Network Formation and Behavioral Implications

Matthew O. Jackson Lectures Northwestern November 2009

(please do not circulate or post without author's permission)

Why Study Networks?

- Many economic, political, and social interactions are shaped by the local structure of relationships:
 - trade of goods and services, most markets are not centralized!...
 - sharing of information, favors, risk, ...
 - transmission of viruses, opinions...
 - choices of behavior, education, ...
 - political alliances, trade alliances...
- Social networks influence behavior
 - crime, employment, human capital, voting, smoking,...
 - networks exhibit heterogeneity, but also have enough underlying structure to model
- Pure interest in social structure
 - understand social network structure

Primary Questions:

• How do networks form?

• How do networks influence behavior?

Outline

- 3 Examples of models and the questions they can answer:
 - Random graph models contagion/diffusion
 - Game theoretic/strategic model efficiency versus stability
 - A hybrid model estimating friendship formation

Outline

- 3 Examples of models and the questions they can answer:
 - Random graph models contagion/diffusion
 - Game theoretic/strategic model efficiency versus stability
 - A hybrid model

empirical estimation of friendship formation

Random Network Models

- Provide some insight into structure
 - How will a disease diffuse?
 - How do link patterns affect diffusion speed?

Questions:

- Consider a disease, an idea that spreads by contact
- When do we get diffusion?
- What is the extent of diffusion?
- How fast is diffusion?

Model - ``SI":

- Society is described by a random network
- Some node is initially infected
- That node infects its neighbors
- They infect their neighbors, and so forth

Extent of Diffusion

 Get nontrivial diffusion if someone in the giant component is infected/adopts

• Size of the giant component determines likelihood of diffusion and its extent

 Random network models allow for giant component calculations

Representing Networks

• N={1,...,n} nodes, vertices, players

• $g \square \{0,1\}^{n \times n}$ represents the relationships

• g_{ii} = 1 indicates a link or edge between i and j

Notation: ij
 g indicates a link between i and j

• Network (N,g)

Basic Definitions

- Walk from i₁ to i_K: sequence of links (i₁i₂,i₂i₃,...,i_{K-1}i_K)
 Often convenient simply to represent it as a sequence of nodes (i₁,i₂,..., i_K) such that i_{k-1}i_k □g for each k
- Path: a walk $(i_1, i_2, ..., i_K)$ with each node i_k distinct
- Cycle: a walk where $i_1 = i_K$
- Geodesic: a shortest path between two nodes

Paths, Walks, Cycles...

Path (and a walk) from 1 to 7: 1, 2, 3, 4, 5, 6, 7

Simple Cycle (and a walk) from 1 to 1: 1, 2, 3, 1

Walk from 1 to 7 that is not a path: 1, 2, 3, 4, 5, 3, 7

Cycle (and a walk) from 1 to 1: 1, 2, 3, 4, 5, 3, 1

Components

 (N,g) is connected if there is a path between every two nodes

- Component: maximal connected subgraph
 - (N′,g′) □(N,g)
 - (N',g') is connected
 - i $\Box N'$ and ij $\Box g$ implies j $\Box N'$ and ij $\Box g'$

Diameter

- Diameter largest geodesic
 - if unconnected, of largest component...

• Average path length (less prone to outliers)

Erdos-Renyi Random Networks

 Each link is formed with an independent probability p

 Look at large n: properties as society becomes large Calculating the Size of the Giant Component

 q is fraction of nodes in largest component on n-1 node network (roughly the fraction on n nodes too)

add node n and connect it

 chance that this node is outside of the giant component is (1-q)^d where d is this node's degree

Giant Component Size

• So, probability 1-q that a node is outside of the giant component is

 $1-q = \sum (1-q)^{d} P(d)$

• Solve for q...

Degree Distribution:

probability that node has d links is binomial
 P(d) = [(n-1)! / (d!(n-d-1)!)] p^d (1-p)^{n-d-1}

 Large n, small p, this is approximately a Poisson distribution:

 $P(d) = [(n-1)^d / d!] p^d e^{-(n-1)p}$

hence name ``Poisson random graphs''

Random network p=.02, 50 nodes

Note

many isolated nodes

several components

 no component has more than a small fraction of the nodes, just starting to see one large one emerge

Random Network p=.08, 50 nodes

Degree Distribution p=.08

Giant Component Size: Poisson Case

Solve $1-q = \sum (1-q)^{d} P(d)$

when
$$P(d) = [(n-1)^d / d!] p^d e^{-(n-1)p}$$

so
$$1-q = e^{-(n-1)p} \sum [(1-q)(n-1)p]^d / d!$$

= $e^{-(n-1)p} e^{(n-1)p(1-q)}$
= $e^{-q(n-1)p}$

or $-\log(1-q)/q = E[d]$

E[d]=.5, 50 nodes

E[d]=1.5, 50 nodes

E[d]=1 is the threshold for emergence of cycles and a giant component

E[d]=2.5, 50 nodes

Who is infected?

• Probability of being in the giant component:

• 1-(1-q)^d increasing in d

• More connected, more likely to be infected

(more likely to be infected at any point in time...)
Lessons:

- Thresholds/``Phase Transitions":
 - low density no contagion
 - middle density some probability of infection, part of population infected
 - high density sure infection and all infected

• Degree affects who is infected and when

Extensions:

• Immunity: delete a fraction of nodes and study the giant component on remaining nodes

- Probabilistic infection
 - Random infection: have some links fail, just lower p

Speed of Diffusion?

 How do shortest paths in a network depend on the size of the society and the connectedness of the society?

• Networks differ in their link density

- Networks differ in how links are spread across nodes: Homophily
 - -Bias of relationships towards own type

- Technology and globalization are changing networks:
 - More relationships??
 - more/less homophily??

Density: Average Degree (# links)

- HS Friendships (CJP 09)6.5Romances (BMS 03)0.8
- Borrowing (BDJ...) 3.2
- Co-authors (Newman 01, GLM 06) Bio 15.5
 - Econ1.7Math3.9Physics9.3
- Facebook (Marlow 09) 120

Homophily:

- Tendency to associate with others with similar characteristics: age, race, gender, religion, profession....
 - Lazarsfeld and Merton (1954) ``Homophily''
 - Shrum (gender, ethnic, 1988...), Blau (professional 1974, 1977), Burt, Marsden (variety, 1987, 1988), Moody (grade, racial, 2001...), McPherson (variety,1991...)...
 - Add Health: Moody (2001), CJP (2007), Goodreau, Kitts, Morris (2009), Currarini, Jackson, Pin (2009)

Adolescent Health, High School in US:

Percent:	52	38	5	5
	White	Black	Hispanic	Other
White	86	7	47	74
Black	4	85	46	13
Hispanic	4	6	2	4
Other	6	2	5	9
	100	100	100	100

Multi-Type Random Network Model

- {1, ..., n} agents/nodes
- Partitioned into groups N₁, ..., N_K

- Node i in group k is linked to a node j in group k' with probability $P_{kk'}$ (undirected)
- Homophily: $P_{kk} > P_{kk'}$ for $k' \neq k$

Multi-Type Random network

Example Low Homophily

Example High Homophily

Why do we care: Diffusion

 Characterize how shortest paths are affected by density and homophily

• How will things diffuse?

Multi-Type Random Network Model

- {1, ..., n} agents/nodes
- Partitioned into groups N₁, ..., N_K

- Node i in group k is linked to a node j in group k' with probability $P_{kk'}$ (undirected)
- Homophily: $P_{kk} > P_{kk'}$ for $k' \neq k$

Sequences of Networks

• (n, K(n), N₁(n), ..., N_{K(n)}(n), {P_{kk'} (n)}_{kk'})

• $d(n) = \Sigma_{kk'} P_{kk'}(n) n_k(n) n_{k'}(n) / n^2$ overall avg degree

Sequences of Networks

Links are dense enough so that network is connected:

 $d(n) \ge (1+\varepsilon) \log(n) \text{ some } \varepsilon > 0$

- Some non-vanishing proportion of links are across groups so that network does not split:
 P_{kk'}(n) ≥ ε P_{kk} for some ε>0 and all kk'
- d(n)/n 0 network is not too complete

Theorem on Network Structure (Jackson 08)

AvgDist(n) → P 1 log(n)/log(d)

link density matters but not homophily

Intuition:

1 step: Reach d nodes,

◀

1 step: Reach d nodes,

then d(d-1),

1 step: Reach d nodes,

then d(d-1),

then $d(d-1)^2$,

1 step: Reach d nodes,

then d(d-1),

then $d(d-1)^2$, $d(d-1)^3$, ...

After k steps, totals roughly $d^k \\$

After k steps, reach d^k When do we reach all n?

 $d^k = n$ or k = log(n)/log(d)

After k steps, reach d^k

 $d^k = n$ or k = log(n)/log(d)

suppose reach at least/at most fd at each step need at least/at most $(fd)^k = log(n)/[log(d) + log(f)]$ bound f

Most at maximum distance (10, 100, 1000, 1000...)

Small Worlds/Six Degrees of Separation

n = 6.7 billion (world population)

• d = 50 (friends, relatives...)

log(n)/log(d) is about 6 !!

Average Shortest Path vs Log(n)/Log(d)

Diffusion

Network structure affects diffusion:

- probability of infection/contagion
- extent of infection
- who becomes infected
- speed of diffusion

Technology is changing the world!

Diffusion

• Network structure matters

 Tractable, and simulations can go a long way to offering predictions

 experiment with changes in network structure, immunization, etc...

Implications

• For education/immunization

• Targeting nodes for deletion/infection...

• Endogenizing network?

Games on Networks

- Decisions to be made each chooses 0 or 1
 - not just diffusion
 - not just updating

 Local Complementarities - payoffs depend on neighbors' actions...

- ``Strategic'' Interplay
 - Inter-dependencies
Definitions

- Each player chooses action x_i in {0,1}
- u_i(x_i,x_{N_i(g)}) payoff to i
- Often will examine cases where i's payoff depends only on d_i(g) and m_{N_i(g)} - the number of neighbors of i choosing 1

Example:

 Agent prefers to take action 1 if and only if at least two neighbors do

Example:

• An agent is willing to take action 1 if and only if at least two neighbors do

Strategic Setting there are multiple equilibria

When can both actions be sustained in an equilibrium?

• What happens to diffusion in such settings?

When can multiple actions be sustained:

• Example: Morris (2000) Coordination game

 prefer to take action 1 if and only if more than a fraction q of neighbors take action 1

Pure Strategy Equilibrium Structure

• Let S be the group that take action 1

 Each i in S must have fraction of at least q neighbors in S

 Each i not in S must have less than a fraction of q neighbors in S

Equilibria when agents are willing to take action 1 if and only if more than half of their neighbors do

Agents will play 1 if and only if at least 70% of their neighbors do

In the top network all agents must play the same action In the bottom network, both actions can be sustained

A group S is r-cohesive relative to g if min_{i ∈ S} |N_i(g)∩S|/d_i(g) ≥ r

Cohesiveness of S is min $_{i \in S} |N_i(g) \cap S|/d_i(g)$

Both groups are 2/3 cohesive

Equilibria where both strategies are played:

Morris (2000): there exists a pure strategy equilibrium where both actions are played if and only if there is a group S that is at least q cohesive and such that its complement is at least 1-q cohesive.

Homophily?

• If q=1/2 – so want to match majority

Then two groups that have more self-ties than cross-ties suffices

 As q goes up, need more homophilous behavior between the groups

Contagion/Diffusion

 Start with some group of m nodes taking action 1 – fix their action

 Iterate on best replies for the rest of the population (break ties to 1)

• When does action 1 diffuse to the whole society?

Proposition (Morris (2000))

Contagion from m nodes occurs if and only if there is no subset of the remaining nodes that is more than 1-q cohesive.

Proof

- If there is a group S that is more than 1-q cohesive, then no member of that group has a fraction of at least q of its friends outside of S
- No member of that group changes to 1.
- If there is no such group, then some member of the complement of m has at least a fraction of q of its friends in m.
- At every iteration, some agent among those not yet taking 1, has a fraction of at least q of his or her friends taking action 1; otherwise the remaining group would be more than 1-q cohesive

Application:

• Drop out decisions

• Strategic complements

Drop-Out Rates

• Chandra (2000) Census – males 25 to 55

	1940	1950	1960	1970	1980	1990
whites	3.3	4.2	3.0	3.5	4.8	4.9
blacks	4.2	7.5	6.9	8.9	12.7	12.7

Drop-Out Decisions

- Value to being in the labor market depends on number of friends in labor force
- Drop out if some number of friends drop out
- Some heterogeneity in threshold (different costs, natural abilities...)
- Homophily segregation in network
- Different starting conditions: history...

Drop-out if at least half of neighbors do -- begin with two initial dropouts...

do...

do...

End up with persistent differences across groups... Applications to social mobility, wage inequality, etc.

Summary – Games on Networks:

• Structure matters:

- Multiplicity of equilibria
- Multiple actions can emerge depending on cohesion/homophily patterns...

• Diffusion:

 Dynamics are more complicated than pure diffusion case, depend on homophily, thresholds, heterogeneity...

Outline

- 3 Examples of models and the questions they can answer:
 - Random graph models contagion/diffusion
 - Game theoretic/strategic model efficiency versus stability
 - A hybrid model

empirical estimation of friendship formation

Strategic Models

- Help answer ``why" networks take certain form (why the P_{kk}'s?)
- Do ``right'' networks form?

• Welfare measures

Representing Networks

• N={1,...,n} nodes, vertices, players

• $g \in \{0,1\}^{n \times n}$ represents the relationships

• g_{ii} = 1 indicates a link or edge between i and j

• Notation: ij \in g indicates a link between i and j

An Economic Analysis: Jackson Wolinsky (1996)

• u_i (g) - payoff to i if the network is g

undirected network formation

Connections Model JW96

- 0≤δ≤1 a benefit parameter for i from connection between i and j
- $0 \le c_{ij}$ cost to i of link to j
- ℓ(i,j) shortest path length between i,j

$$u_i(g) = \sum_j \delta^{\ell(i,j)} - \sum_{j \text{ in } N_i(g)} c_{ij}$$

- benefit from a friend is $\delta < 1$
- benefit from a friend of a friend is δ^2 ,...
- cost of a link is c>0

3

5

u₂= δ-c

- benefit from a friend is $\delta < 1$
- benefit from a friend of a friend is δ^2 ,...
- cost of a link is c>0

- benefit from a friend is $\delta < 1$
- benefit from a friend of a friend is δ^2 ,...
- cost of a link is c>0

- benefit from a friend is $\delta < 1$
- benefit from a friend of a friend is δ^2 ,...
- cost of a link is c>0

- Which network are best for society?
- Which networks are formed by the agents?

Modeling Incentives: Pairwise Stability

- no agent gains from severing a link relationships must be beneficial to be maintained
- no two agents both gain from adding a link (at least one strictly) – beneficial relationships are pursued when available

Pairwise Stability

- u_i(g) ≥ u_i(g-ij) for i and ij ∈ g
 no agent gains from severing a link
- u_i(g+ij) > u_i(g) implies u_j(g+ij) < u_j(g) for ij∉ g
 no two agents both gain from adding a link (at least one strictly)
- a `weak' concept, but often narrows things down

Efficiency

Pareto efficient g: there does not exist g' s.t.
 - u_i(g') ≥ u_i(g) for all i, strict for some

Efficienct g (Pareto if transfers):
 – g maximizes ∑ u_i(g')

Example: Pairwise stable and inefficient

• $\delta < c < (\delta + \delta^2)(1 - \delta^3)$ n = 6

• efficient: (not ps)

Transfers?

Inefficiency due to fact that center won't sustain links

Pay center to equilibrate values
 Does this always work?

transfers

- t_i(g) such that
 - if $d_i(g) = 0$ then $t_i(g) = 0$
 - if $N_i(g) \setminus \{j\} = N_j(g) \setminus \{i\}$ then $t_i(g) = t_j(g)$

Transfers cannot always help

Economic Network Models

 Highlight tension between selfish formation and efficiency

Understand externalities

• Policy predictions....

Outline

- 3 Examples of models and the questions they can answer:
 - Random graph models contagion/diffusion
 - Game theoretic/strategic model efficiency versus stability
 - A hybrid model

empirical estimation of friendship formation

Hybrid Network Models

Most networks involve both choice and chance in formation

• What are the relative roles?

• Random/Strategic models can be too extreme

• Can we see relative roles in homophily?

Homophily:

- Group A and Group B form fewer cross race friendships than would be expected given population mix
 - Is it due to structure: few meetings?
 - Is it due to preferences of group A?
 - Is it due to preferences of group B?
- Extend CJP model to answer this
- Compare across races in data on high school friendships

Revealed Preference Theory

Common to Consumer Theory

Use it in mapping social/friendship choices too!

Different information than surveys on racial attitudes

Model to incorporate both

- Utilities specified as a function of friendships
- Meeting process that incorporates randomness
- Allow both utilities and meeting process to depend on types

II. Model Currarini, Jackson, Pin 2009ab:

Types: $i \in \{1, \dots, K\}$

- s_i = # same-type friends d_i = # different-type friends
- $U_{i} = (s_{i} + \gamma_{i} d_{i})^{\alpha}$ utility to type i γ_{i} is the preference bias α captures diminishing returns

Meeting Process

q_i rate at which type i meets type i,

1-q_i rate at which type i meets other types

 $q_i = (stock_i)^{1/\beta_i}$ $\Sigma q_i^{\beta_i} = 1$

 $\beta_i = 1$ ``unbiased'': $q_i = stock_i$

 $\beta_i > 1$ meet own types faster than stocks

Meeting Process

 $q_i = (stock_i)^{1/\beta_i}$

$$\beta_i = 1$$
 if stock_i=1/2 then $q_i = (1/2)^{1/1} = 1/2$

$$\beta_i = 2$$
 if stock_i=1/2 then $q_i = (1/2)^{1/2} = .707$

 $\beta_i = 7$ if stock_i=1/2 then $q_i = (1/2)^{1/7} = .906$

Equilibrium Conditions:

- t_i maximizes $(q_i t_i + \gamma_i (1-q_i)t_i)^{\alpha} ct_i$
- $stock_i = w_i t_i / \Sigma w_j t_j$ fraction of type i in the matching
- $q = q_i = (stock_i)^{1/\beta_i}$ meetings determined by stocks;
- q_{ij} stock_i = q_{ji} stock_i (balanced meetings)

atomless population

Fitting: Equilibrium Conditions

$\max_{t_i} (q_i t_i + \gamma_i (1 - q_i) t_i)^{\alpha} - c t_i$

 $\sum q_i^{\beta_i} = 1$

Equations Characterizing Equilibrium:

 $t_i \left(\gamma_j + (1 - \gamma_j)q_j\right)^{\frac{\alpha}{1 - \alpha}} = t_j \left(\gamma_i + (1 - \gamma_i)q_i\right)^{\frac{\alpha}{1 - \alpha}}$

 $\sum q_i^{\beta_i} = 1$

Fitting Technique:

- Search on grid of biases in preferences and meetings
- For each network (school) and specification of biases, calculate an error in terms of total
- deviation from fitting equations
- Sum squared errors across networks (schools) Choose biases to minimize (weighted) sum of squared errors

Fitted Values

ALPHA = .55

A B H W O

- GAMMA = 0.9 0.55 0.65 0.75 0.9
- BETA = 7 7.5 2.5 1 1

Summary

- Highly significant biases in both preferences and meetings
- Highly significant differences across races:
 - Preference bias ranges from 0.55 to 0.90; sig diffs
 - Meeting bias ranges from 1 to 7.5, sig diffs
 - Blacks, Asians: high meeting bias
 - Whites: no meeting bias, Hispanics: int meeting bias
 - Blacks, Hispanics more preference bias, Asians least
- School size affects biases dramatically, but not preferences(?)

Conclusions

- Model allows identification:
 - numbers of friends- identifies preference bias
 - profile of mix of friends- identifies meeting bias
- Significant differences across Races
 - What drives racial differences?
 - Still see effect when incorporate school size,
- Why do large schools have larger preference biases?
- Other correlates, attributes, wealth...?

Frontiers and Future

- Bridging random/economic models of formation
- Furthering existing random/economic models
- Relate Networks to outcomes
 - Applications: labor, knowledge, mobility, voting, trade, collaboration, crime, www, ...
 - general game structures
 - markets...
- Co-evolution networks and behavior
- Empirical/Experimental
 - many case studies lack economic variables that would tie networks to outcomes
 - enrich modeling of social interactions from a structural perspective - fit network models to data, test network models
- Foundations and Tools
 – centrality, power, transfers, community structures and homophily, ...

