intuition:
	Ideas:
	Ideas:
	Ideas:
	Ideas:
	Ideas:
	Ideas:
	Small Worlds/Six Degrees of Separation
	Slide Number 68
	Diffusion
	Diffusion
	Implications
	Games on Networks
	Definitions
	Example:
	Example:
	Strategic Setting there are multiple equilibria
	When can multiple actions be sustained:
	Pure Strategy Equilibrium Structure
	Slide Number 79
	Slide Number 80
	Cohesion
	Slide Number 82
	Equilibria where both strategies are played:
	Homophily?
	Slide Number 85
	Contagion/Diffusion
	Proposition (Morris (2000))
	Proof
	Application:
	Drop-Out Rates
	Drop-Out Decisions
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Summary – Games on Networks:
	Outline
	Strategic Models 
	Slide Number 100
	Slide Number 101
	Representing Networks
	An Economic Analysis:�Jackson Wolinsky (1996)
	Connections Model JW96
	Symmetric Version:
	Symmetric Version:
	Symmetric Version:
	Symmetric Version:
	Questions:
	Modeling Incentives: Pairwise Stability
	Pairwise Stability
	Slide Number 112
	Efficiency
	Slide Number 114
	Example: Pairwise stable and inefficient
	Transfers?
	Slide Number 117
	Slide Number 118
	transfers 
	Transfers cannot always help
	Economic Network Models 
	Outline
	Hybrid Network Models 
	Homophily:
	Revealed Preference Theory
	Model to incorporate both
	II. Model  �Currarini, Jackson, Pin 2009ab:
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Meeting Process
	Meeting Process
	Equilibrium Conditions:
	Fitting: �Equilibrium Conditions
	Slide Number 138
	Slide Number 139
	Fitted Values
	Summary
	Conclusions
	Frontiers and Future

